Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[deliverable/linux.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <generated/bounds.h>
19 #include <asm/atomic.h>
20 #include <asm/page.h>
21
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30 /*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coelesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37
38 #define MIGRATE_UNMOVABLE 0
39 #define MIGRATE_RECLAIMABLE 1
40 #define MIGRATE_MOVABLE 2
41 #define MIGRATE_PCPTYPES 3 /* the number of types on the pcp lists */
42 #define MIGRATE_RESERVE 3
43 #define MIGRATE_ISOLATE 4 /* can't allocate from here */
44 #define MIGRATE_TYPES 5
45
46 #define for_each_migratetype_order(order, type) \
47 for (order = 0; order < MAX_ORDER; order++) \
48 for (type = 0; type < MIGRATE_TYPES; type++)
49
50 extern int page_group_by_mobility_disabled;
51
52 static inline int get_pageblock_migratetype(struct page *page)
53 {
54 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
55 }
56
57 struct free_area {
58 struct list_head free_list[MIGRATE_TYPES];
59 unsigned long nr_free;
60 };
61
62 struct pglist_data;
63
64 /*
65 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
66 * So add a wild amount of padding here to ensure that they fall into separate
67 * cachelines. There are very few zone structures in the machine, so space
68 * consumption is not a concern here.
69 */
70 #if defined(CONFIG_SMP)
71 struct zone_padding {
72 char x[0];
73 } ____cacheline_internodealigned_in_smp;
74 #define ZONE_PADDING(name) struct zone_padding name;
75 #else
76 #define ZONE_PADDING(name)
77 #endif
78
79 enum zone_stat_item {
80 /* First 128 byte cacheline (assuming 64 bit words) */
81 NR_FREE_PAGES,
82 NR_LRU_BASE,
83 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
84 NR_ACTIVE_ANON, /* " " " " " */
85 NR_INACTIVE_FILE, /* " " " " " */
86 NR_ACTIVE_FILE, /* " " " " " */
87 NR_UNEVICTABLE, /* " " " " " */
88 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
89 NR_ANON_PAGES, /* Mapped anonymous pages */
90 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
91 only modified from process context */
92 NR_FILE_PAGES,
93 NR_FILE_DIRTY,
94 NR_WRITEBACK,
95 NR_SLAB_RECLAIMABLE,
96 NR_SLAB_UNRECLAIMABLE,
97 NR_PAGETABLE, /* used for pagetables */
98 NR_KERNEL_STACK,
99 /* Second 128 byte cacheline */
100 NR_UNSTABLE_NFS, /* NFS unstable pages */
101 NR_BOUNCE,
102 NR_VMSCAN_WRITE,
103 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
104 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
105 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
106 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
107 #ifdef CONFIG_NUMA
108 NUMA_HIT, /* allocated in intended node */
109 NUMA_MISS, /* allocated in non intended node */
110 NUMA_FOREIGN, /* was intended here, hit elsewhere */
111 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
112 NUMA_LOCAL, /* allocation from local node */
113 NUMA_OTHER, /* allocation from other node */
114 #endif
115 NR_VM_ZONE_STAT_ITEMS };
116
117 /*
118 * We do arithmetic on the LRU lists in various places in the code,
119 * so it is important to keep the active lists LRU_ACTIVE higher in
120 * the array than the corresponding inactive lists, and to keep
121 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
122 *
123 * This has to be kept in sync with the statistics in zone_stat_item
124 * above and the descriptions in vmstat_text in mm/vmstat.c
125 */
126 #define LRU_BASE 0
127 #define LRU_ACTIVE 1
128 #define LRU_FILE 2
129
130 enum lru_list {
131 LRU_INACTIVE_ANON = LRU_BASE,
132 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
133 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
134 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
135 LRU_UNEVICTABLE,
136 NR_LRU_LISTS
137 };
138
139 #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
140
141 #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
142
143 static inline int is_file_lru(enum lru_list l)
144 {
145 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
146 }
147
148 static inline int is_active_lru(enum lru_list l)
149 {
150 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
151 }
152
153 static inline int is_unevictable_lru(enum lru_list l)
154 {
155 return (l == LRU_UNEVICTABLE);
156 }
157
158 enum zone_watermarks {
159 WMARK_MIN,
160 WMARK_LOW,
161 WMARK_HIGH,
162 NR_WMARK
163 };
164
165 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
166 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
167 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
168
169 struct per_cpu_pages {
170 int count; /* number of pages in the list */
171 int high; /* high watermark, emptying needed */
172 int batch; /* chunk size for buddy add/remove */
173
174 /* Lists of pages, one per migrate type stored on the pcp-lists */
175 struct list_head lists[MIGRATE_PCPTYPES];
176 };
177
178 struct per_cpu_pageset {
179 struct per_cpu_pages pcp;
180 #ifdef CONFIG_NUMA
181 s8 expire;
182 #endif
183 #ifdef CONFIG_SMP
184 s8 stat_threshold;
185 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
186 #endif
187 };
188
189 #endif /* !__GENERATING_BOUNDS.H */
190
191 enum zone_type {
192 #ifdef CONFIG_ZONE_DMA
193 /*
194 * ZONE_DMA is used when there are devices that are not able
195 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
196 * carve out the portion of memory that is needed for these devices.
197 * The range is arch specific.
198 *
199 * Some examples
200 *
201 * Architecture Limit
202 * ---------------------------
203 * parisc, ia64, sparc <4G
204 * s390 <2G
205 * arm Various
206 * alpha Unlimited or 0-16MB.
207 *
208 * i386, x86_64 and multiple other arches
209 * <16M.
210 */
211 ZONE_DMA,
212 #endif
213 #ifdef CONFIG_ZONE_DMA32
214 /*
215 * x86_64 needs two ZONE_DMAs because it supports devices that are
216 * only able to do DMA to the lower 16M but also 32 bit devices that
217 * can only do DMA areas below 4G.
218 */
219 ZONE_DMA32,
220 #endif
221 /*
222 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
223 * performed on pages in ZONE_NORMAL if the DMA devices support
224 * transfers to all addressable memory.
225 */
226 ZONE_NORMAL,
227 #ifdef CONFIG_HIGHMEM
228 /*
229 * A memory area that is only addressable by the kernel through
230 * mapping portions into its own address space. This is for example
231 * used by i386 to allow the kernel to address the memory beyond
232 * 900MB. The kernel will set up special mappings (page
233 * table entries on i386) for each page that the kernel needs to
234 * access.
235 */
236 ZONE_HIGHMEM,
237 #endif
238 ZONE_MOVABLE,
239 __MAX_NR_ZONES
240 };
241
242 #ifndef __GENERATING_BOUNDS_H
243
244 /*
245 * When a memory allocation must conform to specific limitations (such
246 * as being suitable for DMA) the caller will pass in hints to the
247 * allocator in the gfp_mask, in the zone modifier bits. These bits
248 * are used to select a priority ordered list of memory zones which
249 * match the requested limits. See gfp_zone() in include/linux/gfp.h
250 */
251
252 #if MAX_NR_ZONES < 2
253 #define ZONES_SHIFT 0
254 #elif MAX_NR_ZONES <= 2
255 #define ZONES_SHIFT 1
256 #elif MAX_NR_ZONES <= 4
257 #define ZONES_SHIFT 2
258 #else
259 #error ZONES_SHIFT -- too many zones configured adjust calculation
260 #endif
261
262 struct zone_reclaim_stat {
263 /*
264 * The pageout code in vmscan.c keeps track of how many of the
265 * mem/swap backed and file backed pages are refeferenced.
266 * The higher the rotated/scanned ratio, the more valuable
267 * that cache is.
268 *
269 * The anon LRU stats live in [0], file LRU stats in [1]
270 */
271 unsigned long recent_rotated[2];
272 unsigned long recent_scanned[2];
273
274 /*
275 * accumulated for batching
276 */
277 unsigned long nr_saved_scan[NR_LRU_LISTS];
278 };
279
280 struct zone {
281 /* Fields commonly accessed by the page allocator */
282
283 /* zone watermarks, access with *_wmark_pages(zone) macros */
284 unsigned long watermark[NR_WMARK];
285
286 /*
287 * When free pages are below this point, additional steps are taken
288 * when reading the number of free pages to avoid per-cpu counter
289 * drift allowing watermarks to be breached
290 */
291 unsigned long percpu_drift_mark;
292
293 /*
294 * We don't know if the memory that we're going to allocate will be freeable
295 * or/and it will be released eventually, so to avoid totally wasting several
296 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
297 * to run OOM on the lower zones despite there's tons of freeable ram
298 * on the higher zones). This array is recalculated at runtime if the
299 * sysctl_lowmem_reserve_ratio sysctl changes.
300 */
301 unsigned long lowmem_reserve[MAX_NR_ZONES];
302
303 #ifdef CONFIG_NUMA
304 int node;
305 /*
306 * zone reclaim becomes active if more unmapped pages exist.
307 */
308 unsigned long min_unmapped_pages;
309 unsigned long min_slab_pages;
310 #endif
311 struct per_cpu_pageset __percpu *pageset;
312 /*
313 * free areas of different sizes
314 */
315 spinlock_t lock;
316 int all_unreclaimable; /* All pages pinned */
317 #ifdef CONFIG_MEMORY_HOTPLUG
318 /* see spanned/present_pages for more description */
319 seqlock_t span_seqlock;
320 #endif
321 struct free_area free_area[MAX_ORDER];
322
323 #ifndef CONFIG_SPARSEMEM
324 /*
325 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
326 * In SPARSEMEM, this map is stored in struct mem_section
327 */
328 unsigned long *pageblock_flags;
329 #endif /* CONFIG_SPARSEMEM */
330
331 #ifdef CONFIG_COMPACTION
332 /*
333 * On compaction failure, 1<<compact_defer_shift compactions
334 * are skipped before trying again. The number attempted since
335 * last failure is tracked with compact_considered.
336 */
337 unsigned int compact_considered;
338 unsigned int compact_defer_shift;
339 #endif
340
341 ZONE_PADDING(_pad1_)
342
343 /* Fields commonly accessed by the page reclaim scanner */
344 spinlock_t lru_lock;
345 struct zone_lru {
346 struct list_head list;
347 } lru[NR_LRU_LISTS];
348
349 struct zone_reclaim_stat reclaim_stat;
350
351 unsigned long pages_scanned; /* since last reclaim */
352 unsigned long flags; /* zone flags, see below */
353
354 /* Zone statistics */
355 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
356
357 /*
358 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
359 * this zone's LRU. Maintained by the pageout code.
360 */
361 unsigned int inactive_ratio;
362
363
364 ZONE_PADDING(_pad2_)
365 /* Rarely used or read-mostly fields */
366
367 /*
368 * wait_table -- the array holding the hash table
369 * wait_table_hash_nr_entries -- the size of the hash table array
370 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
371 *
372 * The purpose of all these is to keep track of the people
373 * waiting for a page to become available and make them
374 * runnable again when possible. The trouble is that this
375 * consumes a lot of space, especially when so few things
376 * wait on pages at a given time. So instead of using
377 * per-page waitqueues, we use a waitqueue hash table.
378 *
379 * The bucket discipline is to sleep on the same queue when
380 * colliding and wake all in that wait queue when removing.
381 * When something wakes, it must check to be sure its page is
382 * truly available, a la thundering herd. The cost of a
383 * collision is great, but given the expected load of the
384 * table, they should be so rare as to be outweighed by the
385 * benefits from the saved space.
386 *
387 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
388 * primary users of these fields, and in mm/page_alloc.c
389 * free_area_init_core() performs the initialization of them.
390 */
391 wait_queue_head_t * wait_table;
392 unsigned long wait_table_hash_nr_entries;
393 unsigned long wait_table_bits;
394
395 /*
396 * Discontig memory support fields.
397 */
398 struct pglist_data *zone_pgdat;
399 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
400 unsigned long zone_start_pfn;
401
402 /*
403 * zone_start_pfn, spanned_pages and present_pages are all
404 * protected by span_seqlock. It is a seqlock because it has
405 * to be read outside of zone->lock, and it is done in the main
406 * allocator path. But, it is written quite infrequently.
407 *
408 * The lock is declared along with zone->lock because it is
409 * frequently read in proximity to zone->lock. It's good to
410 * give them a chance of being in the same cacheline.
411 */
412 unsigned long spanned_pages; /* total size, including holes */
413 unsigned long present_pages; /* amount of memory (excluding holes) */
414
415 /*
416 * rarely used fields:
417 */
418 const char *name;
419 } ____cacheline_internodealigned_in_smp;
420
421 typedef enum {
422 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
423 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
424 } zone_flags_t;
425
426 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
427 {
428 set_bit(flag, &zone->flags);
429 }
430
431 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
432 {
433 return test_and_set_bit(flag, &zone->flags);
434 }
435
436 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
437 {
438 clear_bit(flag, &zone->flags);
439 }
440
441 static inline int zone_is_reclaim_locked(const struct zone *zone)
442 {
443 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
444 }
445
446 static inline int zone_is_oom_locked(const struct zone *zone)
447 {
448 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
449 }
450
451 #ifdef CONFIG_SMP
452 unsigned long zone_nr_free_pages(struct zone *zone);
453 #else
454 #define zone_nr_free_pages(zone) zone_page_state(zone, NR_FREE_PAGES)
455 #endif /* CONFIG_SMP */
456
457 /*
458 * The "priority" of VM scanning is how much of the queues we will scan in one
459 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
460 * queues ("queue_length >> 12") during an aging round.
461 */
462 #define DEF_PRIORITY 12
463
464 /* Maximum number of zones on a zonelist */
465 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
466
467 #ifdef CONFIG_NUMA
468
469 /*
470 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
471 * allocations to a single node for GFP_THISNODE.
472 *
473 * [0] : Zonelist with fallback
474 * [1] : No fallback (GFP_THISNODE)
475 */
476 #define MAX_ZONELISTS 2
477
478
479 /*
480 * We cache key information from each zonelist for smaller cache
481 * footprint when scanning for free pages in get_page_from_freelist().
482 *
483 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
484 * up short of free memory since the last time (last_fullzone_zap)
485 * we zero'd fullzones.
486 * 2) The array z_to_n[] maps each zone in the zonelist to its node
487 * id, so that we can efficiently evaluate whether that node is
488 * set in the current tasks mems_allowed.
489 *
490 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
491 * indexed by a zones offset in the zonelist zones[] array.
492 *
493 * The get_page_from_freelist() routine does two scans. During the
494 * first scan, we skip zones whose corresponding bit in 'fullzones'
495 * is set or whose corresponding node in current->mems_allowed (which
496 * comes from cpusets) is not set. During the second scan, we bypass
497 * this zonelist_cache, to ensure we look methodically at each zone.
498 *
499 * Once per second, we zero out (zap) fullzones, forcing us to
500 * reconsider nodes that might have regained more free memory.
501 * The field last_full_zap is the time we last zapped fullzones.
502 *
503 * This mechanism reduces the amount of time we waste repeatedly
504 * reexaming zones for free memory when they just came up low on
505 * memory momentarilly ago.
506 *
507 * The zonelist_cache struct members logically belong in struct
508 * zonelist. However, the mempolicy zonelists constructed for
509 * MPOL_BIND are intentionally variable length (and usually much
510 * shorter). A general purpose mechanism for handling structs with
511 * multiple variable length members is more mechanism than we want
512 * here. We resort to some special case hackery instead.
513 *
514 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
515 * part because they are shorter), so we put the fixed length stuff
516 * at the front of the zonelist struct, ending in a variable length
517 * zones[], as is needed by MPOL_BIND.
518 *
519 * Then we put the optional zonelist cache on the end of the zonelist
520 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
521 * the fixed length portion at the front of the struct. This pointer
522 * both enables us to find the zonelist cache, and in the case of
523 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
524 * to know that the zonelist cache is not there.
525 *
526 * The end result is that struct zonelists come in two flavors:
527 * 1) The full, fixed length version, shown below, and
528 * 2) The custom zonelists for MPOL_BIND.
529 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
530 *
531 * Even though there may be multiple CPU cores on a node modifying
532 * fullzones or last_full_zap in the same zonelist_cache at the same
533 * time, we don't lock it. This is just hint data - if it is wrong now
534 * and then, the allocator will still function, perhaps a bit slower.
535 */
536
537
538 struct zonelist_cache {
539 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
540 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
541 unsigned long last_full_zap; /* when last zap'd (jiffies) */
542 };
543 #else
544 #define MAX_ZONELISTS 1
545 struct zonelist_cache;
546 #endif
547
548 /*
549 * This struct contains information about a zone in a zonelist. It is stored
550 * here to avoid dereferences into large structures and lookups of tables
551 */
552 struct zoneref {
553 struct zone *zone; /* Pointer to actual zone */
554 int zone_idx; /* zone_idx(zoneref->zone) */
555 };
556
557 /*
558 * One allocation request operates on a zonelist. A zonelist
559 * is a list of zones, the first one is the 'goal' of the
560 * allocation, the other zones are fallback zones, in decreasing
561 * priority.
562 *
563 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
564 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
565 * *
566 * To speed the reading of the zonelist, the zonerefs contain the zone index
567 * of the entry being read. Helper functions to access information given
568 * a struct zoneref are
569 *
570 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
571 * zonelist_zone_idx() - Return the index of the zone for an entry
572 * zonelist_node_idx() - Return the index of the node for an entry
573 */
574 struct zonelist {
575 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
576 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
577 #ifdef CONFIG_NUMA
578 struct zonelist_cache zlcache; // optional ...
579 #endif
580 };
581
582 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
583 struct node_active_region {
584 unsigned long start_pfn;
585 unsigned long end_pfn;
586 int nid;
587 };
588 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
589
590 #ifndef CONFIG_DISCONTIGMEM
591 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
592 extern struct page *mem_map;
593 #endif
594
595 /*
596 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
597 * (mostly NUMA machines?) to denote a higher-level memory zone than the
598 * zone denotes.
599 *
600 * On NUMA machines, each NUMA node would have a pg_data_t to describe
601 * it's memory layout.
602 *
603 * Memory statistics and page replacement data structures are maintained on a
604 * per-zone basis.
605 */
606 struct bootmem_data;
607 typedef struct pglist_data {
608 struct zone node_zones[MAX_NR_ZONES];
609 struct zonelist node_zonelists[MAX_ZONELISTS];
610 int nr_zones;
611 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
612 struct page *node_mem_map;
613 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
614 struct page_cgroup *node_page_cgroup;
615 #endif
616 #endif
617 #ifndef CONFIG_NO_BOOTMEM
618 struct bootmem_data *bdata;
619 #endif
620 #ifdef CONFIG_MEMORY_HOTPLUG
621 /*
622 * Must be held any time you expect node_start_pfn, node_present_pages
623 * or node_spanned_pages stay constant. Holding this will also
624 * guarantee that any pfn_valid() stays that way.
625 *
626 * Nests above zone->lock and zone->size_seqlock.
627 */
628 spinlock_t node_size_lock;
629 #endif
630 unsigned long node_start_pfn;
631 unsigned long node_present_pages; /* total number of physical pages */
632 unsigned long node_spanned_pages; /* total size of physical page
633 range, including holes */
634 int node_id;
635 wait_queue_head_t kswapd_wait;
636 struct task_struct *kswapd;
637 int kswapd_max_order;
638 } pg_data_t;
639
640 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
641 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
642 #ifdef CONFIG_FLAT_NODE_MEM_MAP
643 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
644 #else
645 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
646 #endif
647 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
648
649 #include <linux/memory_hotplug.h>
650
651 extern struct mutex zonelists_mutex;
652 void build_all_zonelists(void *data);
653 void wakeup_kswapd(struct zone *zone, int order);
654 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
655 int classzone_idx, int alloc_flags);
656 enum memmap_context {
657 MEMMAP_EARLY,
658 MEMMAP_HOTPLUG,
659 };
660 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
661 unsigned long size,
662 enum memmap_context context);
663
664 #ifdef CONFIG_HAVE_MEMORY_PRESENT
665 void memory_present(int nid, unsigned long start, unsigned long end);
666 #else
667 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
668 #endif
669
670 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
671 int local_memory_node(int node_id);
672 #else
673 static inline int local_memory_node(int node_id) { return node_id; };
674 #endif
675
676 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
677 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
678 #endif
679
680 /*
681 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
682 */
683 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
684
685 static inline int populated_zone(struct zone *zone)
686 {
687 return (!!zone->present_pages);
688 }
689
690 extern int movable_zone;
691
692 static inline int zone_movable_is_highmem(void)
693 {
694 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
695 return movable_zone == ZONE_HIGHMEM;
696 #else
697 return 0;
698 #endif
699 }
700
701 static inline int is_highmem_idx(enum zone_type idx)
702 {
703 #ifdef CONFIG_HIGHMEM
704 return (idx == ZONE_HIGHMEM ||
705 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
706 #else
707 return 0;
708 #endif
709 }
710
711 static inline int is_normal_idx(enum zone_type idx)
712 {
713 return (idx == ZONE_NORMAL);
714 }
715
716 /**
717 * is_highmem - helper function to quickly check if a struct zone is a
718 * highmem zone or not. This is an attempt to keep references
719 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
720 * @zone - pointer to struct zone variable
721 */
722 static inline int is_highmem(struct zone *zone)
723 {
724 #ifdef CONFIG_HIGHMEM
725 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
726 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
727 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
728 zone_movable_is_highmem());
729 #else
730 return 0;
731 #endif
732 }
733
734 static inline int is_normal(struct zone *zone)
735 {
736 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
737 }
738
739 static inline int is_dma32(struct zone *zone)
740 {
741 #ifdef CONFIG_ZONE_DMA32
742 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
743 #else
744 return 0;
745 #endif
746 }
747
748 static inline int is_dma(struct zone *zone)
749 {
750 #ifdef CONFIG_ZONE_DMA
751 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
752 #else
753 return 0;
754 #endif
755 }
756
757 /* These two functions are used to setup the per zone pages min values */
758 struct ctl_table;
759 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
760 void __user *, size_t *, loff_t *);
761 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
762 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
763 void __user *, size_t *, loff_t *);
764 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
765 void __user *, size_t *, loff_t *);
766 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
767 void __user *, size_t *, loff_t *);
768 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
769 void __user *, size_t *, loff_t *);
770
771 extern int numa_zonelist_order_handler(struct ctl_table *, int,
772 void __user *, size_t *, loff_t *);
773 extern char numa_zonelist_order[];
774 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
775
776 #ifndef CONFIG_NEED_MULTIPLE_NODES
777
778 extern struct pglist_data contig_page_data;
779 #define NODE_DATA(nid) (&contig_page_data)
780 #define NODE_MEM_MAP(nid) mem_map
781
782 #else /* CONFIG_NEED_MULTIPLE_NODES */
783
784 #include <asm/mmzone.h>
785
786 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
787
788 extern struct pglist_data *first_online_pgdat(void);
789 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
790 extern struct zone *next_zone(struct zone *zone);
791
792 /**
793 * for_each_online_pgdat - helper macro to iterate over all online nodes
794 * @pgdat - pointer to a pg_data_t variable
795 */
796 #define for_each_online_pgdat(pgdat) \
797 for (pgdat = first_online_pgdat(); \
798 pgdat; \
799 pgdat = next_online_pgdat(pgdat))
800 /**
801 * for_each_zone - helper macro to iterate over all memory zones
802 * @zone - pointer to struct zone variable
803 *
804 * The user only needs to declare the zone variable, for_each_zone
805 * fills it in.
806 */
807 #define for_each_zone(zone) \
808 for (zone = (first_online_pgdat())->node_zones; \
809 zone; \
810 zone = next_zone(zone))
811
812 #define for_each_populated_zone(zone) \
813 for (zone = (first_online_pgdat())->node_zones; \
814 zone; \
815 zone = next_zone(zone)) \
816 if (!populated_zone(zone)) \
817 ; /* do nothing */ \
818 else
819
820 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
821 {
822 return zoneref->zone;
823 }
824
825 static inline int zonelist_zone_idx(struct zoneref *zoneref)
826 {
827 return zoneref->zone_idx;
828 }
829
830 static inline int zonelist_node_idx(struct zoneref *zoneref)
831 {
832 #ifdef CONFIG_NUMA
833 /* zone_to_nid not available in this context */
834 return zoneref->zone->node;
835 #else
836 return 0;
837 #endif /* CONFIG_NUMA */
838 }
839
840 /**
841 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
842 * @z - The cursor used as a starting point for the search
843 * @highest_zoneidx - The zone index of the highest zone to return
844 * @nodes - An optional nodemask to filter the zonelist with
845 * @zone - The first suitable zone found is returned via this parameter
846 *
847 * This function returns the next zone at or below a given zone index that is
848 * within the allowed nodemask using a cursor as the starting point for the
849 * search. The zoneref returned is a cursor that represents the current zone
850 * being examined. It should be advanced by one before calling
851 * next_zones_zonelist again.
852 */
853 struct zoneref *next_zones_zonelist(struct zoneref *z,
854 enum zone_type highest_zoneidx,
855 nodemask_t *nodes,
856 struct zone **zone);
857
858 /**
859 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
860 * @zonelist - The zonelist to search for a suitable zone
861 * @highest_zoneidx - The zone index of the highest zone to return
862 * @nodes - An optional nodemask to filter the zonelist with
863 * @zone - The first suitable zone found is returned via this parameter
864 *
865 * This function returns the first zone at or below a given zone index that is
866 * within the allowed nodemask. The zoneref returned is a cursor that can be
867 * used to iterate the zonelist with next_zones_zonelist by advancing it by
868 * one before calling.
869 */
870 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
871 enum zone_type highest_zoneidx,
872 nodemask_t *nodes,
873 struct zone **zone)
874 {
875 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
876 zone);
877 }
878
879 /**
880 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
881 * @zone - The current zone in the iterator
882 * @z - The current pointer within zonelist->zones being iterated
883 * @zlist - The zonelist being iterated
884 * @highidx - The zone index of the highest zone to return
885 * @nodemask - Nodemask allowed by the allocator
886 *
887 * This iterator iterates though all zones at or below a given zone index and
888 * within a given nodemask
889 */
890 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
891 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
892 zone; \
893 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
894
895 /**
896 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
897 * @zone - The current zone in the iterator
898 * @z - The current pointer within zonelist->zones being iterated
899 * @zlist - The zonelist being iterated
900 * @highidx - The zone index of the highest zone to return
901 *
902 * This iterator iterates though all zones at or below a given zone index.
903 */
904 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
905 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
906
907 #ifdef CONFIG_SPARSEMEM
908 #include <asm/sparsemem.h>
909 #endif
910
911 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
912 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
913 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
914 {
915 return 0;
916 }
917 #endif
918
919 #ifdef CONFIG_FLATMEM
920 #define pfn_to_nid(pfn) (0)
921 #endif
922
923 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
924 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
925
926 #ifdef CONFIG_SPARSEMEM
927
928 /*
929 * SECTION_SHIFT #bits space required to store a section #
930 *
931 * PA_SECTION_SHIFT physical address to/from section number
932 * PFN_SECTION_SHIFT pfn to/from section number
933 */
934 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
935
936 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
937 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
938
939 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
940
941 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
942 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
943
944 #define SECTION_BLOCKFLAGS_BITS \
945 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
946
947 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
948 #error Allocator MAX_ORDER exceeds SECTION_SIZE
949 #endif
950
951 struct page;
952 struct page_cgroup;
953 struct mem_section {
954 /*
955 * This is, logically, a pointer to an array of struct
956 * pages. However, it is stored with some other magic.
957 * (see sparse.c::sparse_init_one_section())
958 *
959 * Additionally during early boot we encode node id of
960 * the location of the section here to guide allocation.
961 * (see sparse.c::memory_present())
962 *
963 * Making it a UL at least makes someone do a cast
964 * before using it wrong.
965 */
966 unsigned long section_mem_map;
967
968 /* See declaration of similar field in struct zone */
969 unsigned long *pageblock_flags;
970 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
971 /*
972 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
973 * section. (see memcontrol.h/page_cgroup.h about this.)
974 */
975 struct page_cgroup *page_cgroup;
976 unsigned long pad;
977 #endif
978 };
979
980 #ifdef CONFIG_SPARSEMEM_EXTREME
981 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
982 #else
983 #define SECTIONS_PER_ROOT 1
984 #endif
985
986 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
987 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
988 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
989
990 #ifdef CONFIG_SPARSEMEM_EXTREME
991 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
992 #else
993 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
994 #endif
995
996 static inline struct mem_section *__nr_to_section(unsigned long nr)
997 {
998 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
999 return NULL;
1000 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1001 }
1002 extern int __section_nr(struct mem_section* ms);
1003 extern unsigned long usemap_size(void);
1004
1005 /*
1006 * We use the lower bits of the mem_map pointer to store
1007 * a little bit of information. There should be at least
1008 * 3 bits here due to 32-bit alignment.
1009 */
1010 #define SECTION_MARKED_PRESENT (1UL<<0)
1011 #define SECTION_HAS_MEM_MAP (1UL<<1)
1012 #define SECTION_MAP_LAST_BIT (1UL<<2)
1013 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1014 #define SECTION_NID_SHIFT 2
1015
1016 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1017 {
1018 unsigned long map = section->section_mem_map;
1019 map &= SECTION_MAP_MASK;
1020 return (struct page *)map;
1021 }
1022
1023 static inline int present_section(struct mem_section *section)
1024 {
1025 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1026 }
1027
1028 static inline int present_section_nr(unsigned long nr)
1029 {
1030 return present_section(__nr_to_section(nr));
1031 }
1032
1033 static inline int valid_section(struct mem_section *section)
1034 {
1035 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1036 }
1037
1038 static inline int valid_section_nr(unsigned long nr)
1039 {
1040 return valid_section(__nr_to_section(nr));
1041 }
1042
1043 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1044 {
1045 return __nr_to_section(pfn_to_section_nr(pfn));
1046 }
1047
1048 static inline int pfn_valid(unsigned long pfn)
1049 {
1050 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1051 return 0;
1052 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1053 }
1054
1055 static inline int pfn_present(unsigned long pfn)
1056 {
1057 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1058 return 0;
1059 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1060 }
1061
1062 /*
1063 * These are _only_ used during initialisation, therefore they
1064 * can use __initdata ... They could have names to indicate
1065 * this restriction.
1066 */
1067 #ifdef CONFIG_NUMA
1068 #define pfn_to_nid(pfn) \
1069 ({ \
1070 unsigned long __pfn_to_nid_pfn = (pfn); \
1071 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1072 })
1073 #else
1074 #define pfn_to_nid(pfn) (0)
1075 #endif
1076
1077 #define early_pfn_valid(pfn) pfn_valid(pfn)
1078 void sparse_init(void);
1079 #else
1080 #define sparse_init() do {} while (0)
1081 #define sparse_index_init(_sec, _nid) do {} while (0)
1082 #endif /* CONFIG_SPARSEMEM */
1083
1084 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1085 bool early_pfn_in_nid(unsigned long pfn, int nid);
1086 #else
1087 #define early_pfn_in_nid(pfn, nid) (1)
1088 #endif
1089
1090 #ifndef early_pfn_valid
1091 #define early_pfn_valid(pfn) (1)
1092 #endif
1093
1094 void memory_present(int nid, unsigned long start, unsigned long end);
1095 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1096
1097 /*
1098 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1099 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1100 * pfn_valid_within() should be used in this case; we optimise this away
1101 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1102 */
1103 #ifdef CONFIG_HOLES_IN_ZONE
1104 #define pfn_valid_within(pfn) pfn_valid(pfn)
1105 #else
1106 #define pfn_valid_within(pfn) (1)
1107 #endif
1108
1109 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1110 /*
1111 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1112 * associated with it or not. In FLATMEM, it is expected that holes always
1113 * have valid memmap as long as there is valid PFNs either side of the hole.
1114 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1115 * entire section.
1116 *
1117 * However, an ARM, and maybe other embedded architectures in the future
1118 * free memmap backing holes to save memory on the assumption the memmap is
1119 * never used. The page_zone linkages are then broken even though pfn_valid()
1120 * returns true. A walker of the full memmap must then do this additional
1121 * check to ensure the memmap they are looking at is sane by making sure
1122 * the zone and PFN linkages are still valid. This is expensive, but walkers
1123 * of the full memmap are extremely rare.
1124 */
1125 int memmap_valid_within(unsigned long pfn,
1126 struct page *page, struct zone *zone);
1127 #else
1128 static inline int memmap_valid_within(unsigned long pfn,
1129 struct page *page, struct zone *zone)
1130 {
1131 return 1;
1132 }
1133 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1134
1135 #endif /* !__GENERATING_BOUNDS.H */
1136 #endif /* !__ASSEMBLY__ */
1137 #endif /* _LINUX_MMZONE_H */
This page took 0.109562 seconds and 5 git commands to generate.