Merge (part of) tag 'omap-for-v3.19/hwmod-and-defconfig' of git://git.kernel.org...
[deliverable/linux.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30 /*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coalesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37
38 enum {
39 MIGRATE_UNMOVABLE,
40 MIGRATE_RECLAIMABLE,
41 MIGRATE_MOVABLE,
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_RESERVE = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59 #endif
60 #ifdef CONFIG_MEMORY_ISOLATION
61 MIGRATE_ISOLATE, /* can't allocate from here */
62 #endif
63 MIGRATE_TYPES
64 };
65
66 #ifdef CONFIG_CMA
67 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
68 #else
69 # define is_migrate_cma(migratetype) false
70 #endif
71
72 #define for_each_migratetype_order(order, type) \
73 for (order = 0; order < MAX_ORDER; order++) \
74 for (type = 0; type < MIGRATE_TYPES; type++)
75
76 extern int page_group_by_mobility_disabled;
77
78 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
79 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
80
81 #define get_pageblock_migratetype(page) \
82 get_pfnblock_flags_mask(page, page_to_pfn(page), \
83 PB_migrate_end, MIGRATETYPE_MASK)
84
85 static inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
86 {
87 BUILD_BUG_ON(PB_migrate_end - PB_migrate != 2);
88 return get_pfnblock_flags_mask(page, pfn, PB_migrate_end,
89 MIGRATETYPE_MASK);
90 }
91
92 struct free_area {
93 struct list_head free_list[MIGRATE_TYPES];
94 unsigned long nr_free;
95 };
96
97 struct pglist_data;
98
99 /*
100 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
101 * So add a wild amount of padding here to ensure that they fall into separate
102 * cachelines. There are very few zone structures in the machine, so space
103 * consumption is not a concern here.
104 */
105 #if defined(CONFIG_SMP)
106 struct zone_padding {
107 char x[0];
108 } ____cacheline_internodealigned_in_smp;
109 #define ZONE_PADDING(name) struct zone_padding name;
110 #else
111 #define ZONE_PADDING(name)
112 #endif
113
114 enum zone_stat_item {
115 /* First 128 byte cacheline (assuming 64 bit words) */
116 NR_FREE_PAGES,
117 NR_ALLOC_BATCH,
118 NR_LRU_BASE,
119 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
120 NR_ACTIVE_ANON, /* " " " " " */
121 NR_INACTIVE_FILE, /* " " " " " */
122 NR_ACTIVE_FILE, /* " " " " " */
123 NR_UNEVICTABLE, /* " " " " " */
124 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
125 NR_ANON_PAGES, /* Mapped anonymous pages */
126 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
127 only modified from process context */
128 NR_FILE_PAGES,
129 NR_FILE_DIRTY,
130 NR_WRITEBACK,
131 NR_SLAB_RECLAIMABLE,
132 NR_SLAB_UNRECLAIMABLE,
133 NR_PAGETABLE, /* used for pagetables */
134 NR_KERNEL_STACK,
135 /* Second 128 byte cacheline */
136 NR_UNSTABLE_NFS, /* NFS unstable pages */
137 NR_BOUNCE,
138 NR_VMSCAN_WRITE,
139 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
140 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
141 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
142 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
143 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
144 NR_DIRTIED, /* page dirtyings since bootup */
145 NR_WRITTEN, /* page writings since bootup */
146 NR_PAGES_SCANNED, /* pages scanned since last reclaim */
147 #ifdef CONFIG_NUMA
148 NUMA_HIT, /* allocated in intended node */
149 NUMA_MISS, /* allocated in non intended node */
150 NUMA_FOREIGN, /* was intended here, hit elsewhere */
151 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
152 NUMA_LOCAL, /* allocation from local node */
153 NUMA_OTHER, /* allocation from other node */
154 #endif
155 WORKINGSET_REFAULT,
156 WORKINGSET_ACTIVATE,
157 WORKINGSET_NODERECLAIM,
158 NR_ANON_TRANSPARENT_HUGEPAGES,
159 NR_FREE_CMA_PAGES,
160 NR_VM_ZONE_STAT_ITEMS };
161
162 /*
163 * We do arithmetic on the LRU lists in various places in the code,
164 * so it is important to keep the active lists LRU_ACTIVE higher in
165 * the array than the corresponding inactive lists, and to keep
166 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
167 *
168 * This has to be kept in sync with the statistics in zone_stat_item
169 * above and the descriptions in vmstat_text in mm/vmstat.c
170 */
171 #define LRU_BASE 0
172 #define LRU_ACTIVE 1
173 #define LRU_FILE 2
174
175 enum lru_list {
176 LRU_INACTIVE_ANON = LRU_BASE,
177 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
178 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
179 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
180 LRU_UNEVICTABLE,
181 NR_LRU_LISTS
182 };
183
184 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
185
186 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
187
188 static inline int is_file_lru(enum lru_list lru)
189 {
190 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
191 }
192
193 static inline int is_active_lru(enum lru_list lru)
194 {
195 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
196 }
197
198 static inline int is_unevictable_lru(enum lru_list lru)
199 {
200 return (lru == LRU_UNEVICTABLE);
201 }
202
203 struct zone_reclaim_stat {
204 /*
205 * The pageout code in vmscan.c keeps track of how many of the
206 * mem/swap backed and file backed pages are referenced.
207 * The higher the rotated/scanned ratio, the more valuable
208 * that cache is.
209 *
210 * The anon LRU stats live in [0], file LRU stats in [1]
211 */
212 unsigned long recent_rotated[2];
213 unsigned long recent_scanned[2];
214 };
215
216 struct lruvec {
217 struct list_head lists[NR_LRU_LISTS];
218 struct zone_reclaim_stat reclaim_stat;
219 #ifdef CONFIG_MEMCG
220 struct zone *zone;
221 #endif
222 };
223
224 /* Mask used at gathering information at once (see memcontrol.c) */
225 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
226 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
227 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
228
229 /* Isolate clean file */
230 #define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
231 /* Isolate unmapped file */
232 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
233 /* Isolate for asynchronous migration */
234 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
235 /* Isolate unevictable pages */
236 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
237
238 /* LRU Isolation modes. */
239 typedef unsigned __bitwise__ isolate_mode_t;
240
241 enum zone_watermarks {
242 WMARK_MIN,
243 WMARK_LOW,
244 WMARK_HIGH,
245 NR_WMARK
246 };
247
248 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
249 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
250 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
251
252 struct per_cpu_pages {
253 int count; /* number of pages in the list */
254 int high; /* high watermark, emptying needed */
255 int batch; /* chunk size for buddy add/remove */
256
257 /* Lists of pages, one per migrate type stored on the pcp-lists */
258 struct list_head lists[MIGRATE_PCPTYPES];
259 };
260
261 struct per_cpu_pageset {
262 struct per_cpu_pages pcp;
263 #ifdef CONFIG_NUMA
264 s8 expire;
265 #endif
266 #ifdef CONFIG_SMP
267 s8 stat_threshold;
268 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
269 #endif
270 };
271
272 #endif /* !__GENERATING_BOUNDS.H */
273
274 enum zone_type {
275 #ifdef CONFIG_ZONE_DMA
276 /*
277 * ZONE_DMA is used when there are devices that are not able
278 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
279 * carve out the portion of memory that is needed for these devices.
280 * The range is arch specific.
281 *
282 * Some examples
283 *
284 * Architecture Limit
285 * ---------------------------
286 * parisc, ia64, sparc <4G
287 * s390 <2G
288 * arm Various
289 * alpha Unlimited or 0-16MB.
290 *
291 * i386, x86_64 and multiple other arches
292 * <16M.
293 */
294 ZONE_DMA,
295 #endif
296 #ifdef CONFIG_ZONE_DMA32
297 /*
298 * x86_64 needs two ZONE_DMAs because it supports devices that are
299 * only able to do DMA to the lower 16M but also 32 bit devices that
300 * can only do DMA areas below 4G.
301 */
302 ZONE_DMA32,
303 #endif
304 /*
305 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
306 * performed on pages in ZONE_NORMAL if the DMA devices support
307 * transfers to all addressable memory.
308 */
309 ZONE_NORMAL,
310 #ifdef CONFIG_HIGHMEM
311 /*
312 * A memory area that is only addressable by the kernel through
313 * mapping portions into its own address space. This is for example
314 * used by i386 to allow the kernel to address the memory beyond
315 * 900MB. The kernel will set up special mappings (page
316 * table entries on i386) for each page that the kernel needs to
317 * access.
318 */
319 ZONE_HIGHMEM,
320 #endif
321 ZONE_MOVABLE,
322 __MAX_NR_ZONES
323 };
324
325 #ifndef __GENERATING_BOUNDS_H
326
327 struct zone {
328 /* Read-mostly fields */
329
330 /* zone watermarks, access with *_wmark_pages(zone) macros */
331 unsigned long watermark[NR_WMARK];
332
333 /*
334 * We don't know if the memory that we're going to allocate will be freeable
335 * or/and it will be released eventually, so to avoid totally wasting several
336 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
337 * to run OOM on the lower zones despite there's tons of freeable ram
338 * on the higher zones). This array is recalculated at runtime if the
339 * sysctl_lowmem_reserve_ratio sysctl changes.
340 */
341 long lowmem_reserve[MAX_NR_ZONES];
342
343 #ifdef CONFIG_NUMA
344 int node;
345 #endif
346
347 /*
348 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
349 * this zone's LRU. Maintained by the pageout code.
350 */
351 unsigned int inactive_ratio;
352
353 struct pglist_data *zone_pgdat;
354 struct per_cpu_pageset __percpu *pageset;
355
356 /*
357 * This is a per-zone reserve of pages that should not be
358 * considered dirtyable memory.
359 */
360 unsigned long dirty_balance_reserve;
361
362 #ifndef CONFIG_SPARSEMEM
363 /*
364 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
365 * In SPARSEMEM, this map is stored in struct mem_section
366 */
367 unsigned long *pageblock_flags;
368 #endif /* CONFIG_SPARSEMEM */
369
370 #ifdef CONFIG_NUMA
371 /*
372 * zone reclaim becomes active if more unmapped pages exist.
373 */
374 unsigned long min_unmapped_pages;
375 unsigned long min_slab_pages;
376 #endif /* CONFIG_NUMA */
377
378 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
379 unsigned long zone_start_pfn;
380
381 /*
382 * spanned_pages is the total pages spanned by the zone, including
383 * holes, which is calculated as:
384 * spanned_pages = zone_end_pfn - zone_start_pfn;
385 *
386 * present_pages is physical pages existing within the zone, which
387 * is calculated as:
388 * present_pages = spanned_pages - absent_pages(pages in holes);
389 *
390 * managed_pages is present pages managed by the buddy system, which
391 * is calculated as (reserved_pages includes pages allocated by the
392 * bootmem allocator):
393 * managed_pages = present_pages - reserved_pages;
394 *
395 * So present_pages may be used by memory hotplug or memory power
396 * management logic to figure out unmanaged pages by checking
397 * (present_pages - managed_pages). And managed_pages should be used
398 * by page allocator and vm scanner to calculate all kinds of watermarks
399 * and thresholds.
400 *
401 * Locking rules:
402 *
403 * zone_start_pfn and spanned_pages are protected by span_seqlock.
404 * It is a seqlock because it has to be read outside of zone->lock,
405 * and it is done in the main allocator path. But, it is written
406 * quite infrequently.
407 *
408 * The span_seq lock is declared along with zone->lock because it is
409 * frequently read in proximity to zone->lock. It's good to
410 * give them a chance of being in the same cacheline.
411 *
412 * Write access to present_pages at runtime should be protected by
413 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
414 * present_pages should get_online_mems() to get a stable value.
415 *
416 * Read access to managed_pages should be safe because it's unsigned
417 * long. Write access to zone->managed_pages and totalram_pages are
418 * protected by managed_page_count_lock at runtime. Idealy only
419 * adjust_managed_page_count() should be used instead of directly
420 * touching zone->managed_pages and totalram_pages.
421 */
422 unsigned long managed_pages;
423 unsigned long spanned_pages;
424 unsigned long present_pages;
425
426 const char *name;
427
428 /*
429 * Number of MIGRATE_RESEVE page block. To maintain for just
430 * optimization. Protected by zone->lock.
431 */
432 int nr_migrate_reserve_block;
433
434 #ifdef CONFIG_MEMORY_HOTPLUG
435 /* see spanned/present_pages for more description */
436 seqlock_t span_seqlock;
437 #endif
438
439 /*
440 * wait_table -- the array holding the hash table
441 * wait_table_hash_nr_entries -- the size of the hash table array
442 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
443 *
444 * The purpose of all these is to keep track of the people
445 * waiting for a page to become available and make them
446 * runnable again when possible. The trouble is that this
447 * consumes a lot of space, especially when so few things
448 * wait on pages at a given time. So instead of using
449 * per-page waitqueues, we use a waitqueue hash table.
450 *
451 * The bucket discipline is to sleep on the same queue when
452 * colliding and wake all in that wait queue when removing.
453 * When something wakes, it must check to be sure its page is
454 * truly available, a la thundering herd. The cost of a
455 * collision is great, but given the expected load of the
456 * table, they should be so rare as to be outweighed by the
457 * benefits from the saved space.
458 *
459 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
460 * primary users of these fields, and in mm/page_alloc.c
461 * free_area_init_core() performs the initialization of them.
462 */
463 wait_queue_head_t *wait_table;
464 unsigned long wait_table_hash_nr_entries;
465 unsigned long wait_table_bits;
466
467 ZONE_PADDING(_pad1_)
468
469 /* Write-intensive fields used from the page allocator */
470 spinlock_t lock;
471
472 /* free areas of different sizes */
473 struct free_area free_area[MAX_ORDER];
474
475 /* zone flags, see below */
476 unsigned long flags;
477
478 ZONE_PADDING(_pad2_)
479
480 /* Write-intensive fields used by page reclaim */
481
482 /* Fields commonly accessed by the page reclaim scanner */
483 spinlock_t lru_lock;
484 struct lruvec lruvec;
485
486 /* Evictions & activations on the inactive file list */
487 atomic_long_t inactive_age;
488
489 /*
490 * When free pages are below this point, additional steps are taken
491 * when reading the number of free pages to avoid per-cpu counter
492 * drift allowing watermarks to be breached
493 */
494 unsigned long percpu_drift_mark;
495
496 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
497 /* pfn where compaction free scanner should start */
498 unsigned long compact_cached_free_pfn;
499 /* pfn where async and sync compaction migration scanner should start */
500 unsigned long compact_cached_migrate_pfn[2];
501 #endif
502
503 #ifdef CONFIG_COMPACTION
504 /*
505 * On compaction failure, 1<<compact_defer_shift compactions
506 * are skipped before trying again. The number attempted since
507 * last failure is tracked with compact_considered.
508 */
509 unsigned int compact_considered;
510 unsigned int compact_defer_shift;
511 int compact_order_failed;
512 #endif
513
514 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
515 /* Set to true when the PG_migrate_skip bits should be cleared */
516 bool compact_blockskip_flush;
517 #endif
518
519 ZONE_PADDING(_pad3_)
520 /* Zone statistics */
521 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
522 } ____cacheline_internodealigned_in_smp;
523
524 enum zone_flags {
525 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
526 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
527 ZONE_CONGESTED, /* zone has many dirty pages backed by
528 * a congested BDI
529 */
530 ZONE_DIRTY, /* reclaim scanning has recently found
531 * many dirty file pages at the tail
532 * of the LRU.
533 */
534 ZONE_WRITEBACK, /* reclaim scanning has recently found
535 * many pages under writeback
536 */
537 ZONE_FAIR_DEPLETED, /* fair zone policy batch depleted */
538 };
539
540 static inline unsigned long zone_end_pfn(const struct zone *zone)
541 {
542 return zone->zone_start_pfn + zone->spanned_pages;
543 }
544
545 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
546 {
547 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
548 }
549
550 static inline bool zone_is_initialized(struct zone *zone)
551 {
552 return !!zone->wait_table;
553 }
554
555 static inline bool zone_is_empty(struct zone *zone)
556 {
557 return zone->spanned_pages == 0;
558 }
559
560 /*
561 * The "priority" of VM scanning is how much of the queues we will scan in one
562 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
563 * queues ("queue_length >> 12") during an aging round.
564 */
565 #define DEF_PRIORITY 12
566
567 /* Maximum number of zones on a zonelist */
568 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
569
570 #ifdef CONFIG_NUMA
571
572 /*
573 * The NUMA zonelists are doubled because we need zonelists that restrict the
574 * allocations to a single node for __GFP_THISNODE.
575 *
576 * [0] : Zonelist with fallback
577 * [1] : No fallback (__GFP_THISNODE)
578 */
579 #define MAX_ZONELISTS 2
580
581
582 /*
583 * We cache key information from each zonelist for smaller cache
584 * footprint when scanning for free pages in get_page_from_freelist().
585 *
586 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
587 * up short of free memory since the last time (last_fullzone_zap)
588 * we zero'd fullzones.
589 * 2) The array z_to_n[] maps each zone in the zonelist to its node
590 * id, so that we can efficiently evaluate whether that node is
591 * set in the current tasks mems_allowed.
592 *
593 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
594 * indexed by a zones offset in the zonelist zones[] array.
595 *
596 * The get_page_from_freelist() routine does two scans. During the
597 * first scan, we skip zones whose corresponding bit in 'fullzones'
598 * is set or whose corresponding node in current->mems_allowed (which
599 * comes from cpusets) is not set. During the second scan, we bypass
600 * this zonelist_cache, to ensure we look methodically at each zone.
601 *
602 * Once per second, we zero out (zap) fullzones, forcing us to
603 * reconsider nodes that might have regained more free memory.
604 * The field last_full_zap is the time we last zapped fullzones.
605 *
606 * This mechanism reduces the amount of time we waste repeatedly
607 * reexaming zones for free memory when they just came up low on
608 * memory momentarilly ago.
609 *
610 * The zonelist_cache struct members logically belong in struct
611 * zonelist. However, the mempolicy zonelists constructed for
612 * MPOL_BIND are intentionally variable length (and usually much
613 * shorter). A general purpose mechanism for handling structs with
614 * multiple variable length members is more mechanism than we want
615 * here. We resort to some special case hackery instead.
616 *
617 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
618 * part because they are shorter), so we put the fixed length stuff
619 * at the front of the zonelist struct, ending in a variable length
620 * zones[], as is needed by MPOL_BIND.
621 *
622 * Then we put the optional zonelist cache on the end of the zonelist
623 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
624 * the fixed length portion at the front of the struct. This pointer
625 * both enables us to find the zonelist cache, and in the case of
626 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
627 * to know that the zonelist cache is not there.
628 *
629 * The end result is that struct zonelists come in two flavors:
630 * 1) The full, fixed length version, shown below, and
631 * 2) The custom zonelists for MPOL_BIND.
632 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
633 *
634 * Even though there may be multiple CPU cores on a node modifying
635 * fullzones or last_full_zap in the same zonelist_cache at the same
636 * time, we don't lock it. This is just hint data - if it is wrong now
637 * and then, the allocator will still function, perhaps a bit slower.
638 */
639
640
641 struct zonelist_cache {
642 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
643 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
644 unsigned long last_full_zap; /* when last zap'd (jiffies) */
645 };
646 #else
647 #define MAX_ZONELISTS 1
648 struct zonelist_cache;
649 #endif
650
651 /*
652 * This struct contains information about a zone in a zonelist. It is stored
653 * here to avoid dereferences into large structures and lookups of tables
654 */
655 struct zoneref {
656 struct zone *zone; /* Pointer to actual zone */
657 int zone_idx; /* zone_idx(zoneref->zone) */
658 };
659
660 /*
661 * One allocation request operates on a zonelist. A zonelist
662 * is a list of zones, the first one is the 'goal' of the
663 * allocation, the other zones are fallback zones, in decreasing
664 * priority.
665 *
666 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
667 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
668 * *
669 * To speed the reading of the zonelist, the zonerefs contain the zone index
670 * of the entry being read. Helper functions to access information given
671 * a struct zoneref are
672 *
673 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
674 * zonelist_zone_idx() - Return the index of the zone for an entry
675 * zonelist_node_idx() - Return the index of the node for an entry
676 */
677 struct zonelist {
678 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
679 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
680 #ifdef CONFIG_NUMA
681 struct zonelist_cache zlcache; // optional ...
682 #endif
683 };
684
685 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
686 struct node_active_region {
687 unsigned long start_pfn;
688 unsigned long end_pfn;
689 int nid;
690 };
691 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
692
693 #ifndef CONFIG_DISCONTIGMEM
694 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
695 extern struct page *mem_map;
696 #endif
697
698 /*
699 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
700 * (mostly NUMA machines?) to denote a higher-level memory zone than the
701 * zone denotes.
702 *
703 * On NUMA machines, each NUMA node would have a pg_data_t to describe
704 * it's memory layout.
705 *
706 * Memory statistics and page replacement data structures are maintained on a
707 * per-zone basis.
708 */
709 struct bootmem_data;
710 typedef struct pglist_data {
711 struct zone node_zones[MAX_NR_ZONES];
712 struct zonelist node_zonelists[MAX_ZONELISTS];
713 int nr_zones;
714 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
715 struct page *node_mem_map;
716 #ifdef CONFIG_MEMCG
717 struct page_cgroup *node_page_cgroup;
718 #endif
719 #endif
720 #ifndef CONFIG_NO_BOOTMEM
721 struct bootmem_data *bdata;
722 #endif
723 #ifdef CONFIG_MEMORY_HOTPLUG
724 /*
725 * Must be held any time you expect node_start_pfn, node_present_pages
726 * or node_spanned_pages stay constant. Holding this will also
727 * guarantee that any pfn_valid() stays that way.
728 *
729 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
730 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
731 *
732 * Nests above zone->lock and zone->span_seqlock
733 */
734 spinlock_t node_size_lock;
735 #endif
736 unsigned long node_start_pfn;
737 unsigned long node_present_pages; /* total number of physical pages */
738 unsigned long node_spanned_pages; /* total size of physical page
739 range, including holes */
740 int node_id;
741 wait_queue_head_t kswapd_wait;
742 wait_queue_head_t pfmemalloc_wait;
743 struct task_struct *kswapd; /* Protected by
744 mem_hotplug_begin/end() */
745 int kswapd_max_order;
746 enum zone_type classzone_idx;
747 #ifdef CONFIG_NUMA_BALANCING
748 /* Lock serializing the migrate rate limiting window */
749 spinlock_t numabalancing_migrate_lock;
750
751 /* Rate limiting time interval */
752 unsigned long numabalancing_migrate_next_window;
753
754 /* Number of pages migrated during the rate limiting time interval */
755 unsigned long numabalancing_migrate_nr_pages;
756 #endif
757 } pg_data_t;
758
759 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
760 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
761 #ifdef CONFIG_FLAT_NODE_MEM_MAP
762 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
763 #else
764 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
765 #endif
766 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
767
768 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
769 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
770
771 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
772 {
773 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
774 }
775
776 static inline bool pgdat_is_empty(pg_data_t *pgdat)
777 {
778 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
779 }
780
781 #include <linux/memory_hotplug.h>
782
783 extern struct mutex zonelists_mutex;
784 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
785 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
786 bool zone_watermark_ok(struct zone *z, unsigned int order,
787 unsigned long mark, int classzone_idx, int alloc_flags);
788 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
789 unsigned long mark, int classzone_idx, int alloc_flags);
790 enum memmap_context {
791 MEMMAP_EARLY,
792 MEMMAP_HOTPLUG,
793 };
794 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
795 unsigned long size,
796 enum memmap_context context);
797
798 extern void lruvec_init(struct lruvec *lruvec);
799
800 static inline struct zone *lruvec_zone(struct lruvec *lruvec)
801 {
802 #ifdef CONFIG_MEMCG
803 return lruvec->zone;
804 #else
805 return container_of(lruvec, struct zone, lruvec);
806 #endif
807 }
808
809 #ifdef CONFIG_HAVE_MEMORY_PRESENT
810 void memory_present(int nid, unsigned long start, unsigned long end);
811 #else
812 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
813 #endif
814
815 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
816 int local_memory_node(int node_id);
817 #else
818 static inline int local_memory_node(int node_id) { return node_id; };
819 #endif
820
821 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
822 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
823 #endif
824
825 /*
826 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
827 */
828 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
829
830 static inline int populated_zone(struct zone *zone)
831 {
832 return (!!zone->present_pages);
833 }
834
835 extern int movable_zone;
836
837 static inline int zone_movable_is_highmem(void)
838 {
839 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
840 return movable_zone == ZONE_HIGHMEM;
841 #elif defined(CONFIG_HIGHMEM)
842 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
843 #else
844 return 0;
845 #endif
846 }
847
848 static inline int is_highmem_idx(enum zone_type idx)
849 {
850 #ifdef CONFIG_HIGHMEM
851 return (idx == ZONE_HIGHMEM ||
852 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
853 #else
854 return 0;
855 #endif
856 }
857
858 /**
859 * is_highmem - helper function to quickly check if a struct zone is a
860 * highmem zone or not. This is an attempt to keep references
861 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
862 * @zone - pointer to struct zone variable
863 */
864 static inline int is_highmem(struct zone *zone)
865 {
866 #ifdef CONFIG_HIGHMEM
867 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
868 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
869 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
870 zone_movable_is_highmem());
871 #else
872 return 0;
873 #endif
874 }
875
876 /* These two functions are used to setup the per zone pages min values */
877 struct ctl_table;
878 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
879 void __user *, size_t *, loff_t *);
880 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
881 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
882 void __user *, size_t *, loff_t *);
883 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
884 void __user *, size_t *, loff_t *);
885 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
886 void __user *, size_t *, loff_t *);
887 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
888 void __user *, size_t *, loff_t *);
889
890 extern int numa_zonelist_order_handler(struct ctl_table *, int,
891 void __user *, size_t *, loff_t *);
892 extern char numa_zonelist_order[];
893 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
894
895 #ifndef CONFIG_NEED_MULTIPLE_NODES
896
897 extern struct pglist_data contig_page_data;
898 #define NODE_DATA(nid) (&contig_page_data)
899 #define NODE_MEM_MAP(nid) mem_map
900
901 #else /* CONFIG_NEED_MULTIPLE_NODES */
902
903 #include <asm/mmzone.h>
904
905 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
906
907 extern struct pglist_data *first_online_pgdat(void);
908 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
909 extern struct zone *next_zone(struct zone *zone);
910
911 /**
912 * for_each_online_pgdat - helper macro to iterate over all online nodes
913 * @pgdat - pointer to a pg_data_t variable
914 */
915 #define for_each_online_pgdat(pgdat) \
916 for (pgdat = first_online_pgdat(); \
917 pgdat; \
918 pgdat = next_online_pgdat(pgdat))
919 /**
920 * for_each_zone - helper macro to iterate over all memory zones
921 * @zone - pointer to struct zone variable
922 *
923 * The user only needs to declare the zone variable, for_each_zone
924 * fills it in.
925 */
926 #define for_each_zone(zone) \
927 for (zone = (first_online_pgdat())->node_zones; \
928 zone; \
929 zone = next_zone(zone))
930
931 #define for_each_populated_zone(zone) \
932 for (zone = (first_online_pgdat())->node_zones; \
933 zone; \
934 zone = next_zone(zone)) \
935 if (!populated_zone(zone)) \
936 ; /* do nothing */ \
937 else
938
939 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
940 {
941 return zoneref->zone;
942 }
943
944 static inline int zonelist_zone_idx(struct zoneref *zoneref)
945 {
946 return zoneref->zone_idx;
947 }
948
949 static inline int zonelist_node_idx(struct zoneref *zoneref)
950 {
951 #ifdef CONFIG_NUMA
952 /* zone_to_nid not available in this context */
953 return zoneref->zone->node;
954 #else
955 return 0;
956 #endif /* CONFIG_NUMA */
957 }
958
959 /**
960 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
961 * @z - The cursor used as a starting point for the search
962 * @highest_zoneidx - The zone index of the highest zone to return
963 * @nodes - An optional nodemask to filter the zonelist with
964 * @zone - The first suitable zone found is returned via this parameter
965 *
966 * This function returns the next zone at or below a given zone index that is
967 * within the allowed nodemask using a cursor as the starting point for the
968 * search. The zoneref returned is a cursor that represents the current zone
969 * being examined. It should be advanced by one before calling
970 * next_zones_zonelist again.
971 */
972 struct zoneref *next_zones_zonelist(struct zoneref *z,
973 enum zone_type highest_zoneidx,
974 nodemask_t *nodes,
975 struct zone **zone);
976
977 /**
978 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
979 * @zonelist - The zonelist to search for a suitable zone
980 * @highest_zoneidx - The zone index of the highest zone to return
981 * @nodes - An optional nodemask to filter the zonelist with
982 * @zone - The first suitable zone found is returned via this parameter
983 *
984 * This function returns the first zone at or below a given zone index that is
985 * within the allowed nodemask. The zoneref returned is a cursor that can be
986 * used to iterate the zonelist with next_zones_zonelist by advancing it by
987 * one before calling.
988 */
989 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
990 enum zone_type highest_zoneidx,
991 nodemask_t *nodes,
992 struct zone **zone)
993 {
994 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
995 zone);
996 }
997
998 /**
999 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1000 * @zone - The current zone in the iterator
1001 * @z - The current pointer within zonelist->zones being iterated
1002 * @zlist - The zonelist being iterated
1003 * @highidx - The zone index of the highest zone to return
1004 * @nodemask - Nodemask allowed by the allocator
1005 *
1006 * This iterator iterates though all zones at or below a given zone index and
1007 * within a given nodemask
1008 */
1009 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1010 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
1011 zone; \
1012 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
1013
1014 /**
1015 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1016 * @zone - The current zone in the iterator
1017 * @z - The current pointer within zonelist->zones being iterated
1018 * @zlist - The zonelist being iterated
1019 * @highidx - The zone index of the highest zone to return
1020 *
1021 * This iterator iterates though all zones at or below a given zone index.
1022 */
1023 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1024 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1025
1026 #ifdef CONFIG_SPARSEMEM
1027 #include <asm/sparsemem.h>
1028 #endif
1029
1030 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1031 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1032 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1033 {
1034 return 0;
1035 }
1036 #endif
1037
1038 #ifdef CONFIG_FLATMEM
1039 #define pfn_to_nid(pfn) (0)
1040 #endif
1041
1042 #ifdef CONFIG_SPARSEMEM
1043
1044 /*
1045 * SECTION_SHIFT #bits space required to store a section #
1046 *
1047 * PA_SECTION_SHIFT physical address to/from section number
1048 * PFN_SECTION_SHIFT pfn to/from section number
1049 */
1050 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1051 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1052
1053 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1054
1055 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1056 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1057
1058 #define SECTION_BLOCKFLAGS_BITS \
1059 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1060
1061 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1062 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1063 #endif
1064
1065 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1066 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1067
1068 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1069 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1070
1071 struct page;
1072 struct page_cgroup;
1073 struct mem_section {
1074 /*
1075 * This is, logically, a pointer to an array of struct
1076 * pages. However, it is stored with some other magic.
1077 * (see sparse.c::sparse_init_one_section())
1078 *
1079 * Additionally during early boot we encode node id of
1080 * the location of the section here to guide allocation.
1081 * (see sparse.c::memory_present())
1082 *
1083 * Making it a UL at least makes someone do a cast
1084 * before using it wrong.
1085 */
1086 unsigned long section_mem_map;
1087
1088 /* See declaration of similar field in struct zone */
1089 unsigned long *pageblock_flags;
1090 #ifdef CONFIG_MEMCG
1091 /*
1092 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1093 * section. (see memcontrol.h/page_cgroup.h about this.)
1094 */
1095 struct page_cgroup *page_cgroup;
1096 unsigned long pad;
1097 #endif
1098 /*
1099 * WARNING: mem_section must be a power-of-2 in size for the
1100 * calculation and use of SECTION_ROOT_MASK to make sense.
1101 */
1102 };
1103
1104 #ifdef CONFIG_SPARSEMEM_EXTREME
1105 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1106 #else
1107 #define SECTIONS_PER_ROOT 1
1108 #endif
1109
1110 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1111 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1112 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1113
1114 #ifdef CONFIG_SPARSEMEM_EXTREME
1115 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1116 #else
1117 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1118 #endif
1119
1120 static inline struct mem_section *__nr_to_section(unsigned long nr)
1121 {
1122 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1123 return NULL;
1124 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1125 }
1126 extern int __section_nr(struct mem_section* ms);
1127 extern unsigned long usemap_size(void);
1128
1129 /*
1130 * We use the lower bits of the mem_map pointer to store
1131 * a little bit of information. There should be at least
1132 * 3 bits here due to 32-bit alignment.
1133 */
1134 #define SECTION_MARKED_PRESENT (1UL<<0)
1135 #define SECTION_HAS_MEM_MAP (1UL<<1)
1136 #define SECTION_MAP_LAST_BIT (1UL<<2)
1137 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1138 #define SECTION_NID_SHIFT 2
1139
1140 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1141 {
1142 unsigned long map = section->section_mem_map;
1143 map &= SECTION_MAP_MASK;
1144 return (struct page *)map;
1145 }
1146
1147 static inline int present_section(struct mem_section *section)
1148 {
1149 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1150 }
1151
1152 static inline int present_section_nr(unsigned long nr)
1153 {
1154 return present_section(__nr_to_section(nr));
1155 }
1156
1157 static inline int valid_section(struct mem_section *section)
1158 {
1159 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1160 }
1161
1162 static inline int valid_section_nr(unsigned long nr)
1163 {
1164 return valid_section(__nr_to_section(nr));
1165 }
1166
1167 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1168 {
1169 return __nr_to_section(pfn_to_section_nr(pfn));
1170 }
1171
1172 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1173 static inline int pfn_valid(unsigned long pfn)
1174 {
1175 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1176 return 0;
1177 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1178 }
1179 #endif
1180
1181 static inline int pfn_present(unsigned long pfn)
1182 {
1183 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1184 return 0;
1185 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1186 }
1187
1188 /*
1189 * These are _only_ used during initialisation, therefore they
1190 * can use __initdata ... They could have names to indicate
1191 * this restriction.
1192 */
1193 #ifdef CONFIG_NUMA
1194 #define pfn_to_nid(pfn) \
1195 ({ \
1196 unsigned long __pfn_to_nid_pfn = (pfn); \
1197 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1198 })
1199 #else
1200 #define pfn_to_nid(pfn) (0)
1201 #endif
1202
1203 #define early_pfn_valid(pfn) pfn_valid(pfn)
1204 void sparse_init(void);
1205 #else
1206 #define sparse_init() do {} while (0)
1207 #define sparse_index_init(_sec, _nid) do {} while (0)
1208 #endif /* CONFIG_SPARSEMEM */
1209
1210 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1211 bool early_pfn_in_nid(unsigned long pfn, int nid);
1212 #else
1213 #define early_pfn_in_nid(pfn, nid) (1)
1214 #endif
1215
1216 #ifndef early_pfn_valid
1217 #define early_pfn_valid(pfn) (1)
1218 #endif
1219
1220 void memory_present(int nid, unsigned long start, unsigned long end);
1221 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1222
1223 /*
1224 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1225 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1226 * pfn_valid_within() should be used in this case; we optimise this away
1227 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1228 */
1229 #ifdef CONFIG_HOLES_IN_ZONE
1230 #define pfn_valid_within(pfn) pfn_valid(pfn)
1231 #else
1232 #define pfn_valid_within(pfn) (1)
1233 #endif
1234
1235 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1236 /*
1237 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1238 * associated with it or not. In FLATMEM, it is expected that holes always
1239 * have valid memmap as long as there is valid PFNs either side of the hole.
1240 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1241 * entire section.
1242 *
1243 * However, an ARM, and maybe other embedded architectures in the future
1244 * free memmap backing holes to save memory on the assumption the memmap is
1245 * never used. The page_zone linkages are then broken even though pfn_valid()
1246 * returns true. A walker of the full memmap must then do this additional
1247 * check to ensure the memmap they are looking at is sane by making sure
1248 * the zone and PFN linkages are still valid. This is expensive, but walkers
1249 * of the full memmap are extremely rare.
1250 */
1251 int memmap_valid_within(unsigned long pfn,
1252 struct page *page, struct zone *zone);
1253 #else
1254 static inline int memmap_valid_within(unsigned long pfn,
1255 struct page *page, struct zone *zone)
1256 {
1257 return 1;
1258 }
1259 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1260
1261 #endif /* !__GENERATING_BOUNDS.H */
1262 #endif /* !__ASSEMBLY__ */
1263 #endif /* _LINUX_MMZONE_H */
This page took 0.056997 seconds and 5 git commands to generate.