Merge branch 'ixp4xx' of git://git.kernel.org/pub/scm/linux/kernel/git/chris/linux-2.6
[deliverable/linux.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <generated/bounds.h>
19 #include <asm/atomic.h>
20 #include <asm/page.h>
21
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30 /*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coelesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37
38 #define MIGRATE_UNMOVABLE 0
39 #define MIGRATE_RECLAIMABLE 1
40 #define MIGRATE_MOVABLE 2
41 #define MIGRATE_PCPTYPES 3 /* the number of types on the pcp lists */
42 #define MIGRATE_RESERVE 3
43 #define MIGRATE_ISOLATE 4 /* can't allocate from here */
44 #define MIGRATE_TYPES 5
45
46 #define for_each_migratetype_order(order, type) \
47 for (order = 0; order < MAX_ORDER; order++) \
48 for (type = 0; type < MIGRATE_TYPES; type++)
49
50 extern int page_group_by_mobility_disabled;
51
52 static inline int get_pageblock_migratetype(struct page *page)
53 {
54 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
55 }
56
57 struct free_area {
58 struct list_head free_list[MIGRATE_TYPES];
59 unsigned long nr_free;
60 };
61
62 struct pglist_data;
63
64 /*
65 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
66 * So add a wild amount of padding here to ensure that they fall into separate
67 * cachelines. There are very few zone structures in the machine, so space
68 * consumption is not a concern here.
69 */
70 #if defined(CONFIG_SMP)
71 struct zone_padding {
72 char x[0];
73 } ____cacheline_internodealigned_in_smp;
74 #define ZONE_PADDING(name) struct zone_padding name;
75 #else
76 #define ZONE_PADDING(name)
77 #endif
78
79 enum zone_stat_item {
80 /* First 128 byte cacheline (assuming 64 bit words) */
81 NR_FREE_PAGES,
82 NR_LRU_BASE,
83 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
84 NR_ACTIVE_ANON, /* " " " " " */
85 NR_INACTIVE_FILE, /* " " " " " */
86 NR_ACTIVE_FILE, /* " " " " " */
87 NR_UNEVICTABLE, /* " " " " " */
88 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
89 NR_ANON_PAGES, /* Mapped anonymous pages */
90 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
91 only modified from process context */
92 NR_FILE_PAGES,
93 NR_FILE_DIRTY,
94 NR_WRITEBACK,
95 NR_SLAB_RECLAIMABLE,
96 NR_SLAB_UNRECLAIMABLE,
97 NR_PAGETABLE, /* used for pagetables */
98 NR_KERNEL_STACK,
99 /* Second 128 byte cacheline */
100 NR_UNSTABLE_NFS, /* NFS unstable pages */
101 NR_BOUNCE,
102 NR_VMSCAN_WRITE,
103 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
104 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
105 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
106 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
107 #ifdef CONFIG_NUMA
108 NUMA_HIT, /* allocated in intended node */
109 NUMA_MISS, /* allocated in non intended node */
110 NUMA_FOREIGN, /* was intended here, hit elsewhere */
111 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
112 NUMA_LOCAL, /* allocation from local node */
113 NUMA_OTHER, /* allocation from other node */
114 #endif
115 NR_VM_ZONE_STAT_ITEMS };
116
117 /*
118 * We do arithmetic on the LRU lists in various places in the code,
119 * so it is important to keep the active lists LRU_ACTIVE higher in
120 * the array than the corresponding inactive lists, and to keep
121 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
122 *
123 * This has to be kept in sync with the statistics in zone_stat_item
124 * above and the descriptions in vmstat_text in mm/vmstat.c
125 */
126 #define LRU_BASE 0
127 #define LRU_ACTIVE 1
128 #define LRU_FILE 2
129
130 enum lru_list {
131 LRU_INACTIVE_ANON = LRU_BASE,
132 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
133 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
134 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
135 LRU_UNEVICTABLE,
136 NR_LRU_LISTS
137 };
138
139 #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
140
141 #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
142
143 static inline int is_file_lru(enum lru_list l)
144 {
145 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
146 }
147
148 static inline int is_active_lru(enum lru_list l)
149 {
150 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
151 }
152
153 static inline int is_unevictable_lru(enum lru_list l)
154 {
155 return (l == LRU_UNEVICTABLE);
156 }
157
158 enum zone_watermarks {
159 WMARK_MIN,
160 WMARK_LOW,
161 WMARK_HIGH,
162 NR_WMARK
163 };
164
165 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
166 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
167 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
168
169 struct per_cpu_pages {
170 int count; /* number of pages in the list */
171 int high; /* high watermark, emptying needed */
172 int batch; /* chunk size for buddy add/remove */
173
174 /* Lists of pages, one per migrate type stored on the pcp-lists */
175 struct list_head lists[MIGRATE_PCPTYPES];
176 };
177
178 struct per_cpu_pageset {
179 struct per_cpu_pages pcp;
180 #ifdef CONFIG_NUMA
181 s8 expire;
182 #endif
183 #ifdef CONFIG_SMP
184 s8 stat_threshold;
185 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
186 #endif
187 };
188
189 #endif /* !__GENERATING_BOUNDS.H */
190
191 enum zone_type {
192 #ifdef CONFIG_ZONE_DMA
193 /*
194 * ZONE_DMA is used when there are devices that are not able
195 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
196 * carve out the portion of memory that is needed for these devices.
197 * The range is arch specific.
198 *
199 * Some examples
200 *
201 * Architecture Limit
202 * ---------------------------
203 * parisc, ia64, sparc <4G
204 * s390 <2G
205 * arm Various
206 * alpha Unlimited or 0-16MB.
207 *
208 * i386, x86_64 and multiple other arches
209 * <16M.
210 */
211 ZONE_DMA,
212 #endif
213 #ifdef CONFIG_ZONE_DMA32
214 /*
215 * x86_64 needs two ZONE_DMAs because it supports devices that are
216 * only able to do DMA to the lower 16M but also 32 bit devices that
217 * can only do DMA areas below 4G.
218 */
219 ZONE_DMA32,
220 #endif
221 /*
222 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
223 * performed on pages in ZONE_NORMAL if the DMA devices support
224 * transfers to all addressable memory.
225 */
226 ZONE_NORMAL,
227 #ifdef CONFIG_HIGHMEM
228 /*
229 * A memory area that is only addressable by the kernel through
230 * mapping portions into its own address space. This is for example
231 * used by i386 to allow the kernel to address the memory beyond
232 * 900MB. The kernel will set up special mappings (page
233 * table entries on i386) for each page that the kernel needs to
234 * access.
235 */
236 ZONE_HIGHMEM,
237 #endif
238 ZONE_MOVABLE,
239 __MAX_NR_ZONES
240 };
241
242 #ifndef __GENERATING_BOUNDS_H
243
244 /*
245 * When a memory allocation must conform to specific limitations (such
246 * as being suitable for DMA) the caller will pass in hints to the
247 * allocator in the gfp_mask, in the zone modifier bits. These bits
248 * are used to select a priority ordered list of memory zones which
249 * match the requested limits. See gfp_zone() in include/linux/gfp.h
250 */
251
252 #if MAX_NR_ZONES < 2
253 #define ZONES_SHIFT 0
254 #elif MAX_NR_ZONES <= 2
255 #define ZONES_SHIFT 1
256 #elif MAX_NR_ZONES <= 4
257 #define ZONES_SHIFT 2
258 #else
259 #error ZONES_SHIFT -- too many zones configured adjust calculation
260 #endif
261
262 struct zone_reclaim_stat {
263 /*
264 * The pageout code in vmscan.c keeps track of how many of the
265 * mem/swap backed and file backed pages are refeferenced.
266 * The higher the rotated/scanned ratio, the more valuable
267 * that cache is.
268 *
269 * The anon LRU stats live in [0], file LRU stats in [1]
270 */
271 unsigned long recent_rotated[2];
272 unsigned long recent_scanned[2];
273
274 /*
275 * accumulated for batching
276 */
277 unsigned long nr_saved_scan[NR_LRU_LISTS];
278 };
279
280 struct zone {
281 /* Fields commonly accessed by the page allocator */
282
283 /* zone watermarks, access with *_wmark_pages(zone) macros */
284 unsigned long watermark[NR_WMARK];
285
286 /*
287 * We don't know if the memory that we're going to allocate will be freeable
288 * or/and it will be released eventually, so to avoid totally wasting several
289 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
290 * to run OOM on the lower zones despite there's tons of freeable ram
291 * on the higher zones). This array is recalculated at runtime if the
292 * sysctl_lowmem_reserve_ratio sysctl changes.
293 */
294 unsigned long lowmem_reserve[MAX_NR_ZONES];
295
296 #ifdef CONFIG_NUMA
297 int node;
298 /*
299 * zone reclaim becomes active if more unmapped pages exist.
300 */
301 unsigned long min_unmapped_pages;
302 unsigned long min_slab_pages;
303 #endif
304 struct per_cpu_pageset __percpu *pageset;
305 /*
306 * free areas of different sizes
307 */
308 spinlock_t lock;
309 int all_unreclaimable; /* All pages pinned */
310 #ifdef CONFIG_MEMORY_HOTPLUG
311 /* see spanned/present_pages for more description */
312 seqlock_t span_seqlock;
313 #endif
314 struct free_area free_area[MAX_ORDER];
315
316 #ifndef CONFIG_SPARSEMEM
317 /*
318 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
319 * In SPARSEMEM, this map is stored in struct mem_section
320 */
321 unsigned long *pageblock_flags;
322 #endif /* CONFIG_SPARSEMEM */
323
324 #ifdef CONFIG_COMPACTION
325 /*
326 * On compaction failure, 1<<compact_defer_shift compactions
327 * are skipped before trying again. The number attempted since
328 * last failure is tracked with compact_considered.
329 */
330 unsigned int compact_considered;
331 unsigned int compact_defer_shift;
332 #endif
333
334 ZONE_PADDING(_pad1_)
335
336 /* Fields commonly accessed by the page reclaim scanner */
337 spinlock_t lru_lock;
338 struct zone_lru {
339 struct list_head list;
340 } lru[NR_LRU_LISTS];
341
342 struct zone_reclaim_stat reclaim_stat;
343
344 unsigned long pages_scanned; /* since last reclaim */
345 unsigned long flags; /* zone flags, see below */
346
347 /* Zone statistics */
348 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
349
350 /*
351 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
352 * this zone's LRU. Maintained by the pageout code.
353 */
354 unsigned int inactive_ratio;
355
356
357 ZONE_PADDING(_pad2_)
358 /* Rarely used or read-mostly fields */
359
360 /*
361 * wait_table -- the array holding the hash table
362 * wait_table_hash_nr_entries -- the size of the hash table array
363 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
364 *
365 * The purpose of all these is to keep track of the people
366 * waiting for a page to become available and make them
367 * runnable again when possible. The trouble is that this
368 * consumes a lot of space, especially when so few things
369 * wait on pages at a given time. So instead of using
370 * per-page waitqueues, we use a waitqueue hash table.
371 *
372 * The bucket discipline is to sleep on the same queue when
373 * colliding and wake all in that wait queue when removing.
374 * When something wakes, it must check to be sure its page is
375 * truly available, a la thundering herd. The cost of a
376 * collision is great, but given the expected load of the
377 * table, they should be so rare as to be outweighed by the
378 * benefits from the saved space.
379 *
380 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
381 * primary users of these fields, and in mm/page_alloc.c
382 * free_area_init_core() performs the initialization of them.
383 */
384 wait_queue_head_t * wait_table;
385 unsigned long wait_table_hash_nr_entries;
386 unsigned long wait_table_bits;
387
388 /*
389 * Discontig memory support fields.
390 */
391 struct pglist_data *zone_pgdat;
392 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
393 unsigned long zone_start_pfn;
394
395 /*
396 * zone_start_pfn, spanned_pages and present_pages are all
397 * protected by span_seqlock. It is a seqlock because it has
398 * to be read outside of zone->lock, and it is done in the main
399 * allocator path. But, it is written quite infrequently.
400 *
401 * The lock is declared along with zone->lock because it is
402 * frequently read in proximity to zone->lock. It's good to
403 * give them a chance of being in the same cacheline.
404 */
405 unsigned long spanned_pages; /* total size, including holes */
406 unsigned long present_pages; /* amount of memory (excluding holes) */
407
408 /*
409 * rarely used fields:
410 */
411 const char *name;
412 } ____cacheline_internodealigned_in_smp;
413
414 typedef enum {
415 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
416 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
417 } zone_flags_t;
418
419 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
420 {
421 set_bit(flag, &zone->flags);
422 }
423
424 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
425 {
426 return test_and_set_bit(flag, &zone->flags);
427 }
428
429 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
430 {
431 clear_bit(flag, &zone->flags);
432 }
433
434 static inline int zone_is_reclaim_locked(const struct zone *zone)
435 {
436 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
437 }
438
439 static inline int zone_is_oom_locked(const struct zone *zone)
440 {
441 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
442 }
443
444 /*
445 * The "priority" of VM scanning is how much of the queues we will scan in one
446 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
447 * queues ("queue_length >> 12") during an aging round.
448 */
449 #define DEF_PRIORITY 12
450
451 /* Maximum number of zones on a zonelist */
452 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
453
454 #ifdef CONFIG_NUMA
455
456 /*
457 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
458 * allocations to a single node for GFP_THISNODE.
459 *
460 * [0] : Zonelist with fallback
461 * [1] : No fallback (GFP_THISNODE)
462 */
463 #define MAX_ZONELISTS 2
464
465
466 /*
467 * We cache key information from each zonelist for smaller cache
468 * footprint when scanning for free pages in get_page_from_freelist().
469 *
470 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
471 * up short of free memory since the last time (last_fullzone_zap)
472 * we zero'd fullzones.
473 * 2) The array z_to_n[] maps each zone in the zonelist to its node
474 * id, so that we can efficiently evaluate whether that node is
475 * set in the current tasks mems_allowed.
476 *
477 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
478 * indexed by a zones offset in the zonelist zones[] array.
479 *
480 * The get_page_from_freelist() routine does two scans. During the
481 * first scan, we skip zones whose corresponding bit in 'fullzones'
482 * is set or whose corresponding node in current->mems_allowed (which
483 * comes from cpusets) is not set. During the second scan, we bypass
484 * this zonelist_cache, to ensure we look methodically at each zone.
485 *
486 * Once per second, we zero out (zap) fullzones, forcing us to
487 * reconsider nodes that might have regained more free memory.
488 * The field last_full_zap is the time we last zapped fullzones.
489 *
490 * This mechanism reduces the amount of time we waste repeatedly
491 * reexaming zones for free memory when they just came up low on
492 * memory momentarilly ago.
493 *
494 * The zonelist_cache struct members logically belong in struct
495 * zonelist. However, the mempolicy zonelists constructed for
496 * MPOL_BIND are intentionally variable length (and usually much
497 * shorter). A general purpose mechanism for handling structs with
498 * multiple variable length members is more mechanism than we want
499 * here. We resort to some special case hackery instead.
500 *
501 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
502 * part because they are shorter), so we put the fixed length stuff
503 * at the front of the zonelist struct, ending in a variable length
504 * zones[], as is needed by MPOL_BIND.
505 *
506 * Then we put the optional zonelist cache on the end of the zonelist
507 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
508 * the fixed length portion at the front of the struct. This pointer
509 * both enables us to find the zonelist cache, and in the case of
510 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
511 * to know that the zonelist cache is not there.
512 *
513 * The end result is that struct zonelists come in two flavors:
514 * 1) The full, fixed length version, shown below, and
515 * 2) The custom zonelists for MPOL_BIND.
516 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
517 *
518 * Even though there may be multiple CPU cores on a node modifying
519 * fullzones or last_full_zap in the same zonelist_cache at the same
520 * time, we don't lock it. This is just hint data - if it is wrong now
521 * and then, the allocator will still function, perhaps a bit slower.
522 */
523
524
525 struct zonelist_cache {
526 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
527 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
528 unsigned long last_full_zap; /* when last zap'd (jiffies) */
529 };
530 #else
531 #define MAX_ZONELISTS 1
532 struct zonelist_cache;
533 #endif
534
535 /*
536 * This struct contains information about a zone in a zonelist. It is stored
537 * here to avoid dereferences into large structures and lookups of tables
538 */
539 struct zoneref {
540 struct zone *zone; /* Pointer to actual zone */
541 int zone_idx; /* zone_idx(zoneref->zone) */
542 };
543
544 /*
545 * One allocation request operates on a zonelist. A zonelist
546 * is a list of zones, the first one is the 'goal' of the
547 * allocation, the other zones are fallback zones, in decreasing
548 * priority.
549 *
550 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
551 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
552 * *
553 * To speed the reading of the zonelist, the zonerefs contain the zone index
554 * of the entry being read. Helper functions to access information given
555 * a struct zoneref are
556 *
557 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
558 * zonelist_zone_idx() - Return the index of the zone for an entry
559 * zonelist_node_idx() - Return the index of the node for an entry
560 */
561 struct zonelist {
562 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
563 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
564 #ifdef CONFIG_NUMA
565 struct zonelist_cache zlcache; // optional ...
566 #endif
567 };
568
569 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
570 struct node_active_region {
571 unsigned long start_pfn;
572 unsigned long end_pfn;
573 int nid;
574 };
575 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
576
577 #ifndef CONFIG_DISCONTIGMEM
578 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
579 extern struct page *mem_map;
580 #endif
581
582 /*
583 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
584 * (mostly NUMA machines?) to denote a higher-level memory zone than the
585 * zone denotes.
586 *
587 * On NUMA machines, each NUMA node would have a pg_data_t to describe
588 * it's memory layout.
589 *
590 * Memory statistics and page replacement data structures are maintained on a
591 * per-zone basis.
592 */
593 struct bootmem_data;
594 typedef struct pglist_data {
595 struct zone node_zones[MAX_NR_ZONES];
596 struct zonelist node_zonelists[MAX_ZONELISTS];
597 int nr_zones;
598 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
599 struct page *node_mem_map;
600 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
601 struct page_cgroup *node_page_cgroup;
602 #endif
603 #endif
604 #ifndef CONFIG_NO_BOOTMEM
605 struct bootmem_data *bdata;
606 #endif
607 #ifdef CONFIG_MEMORY_HOTPLUG
608 /*
609 * Must be held any time you expect node_start_pfn, node_present_pages
610 * or node_spanned_pages stay constant. Holding this will also
611 * guarantee that any pfn_valid() stays that way.
612 *
613 * Nests above zone->lock and zone->size_seqlock.
614 */
615 spinlock_t node_size_lock;
616 #endif
617 unsigned long node_start_pfn;
618 unsigned long node_present_pages; /* total number of physical pages */
619 unsigned long node_spanned_pages; /* total size of physical page
620 range, including holes */
621 int node_id;
622 wait_queue_head_t kswapd_wait;
623 struct task_struct *kswapd;
624 int kswapd_max_order;
625 } pg_data_t;
626
627 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
628 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
629 #ifdef CONFIG_FLAT_NODE_MEM_MAP
630 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
631 #else
632 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
633 #endif
634 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
635
636 #include <linux/memory_hotplug.h>
637
638 extern struct mutex zonelists_mutex;
639 void build_all_zonelists(void *data);
640 void wakeup_kswapd(struct zone *zone, int order);
641 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
642 int classzone_idx, int alloc_flags);
643 enum memmap_context {
644 MEMMAP_EARLY,
645 MEMMAP_HOTPLUG,
646 };
647 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
648 unsigned long size,
649 enum memmap_context context);
650
651 #ifdef CONFIG_HAVE_MEMORY_PRESENT
652 void memory_present(int nid, unsigned long start, unsigned long end);
653 #else
654 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
655 #endif
656
657 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
658 int local_memory_node(int node_id);
659 #else
660 static inline int local_memory_node(int node_id) { return node_id; };
661 #endif
662
663 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
664 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
665 #endif
666
667 /*
668 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
669 */
670 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
671
672 static inline int populated_zone(struct zone *zone)
673 {
674 return (!!zone->present_pages);
675 }
676
677 extern int movable_zone;
678
679 static inline int zone_movable_is_highmem(void)
680 {
681 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
682 return movable_zone == ZONE_HIGHMEM;
683 #else
684 return 0;
685 #endif
686 }
687
688 static inline int is_highmem_idx(enum zone_type idx)
689 {
690 #ifdef CONFIG_HIGHMEM
691 return (idx == ZONE_HIGHMEM ||
692 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
693 #else
694 return 0;
695 #endif
696 }
697
698 static inline int is_normal_idx(enum zone_type idx)
699 {
700 return (idx == ZONE_NORMAL);
701 }
702
703 /**
704 * is_highmem - helper function to quickly check if a struct zone is a
705 * highmem zone or not. This is an attempt to keep references
706 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
707 * @zone - pointer to struct zone variable
708 */
709 static inline int is_highmem(struct zone *zone)
710 {
711 #ifdef CONFIG_HIGHMEM
712 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
713 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
714 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
715 zone_movable_is_highmem());
716 #else
717 return 0;
718 #endif
719 }
720
721 static inline int is_normal(struct zone *zone)
722 {
723 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
724 }
725
726 static inline int is_dma32(struct zone *zone)
727 {
728 #ifdef CONFIG_ZONE_DMA32
729 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
730 #else
731 return 0;
732 #endif
733 }
734
735 static inline int is_dma(struct zone *zone)
736 {
737 #ifdef CONFIG_ZONE_DMA
738 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
739 #else
740 return 0;
741 #endif
742 }
743
744 /* These two functions are used to setup the per zone pages min values */
745 struct ctl_table;
746 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
747 void __user *, size_t *, loff_t *);
748 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
749 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
750 void __user *, size_t *, loff_t *);
751 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
752 void __user *, size_t *, loff_t *);
753 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
754 void __user *, size_t *, loff_t *);
755 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
756 void __user *, size_t *, loff_t *);
757
758 extern int numa_zonelist_order_handler(struct ctl_table *, int,
759 void __user *, size_t *, loff_t *);
760 extern char numa_zonelist_order[];
761 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
762
763 #ifndef CONFIG_NEED_MULTIPLE_NODES
764
765 extern struct pglist_data contig_page_data;
766 #define NODE_DATA(nid) (&contig_page_data)
767 #define NODE_MEM_MAP(nid) mem_map
768
769 #else /* CONFIG_NEED_MULTIPLE_NODES */
770
771 #include <asm/mmzone.h>
772
773 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
774
775 extern struct pglist_data *first_online_pgdat(void);
776 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
777 extern struct zone *next_zone(struct zone *zone);
778
779 /**
780 * for_each_online_pgdat - helper macro to iterate over all online nodes
781 * @pgdat - pointer to a pg_data_t variable
782 */
783 #define for_each_online_pgdat(pgdat) \
784 for (pgdat = first_online_pgdat(); \
785 pgdat; \
786 pgdat = next_online_pgdat(pgdat))
787 /**
788 * for_each_zone - helper macro to iterate over all memory zones
789 * @zone - pointer to struct zone variable
790 *
791 * The user only needs to declare the zone variable, for_each_zone
792 * fills it in.
793 */
794 #define for_each_zone(zone) \
795 for (zone = (first_online_pgdat())->node_zones; \
796 zone; \
797 zone = next_zone(zone))
798
799 #define for_each_populated_zone(zone) \
800 for (zone = (first_online_pgdat())->node_zones; \
801 zone; \
802 zone = next_zone(zone)) \
803 if (!populated_zone(zone)) \
804 ; /* do nothing */ \
805 else
806
807 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
808 {
809 return zoneref->zone;
810 }
811
812 static inline int zonelist_zone_idx(struct zoneref *zoneref)
813 {
814 return zoneref->zone_idx;
815 }
816
817 static inline int zonelist_node_idx(struct zoneref *zoneref)
818 {
819 #ifdef CONFIG_NUMA
820 /* zone_to_nid not available in this context */
821 return zoneref->zone->node;
822 #else
823 return 0;
824 #endif /* CONFIG_NUMA */
825 }
826
827 /**
828 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
829 * @z - The cursor used as a starting point for the search
830 * @highest_zoneidx - The zone index of the highest zone to return
831 * @nodes - An optional nodemask to filter the zonelist with
832 * @zone - The first suitable zone found is returned via this parameter
833 *
834 * This function returns the next zone at or below a given zone index that is
835 * within the allowed nodemask using a cursor as the starting point for the
836 * search. The zoneref returned is a cursor that represents the current zone
837 * being examined. It should be advanced by one before calling
838 * next_zones_zonelist again.
839 */
840 struct zoneref *next_zones_zonelist(struct zoneref *z,
841 enum zone_type highest_zoneidx,
842 nodemask_t *nodes,
843 struct zone **zone);
844
845 /**
846 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
847 * @zonelist - The zonelist to search for a suitable zone
848 * @highest_zoneidx - The zone index of the highest zone to return
849 * @nodes - An optional nodemask to filter the zonelist with
850 * @zone - The first suitable zone found is returned via this parameter
851 *
852 * This function returns the first zone at or below a given zone index that is
853 * within the allowed nodemask. The zoneref returned is a cursor that can be
854 * used to iterate the zonelist with next_zones_zonelist by advancing it by
855 * one before calling.
856 */
857 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
858 enum zone_type highest_zoneidx,
859 nodemask_t *nodes,
860 struct zone **zone)
861 {
862 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
863 zone);
864 }
865
866 /**
867 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
868 * @zone - The current zone in the iterator
869 * @z - The current pointer within zonelist->zones being iterated
870 * @zlist - The zonelist being iterated
871 * @highidx - The zone index of the highest zone to return
872 * @nodemask - Nodemask allowed by the allocator
873 *
874 * This iterator iterates though all zones at or below a given zone index and
875 * within a given nodemask
876 */
877 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
878 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
879 zone; \
880 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
881
882 /**
883 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
884 * @zone - The current zone in the iterator
885 * @z - The current pointer within zonelist->zones being iterated
886 * @zlist - The zonelist being iterated
887 * @highidx - The zone index of the highest zone to return
888 *
889 * This iterator iterates though all zones at or below a given zone index.
890 */
891 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
892 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
893
894 #ifdef CONFIG_SPARSEMEM
895 #include <asm/sparsemem.h>
896 #endif
897
898 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
899 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
900 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
901 {
902 return 0;
903 }
904 #endif
905
906 #ifdef CONFIG_FLATMEM
907 #define pfn_to_nid(pfn) (0)
908 #endif
909
910 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
911 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
912
913 #ifdef CONFIG_SPARSEMEM
914
915 /*
916 * SECTION_SHIFT #bits space required to store a section #
917 *
918 * PA_SECTION_SHIFT physical address to/from section number
919 * PFN_SECTION_SHIFT pfn to/from section number
920 */
921 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
922
923 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
924 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
925
926 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
927
928 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
929 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
930
931 #define SECTION_BLOCKFLAGS_BITS \
932 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
933
934 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
935 #error Allocator MAX_ORDER exceeds SECTION_SIZE
936 #endif
937
938 struct page;
939 struct page_cgroup;
940 struct mem_section {
941 /*
942 * This is, logically, a pointer to an array of struct
943 * pages. However, it is stored with some other magic.
944 * (see sparse.c::sparse_init_one_section())
945 *
946 * Additionally during early boot we encode node id of
947 * the location of the section here to guide allocation.
948 * (see sparse.c::memory_present())
949 *
950 * Making it a UL at least makes someone do a cast
951 * before using it wrong.
952 */
953 unsigned long section_mem_map;
954
955 /* See declaration of similar field in struct zone */
956 unsigned long *pageblock_flags;
957 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
958 /*
959 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
960 * section. (see memcontrol.h/page_cgroup.h about this.)
961 */
962 struct page_cgroup *page_cgroup;
963 unsigned long pad;
964 #endif
965 };
966
967 #ifdef CONFIG_SPARSEMEM_EXTREME
968 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
969 #else
970 #define SECTIONS_PER_ROOT 1
971 #endif
972
973 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
974 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
975 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
976
977 #ifdef CONFIG_SPARSEMEM_EXTREME
978 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
979 #else
980 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
981 #endif
982
983 static inline struct mem_section *__nr_to_section(unsigned long nr)
984 {
985 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
986 return NULL;
987 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
988 }
989 extern int __section_nr(struct mem_section* ms);
990 extern unsigned long usemap_size(void);
991
992 /*
993 * We use the lower bits of the mem_map pointer to store
994 * a little bit of information. There should be at least
995 * 3 bits here due to 32-bit alignment.
996 */
997 #define SECTION_MARKED_PRESENT (1UL<<0)
998 #define SECTION_HAS_MEM_MAP (1UL<<1)
999 #define SECTION_MAP_LAST_BIT (1UL<<2)
1000 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1001 #define SECTION_NID_SHIFT 2
1002
1003 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1004 {
1005 unsigned long map = section->section_mem_map;
1006 map &= SECTION_MAP_MASK;
1007 return (struct page *)map;
1008 }
1009
1010 static inline int present_section(struct mem_section *section)
1011 {
1012 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1013 }
1014
1015 static inline int present_section_nr(unsigned long nr)
1016 {
1017 return present_section(__nr_to_section(nr));
1018 }
1019
1020 static inline int valid_section(struct mem_section *section)
1021 {
1022 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1023 }
1024
1025 static inline int valid_section_nr(unsigned long nr)
1026 {
1027 return valid_section(__nr_to_section(nr));
1028 }
1029
1030 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1031 {
1032 return __nr_to_section(pfn_to_section_nr(pfn));
1033 }
1034
1035 static inline int pfn_valid(unsigned long pfn)
1036 {
1037 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1038 return 0;
1039 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1040 }
1041
1042 static inline int pfn_present(unsigned long pfn)
1043 {
1044 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1045 return 0;
1046 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1047 }
1048
1049 /*
1050 * These are _only_ used during initialisation, therefore they
1051 * can use __initdata ... They could have names to indicate
1052 * this restriction.
1053 */
1054 #ifdef CONFIG_NUMA
1055 #define pfn_to_nid(pfn) \
1056 ({ \
1057 unsigned long __pfn_to_nid_pfn = (pfn); \
1058 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1059 })
1060 #else
1061 #define pfn_to_nid(pfn) (0)
1062 #endif
1063
1064 #define early_pfn_valid(pfn) pfn_valid(pfn)
1065 void sparse_init(void);
1066 #else
1067 #define sparse_init() do {} while (0)
1068 #define sparse_index_init(_sec, _nid) do {} while (0)
1069 #endif /* CONFIG_SPARSEMEM */
1070
1071 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1072 bool early_pfn_in_nid(unsigned long pfn, int nid);
1073 #else
1074 #define early_pfn_in_nid(pfn, nid) (1)
1075 #endif
1076
1077 #ifndef early_pfn_valid
1078 #define early_pfn_valid(pfn) (1)
1079 #endif
1080
1081 void memory_present(int nid, unsigned long start, unsigned long end);
1082 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1083
1084 /*
1085 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1086 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1087 * pfn_valid_within() should be used in this case; we optimise this away
1088 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1089 */
1090 #ifdef CONFIG_HOLES_IN_ZONE
1091 #define pfn_valid_within(pfn) pfn_valid(pfn)
1092 #else
1093 #define pfn_valid_within(pfn) (1)
1094 #endif
1095
1096 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1097 /*
1098 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1099 * associated with it or not. In FLATMEM, it is expected that holes always
1100 * have valid memmap as long as there is valid PFNs either side of the hole.
1101 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1102 * entire section.
1103 *
1104 * However, an ARM, and maybe other embedded architectures in the future
1105 * free memmap backing holes to save memory on the assumption the memmap is
1106 * never used. The page_zone linkages are then broken even though pfn_valid()
1107 * returns true. A walker of the full memmap must then do this additional
1108 * check to ensure the memmap they are looking at is sane by making sure
1109 * the zone and PFN linkages are still valid. This is expensive, but walkers
1110 * of the full memmap are extremely rare.
1111 */
1112 int memmap_valid_within(unsigned long pfn,
1113 struct page *page, struct zone *zone);
1114 #else
1115 static inline int memmap_valid_within(unsigned long pfn,
1116 struct page *page, struct zone *zone)
1117 {
1118 return 1;
1119 }
1120 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1121
1122 #endif /* !__GENERATING_BOUNDS.H */
1123 #endif /* !__ASSEMBLY__ */
1124 #endif /* _LINUX_MMZONE_H */
This page took 0.078661 seconds and 5 git commands to generate.