fs/ramfs/file-nommu.c: make ramfs_nommu_get_unmapped_area() and ramfs_nommu_mmap...
[deliverable/linux.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30 /*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coalesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37
38 enum {
39 MIGRATE_UNMOVABLE,
40 MIGRATE_RECLAIMABLE,
41 MIGRATE_MOVABLE,
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_RESERVE = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59 #endif
60 #ifdef CONFIG_MEMORY_ISOLATION
61 MIGRATE_ISOLATE, /* can't allocate from here */
62 #endif
63 MIGRATE_TYPES
64 };
65
66 #ifdef CONFIG_CMA
67 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
68 #else
69 # define is_migrate_cma(migratetype) false
70 #endif
71
72 #define for_each_migratetype_order(order, type) \
73 for (order = 0; order < MAX_ORDER; order++) \
74 for (type = 0; type < MIGRATE_TYPES; type++)
75
76 extern int page_group_by_mobility_disabled;
77
78 static inline int get_pageblock_migratetype(struct page *page)
79 {
80 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
81 }
82
83 struct free_area {
84 struct list_head free_list[MIGRATE_TYPES];
85 unsigned long nr_free;
86 };
87
88 struct pglist_data;
89
90 /*
91 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
92 * So add a wild amount of padding here to ensure that they fall into separate
93 * cachelines. There are very few zone structures in the machine, so space
94 * consumption is not a concern here.
95 */
96 #if defined(CONFIG_SMP)
97 struct zone_padding {
98 char x[0];
99 } ____cacheline_internodealigned_in_smp;
100 #define ZONE_PADDING(name) struct zone_padding name;
101 #else
102 #define ZONE_PADDING(name)
103 #endif
104
105 enum zone_stat_item {
106 /* First 128 byte cacheline (assuming 64 bit words) */
107 NR_FREE_PAGES,
108 NR_ALLOC_BATCH,
109 NR_LRU_BASE,
110 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
111 NR_ACTIVE_ANON, /* " " " " " */
112 NR_INACTIVE_FILE, /* " " " " " */
113 NR_ACTIVE_FILE, /* " " " " " */
114 NR_UNEVICTABLE, /* " " " " " */
115 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
116 NR_ANON_PAGES, /* Mapped anonymous pages */
117 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
118 only modified from process context */
119 NR_FILE_PAGES,
120 NR_FILE_DIRTY,
121 NR_WRITEBACK,
122 NR_SLAB_RECLAIMABLE,
123 NR_SLAB_UNRECLAIMABLE,
124 NR_PAGETABLE, /* used for pagetables */
125 NR_KERNEL_STACK,
126 /* Second 128 byte cacheline */
127 NR_UNSTABLE_NFS, /* NFS unstable pages */
128 NR_BOUNCE,
129 NR_VMSCAN_WRITE,
130 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
131 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
132 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
133 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
134 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
135 NR_DIRTIED, /* page dirtyings since bootup */
136 NR_WRITTEN, /* page writings since bootup */
137 #ifdef CONFIG_NUMA
138 NUMA_HIT, /* allocated in intended node */
139 NUMA_MISS, /* allocated in non intended node */
140 NUMA_FOREIGN, /* was intended here, hit elsewhere */
141 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
142 NUMA_LOCAL, /* allocation from local node */
143 NUMA_OTHER, /* allocation from other node */
144 #endif
145 NR_ANON_TRANSPARENT_HUGEPAGES,
146 NR_FREE_CMA_PAGES,
147 NR_VM_ZONE_STAT_ITEMS };
148
149 /*
150 * We do arithmetic on the LRU lists in various places in the code,
151 * so it is important to keep the active lists LRU_ACTIVE higher in
152 * the array than the corresponding inactive lists, and to keep
153 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
154 *
155 * This has to be kept in sync with the statistics in zone_stat_item
156 * above and the descriptions in vmstat_text in mm/vmstat.c
157 */
158 #define LRU_BASE 0
159 #define LRU_ACTIVE 1
160 #define LRU_FILE 2
161
162 enum lru_list {
163 LRU_INACTIVE_ANON = LRU_BASE,
164 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
165 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
166 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
167 LRU_UNEVICTABLE,
168 NR_LRU_LISTS
169 };
170
171 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
172
173 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
174
175 static inline int is_file_lru(enum lru_list lru)
176 {
177 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
178 }
179
180 static inline int is_active_lru(enum lru_list lru)
181 {
182 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
183 }
184
185 static inline int is_unevictable_lru(enum lru_list lru)
186 {
187 return (lru == LRU_UNEVICTABLE);
188 }
189
190 struct zone_reclaim_stat {
191 /*
192 * The pageout code in vmscan.c keeps track of how many of the
193 * mem/swap backed and file backed pages are referenced.
194 * The higher the rotated/scanned ratio, the more valuable
195 * that cache is.
196 *
197 * The anon LRU stats live in [0], file LRU stats in [1]
198 */
199 unsigned long recent_rotated[2];
200 unsigned long recent_scanned[2];
201 };
202
203 struct lruvec {
204 struct list_head lists[NR_LRU_LISTS];
205 struct zone_reclaim_stat reclaim_stat;
206 #ifdef CONFIG_MEMCG
207 struct zone *zone;
208 #endif
209 };
210
211 /* Mask used at gathering information at once (see memcontrol.c) */
212 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
213 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
214 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
215
216 /* Isolate clean file */
217 #define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
218 /* Isolate unmapped file */
219 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
220 /* Isolate for asynchronous migration */
221 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
222 /* Isolate unevictable pages */
223 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
224
225 /* LRU Isolation modes. */
226 typedef unsigned __bitwise__ isolate_mode_t;
227
228 enum zone_watermarks {
229 WMARK_MIN,
230 WMARK_LOW,
231 WMARK_HIGH,
232 NR_WMARK
233 };
234
235 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
236 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
237 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
238
239 struct per_cpu_pages {
240 int count; /* number of pages in the list */
241 int high; /* high watermark, emptying needed */
242 int batch; /* chunk size for buddy add/remove */
243
244 /* Lists of pages, one per migrate type stored on the pcp-lists */
245 struct list_head lists[MIGRATE_PCPTYPES];
246 };
247
248 struct per_cpu_pageset {
249 struct per_cpu_pages pcp;
250 #ifdef CONFIG_NUMA
251 s8 expire;
252 #endif
253 #ifdef CONFIG_SMP
254 s8 stat_threshold;
255 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
256 #endif
257 };
258
259 #endif /* !__GENERATING_BOUNDS.H */
260
261 enum zone_type {
262 #ifdef CONFIG_ZONE_DMA
263 /*
264 * ZONE_DMA is used when there are devices that are not able
265 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
266 * carve out the portion of memory that is needed for these devices.
267 * The range is arch specific.
268 *
269 * Some examples
270 *
271 * Architecture Limit
272 * ---------------------------
273 * parisc, ia64, sparc <4G
274 * s390 <2G
275 * arm Various
276 * alpha Unlimited or 0-16MB.
277 *
278 * i386, x86_64 and multiple other arches
279 * <16M.
280 */
281 ZONE_DMA,
282 #endif
283 #ifdef CONFIG_ZONE_DMA32
284 /*
285 * x86_64 needs two ZONE_DMAs because it supports devices that are
286 * only able to do DMA to the lower 16M but also 32 bit devices that
287 * can only do DMA areas below 4G.
288 */
289 ZONE_DMA32,
290 #endif
291 /*
292 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
293 * performed on pages in ZONE_NORMAL if the DMA devices support
294 * transfers to all addressable memory.
295 */
296 ZONE_NORMAL,
297 #ifdef CONFIG_HIGHMEM
298 /*
299 * A memory area that is only addressable by the kernel through
300 * mapping portions into its own address space. This is for example
301 * used by i386 to allow the kernel to address the memory beyond
302 * 900MB. The kernel will set up special mappings (page
303 * table entries on i386) for each page that the kernel needs to
304 * access.
305 */
306 ZONE_HIGHMEM,
307 #endif
308 ZONE_MOVABLE,
309 __MAX_NR_ZONES
310 };
311
312 #ifndef __GENERATING_BOUNDS_H
313
314 struct zone {
315 /* Fields commonly accessed by the page allocator */
316
317 /* zone watermarks, access with *_wmark_pages(zone) macros */
318 unsigned long watermark[NR_WMARK];
319
320 /*
321 * When free pages are below this point, additional steps are taken
322 * when reading the number of free pages to avoid per-cpu counter
323 * drift allowing watermarks to be breached
324 */
325 unsigned long percpu_drift_mark;
326
327 /*
328 * We don't know if the memory that we're going to allocate will be freeable
329 * or/and it will be released eventually, so to avoid totally wasting several
330 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
331 * to run OOM on the lower zones despite there's tons of freeable ram
332 * on the higher zones). This array is recalculated at runtime if the
333 * sysctl_lowmem_reserve_ratio sysctl changes.
334 */
335 unsigned long lowmem_reserve[MAX_NR_ZONES];
336
337 /*
338 * This is a per-zone reserve of pages that should not be
339 * considered dirtyable memory.
340 */
341 unsigned long dirty_balance_reserve;
342
343 #ifdef CONFIG_NUMA
344 int node;
345 /*
346 * zone reclaim becomes active if more unmapped pages exist.
347 */
348 unsigned long min_unmapped_pages;
349 unsigned long min_slab_pages;
350 #endif
351 struct per_cpu_pageset __percpu *pageset;
352 /*
353 * free areas of different sizes
354 */
355 spinlock_t lock;
356 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
357 /* Set to true when the PG_migrate_skip bits should be cleared */
358 bool compact_blockskip_flush;
359
360 /* pfns where compaction scanners should start */
361 unsigned long compact_cached_free_pfn;
362 unsigned long compact_cached_migrate_pfn;
363 #endif
364 #ifdef CONFIG_MEMORY_HOTPLUG
365 /* see spanned/present_pages for more description */
366 seqlock_t span_seqlock;
367 #endif
368 struct free_area free_area[MAX_ORDER];
369
370 #ifndef CONFIG_SPARSEMEM
371 /*
372 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
373 * In SPARSEMEM, this map is stored in struct mem_section
374 */
375 unsigned long *pageblock_flags;
376 #endif /* CONFIG_SPARSEMEM */
377
378 #ifdef CONFIG_COMPACTION
379 /*
380 * On compaction failure, 1<<compact_defer_shift compactions
381 * are skipped before trying again. The number attempted since
382 * last failure is tracked with compact_considered.
383 */
384 unsigned int compact_considered;
385 unsigned int compact_defer_shift;
386 int compact_order_failed;
387 #endif
388
389 ZONE_PADDING(_pad1_)
390
391 /* Fields commonly accessed by the page reclaim scanner */
392 spinlock_t lru_lock;
393 struct lruvec lruvec;
394
395 unsigned long pages_scanned; /* since last reclaim */
396 unsigned long flags; /* zone flags, see below */
397
398 /* Zone statistics */
399 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
400
401 /*
402 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
403 * this zone's LRU. Maintained by the pageout code.
404 */
405 unsigned int inactive_ratio;
406
407
408 ZONE_PADDING(_pad2_)
409 /* Rarely used or read-mostly fields */
410
411 /*
412 * wait_table -- the array holding the hash table
413 * wait_table_hash_nr_entries -- the size of the hash table array
414 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
415 *
416 * The purpose of all these is to keep track of the people
417 * waiting for a page to become available and make them
418 * runnable again when possible. The trouble is that this
419 * consumes a lot of space, especially when so few things
420 * wait on pages at a given time. So instead of using
421 * per-page waitqueues, we use a waitqueue hash table.
422 *
423 * The bucket discipline is to sleep on the same queue when
424 * colliding and wake all in that wait queue when removing.
425 * When something wakes, it must check to be sure its page is
426 * truly available, a la thundering herd. The cost of a
427 * collision is great, but given the expected load of the
428 * table, they should be so rare as to be outweighed by the
429 * benefits from the saved space.
430 *
431 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
432 * primary users of these fields, and in mm/page_alloc.c
433 * free_area_init_core() performs the initialization of them.
434 */
435 wait_queue_head_t * wait_table;
436 unsigned long wait_table_hash_nr_entries;
437 unsigned long wait_table_bits;
438
439 /*
440 * Discontig memory support fields.
441 */
442 struct pglist_data *zone_pgdat;
443 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
444 unsigned long zone_start_pfn;
445
446 /*
447 * spanned_pages is the total pages spanned by the zone, including
448 * holes, which is calculated as:
449 * spanned_pages = zone_end_pfn - zone_start_pfn;
450 *
451 * present_pages is physical pages existing within the zone, which
452 * is calculated as:
453 * present_pages = spanned_pages - absent_pages(pages in holes);
454 *
455 * managed_pages is present pages managed by the buddy system, which
456 * is calculated as (reserved_pages includes pages allocated by the
457 * bootmem allocator):
458 * managed_pages = present_pages - reserved_pages;
459 *
460 * So present_pages may be used by memory hotplug or memory power
461 * management logic to figure out unmanaged pages by checking
462 * (present_pages - managed_pages). And managed_pages should be used
463 * by page allocator and vm scanner to calculate all kinds of watermarks
464 * and thresholds.
465 *
466 * Locking rules:
467 *
468 * zone_start_pfn and spanned_pages are protected by span_seqlock.
469 * It is a seqlock because it has to be read outside of zone->lock,
470 * and it is done in the main allocator path. But, it is written
471 * quite infrequently.
472 *
473 * The span_seq lock is declared along with zone->lock because it is
474 * frequently read in proximity to zone->lock. It's good to
475 * give them a chance of being in the same cacheline.
476 *
477 * Write access to present_pages at runtime should be protected by
478 * lock_memory_hotplug()/unlock_memory_hotplug(). Any reader who can't
479 * tolerant drift of present_pages should hold memory hotplug lock to
480 * get a stable value.
481 *
482 * Read access to managed_pages should be safe because it's unsigned
483 * long. Write access to zone->managed_pages and totalram_pages are
484 * protected by managed_page_count_lock at runtime. Idealy only
485 * adjust_managed_page_count() should be used instead of directly
486 * touching zone->managed_pages and totalram_pages.
487 */
488 unsigned long spanned_pages;
489 unsigned long present_pages;
490 unsigned long managed_pages;
491
492 /*
493 * Number of MIGRATE_RESEVE page block. To maintain for just
494 * optimization. Protected by zone->lock.
495 */
496 int nr_migrate_reserve_block;
497
498 /*
499 * rarely used fields:
500 */
501 const char *name;
502 } ____cacheline_internodealigned_in_smp;
503
504 typedef enum {
505 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
506 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
507 ZONE_CONGESTED, /* zone has many dirty pages backed by
508 * a congested BDI
509 */
510 ZONE_TAIL_LRU_DIRTY, /* reclaim scanning has recently found
511 * many dirty file pages at the tail
512 * of the LRU.
513 */
514 ZONE_WRITEBACK, /* reclaim scanning has recently found
515 * many pages under writeback
516 */
517 } zone_flags_t;
518
519 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
520 {
521 set_bit(flag, &zone->flags);
522 }
523
524 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
525 {
526 return test_and_set_bit(flag, &zone->flags);
527 }
528
529 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
530 {
531 clear_bit(flag, &zone->flags);
532 }
533
534 static inline int zone_is_reclaim_congested(const struct zone *zone)
535 {
536 return test_bit(ZONE_CONGESTED, &zone->flags);
537 }
538
539 static inline int zone_is_reclaim_dirty(const struct zone *zone)
540 {
541 return test_bit(ZONE_TAIL_LRU_DIRTY, &zone->flags);
542 }
543
544 static inline int zone_is_reclaim_writeback(const struct zone *zone)
545 {
546 return test_bit(ZONE_WRITEBACK, &zone->flags);
547 }
548
549 static inline int zone_is_reclaim_locked(const struct zone *zone)
550 {
551 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
552 }
553
554 static inline int zone_is_oom_locked(const struct zone *zone)
555 {
556 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
557 }
558
559 static inline unsigned long zone_end_pfn(const struct zone *zone)
560 {
561 return zone->zone_start_pfn + zone->spanned_pages;
562 }
563
564 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
565 {
566 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
567 }
568
569 static inline bool zone_is_initialized(struct zone *zone)
570 {
571 return !!zone->wait_table;
572 }
573
574 static inline bool zone_is_empty(struct zone *zone)
575 {
576 return zone->spanned_pages == 0;
577 }
578
579 /*
580 * The "priority" of VM scanning is how much of the queues we will scan in one
581 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
582 * queues ("queue_length >> 12") during an aging round.
583 */
584 #define DEF_PRIORITY 12
585
586 /* Maximum number of zones on a zonelist */
587 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
588
589 #ifdef CONFIG_NUMA
590
591 /*
592 * The NUMA zonelists are doubled because we need zonelists that restrict the
593 * allocations to a single node for GFP_THISNODE.
594 *
595 * [0] : Zonelist with fallback
596 * [1] : No fallback (GFP_THISNODE)
597 */
598 #define MAX_ZONELISTS 2
599
600
601 /*
602 * We cache key information from each zonelist for smaller cache
603 * footprint when scanning for free pages in get_page_from_freelist().
604 *
605 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
606 * up short of free memory since the last time (last_fullzone_zap)
607 * we zero'd fullzones.
608 * 2) The array z_to_n[] maps each zone in the zonelist to its node
609 * id, so that we can efficiently evaluate whether that node is
610 * set in the current tasks mems_allowed.
611 *
612 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
613 * indexed by a zones offset in the zonelist zones[] array.
614 *
615 * The get_page_from_freelist() routine does two scans. During the
616 * first scan, we skip zones whose corresponding bit in 'fullzones'
617 * is set or whose corresponding node in current->mems_allowed (which
618 * comes from cpusets) is not set. During the second scan, we bypass
619 * this zonelist_cache, to ensure we look methodically at each zone.
620 *
621 * Once per second, we zero out (zap) fullzones, forcing us to
622 * reconsider nodes that might have regained more free memory.
623 * The field last_full_zap is the time we last zapped fullzones.
624 *
625 * This mechanism reduces the amount of time we waste repeatedly
626 * reexaming zones for free memory when they just came up low on
627 * memory momentarilly ago.
628 *
629 * The zonelist_cache struct members logically belong in struct
630 * zonelist. However, the mempolicy zonelists constructed for
631 * MPOL_BIND are intentionally variable length (and usually much
632 * shorter). A general purpose mechanism for handling structs with
633 * multiple variable length members is more mechanism than we want
634 * here. We resort to some special case hackery instead.
635 *
636 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
637 * part because they are shorter), so we put the fixed length stuff
638 * at the front of the zonelist struct, ending in a variable length
639 * zones[], as is needed by MPOL_BIND.
640 *
641 * Then we put the optional zonelist cache on the end of the zonelist
642 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
643 * the fixed length portion at the front of the struct. This pointer
644 * both enables us to find the zonelist cache, and in the case of
645 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
646 * to know that the zonelist cache is not there.
647 *
648 * The end result is that struct zonelists come in two flavors:
649 * 1) The full, fixed length version, shown below, and
650 * 2) The custom zonelists for MPOL_BIND.
651 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
652 *
653 * Even though there may be multiple CPU cores on a node modifying
654 * fullzones or last_full_zap in the same zonelist_cache at the same
655 * time, we don't lock it. This is just hint data - if it is wrong now
656 * and then, the allocator will still function, perhaps a bit slower.
657 */
658
659
660 struct zonelist_cache {
661 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
662 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
663 unsigned long last_full_zap; /* when last zap'd (jiffies) */
664 };
665 #else
666 #define MAX_ZONELISTS 1
667 struct zonelist_cache;
668 #endif
669
670 /*
671 * This struct contains information about a zone in a zonelist. It is stored
672 * here to avoid dereferences into large structures and lookups of tables
673 */
674 struct zoneref {
675 struct zone *zone; /* Pointer to actual zone */
676 int zone_idx; /* zone_idx(zoneref->zone) */
677 };
678
679 /*
680 * One allocation request operates on a zonelist. A zonelist
681 * is a list of zones, the first one is the 'goal' of the
682 * allocation, the other zones are fallback zones, in decreasing
683 * priority.
684 *
685 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
686 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
687 * *
688 * To speed the reading of the zonelist, the zonerefs contain the zone index
689 * of the entry being read. Helper functions to access information given
690 * a struct zoneref are
691 *
692 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
693 * zonelist_zone_idx() - Return the index of the zone for an entry
694 * zonelist_node_idx() - Return the index of the node for an entry
695 */
696 struct zonelist {
697 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
698 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
699 #ifdef CONFIG_NUMA
700 struct zonelist_cache zlcache; // optional ...
701 #endif
702 };
703
704 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
705 struct node_active_region {
706 unsigned long start_pfn;
707 unsigned long end_pfn;
708 int nid;
709 };
710 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
711
712 #ifndef CONFIG_DISCONTIGMEM
713 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
714 extern struct page *mem_map;
715 #endif
716
717 /*
718 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
719 * (mostly NUMA machines?) to denote a higher-level memory zone than the
720 * zone denotes.
721 *
722 * On NUMA machines, each NUMA node would have a pg_data_t to describe
723 * it's memory layout.
724 *
725 * Memory statistics and page replacement data structures are maintained on a
726 * per-zone basis.
727 */
728 struct bootmem_data;
729 typedef struct pglist_data {
730 struct zone node_zones[MAX_NR_ZONES];
731 struct zonelist node_zonelists[MAX_ZONELISTS];
732 int nr_zones;
733 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
734 struct page *node_mem_map;
735 #ifdef CONFIG_MEMCG
736 struct page_cgroup *node_page_cgroup;
737 #endif
738 #endif
739 #ifndef CONFIG_NO_BOOTMEM
740 struct bootmem_data *bdata;
741 #endif
742 #ifdef CONFIG_MEMORY_HOTPLUG
743 /*
744 * Must be held any time you expect node_start_pfn, node_present_pages
745 * or node_spanned_pages stay constant. Holding this will also
746 * guarantee that any pfn_valid() stays that way.
747 *
748 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
749 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
750 *
751 * Nests above zone->lock and zone->span_seqlock
752 */
753 spinlock_t node_size_lock;
754 #endif
755 unsigned long node_start_pfn;
756 unsigned long node_present_pages; /* total number of physical pages */
757 unsigned long node_spanned_pages; /* total size of physical page
758 range, including holes */
759 int node_id;
760 nodemask_t reclaim_nodes; /* Nodes allowed to reclaim from */
761 wait_queue_head_t kswapd_wait;
762 wait_queue_head_t pfmemalloc_wait;
763 struct task_struct *kswapd; /* Protected by lock_memory_hotplug() */
764 int kswapd_max_order;
765 enum zone_type classzone_idx;
766 #ifdef CONFIG_NUMA_BALANCING
767 /* Lock serializing the migrate rate limiting window */
768 spinlock_t numabalancing_migrate_lock;
769
770 /* Rate limiting time interval */
771 unsigned long numabalancing_migrate_next_window;
772
773 /* Number of pages migrated during the rate limiting time interval */
774 unsigned long numabalancing_migrate_nr_pages;
775 #endif
776 } pg_data_t;
777
778 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
779 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
780 #ifdef CONFIG_FLAT_NODE_MEM_MAP
781 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
782 #else
783 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
784 #endif
785 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
786
787 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
788 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
789
790 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
791 {
792 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
793 }
794
795 static inline bool pgdat_is_empty(pg_data_t *pgdat)
796 {
797 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
798 }
799
800 #include <linux/memory_hotplug.h>
801
802 extern struct mutex zonelists_mutex;
803 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
804 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
805 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
806 int classzone_idx, int alloc_flags);
807 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
808 int classzone_idx, int alloc_flags);
809 enum memmap_context {
810 MEMMAP_EARLY,
811 MEMMAP_HOTPLUG,
812 };
813 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
814 unsigned long size,
815 enum memmap_context context);
816
817 extern void lruvec_init(struct lruvec *lruvec);
818
819 static inline struct zone *lruvec_zone(struct lruvec *lruvec)
820 {
821 #ifdef CONFIG_MEMCG
822 return lruvec->zone;
823 #else
824 return container_of(lruvec, struct zone, lruvec);
825 #endif
826 }
827
828 #ifdef CONFIG_HAVE_MEMORY_PRESENT
829 void memory_present(int nid, unsigned long start, unsigned long end);
830 #else
831 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
832 #endif
833
834 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
835 int local_memory_node(int node_id);
836 #else
837 static inline int local_memory_node(int node_id) { return node_id; };
838 #endif
839
840 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
841 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
842 #endif
843
844 /*
845 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
846 */
847 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
848
849 static inline int populated_zone(struct zone *zone)
850 {
851 return (!!zone->present_pages);
852 }
853
854 extern int movable_zone;
855
856 static inline int zone_movable_is_highmem(void)
857 {
858 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
859 return movable_zone == ZONE_HIGHMEM;
860 #else
861 return 0;
862 #endif
863 }
864
865 static inline int is_highmem_idx(enum zone_type idx)
866 {
867 #ifdef CONFIG_HIGHMEM
868 return (idx == ZONE_HIGHMEM ||
869 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
870 #else
871 return 0;
872 #endif
873 }
874
875 /**
876 * is_highmem - helper function to quickly check if a struct zone is a
877 * highmem zone or not. This is an attempt to keep references
878 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
879 * @zone - pointer to struct zone variable
880 */
881 static inline int is_highmem(struct zone *zone)
882 {
883 #ifdef CONFIG_HIGHMEM
884 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
885 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
886 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
887 zone_movable_is_highmem());
888 #else
889 return 0;
890 #endif
891 }
892
893 /* These two functions are used to setup the per zone pages min values */
894 struct ctl_table;
895 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
896 void __user *, size_t *, loff_t *);
897 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
898 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
899 void __user *, size_t *, loff_t *);
900 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
901 void __user *, size_t *, loff_t *);
902 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
903 void __user *, size_t *, loff_t *);
904 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
905 void __user *, size_t *, loff_t *);
906
907 extern int numa_zonelist_order_handler(struct ctl_table *, int,
908 void __user *, size_t *, loff_t *);
909 extern char numa_zonelist_order[];
910 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
911
912 #ifndef CONFIG_NEED_MULTIPLE_NODES
913
914 extern struct pglist_data contig_page_data;
915 #define NODE_DATA(nid) (&contig_page_data)
916 #define NODE_MEM_MAP(nid) mem_map
917
918 #else /* CONFIG_NEED_MULTIPLE_NODES */
919
920 #include <asm/mmzone.h>
921
922 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
923
924 extern struct pglist_data *first_online_pgdat(void);
925 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
926 extern struct zone *next_zone(struct zone *zone);
927
928 /**
929 * for_each_online_pgdat - helper macro to iterate over all online nodes
930 * @pgdat - pointer to a pg_data_t variable
931 */
932 #define for_each_online_pgdat(pgdat) \
933 for (pgdat = first_online_pgdat(); \
934 pgdat; \
935 pgdat = next_online_pgdat(pgdat))
936 /**
937 * for_each_zone - helper macro to iterate over all memory zones
938 * @zone - pointer to struct zone variable
939 *
940 * The user only needs to declare the zone variable, for_each_zone
941 * fills it in.
942 */
943 #define for_each_zone(zone) \
944 for (zone = (first_online_pgdat())->node_zones; \
945 zone; \
946 zone = next_zone(zone))
947
948 #define for_each_populated_zone(zone) \
949 for (zone = (first_online_pgdat())->node_zones; \
950 zone; \
951 zone = next_zone(zone)) \
952 if (!populated_zone(zone)) \
953 ; /* do nothing */ \
954 else
955
956 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
957 {
958 return zoneref->zone;
959 }
960
961 static inline int zonelist_zone_idx(struct zoneref *zoneref)
962 {
963 return zoneref->zone_idx;
964 }
965
966 static inline int zonelist_node_idx(struct zoneref *zoneref)
967 {
968 #ifdef CONFIG_NUMA
969 /* zone_to_nid not available in this context */
970 return zoneref->zone->node;
971 #else
972 return 0;
973 #endif /* CONFIG_NUMA */
974 }
975
976 /**
977 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
978 * @z - The cursor used as a starting point for the search
979 * @highest_zoneidx - The zone index of the highest zone to return
980 * @nodes - An optional nodemask to filter the zonelist with
981 * @zone - The first suitable zone found is returned via this parameter
982 *
983 * This function returns the next zone at or below a given zone index that is
984 * within the allowed nodemask using a cursor as the starting point for the
985 * search. The zoneref returned is a cursor that represents the current zone
986 * being examined. It should be advanced by one before calling
987 * next_zones_zonelist again.
988 */
989 struct zoneref *next_zones_zonelist(struct zoneref *z,
990 enum zone_type highest_zoneidx,
991 nodemask_t *nodes,
992 struct zone **zone);
993
994 /**
995 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
996 * @zonelist - The zonelist to search for a suitable zone
997 * @highest_zoneidx - The zone index of the highest zone to return
998 * @nodes - An optional nodemask to filter the zonelist with
999 * @zone - The first suitable zone found is returned via this parameter
1000 *
1001 * This function returns the first zone at or below a given zone index that is
1002 * within the allowed nodemask. The zoneref returned is a cursor that can be
1003 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1004 * one before calling.
1005 */
1006 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1007 enum zone_type highest_zoneidx,
1008 nodemask_t *nodes,
1009 struct zone **zone)
1010 {
1011 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
1012 zone);
1013 }
1014
1015 /**
1016 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1017 * @zone - The current zone in the iterator
1018 * @z - The current pointer within zonelist->zones being iterated
1019 * @zlist - The zonelist being iterated
1020 * @highidx - The zone index of the highest zone to return
1021 * @nodemask - Nodemask allowed by the allocator
1022 *
1023 * This iterator iterates though all zones at or below a given zone index and
1024 * within a given nodemask
1025 */
1026 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1027 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
1028 zone; \
1029 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
1030
1031 /**
1032 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1033 * @zone - The current zone in the iterator
1034 * @z - The current pointer within zonelist->zones being iterated
1035 * @zlist - The zonelist being iterated
1036 * @highidx - The zone index of the highest zone to return
1037 *
1038 * This iterator iterates though all zones at or below a given zone index.
1039 */
1040 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1041 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1042
1043 #ifdef CONFIG_SPARSEMEM
1044 #include <asm/sparsemem.h>
1045 #endif
1046
1047 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1048 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1049 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1050 {
1051 return 0;
1052 }
1053 #endif
1054
1055 #ifdef CONFIG_FLATMEM
1056 #define pfn_to_nid(pfn) (0)
1057 #endif
1058
1059 #ifdef CONFIG_SPARSEMEM
1060
1061 /*
1062 * SECTION_SHIFT #bits space required to store a section #
1063 *
1064 * PA_SECTION_SHIFT physical address to/from section number
1065 * PFN_SECTION_SHIFT pfn to/from section number
1066 */
1067 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1068 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1069
1070 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1071
1072 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1073 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1074
1075 #define SECTION_BLOCKFLAGS_BITS \
1076 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1077
1078 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1079 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1080 #endif
1081
1082 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1083 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1084
1085 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1086 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1087
1088 struct page;
1089 struct page_cgroup;
1090 struct mem_section {
1091 /*
1092 * This is, logically, a pointer to an array of struct
1093 * pages. However, it is stored with some other magic.
1094 * (see sparse.c::sparse_init_one_section())
1095 *
1096 * Additionally during early boot we encode node id of
1097 * the location of the section here to guide allocation.
1098 * (see sparse.c::memory_present())
1099 *
1100 * Making it a UL at least makes someone do a cast
1101 * before using it wrong.
1102 */
1103 unsigned long section_mem_map;
1104
1105 /* See declaration of similar field in struct zone */
1106 unsigned long *pageblock_flags;
1107 #ifdef CONFIG_MEMCG
1108 /*
1109 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1110 * section. (see memcontrol.h/page_cgroup.h about this.)
1111 */
1112 struct page_cgroup *page_cgroup;
1113 unsigned long pad;
1114 #endif
1115 /*
1116 * WARNING: mem_section must be a power-of-2 in size for the
1117 * calculation and use of SECTION_ROOT_MASK to make sense.
1118 */
1119 };
1120
1121 #ifdef CONFIG_SPARSEMEM_EXTREME
1122 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1123 #else
1124 #define SECTIONS_PER_ROOT 1
1125 #endif
1126
1127 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1128 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1129 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1130
1131 #ifdef CONFIG_SPARSEMEM_EXTREME
1132 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1133 #else
1134 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1135 #endif
1136
1137 static inline struct mem_section *__nr_to_section(unsigned long nr)
1138 {
1139 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1140 return NULL;
1141 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1142 }
1143 extern int __section_nr(struct mem_section* ms);
1144 extern unsigned long usemap_size(void);
1145
1146 /*
1147 * We use the lower bits of the mem_map pointer to store
1148 * a little bit of information. There should be at least
1149 * 3 bits here due to 32-bit alignment.
1150 */
1151 #define SECTION_MARKED_PRESENT (1UL<<0)
1152 #define SECTION_HAS_MEM_MAP (1UL<<1)
1153 #define SECTION_MAP_LAST_BIT (1UL<<2)
1154 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1155 #define SECTION_NID_SHIFT 2
1156
1157 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1158 {
1159 unsigned long map = section->section_mem_map;
1160 map &= SECTION_MAP_MASK;
1161 return (struct page *)map;
1162 }
1163
1164 static inline int present_section(struct mem_section *section)
1165 {
1166 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1167 }
1168
1169 static inline int present_section_nr(unsigned long nr)
1170 {
1171 return present_section(__nr_to_section(nr));
1172 }
1173
1174 static inline int valid_section(struct mem_section *section)
1175 {
1176 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1177 }
1178
1179 static inline int valid_section_nr(unsigned long nr)
1180 {
1181 return valid_section(__nr_to_section(nr));
1182 }
1183
1184 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1185 {
1186 return __nr_to_section(pfn_to_section_nr(pfn));
1187 }
1188
1189 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1190 static inline int pfn_valid(unsigned long pfn)
1191 {
1192 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1193 return 0;
1194 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1195 }
1196 #endif
1197
1198 static inline int pfn_present(unsigned long pfn)
1199 {
1200 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1201 return 0;
1202 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1203 }
1204
1205 /*
1206 * These are _only_ used during initialisation, therefore they
1207 * can use __initdata ... They could have names to indicate
1208 * this restriction.
1209 */
1210 #ifdef CONFIG_NUMA
1211 #define pfn_to_nid(pfn) \
1212 ({ \
1213 unsigned long __pfn_to_nid_pfn = (pfn); \
1214 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1215 })
1216 #else
1217 #define pfn_to_nid(pfn) (0)
1218 #endif
1219
1220 #define early_pfn_valid(pfn) pfn_valid(pfn)
1221 void sparse_init(void);
1222 #else
1223 #define sparse_init() do {} while (0)
1224 #define sparse_index_init(_sec, _nid) do {} while (0)
1225 #endif /* CONFIG_SPARSEMEM */
1226
1227 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1228 bool early_pfn_in_nid(unsigned long pfn, int nid);
1229 #else
1230 #define early_pfn_in_nid(pfn, nid) (1)
1231 #endif
1232
1233 #ifndef early_pfn_valid
1234 #define early_pfn_valid(pfn) (1)
1235 #endif
1236
1237 void memory_present(int nid, unsigned long start, unsigned long end);
1238 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1239
1240 /*
1241 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1242 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1243 * pfn_valid_within() should be used in this case; we optimise this away
1244 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1245 */
1246 #ifdef CONFIG_HOLES_IN_ZONE
1247 #define pfn_valid_within(pfn) pfn_valid(pfn)
1248 #else
1249 #define pfn_valid_within(pfn) (1)
1250 #endif
1251
1252 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1253 /*
1254 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1255 * associated with it or not. In FLATMEM, it is expected that holes always
1256 * have valid memmap as long as there is valid PFNs either side of the hole.
1257 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1258 * entire section.
1259 *
1260 * However, an ARM, and maybe other embedded architectures in the future
1261 * free memmap backing holes to save memory on the assumption the memmap is
1262 * never used. The page_zone linkages are then broken even though pfn_valid()
1263 * returns true. A walker of the full memmap must then do this additional
1264 * check to ensure the memmap they are looking at is sane by making sure
1265 * the zone and PFN linkages are still valid. This is expensive, but walkers
1266 * of the full memmap are extremely rare.
1267 */
1268 int memmap_valid_within(unsigned long pfn,
1269 struct page *page, struct zone *zone);
1270 #else
1271 static inline int memmap_valid_within(unsigned long pfn,
1272 struct page *page, struct zone *zone)
1273 {
1274 return 1;
1275 }
1276 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1277
1278 #endif /* !__GENERATING_BOUNDS.H */
1279 #endif /* !__ASSEMBLY__ */
1280 #endif /* _LINUX_MMZONE_H */
This page took 0.068194 seconds and 5 git commands to generate.