regmap: merge regmap_update_bits_check() into macro
[deliverable/linux.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30 /*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coalesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37
38 enum {
39 MIGRATE_UNMOVABLE,
40 MIGRATE_MOVABLE,
41 MIGRATE_RECLAIMABLE,
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59 #endif
60 #ifdef CONFIG_MEMORY_ISOLATION
61 MIGRATE_ISOLATE, /* can't allocate from here */
62 #endif
63 MIGRATE_TYPES
64 };
65
66 #ifdef CONFIG_CMA
67 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
68 #else
69 # define is_migrate_cma(migratetype) false
70 #endif
71
72 #define for_each_migratetype_order(order, type) \
73 for (order = 0; order < MAX_ORDER; order++) \
74 for (type = 0; type < MIGRATE_TYPES; type++)
75
76 extern int page_group_by_mobility_disabled;
77
78 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
79 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
80
81 #define get_pageblock_migratetype(page) \
82 get_pfnblock_flags_mask(page, page_to_pfn(page), \
83 PB_migrate_end, MIGRATETYPE_MASK)
84
85 static inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
86 {
87 BUILD_BUG_ON(PB_migrate_end - PB_migrate != 2);
88 return get_pfnblock_flags_mask(page, pfn, PB_migrate_end,
89 MIGRATETYPE_MASK);
90 }
91
92 struct free_area {
93 struct list_head free_list[MIGRATE_TYPES];
94 unsigned long nr_free;
95 };
96
97 struct pglist_data;
98
99 /*
100 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
101 * So add a wild amount of padding here to ensure that they fall into separate
102 * cachelines. There are very few zone structures in the machine, so space
103 * consumption is not a concern here.
104 */
105 #if defined(CONFIG_SMP)
106 struct zone_padding {
107 char x[0];
108 } ____cacheline_internodealigned_in_smp;
109 #define ZONE_PADDING(name) struct zone_padding name;
110 #else
111 #define ZONE_PADDING(name)
112 #endif
113
114 enum zone_stat_item {
115 /* First 128 byte cacheline (assuming 64 bit words) */
116 NR_FREE_PAGES,
117 NR_ALLOC_BATCH,
118 NR_LRU_BASE,
119 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
120 NR_ACTIVE_ANON, /* " " " " " */
121 NR_INACTIVE_FILE, /* " " " " " */
122 NR_ACTIVE_FILE, /* " " " " " */
123 NR_UNEVICTABLE, /* " " " " " */
124 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
125 NR_ANON_PAGES, /* Mapped anonymous pages */
126 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
127 only modified from process context */
128 NR_FILE_PAGES,
129 NR_FILE_DIRTY,
130 NR_WRITEBACK,
131 NR_SLAB_RECLAIMABLE,
132 NR_SLAB_UNRECLAIMABLE,
133 NR_PAGETABLE, /* used for pagetables */
134 NR_KERNEL_STACK,
135 /* Second 128 byte cacheline */
136 NR_UNSTABLE_NFS, /* NFS unstable pages */
137 NR_BOUNCE,
138 NR_VMSCAN_WRITE,
139 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
140 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
141 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
142 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
143 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
144 NR_DIRTIED, /* page dirtyings since bootup */
145 NR_WRITTEN, /* page writings since bootup */
146 NR_PAGES_SCANNED, /* pages scanned since last reclaim */
147 #ifdef CONFIG_NUMA
148 NUMA_HIT, /* allocated in intended node */
149 NUMA_MISS, /* allocated in non intended node */
150 NUMA_FOREIGN, /* was intended here, hit elsewhere */
151 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
152 NUMA_LOCAL, /* allocation from local node */
153 NUMA_OTHER, /* allocation from other node */
154 #endif
155 WORKINGSET_REFAULT,
156 WORKINGSET_ACTIVATE,
157 WORKINGSET_NODERECLAIM,
158 NR_ANON_TRANSPARENT_HUGEPAGES,
159 NR_FREE_CMA_PAGES,
160 NR_VM_ZONE_STAT_ITEMS };
161
162 /*
163 * We do arithmetic on the LRU lists in various places in the code,
164 * so it is important to keep the active lists LRU_ACTIVE higher in
165 * the array than the corresponding inactive lists, and to keep
166 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
167 *
168 * This has to be kept in sync with the statistics in zone_stat_item
169 * above and the descriptions in vmstat_text in mm/vmstat.c
170 */
171 #define LRU_BASE 0
172 #define LRU_ACTIVE 1
173 #define LRU_FILE 2
174
175 enum lru_list {
176 LRU_INACTIVE_ANON = LRU_BASE,
177 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
178 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
179 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
180 LRU_UNEVICTABLE,
181 NR_LRU_LISTS
182 };
183
184 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
185
186 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
187
188 static inline int is_file_lru(enum lru_list lru)
189 {
190 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
191 }
192
193 static inline int is_active_lru(enum lru_list lru)
194 {
195 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
196 }
197
198 struct zone_reclaim_stat {
199 /*
200 * The pageout code in vmscan.c keeps track of how many of the
201 * mem/swap backed and file backed pages are referenced.
202 * The higher the rotated/scanned ratio, the more valuable
203 * that cache is.
204 *
205 * The anon LRU stats live in [0], file LRU stats in [1]
206 */
207 unsigned long recent_rotated[2];
208 unsigned long recent_scanned[2];
209 };
210
211 struct lruvec {
212 struct list_head lists[NR_LRU_LISTS];
213 struct zone_reclaim_stat reclaim_stat;
214 #ifdef CONFIG_MEMCG
215 struct zone *zone;
216 #endif
217 };
218
219 /* Mask used at gathering information at once (see memcontrol.c) */
220 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
221 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
222 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
223
224 /* Isolate clean file */
225 #define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
226 /* Isolate unmapped file */
227 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
228 /* Isolate for asynchronous migration */
229 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
230 /* Isolate unevictable pages */
231 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
232
233 /* LRU Isolation modes. */
234 typedef unsigned __bitwise__ isolate_mode_t;
235
236 enum zone_watermarks {
237 WMARK_MIN,
238 WMARK_LOW,
239 WMARK_HIGH,
240 NR_WMARK
241 };
242
243 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
244 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
245 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
246
247 struct per_cpu_pages {
248 int count; /* number of pages in the list */
249 int high; /* high watermark, emptying needed */
250 int batch; /* chunk size for buddy add/remove */
251
252 /* Lists of pages, one per migrate type stored on the pcp-lists */
253 struct list_head lists[MIGRATE_PCPTYPES];
254 };
255
256 struct per_cpu_pageset {
257 struct per_cpu_pages pcp;
258 #ifdef CONFIG_NUMA
259 s8 expire;
260 #endif
261 #ifdef CONFIG_SMP
262 s8 stat_threshold;
263 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
264 #endif
265 };
266
267 #endif /* !__GENERATING_BOUNDS.H */
268
269 enum zone_type {
270 #ifdef CONFIG_ZONE_DMA
271 /*
272 * ZONE_DMA is used when there are devices that are not able
273 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
274 * carve out the portion of memory that is needed for these devices.
275 * The range is arch specific.
276 *
277 * Some examples
278 *
279 * Architecture Limit
280 * ---------------------------
281 * parisc, ia64, sparc <4G
282 * s390 <2G
283 * arm Various
284 * alpha Unlimited or 0-16MB.
285 *
286 * i386, x86_64 and multiple other arches
287 * <16M.
288 */
289 ZONE_DMA,
290 #endif
291 #ifdef CONFIG_ZONE_DMA32
292 /*
293 * x86_64 needs two ZONE_DMAs because it supports devices that are
294 * only able to do DMA to the lower 16M but also 32 bit devices that
295 * can only do DMA areas below 4G.
296 */
297 ZONE_DMA32,
298 #endif
299 /*
300 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
301 * performed on pages in ZONE_NORMAL if the DMA devices support
302 * transfers to all addressable memory.
303 */
304 ZONE_NORMAL,
305 #ifdef CONFIG_HIGHMEM
306 /*
307 * A memory area that is only addressable by the kernel through
308 * mapping portions into its own address space. This is for example
309 * used by i386 to allow the kernel to address the memory beyond
310 * 900MB. The kernel will set up special mappings (page
311 * table entries on i386) for each page that the kernel needs to
312 * access.
313 */
314 ZONE_HIGHMEM,
315 #endif
316 ZONE_MOVABLE,
317 #ifdef CONFIG_ZONE_DEVICE
318 ZONE_DEVICE,
319 #endif
320 __MAX_NR_ZONES
321
322 };
323
324 #ifndef __GENERATING_BOUNDS_H
325
326 struct zone {
327 /* Read-mostly fields */
328
329 /* zone watermarks, access with *_wmark_pages(zone) macros */
330 unsigned long watermark[NR_WMARK];
331
332 unsigned long nr_reserved_highatomic;
333
334 /*
335 * We don't know if the memory that we're going to allocate will be
336 * freeable or/and it will be released eventually, so to avoid totally
337 * wasting several GB of ram we must reserve some of the lower zone
338 * memory (otherwise we risk to run OOM on the lower zones despite
339 * there being tons of freeable ram on the higher zones). This array is
340 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
341 * changes.
342 */
343 long lowmem_reserve[MAX_NR_ZONES];
344
345 #ifdef CONFIG_NUMA
346 int node;
347 #endif
348
349 /*
350 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
351 * this zone's LRU. Maintained by the pageout code.
352 */
353 unsigned int inactive_ratio;
354
355 struct pglist_data *zone_pgdat;
356 struct per_cpu_pageset __percpu *pageset;
357
358 /*
359 * This is a per-zone reserve of pages that are not available
360 * to userspace allocations.
361 */
362 unsigned long totalreserve_pages;
363
364 #ifndef CONFIG_SPARSEMEM
365 /*
366 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
367 * In SPARSEMEM, this map is stored in struct mem_section
368 */
369 unsigned long *pageblock_flags;
370 #endif /* CONFIG_SPARSEMEM */
371
372 #ifdef CONFIG_NUMA
373 /*
374 * zone reclaim becomes active if more unmapped pages exist.
375 */
376 unsigned long min_unmapped_pages;
377 unsigned long min_slab_pages;
378 #endif /* CONFIG_NUMA */
379
380 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
381 unsigned long zone_start_pfn;
382
383 /*
384 * spanned_pages is the total pages spanned by the zone, including
385 * holes, which is calculated as:
386 * spanned_pages = zone_end_pfn - zone_start_pfn;
387 *
388 * present_pages is physical pages existing within the zone, which
389 * is calculated as:
390 * present_pages = spanned_pages - absent_pages(pages in holes);
391 *
392 * managed_pages is present pages managed by the buddy system, which
393 * is calculated as (reserved_pages includes pages allocated by the
394 * bootmem allocator):
395 * managed_pages = present_pages - reserved_pages;
396 *
397 * So present_pages may be used by memory hotplug or memory power
398 * management logic to figure out unmanaged pages by checking
399 * (present_pages - managed_pages). And managed_pages should be used
400 * by page allocator and vm scanner to calculate all kinds of watermarks
401 * and thresholds.
402 *
403 * Locking rules:
404 *
405 * zone_start_pfn and spanned_pages are protected by span_seqlock.
406 * It is a seqlock because it has to be read outside of zone->lock,
407 * and it is done in the main allocator path. But, it is written
408 * quite infrequently.
409 *
410 * The span_seq lock is declared along with zone->lock because it is
411 * frequently read in proximity to zone->lock. It's good to
412 * give them a chance of being in the same cacheline.
413 *
414 * Write access to present_pages at runtime should be protected by
415 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
416 * present_pages should get_online_mems() to get a stable value.
417 *
418 * Read access to managed_pages should be safe because it's unsigned
419 * long. Write access to zone->managed_pages and totalram_pages are
420 * protected by managed_page_count_lock at runtime. Idealy only
421 * adjust_managed_page_count() should be used instead of directly
422 * touching zone->managed_pages and totalram_pages.
423 */
424 unsigned long managed_pages;
425 unsigned long spanned_pages;
426 unsigned long present_pages;
427
428 const char *name;
429
430 #ifdef CONFIG_MEMORY_ISOLATION
431 /*
432 * Number of isolated pageblock. It is used to solve incorrect
433 * freepage counting problem due to racy retrieving migratetype
434 * of pageblock. Protected by zone->lock.
435 */
436 unsigned long nr_isolate_pageblock;
437 #endif
438
439 #ifdef CONFIG_MEMORY_HOTPLUG
440 /* see spanned/present_pages for more description */
441 seqlock_t span_seqlock;
442 #endif
443
444 /*
445 * wait_table -- the array holding the hash table
446 * wait_table_hash_nr_entries -- the size of the hash table array
447 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
448 *
449 * The purpose of all these is to keep track of the people
450 * waiting for a page to become available and make them
451 * runnable again when possible. The trouble is that this
452 * consumes a lot of space, especially when so few things
453 * wait on pages at a given time. So instead of using
454 * per-page waitqueues, we use a waitqueue hash table.
455 *
456 * The bucket discipline is to sleep on the same queue when
457 * colliding and wake all in that wait queue when removing.
458 * When something wakes, it must check to be sure its page is
459 * truly available, a la thundering herd. The cost of a
460 * collision is great, but given the expected load of the
461 * table, they should be so rare as to be outweighed by the
462 * benefits from the saved space.
463 *
464 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
465 * primary users of these fields, and in mm/page_alloc.c
466 * free_area_init_core() performs the initialization of them.
467 */
468 wait_queue_head_t *wait_table;
469 unsigned long wait_table_hash_nr_entries;
470 unsigned long wait_table_bits;
471
472 ZONE_PADDING(_pad1_)
473 /* free areas of different sizes */
474 struct free_area free_area[MAX_ORDER];
475
476 /* zone flags, see below */
477 unsigned long flags;
478
479 /* Write-intensive fields used from the page allocator */
480 spinlock_t lock;
481
482 ZONE_PADDING(_pad2_)
483
484 /* Write-intensive fields used by page reclaim */
485
486 /* Fields commonly accessed by the page reclaim scanner */
487 spinlock_t lru_lock;
488 struct lruvec lruvec;
489
490 /* Evictions & activations on the inactive file list */
491 atomic_long_t inactive_age;
492
493 /*
494 * When free pages are below this point, additional steps are taken
495 * when reading the number of free pages to avoid per-cpu counter
496 * drift allowing watermarks to be breached
497 */
498 unsigned long percpu_drift_mark;
499
500 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
501 /* pfn where compaction free scanner should start */
502 unsigned long compact_cached_free_pfn;
503 /* pfn where async and sync compaction migration scanner should start */
504 unsigned long compact_cached_migrate_pfn[2];
505 #endif
506
507 #ifdef CONFIG_COMPACTION
508 /*
509 * On compaction failure, 1<<compact_defer_shift compactions
510 * are skipped before trying again. The number attempted since
511 * last failure is tracked with compact_considered.
512 */
513 unsigned int compact_considered;
514 unsigned int compact_defer_shift;
515 int compact_order_failed;
516 #endif
517
518 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
519 /* Set to true when the PG_migrate_skip bits should be cleared */
520 bool compact_blockskip_flush;
521 #endif
522
523 ZONE_PADDING(_pad3_)
524 /* Zone statistics */
525 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
526 } ____cacheline_internodealigned_in_smp;
527
528 enum zone_flags {
529 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
530 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
531 ZONE_CONGESTED, /* zone has many dirty pages backed by
532 * a congested BDI
533 */
534 ZONE_DIRTY, /* reclaim scanning has recently found
535 * many dirty file pages at the tail
536 * of the LRU.
537 */
538 ZONE_WRITEBACK, /* reclaim scanning has recently found
539 * many pages under writeback
540 */
541 ZONE_FAIR_DEPLETED, /* fair zone policy batch depleted */
542 };
543
544 static inline unsigned long zone_end_pfn(const struct zone *zone)
545 {
546 return zone->zone_start_pfn + zone->spanned_pages;
547 }
548
549 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
550 {
551 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
552 }
553
554 static inline bool zone_is_initialized(struct zone *zone)
555 {
556 return !!zone->wait_table;
557 }
558
559 static inline bool zone_is_empty(struct zone *zone)
560 {
561 return zone->spanned_pages == 0;
562 }
563
564 /*
565 * The "priority" of VM scanning is how much of the queues we will scan in one
566 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
567 * queues ("queue_length >> 12") during an aging round.
568 */
569 #define DEF_PRIORITY 12
570
571 /* Maximum number of zones on a zonelist */
572 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
573
574 enum {
575 ZONELIST_FALLBACK, /* zonelist with fallback */
576 #ifdef CONFIG_NUMA
577 /*
578 * The NUMA zonelists are doubled because we need zonelists that
579 * restrict the allocations to a single node for __GFP_THISNODE.
580 */
581 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
582 #endif
583 MAX_ZONELISTS
584 };
585
586 /*
587 * This struct contains information about a zone in a zonelist. It is stored
588 * here to avoid dereferences into large structures and lookups of tables
589 */
590 struct zoneref {
591 struct zone *zone; /* Pointer to actual zone */
592 int zone_idx; /* zone_idx(zoneref->zone) */
593 };
594
595 /*
596 * One allocation request operates on a zonelist. A zonelist
597 * is a list of zones, the first one is the 'goal' of the
598 * allocation, the other zones are fallback zones, in decreasing
599 * priority.
600 *
601 * To speed the reading of the zonelist, the zonerefs contain the zone index
602 * of the entry being read. Helper functions to access information given
603 * a struct zoneref are
604 *
605 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
606 * zonelist_zone_idx() - Return the index of the zone for an entry
607 * zonelist_node_idx() - Return the index of the node for an entry
608 */
609 struct zonelist {
610 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
611 };
612
613 #ifndef CONFIG_DISCONTIGMEM
614 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
615 extern struct page *mem_map;
616 #endif
617
618 /*
619 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
620 * (mostly NUMA machines?) to denote a higher-level memory zone than the
621 * zone denotes.
622 *
623 * On NUMA machines, each NUMA node would have a pg_data_t to describe
624 * it's memory layout.
625 *
626 * Memory statistics and page replacement data structures are maintained on a
627 * per-zone basis.
628 */
629 struct bootmem_data;
630 typedef struct pglist_data {
631 struct zone node_zones[MAX_NR_ZONES];
632 struct zonelist node_zonelists[MAX_ZONELISTS];
633 int nr_zones;
634 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
635 struct page *node_mem_map;
636 #ifdef CONFIG_PAGE_EXTENSION
637 struct page_ext *node_page_ext;
638 #endif
639 #endif
640 #ifndef CONFIG_NO_BOOTMEM
641 struct bootmem_data *bdata;
642 #endif
643 #ifdef CONFIG_MEMORY_HOTPLUG
644 /*
645 * Must be held any time you expect node_start_pfn, node_present_pages
646 * or node_spanned_pages stay constant. Holding this will also
647 * guarantee that any pfn_valid() stays that way.
648 *
649 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
650 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
651 *
652 * Nests above zone->lock and zone->span_seqlock
653 */
654 spinlock_t node_size_lock;
655 #endif
656 unsigned long node_start_pfn;
657 unsigned long node_present_pages; /* total number of physical pages */
658 unsigned long node_spanned_pages; /* total size of physical page
659 range, including holes */
660 int node_id;
661 wait_queue_head_t kswapd_wait;
662 wait_queue_head_t pfmemalloc_wait;
663 struct task_struct *kswapd; /* Protected by
664 mem_hotplug_begin/end() */
665 int kswapd_max_order;
666 enum zone_type classzone_idx;
667 #ifdef CONFIG_NUMA_BALANCING
668 /* Lock serializing the migrate rate limiting window */
669 spinlock_t numabalancing_migrate_lock;
670
671 /* Rate limiting time interval */
672 unsigned long numabalancing_migrate_next_window;
673
674 /* Number of pages migrated during the rate limiting time interval */
675 unsigned long numabalancing_migrate_nr_pages;
676 #endif
677
678 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
679 /*
680 * If memory initialisation on large machines is deferred then this
681 * is the first PFN that needs to be initialised.
682 */
683 unsigned long first_deferred_pfn;
684 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
685 } pg_data_t;
686
687 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
688 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
689 #ifdef CONFIG_FLAT_NODE_MEM_MAP
690 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
691 #else
692 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
693 #endif
694 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
695
696 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
697 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
698
699 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
700 {
701 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
702 }
703
704 static inline bool pgdat_is_empty(pg_data_t *pgdat)
705 {
706 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
707 }
708
709 static inline int zone_id(const struct zone *zone)
710 {
711 struct pglist_data *pgdat = zone->zone_pgdat;
712
713 return zone - pgdat->node_zones;
714 }
715
716 #ifdef CONFIG_ZONE_DEVICE
717 static inline bool is_dev_zone(const struct zone *zone)
718 {
719 return zone_id(zone) == ZONE_DEVICE;
720 }
721 #else
722 static inline bool is_dev_zone(const struct zone *zone)
723 {
724 return false;
725 }
726 #endif
727
728 #include <linux/memory_hotplug.h>
729
730 extern struct mutex zonelists_mutex;
731 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
732 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
733 bool zone_watermark_ok(struct zone *z, unsigned int order,
734 unsigned long mark, int classzone_idx, int alloc_flags);
735 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
736 unsigned long mark, int classzone_idx);
737 enum memmap_context {
738 MEMMAP_EARLY,
739 MEMMAP_HOTPLUG,
740 };
741 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
742 unsigned long size);
743
744 extern void lruvec_init(struct lruvec *lruvec);
745
746 static inline struct zone *lruvec_zone(struct lruvec *lruvec)
747 {
748 #ifdef CONFIG_MEMCG
749 return lruvec->zone;
750 #else
751 return container_of(lruvec, struct zone, lruvec);
752 #endif
753 }
754
755 #ifdef CONFIG_HAVE_MEMORY_PRESENT
756 void memory_present(int nid, unsigned long start, unsigned long end);
757 #else
758 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
759 #endif
760
761 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
762 int local_memory_node(int node_id);
763 #else
764 static inline int local_memory_node(int node_id) { return node_id; };
765 #endif
766
767 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
768 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
769 #endif
770
771 /*
772 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
773 */
774 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
775
776 static inline int populated_zone(struct zone *zone)
777 {
778 return (!!zone->present_pages);
779 }
780
781 extern int movable_zone;
782
783 #ifdef CONFIG_HIGHMEM
784 static inline int zone_movable_is_highmem(void)
785 {
786 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
787 return movable_zone == ZONE_HIGHMEM;
788 #else
789 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
790 #endif
791 }
792 #endif
793
794 static inline int is_highmem_idx(enum zone_type idx)
795 {
796 #ifdef CONFIG_HIGHMEM
797 return (idx == ZONE_HIGHMEM ||
798 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
799 #else
800 return 0;
801 #endif
802 }
803
804 /**
805 * is_highmem - helper function to quickly check if a struct zone is a
806 * highmem zone or not. This is an attempt to keep references
807 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
808 * @zone - pointer to struct zone variable
809 */
810 static inline int is_highmem(struct zone *zone)
811 {
812 #ifdef CONFIG_HIGHMEM
813 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
814 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
815 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
816 zone_movable_is_highmem());
817 #else
818 return 0;
819 #endif
820 }
821
822 /* These two functions are used to setup the per zone pages min values */
823 struct ctl_table;
824 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
825 void __user *, size_t *, loff_t *);
826 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
827 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
828 void __user *, size_t *, loff_t *);
829 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
830 void __user *, size_t *, loff_t *);
831 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
832 void __user *, size_t *, loff_t *);
833 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
834 void __user *, size_t *, loff_t *);
835
836 extern int numa_zonelist_order_handler(struct ctl_table *, int,
837 void __user *, size_t *, loff_t *);
838 extern char numa_zonelist_order[];
839 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
840
841 #ifndef CONFIG_NEED_MULTIPLE_NODES
842
843 extern struct pglist_data contig_page_data;
844 #define NODE_DATA(nid) (&contig_page_data)
845 #define NODE_MEM_MAP(nid) mem_map
846
847 #else /* CONFIG_NEED_MULTIPLE_NODES */
848
849 #include <asm/mmzone.h>
850
851 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
852
853 extern struct pglist_data *first_online_pgdat(void);
854 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
855 extern struct zone *next_zone(struct zone *zone);
856
857 /**
858 * for_each_online_pgdat - helper macro to iterate over all online nodes
859 * @pgdat - pointer to a pg_data_t variable
860 */
861 #define for_each_online_pgdat(pgdat) \
862 for (pgdat = first_online_pgdat(); \
863 pgdat; \
864 pgdat = next_online_pgdat(pgdat))
865 /**
866 * for_each_zone - helper macro to iterate over all memory zones
867 * @zone - pointer to struct zone variable
868 *
869 * The user only needs to declare the zone variable, for_each_zone
870 * fills it in.
871 */
872 #define for_each_zone(zone) \
873 for (zone = (first_online_pgdat())->node_zones; \
874 zone; \
875 zone = next_zone(zone))
876
877 #define for_each_populated_zone(zone) \
878 for (zone = (first_online_pgdat())->node_zones; \
879 zone; \
880 zone = next_zone(zone)) \
881 if (!populated_zone(zone)) \
882 ; /* do nothing */ \
883 else
884
885 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
886 {
887 return zoneref->zone;
888 }
889
890 static inline int zonelist_zone_idx(struct zoneref *zoneref)
891 {
892 return zoneref->zone_idx;
893 }
894
895 static inline int zonelist_node_idx(struct zoneref *zoneref)
896 {
897 #ifdef CONFIG_NUMA
898 /* zone_to_nid not available in this context */
899 return zoneref->zone->node;
900 #else
901 return 0;
902 #endif /* CONFIG_NUMA */
903 }
904
905 /**
906 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
907 * @z - The cursor used as a starting point for the search
908 * @highest_zoneidx - The zone index of the highest zone to return
909 * @nodes - An optional nodemask to filter the zonelist with
910 *
911 * This function returns the next zone at or below a given zone index that is
912 * within the allowed nodemask using a cursor as the starting point for the
913 * search. The zoneref returned is a cursor that represents the current zone
914 * being examined. It should be advanced by one before calling
915 * next_zones_zonelist again.
916 */
917 struct zoneref *next_zones_zonelist(struct zoneref *z,
918 enum zone_type highest_zoneidx,
919 nodemask_t *nodes);
920
921 /**
922 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
923 * @zonelist - The zonelist to search for a suitable zone
924 * @highest_zoneidx - The zone index of the highest zone to return
925 * @nodes - An optional nodemask to filter the zonelist with
926 * @zone - The first suitable zone found is returned via this parameter
927 *
928 * This function returns the first zone at or below a given zone index that is
929 * within the allowed nodemask. The zoneref returned is a cursor that can be
930 * used to iterate the zonelist with next_zones_zonelist by advancing it by
931 * one before calling.
932 */
933 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
934 enum zone_type highest_zoneidx,
935 nodemask_t *nodes,
936 struct zone **zone)
937 {
938 struct zoneref *z = next_zones_zonelist(zonelist->_zonerefs,
939 highest_zoneidx, nodes);
940 *zone = zonelist_zone(z);
941 return z;
942 }
943
944 /**
945 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
946 * @zone - The current zone in the iterator
947 * @z - The current pointer within zonelist->zones being iterated
948 * @zlist - The zonelist being iterated
949 * @highidx - The zone index of the highest zone to return
950 * @nodemask - Nodemask allowed by the allocator
951 *
952 * This iterator iterates though all zones at or below a given zone index and
953 * within a given nodemask
954 */
955 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
956 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
957 zone; \
958 z = next_zones_zonelist(++z, highidx, nodemask), \
959 zone = zonelist_zone(z)) \
960
961 /**
962 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
963 * @zone - The current zone in the iterator
964 * @z - The current pointer within zonelist->zones being iterated
965 * @zlist - The zonelist being iterated
966 * @highidx - The zone index of the highest zone to return
967 *
968 * This iterator iterates though all zones at or below a given zone index.
969 */
970 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
971 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
972
973 #ifdef CONFIG_SPARSEMEM
974 #include <asm/sparsemem.h>
975 #endif
976
977 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
978 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
979 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
980 {
981 return 0;
982 }
983 #endif
984
985 #ifdef CONFIG_FLATMEM
986 #define pfn_to_nid(pfn) (0)
987 #endif
988
989 #ifdef CONFIG_SPARSEMEM
990
991 /*
992 * SECTION_SHIFT #bits space required to store a section #
993 *
994 * PA_SECTION_SHIFT physical address to/from section number
995 * PFN_SECTION_SHIFT pfn to/from section number
996 */
997 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
998 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
999
1000 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1001
1002 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1003 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1004
1005 #define SECTION_BLOCKFLAGS_BITS \
1006 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1007
1008 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1009 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1010 #endif
1011
1012 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1013 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1014
1015 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1016 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1017
1018 struct page;
1019 struct page_ext;
1020 struct mem_section {
1021 /*
1022 * This is, logically, a pointer to an array of struct
1023 * pages. However, it is stored with some other magic.
1024 * (see sparse.c::sparse_init_one_section())
1025 *
1026 * Additionally during early boot we encode node id of
1027 * the location of the section here to guide allocation.
1028 * (see sparse.c::memory_present())
1029 *
1030 * Making it a UL at least makes someone do a cast
1031 * before using it wrong.
1032 */
1033 unsigned long section_mem_map;
1034
1035 /* See declaration of similar field in struct zone */
1036 unsigned long *pageblock_flags;
1037 #ifdef CONFIG_PAGE_EXTENSION
1038 /*
1039 * If !SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1040 * section. (see page_ext.h about this.)
1041 */
1042 struct page_ext *page_ext;
1043 unsigned long pad;
1044 #endif
1045 /*
1046 * WARNING: mem_section must be a power-of-2 in size for the
1047 * calculation and use of SECTION_ROOT_MASK to make sense.
1048 */
1049 };
1050
1051 #ifdef CONFIG_SPARSEMEM_EXTREME
1052 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1053 #else
1054 #define SECTIONS_PER_ROOT 1
1055 #endif
1056
1057 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1058 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1059 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1060
1061 #ifdef CONFIG_SPARSEMEM_EXTREME
1062 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1063 #else
1064 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1065 #endif
1066
1067 static inline struct mem_section *__nr_to_section(unsigned long nr)
1068 {
1069 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1070 return NULL;
1071 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1072 }
1073 extern int __section_nr(struct mem_section* ms);
1074 extern unsigned long usemap_size(void);
1075
1076 /*
1077 * We use the lower bits of the mem_map pointer to store
1078 * a little bit of information. There should be at least
1079 * 3 bits here due to 32-bit alignment.
1080 */
1081 #define SECTION_MARKED_PRESENT (1UL<<0)
1082 #define SECTION_HAS_MEM_MAP (1UL<<1)
1083 #define SECTION_MAP_LAST_BIT (1UL<<2)
1084 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1085 #define SECTION_NID_SHIFT 2
1086
1087 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1088 {
1089 unsigned long map = section->section_mem_map;
1090 map &= SECTION_MAP_MASK;
1091 return (struct page *)map;
1092 }
1093
1094 static inline int present_section(struct mem_section *section)
1095 {
1096 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1097 }
1098
1099 static inline int present_section_nr(unsigned long nr)
1100 {
1101 return present_section(__nr_to_section(nr));
1102 }
1103
1104 static inline int valid_section(struct mem_section *section)
1105 {
1106 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1107 }
1108
1109 static inline int valid_section_nr(unsigned long nr)
1110 {
1111 return valid_section(__nr_to_section(nr));
1112 }
1113
1114 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1115 {
1116 return __nr_to_section(pfn_to_section_nr(pfn));
1117 }
1118
1119 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1120 static inline int pfn_valid(unsigned long pfn)
1121 {
1122 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1123 return 0;
1124 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1125 }
1126 #endif
1127
1128 static inline int pfn_present(unsigned long pfn)
1129 {
1130 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1131 return 0;
1132 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1133 }
1134
1135 /*
1136 * These are _only_ used during initialisation, therefore they
1137 * can use __initdata ... They could have names to indicate
1138 * this restriction.
1139 */
1140 #ifdef CONFIG_NUMA
1141 #define pfn_to_nid(pfn) \
1142 ({ \
1143 unsigned long __pfn_to_nid_pfn = (pfn); \
1144 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1145 })
1146 #else
1147 #define pfn_to_nid(pfn) (0)
1148 #endif
1149
1150 #define early_pfn_valid(pfn) pfn_valid(pfn)
1151 void sparse_init(void);
1152 #else
1153 #define sparse_init() do {} while (0)
1154 #define sparse_index_init(_sec, _nid) do {} while (0)
1155 #endif /* CONFIG_SPARSEMEM */
1156
1157 /*
1158 * During memory init memblocks map pfns to nids. The search is expensive and
1159 * this caches recent lookups. The implementation of __early_pfn_to_nid
1160 * may treat start/end as pfns or sections.
1161 */
1162 struct mminit_pfnnid_cache {
1163 unsigned long last_start;
1164 unsigned long last_end;
1165 int last_nid;
1166 };
1167
1168 #ifndef early_pfn_valid
1169 #define early_pfn_valid(pfn) (1)
1170 #endif
1171
1172 void memory_present(int nid, unsigned long start, unsigned long end);
1173 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1174
1175 /*
1176 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1177 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1178 * pfn_valid_within() should be used in this case; we optimise this away
1179 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1180 */
1181 #ifdef CONFIG_HOLES_IN_ZONE
1182 #define pfn_valid_within(pfn) pfn_valid(pfn)
1183 #else
1184 #define pfn_valid_within(pfn) (1)
1185 #endif
1186
1187 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1188 /*
1189 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1190 * associated with it or not. In FLATMEM, it is expected that holes always
1191 * have valid memmap as long as there is valid PFNs either side of the hole.
1192 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1193 * entire section.
1194 *
1195 * However, an ARM, and maybe other embedded architectures in the future
1196 * free memmap backing holes to save memory on the assumption the memmap is
1197 * never used. The page_zone linkages are then broken even though pfn_valid()
1198 * returns true. A walker of the full memmap must then do this additional
1199 * check to ensure the memmap they are looking at is sane by making sure
1200 * the zone and PFN linkages are still valid. This is expensive, but walkers
1201 * of the full memmap are extremely rare.
1202 */
1203 bool memmap_valid_within(unsigned long pfn,
1204 struct page *page, struct zone *zone);
1205 #else
1206 static inline bool memmap_valid_within(unsigned long pfn,
1207 struct page *page, struct zone *zone)
1208 {
1209 return true;
1210 }
1211 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1212
1213 #endif /* !__GENERATING_BOUNDS.H */
1214 #endif /* !__ASSEMBLY__ */
1215 #endif /* _LINUX_MMZONE_H */
This page took 0.074915 seconds and 5 git commands to generate.