bd33e6f1bed0c4774542f451709e20a411798d6e
[deliverable/linux.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30 /*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coalesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37
38 enum {
39 MIGRATE_UNMOVABLE,
40 MIGRATE_MOVABLE,
41 MIGRATE_RECLAIMABLE,
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59 #endif
60 #ifdef CONFIG_MEMORY_ISOLATION
61 MIGRATE_ISOLATE, /* can't allocate from here */
62 #endif
63 MIGRATE_TYPES
64 };
65
66 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
67 extern char * const migratetype_names[MIGRATE_TYPES];
68
69 #ifdef CONFIG_CMA
70 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
71 #else
72 # define is_migrate_cma(migratetype) false
73 #endif
74
75 #define for_each_migratetype_order(order, type) \
76 for (order = 0; order < MAX_ORDER; order++) \
77 for (type = 0; type < MIGRATE_TYPES; type++)
78
79 extern int page_group_by_mobility_disabled;
80
81 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
82 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
83
84 #define get_pageblock_migratetype(page) \
85 get_pfnblock_flags_mask(page, page_to_pfn(page), \
86 PB_migrate_end, MIGRATETYPE_MASK)
87
88 struct free_area {
89 struct list_head free_list[MIGRATE_TYPES];
90 unsigned long nr_free;
91 };
92
93 struct pglist_data;
94
95 /*
96 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
97 * So add a wild amount of padding here to ensure that they fall into separate
98 * cachelines. There are very few zone structures in the machine, so space
99 * consumption is not a concern here.
100 */
101 #if defined(CONFIG_SMP)
102 struct zone_padding {
103 char x[0];
104 } ____cacheline_internodealigned_in_smp;
105 #define ZONE_PADDING(name) struct zone_padding name;
106 #else
107 #define ZONE_PADDING(name)
108 #endif
109
110 enum zone_stat_item {
111 /* First 128 byte cacheline (assuming 64 bit words) */
112 NR_FREE_PAGES,
113 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
114 NR_ZONE_LRU_ANON = NR_ZONE_LRU_BASE,
115 NR_ZONE_LRU_FILE,
116 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
117 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
118 NR_SLAB_RECLAIMABLE,
119 NR_SLAB_UNRECLAIMABLE,
120 NR_PAGETABLE, /* used for pagetables */
121 NR_KERNEL_STACK,
122 /* Second 128 byte cacheline */
123 NR_BOUNCE,
124 #if IS_ENABLED(CONFIG_ZSMALLOC)
125 NR_ZSPAGES, /* allocated in zsmalloc */
126 #endif
127 #ifdef CONFIG_NUMA
128 NUMA_HIT, /* allocated in intended node */
129 NUMA_MISS, /* allocated in non intended node */
130 NUMA_FOREIGN, /* was intended here, hit elsewhere */
131 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
132 NUMA_LOCAL, /* allocation from local node */
133 NUMA_OTHER, /* allocation from other node */
134 #endif
135 NR_FREE_CMA_PAGES,
136 NR_VM_ZONE_STAT_ITEMS };
137
138 enum node_stat_item {
139 NR_LRU_BASE,
140 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
141 NR_ACTIVE_ANON, /* " " " " " */
142 NR_INACTIVE_FILE, /* " " " " " */
143 NR_ACTIVE_FILE, /* " " " " " */
144 NR_UNEVICTABLE, /* " " " " " */
145 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
146 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
147 NR_PAGES_SCANNED, /* pages scanned since last reclaim */
148 WORKINGSET_REFAULT,
149 WORKINGSET_ACTIVATE,
150 WORKINGSET_NODERECLAIM,
151 NR_ANON_MAPPED, /* Mapped anonymous pages */
152 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
153 only modified from process context */
154 NR_FILE_PAGES,
155 NR_FILE_DIRTY,
156 NR_WRITEBACK,
157 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
158 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
159 NR_SHMEM_THPS,
160 NR_SHMEM_PMDMAPPED,
161 NR_ANON_THPS,
162 NR_UNSTABLE_NFS, /* NFS unstable pages */
163 NR_VMSCAN_WRITE,
164 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
165 NR_DIRTIED, /* page dirtyings since bootup */
166 NR_WRITTEN, /* page writings since bootup */
167 NR_VM_NODE_STAT_ITEMS
168 };
169
170 /*
171 * We do arithmetic on the LRU lists in various places in the code,
172 * so it is important to keep the active lists LRU_ACTIVE higher in
173 * the array than the corresponding inactive lists, and to keep
174 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
175 *
176 * This has to be kept in sync with the statistics in zone_stat_item
177 * above and the descriptions in vmstat_text in mm/vmstat.c
178 */
179 #define LRU_BASE 0
180 #define LRU_ACTIVE 1
181 #define LRU_FILE 2
182
183 enum lru_list {
184 LRU_INACTIVE_ANON = LRU_BASE,
185 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
186 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
187 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
188 LRU_UNEVICTABLE,
189 NR_LRU_LISTS
190 };
191
192 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
193
194 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
195
196 static inline int is_file_lru(enum lru_list lru)
197 {
198 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
199 }
200
201 static inline int is_active_lru(enum lru_list lru)
202 {
203 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
204 }
205
206 struct zone_reclaim_stat {
207 /*
208 * The pageout code in vmscan.c keeps track of how many of the
209 * mem/swap backed and file backed pages are referenced.
210 * The higher the rotated/scanned ratio, the more valuable
211 * that cache is.
212 *
213 * The anon LRU stats live in [0], file LRU stats in [1]
214 */
215 unsigned long recent_rotated[2];
216 unsigned long recent_scanned[2];
217 };
218
219 struct lruvec {
220 struct list_head lists[NR_LRU_LISTS];
221 struct zone_reclaim_stat reclaim_stat;
222 /* Evictions & activations on the inactive file list */
223 atomic_long_t inactive_age;
224 #ifdef CONFIG_MEMCG
225 struct pglist_data *pgdat;
226 #endif
227 };
228
229 /* Mask used at gathering information at once (see memcontrol.c) */
230 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
231 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
232 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
233
234 /* Isolate clean file */
235 #define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
236 /* Isolate unmapped file */
237 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
238 /* Isolate for asynchronous migration */
239 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
240 /* Isolate unevictable pages */
241 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
242
243 /* LRU Isolation modes. */
244 typedef unsigned __bitwise__ isolate_mode_t;
245
246 enum zone_watermarks {
247 WMARK_MIN,
248 WMARK_LOW,
249 WMARK_HIGH,
250 NR_WMARK
251 };
252
253 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
254 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
255 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
256
257 struct per_cpu_pages {
258 int count; /* number of pages in the list */
259 int high; /* high watermark, emptying needed */
260 int batch; /* chunk size for buddy add/remove */
261
262 /* Lists of pages, one per migrate type stored on the pcp-lists */
263 struct list_head lists[MIGRATE_PCPTYPES];
264 };
265
266 struct per_cpu_pageset {
267 struct per_cpu_pages pcp;
268 #ifdef CONFIG_NUMA
269 s8 expire;
270 #endif
271 #ifdef CONFIG_SMP
272 s8 stat_threshold;
273 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
274 #endif
275 };
276
277 struct per_cpu_nodestat {
278 s8 stat_threshold;
279 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
280 };
281
282 #endif /* !__GENERATING_BOUNDS.H */
283
284 enum zone_type {
285 #ifdef CONFIG_ZONE_DMA
286 /*
287 * ZONE_DMA is used when there are devices that are not able
288 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
289 * carve out the portion of memory that is needed for these devices.
290 * The range is arch specific.
291 *
292 * Some examples
293 *
294 * Architecture Limit
295 * ---------------------------
296 * parisc, ia64, sparc <4G
297 * s390 <2G
298 * arm Various
299 * alpha Unlimited or 0-16MB.
300 *
301 * i386, x86_64 and multiple other arches
302 * <16M.
303 */
304 ZONE_DMA,
305 #endif
306 #ifdef CONFIG_ZONE_DMA32
307 /*
308 * x86_64 needs two ZONE_DMAs because it supports devices that are
309 * only able to do DMA to the lower 16M but also 32 bit devices that
310 * can only do DMA areas below 4G.
311 */
312 ZONE_DMA32,
313 #endif
314 /*
315 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
316 * performed on pages in ZONE_NORMAL if the DMA devices support
317 * transfers to all addressable memory.
318 */
319 ZONE_NORMAL,
320 #ifdef CONFIG_HIGHMEM
321 /*
322 * A memory area that is only addressable by the kernel through
323 * mapping portions into its own address space. This is for example
324 * used by i386 to allow the kernel to address the memory beyond
325 * 900MB. The kernel will set up special mappings (page
326 * table entries on i386) for each page that the kernel needs to
327 * access.
328 */
329 ZONE_HIGHMEM,
330 #endif
331 ZONE_MOVABLE,
332 #ifdef CONFIG_ZONE_DEVICE
333 ZONE_DEVICE,
334 #endif
335 __MAX_NR_ZONES
336
337 };
338
339 #ifndef __GENERATING_BOUNDS_H
340
341 struct zone {
342 /* Read-mostly fields */
343
344 /* zone watermarks, access with *_wmark_pages(zone) macros */
345 unsigned long watermark[NR_WMARK];
346
347 unsigned long nr_reserved_highatomic;
348
349 /*
350 * We don't know if the memory that we're going to allocate will be
351 * freeable or/and it will be released eventually, so to avoid totally
352 * wasting several GB of ram we must reserve some of the lower zone
353 * memory (otherwise we risk to run OOM on the lower zones despite
354 * there being tons of freeable ram on the higher zones). This array is
355 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
356 * changes.
357 */
358 long lowmem_reserve[MAX_NR_ZONES];
359
360 #ifdef CONFIG_NUMA
361 int node;
362 #endif
363 struct pglist_data *zone_pgdat;
364 struct per_cpu_pageset __percpu *pageset;
365
366 #ifndef CONFIG_SPARSEMEM
367 /*
368 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
369 * In SPARSEMEM, this map is stored in struct mem_section
370 */
371 unsigned long *pageblock_flags;
372 #endif /* CONFIG_SPARSEMEM */
373
374 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
375 unsigned long zone_start_pfn;
376
377 /*
378 * spanned_pages is the total pages spanned by the zone, including
379 * holes, which is calculated as:
380 * spanned_pages = zone_end_pfn - zone_start_pfn;
381 *
382 * present_pages is physical pages existing within the zone, which
383 * is calculated as:
384 * present_pages = spanned_pages - absent_pages(pages in holes);
385 *
386 * managed_pages is present pages managed by the buddy system, which
387 * is calculated as (reserved_pages includes pages allocated by the
388 * bootmem allocator):
389 * managed_pages = present_pages - reserved_pages;
390 *
391 * So present_pages may be used by memory hotplug or memory power
392 * management logic to figure out unmanaged pages by checking
393 * (present_pages - managed_pages). And managed_pages should be used
394 * by page allocator and vm scanner to calculate all kinds of watermarks
395 * and thresholds.
396 *
397 * Locking rules:
398 *
399 * zone_start_pfn and spanned_pages are protected by span_seqlock.
400 * It is a seqlock because it has to be read outside of zone->lock,
401 * and it is done in the main allocator path. But, it is written
402 * quite infrequently.
403 *
404 * The span_seq lock is declared along with zone->lock because it is
405 * frequently read in proximity to zone->lock. It's good to
406 * give them a chance of being in the same cacheline.
407 *
408 * Write access to present_pages at runtime should be protected by
409 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
410 * present_pages should get_online_mems() to get a stable value.
411 *
412 * Read access to managed_pages should be safe because it's unsigned
413 * long. Write access to zone->managed_pages and totalram_pages are
414 * protected by managed_page_count_lock at runtime. Idealy only
415 * adjust_managed_page_count() should be used instead of directly
416 * touching zone->managed_pages and totalram_pages.
417 */
418 unsigned long managed_pages;
419 unsigned long spanned_pages;
420 unsigned long present_pages;
421
422 const char *name;
423
424 #ifdef CONFIG_MEMORY_ISOLATION
425 /*
426 * Number of isolated pageblock. It is used to solve incorrect
427 * freepage counting problem due to racy retrieving migratetype
428 * of pageblock. Protected by zone->lock.
429 */
430 unsigned long nr_isolate_pageblock;
431 #endif
432
433 #ifdef CONFIG_MEMORY_HOTPLUG
434 /* see spanned/present_pages for more description */
435 seqlock_t span_seqlock;
436 #endif
437
438 /*
439 * wait_table -- the array holding the hash table
440 * wait_table_hash_nr_entries -- the size of the hash table array
441 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
442 *
443 * The purpose of all these is to keep track of the people
444 * waiting for a page to become available and make them
445 * runnable again when possible. The trouble is that this
446 * consumes a lot of space, especially when so few things
447 * wait on pages at a given time. So instead of using
448 * per-page waitqueues, we use a waitqueue hash table.
449 *
450 * The bucket discipline is to sleep on the same queue when
451 * colliding and wake all in that wait queue when removing.
452 * When something wakes, it must check to be sure its page is
453 * truly available, a la thundering herd. The cost of a
454 * collision is great, but given the expected load of the
455 * table, they should be so rare as to be outweighed by the
456 * benefits from the saved space.
457 *
458 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
459 * primary users of these fields, and in mm/page_alloc.c
460 * free_area_init_core() performs the initialization of them.
461 */
462 wait_queue_head_t *wait_table;
463 unsigned long wait_table_hash_nr_entries;
464 unsigned long wait_table_bits;
465
466 /* Write-intensive fields used from the page allocator */
467 ZONE_PADDING(_pad1_)
468
469 /* free areas of different sizes */
470 struct free_area free_area[MAX_ORDER];
471
472 /* zone flags, see below */
473 unsigned long flags;
474
475 /* Primarily protects free_area */
476 spinlock_t lock;
477
478 /* Write-intensive fields used by compaction and vmstats. */
479 ZONE_PADDING(_pad2_)
480
481 /*
482 * When free pages are below this point, additional steps are taken
483 * when reading the number of free pages to avoid per-cpu counter
484 * drift allowing watermarks to be breached
485 */
486 unsigned long percpu_drift_mark;
487
488 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
489 /* pfn where compaction free scanner should start */
490 unsigned long compact_cached_free_pfn;
491 /* pfn where async and sync compaction migration scanner should start */
492 unsigned long compact_cached_migrate_pfn[2];
493 #endif
494
495 #ifdef CONFIG_COMPACTION
496 /*
497 * On compaction failure, 1<<compact_defer_shift compactions
498 * are skipped before trying again. The number attempted since
499 * last failure is tracked with compact_considered.
500 */
501 unsigned int compact_considered;
502 unsigned int compact_defer_shift;
503 int compact_order_failed;
504 #endif
505
506 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
507 /* Set to true when the PG_migrate_skip bits should be cleared */
508 bool compact_blockskip_flush;
509 #endif
510
511 bool contiguous;
512
513 ZONE_PADDING(_pad3_)
514 /* Zone statistics */
515 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
516 } ____cacheline_internodealigned_in_smp;
517
518 enum pgdat_flags {
519 PGDAT_CONGESTED, /* pgdat has many dirty pages backed by
520 * a congested BDI
521 */
522 PGDAT_DIRTY, /* reclaim scanning has recently found
523 * many dirty file pages at the tail
524 * of the LRU.
525 */
526 PGDAT_WRITEBACK, /* reclaim scanning has recently found
527 * many pages under writeback
528 */
529 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
530 };
531
532 static inline unsigned long zone_end_pfn(const struct zone *zone)
533 {
534 return zone->zone_start_pfn + zone->spanned_pages;
535 }
536
537 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
538 {
539 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
540 }
541
542 static inline bool zone_is_initialized(struct zone *zone)
543 {
544 return !!zone->wait_table;
545 }
546
547 static inline bool zone_is_empty(struct zone *zone)
548 {
549 return zone->spanned_pages == 0;
550 }
551
552 /*
553 * The "priority" of VM scanning is how much of the queues we will scan in one
554 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
555 * queues ("queue_length >> 12") during an aging round.
556 */
557 #define DEF_PRIORITY 12
558
559 /* Maximum number of zones on a zonelist */
560 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
561
562 enum {
563 ZONELIST_FALLBACK, /* zonelist with fallback */
564 #ifdef CONFIG_NUMA
565 /*
566 * The NUMA zonelists are doubled because we need zonelists that
567 * restrict the allocations to a single node for __GFP_THISNODE.
568 */
569 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
570 #endif
571 MAX_ZONELISTS
572 };
573
574 /*
575 * This struct contains information about a zone in a zonelist. It is stored
576 * here to avoid dereferences into large structures and lookups of tables
577 */
578 struct zoneref {
579 struct zone *zone; /* Pointer to actual zone */
580 int zone_idx; /* zone_idx(zoneref->zone) */
581 };
582
583 /*
584 * One allocation request operates on a zonelist. A zonelist
585 * is a list of zones, the first one is the 'goal' of the
586 * allocation, the other zones are fallback zones, in decreasing
587 * priority.
588 *
589 * To speed the reading of the zonelist, the zonerefs contain the zone index
590 * of the entry being read. Helper functions to access information given
591 * a struct zoneref are
592 *
593 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
594 * zonelist_zone_idx() - Return the index of the zone for an entry
595 * zonelist_node_idx() - Return the index of the node for an entry
596 */
597 struct zonelist {
598 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
599 };
600
601 #ifndef CONFIG_DISCONTIGMEM
602 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
603 extern struct page *mem_map;
604 #endif
605
606 /*
607 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
608 * (mostly NUMA machines?) to denote a higher-level memory zone than the
609 * zone denotes.
610 *
611 * On NUMA machines, each NUMA node would have a pg_data_t to describe
612 * it's memory layout.
613 *
614 * Memory statistics and page replacement data structures are maintained on a
615 * per-zone basis.
616 */
617 struct bootmem_data;
618 typedef struct pglist_data {
619 struct zone node_zones[MAX_NR_ZONES];
620 struct zonelist node_zonelists[MAX_ZONELISTS];
621 int nr_zones;
622 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
623 struct page *node_mem_map;
624 #ifdef CONFIG_PAGE_EXTENSION
625 struct page_ext *node_page_ext;
626 #endif
627 #endif
628 #ifndef CONFIG_NO_BOOTMEM
629 struct bootmem_data *bdata;
630 #endif
631 #ifdef CONFIG_MEMORY_HOTPLUG
632 /*
633 * Must be held any time you expect node_start_pfn, node_present_pages
634 * or node_spanned_pages stay constant. Holding this will also
635 * guarantee that any pfn_valid() stays that way.
636 *
637 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
638 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
639 *
640 * Nests above zone->lock and zone->span_seqlock
641 */
642 spinlock_t node_size_lock;
643 #endif
644 unsigned long node_start_pfn;
645 unsigned long node_present_pages; /* total number of physical pages */
646 unsigned long node_spanned_pages; /* total size of physical page
647 range, including holes */
648 int node_id;
649 wait_queue_head_t kswapd_wait;
650 wait_queue_head_t pfmemalloc_wait;
651 struct task_struct *kswapd; /* Protected by
652 mem_hotplug_begin/end() */
653 int kswapd_order;
654 enum zone_type kswapd_classzone_idx;
655
656 #ifdef CONFIG_COMPACTION
657 int kcompactd_max_order;
658 enum zone_type kcompactd_classzone_idx;
659 wait_queue_head_t kcompactd_wait;
660 struct task_struct *kcompactd;
661 #endif
662 #ifdef CONFIG_NUMA_BALANCING
663 /* Lock serializing the migrate rate limiting window */
664 spinlock_t numabalancing_migrate_lock;
665
666 /* Rate limiting time interval */
667 unsigned long numabalancing_migrate_next_window;
668
669 /* Number of pages migrated during the rate limiting time interval */
670 unsigned long numabalancing_migrate_nr_pages;
671 #endif
672 /*
673 * This is a per-node reserve of pages that are not available
674 * to userspace allocations.
675 */
676 unsigned long totalreserve_pages;
677
678 #ifdef CONFIG_NUMA
679 /*
680 * zone reclaim becomes active if more unmapped pages exist.
681 */
682 unsigned long min_unmapped_pages;
683 unsigned long min_slab_pages;
684 #endif /* CONFIG_NUMA */
685
686 /* Write-intensive fields used by page reclaim */
687 ZONE_PADDING(_pad1_)
688 spinlock_t lru_lock;
689
690 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
691 /*
692 * If memory initialisation on large machines is deferred then this
693 * is the first PFN that needs to be initialised.
694 */
695 unsigned long first_deferred_pfn;
696 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
697
698 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
699 spinlock_t split_queue_lock;
700 struct list_head split_queue;
701 unsigned long split_queue_len;
702 #endif
703
704 /* Fields commonly accessed by the page reclaim scanner */
705 struct lruvec lruvec;
706
707 /*
708 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
709 * this node's LRU. Maintained by the pageout code.
710 */
711 unsigned int inactive_ratio;
712
713 unsigned long flags;
714
715 ZONE_PADDING(_pad2_)
716
717 /* Per-node vmstats */
718 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
719 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
720 } pg_data_t;
721
722 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
723 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
724 #ifdef CONFIG_FLAT_NODE_MEM_MAP
725 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
726 #else
727 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
728 #endif
729 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
730
731 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
732 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
733 static inline spinlock_t *zone_lru_lock(struct zone *zone)
734 {
735 return &zone->zone_pgdat->lru_lock;
736 }
737
738 static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
739 {
740 return &pgdat->lruvec;
741 }
742
743 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
744 {
745 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
746 }
747
748 static inline bool pgdat_is_empty(pg_data_t *pgdat)
749 {
750 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
751 }
752
753 static inline int zone_id(const struct zone *zone)
754 {
755 struct pglist_data *pgdat = zone->zone_pgdat;
756
757 return zone - pgdat->node_zones;
758 }
759
760 #ifdef CONFIG_ZONE_DEVICE
761 static inline bool is_dev_zone(const struct zone *zone)
762 {
763 return zone_id(zone) == ZONE_DEVICE;
764 }
765 #else
766 static inline bool is_dev_zone(const struct zone *zone)
767 {
768 return false;
769 }
770 #endif
771
772 #include <linux/memory_hotplug.h>
773
774 extern struct mutex zonelists_mutex;
775 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
776 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
777 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
778 int classzone_idx, unsigned int alloc_flags,
779 long free_pages);
780 bool zone_watermark_ok(struct zone *z, unsigned int order,
781 unsigned long mark, int classzone_idx,
782 unsigned int alloc_flags);
783 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
784 unsigned long mark, int classzone_idx);
785 enum memmap_context {
786 MEMMAP_EARLY,
787 MEMMAP_HOTPLUG,
788 };
789 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
790 unsigned long size);
791
792 extern void lruvec_init(struct lruvec *lruvec);
793
794 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
795 {
796 #ifdef CONFIG_MEMCG
797 return lruvec->pgdat;
798 #else
799 return container_of(lruvec, struct pglist_data, lruvec);
800 #endif
801 }
802
803 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru);
804
805 #ifdef CONFIG_HAVE_MEMORY_PRESENT
806 void memory_present(int nid, unsigned long start, unsigned long end);
807 #else
808 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
809 #endif
810
811 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
812 int local_memory_node(int node_id);
813 #else
814 static inline int local_memory_node(int node_id) { return node_id; };
815 #endif
816
817 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
818 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
819 #endif
820
821 /*
822 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
823 */
824 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
825
826 static inline int populated_zone(struct zone *zone)
827 {
828 return (!!zone->present_pages);
829 }
830
831 extern int movable_zone;
832
833 #ifdef CONFIG_HIGHMEM
834 static inline int zone_movable_is_highmem(void)
835 {
836 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
837 return movable_zone == ZONE_HIGHMEM;
838 #else
839 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
840 #endif
841 }
842 #endif
843
844 static inline int is_highmem_idx(enum zone_type idx)
845 {
846 #ifdef CONFIG_HIGHMEM
847 return (idx == ZONE_HIGHMEM ||
848 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
849 #else
850 return 0;
851 #endif
852 }
853
854 /**
855 * is_highmem - helper function to quickly check if a struct zone is a
856 * highmem zone or not. This is an attempt to keep references
857 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
858 * @zone - pointer to struct zone variable
859 */
860 static inline int is_highmem(struct zone *zone)
861 {
862 #ifdef CONFIG_HIGHMEM
863 return is_highmem_idx(zone_idx(zone));
864 #else
865 return 0;
866 #endif
867 }
868
869 /* These two functions are used to setup the per zone pages min values */
870 struct ctl_table;
871 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
872 void __user *, size_t *, loff_t *);
873 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
874 void __user *, size_t *, loff_t *);
875 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
876 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
877 void __user *, size_t *, loff_t *);
878 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
879 void __user *, size_t *, loff_t *);
880 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
881 void __user *, size_t *, loff_t *);
882 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
883 void __user *, size_t *, loff_t *);
884
885 extern int numa_zonelist_order_handler(struct ctl_table *, int,
886 void __user *, size_t *, loff_t *);
887 extern char numa_zonelist_order[];
888 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
889
890 #ifndef CONFIG_NEED_MULTIPLE_NODES
891
892 extern struct pglist_data contig_page_data;
893 #define NODE_DATA(nid) (&contig_page_data)
894 #define NODE_MEM_MAP(nid) mem_map
895
896 #else /* CONFIG_NEED_MULTIPLE_NODES */
897
898 #include <asm/mmzone.h>
899
900 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
901
902 extern struct pglist_data *first_online_pgdat(void);
903 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
904 extern struct zone *next_zone(struct zone *zone);
905
906 /**
907 * for_each_online_pgdat - helper macro to iterate over all online nodes
908 * @pgdat - pointer to a pg_data_t variable
909 */
910 #define for_each_online_pgdat(pgdat) \
911 for (pgdat = first_online_pgdat(); \
912 pgdat; \
913 pgdat = next_online_pgdat(pgdat))
914 /**
915 * for_each_zone - helper macro to iterate over all memory zones
916 * @zone - pointer to struct zone variable
917 *
918 * The user only needs to declare the zone variable, for_each_zone
919 * fills it in.
920 */
921 #define for_each_zone(zone) \
922 for (zone = (first_online_pgdat())->node_zones; \
923 zone; \
924 zone = next_zone(zone))
925
926 #define for_each_populated_zone(zone) \
927 for (zone = (first_online_pgdat())->node_zones; \
928 zone; \
929 zone = next_zone(zone)) \
930 if (!populated_zone(zone)) \
931 ; /* do nothing */ \
932 else
933
934 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
935 {
936 return zoneref->zone;
937 }
938
939 static inline int zonelist_zone_idx(struct zoneref *zoneref)
940 {
941 return zoneref->zone_idx;
942 }
943
944 static inline int zonelist_node_idx(struct zoneref *zoneref)
945 {
946 #ifdef CONFIG_NUMA
947 /* zone_to_nid not available in this context */
948 return zoneref->zone->node;
949 #else
950 return 0;
951 #endif /* CONFIG_NUMA */
952 }
953
954 struct zoneref *__next_zones_zonelist(struct zoneref *z,
955 enum zone_type highest_zoneidx,
956 nodemask_t *nodes);
957
958 /**
959 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
960 * @z - The cursor used as a starting point for the search
961 * @highest_zoneidx - The zone index of the highest zone to return
962 * @nodes - An optional nodemask to filter the zonelist with
963 *
964 * This function returns the next zone at or below a given zone index that is
965 * within the allowed nodemask using a cursor as the starting point for the
966 * search. The zoneref returned is a cursor that represents the current zone
967 * being examined. It should be advanced by one before calling
968 * next_zones_zonelist again.
969 */
970 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
971 enum zone_type highest_zoneidx,
972 nodemask_t *nodes)
973 {
974 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
975 return z;
976 return __next_zones_zonelist(z, highest_zoneidx, nodes);
977 }
978
979 /**
980 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
981 * @zonelist - The zonelist to search for a suitable zone
982 * @highest_zoneidx - The zone index of the highest zone to return
983 * @nodes - An optional nodemask to filter the zonelist with
984 * @zone - The first suitable zone found is returned via this parameter
985 *
986 * This function returns the first zone at or below a given zone index that is
987 * within the allowed nodemask. The zoneref returned is a cursor that can be
988 * used to iterate the zonelist with next_zones_zonelist by advancing it by
989 * one before calling.
990 */
991 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
992 enum zone_type highest_zoneidx,
993 nodemask_t *nodes)
994 {
995 return next_zones_zonelist(zonelist->_zonerefs,
996 highest_zoneidx, nodes);
997 }
998
999 /**
1000 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1001 * @zone - The current zone in the iterator
1002 * @z - The current pointer within zonelist->zones being iterated
1003 * @zlist - The zonelist being iterated
1004 * @highidx - The zone index of the highest zone to return
1005 * @nodemask - Nodemask allowed by the allocator
1006 *
1007 * This iterator iterates though all zones at or below a given zone index and
1008 * within a given nodemask
1009 */
1010 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1011 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1012 zone; \
1013 z = next_zones_zonelist(++z, highidx, nodemask), \
1014 zone = zonelist_zone(z))
1015
1016 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1017 for (zone = z->zone; \
1018 zone; \
1019 z = next_zones_zonelist(++z, highidx, nodemask), \
1020 zone = zonelist_zone(z))
1021
1022
1023 /**
1024 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1025 * @zone - The current zone in the iterator
1026 * @z - The current pointer within zonelist->zones being iterated
1027 * @zlist - The zonelist being iterated
1028 * @highidx - The zone index of the highest zone to return
1029 *
1030 * This iterator iterates though all zones at or below a given zone index.
1031 */
1032 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1033 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1034
1035 #ifdef CONFIG_SPARSEMEM
1036 #include <asm/sparsemem.h>
1037 #endif
1038
1039 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1040 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1041 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1042 {
1043 return 0;
1044 }
1045 #endif
1046
1047 #ifdef CONFIG_FLATMEM
1048 #define pfn_to_nid(pfn) (0)
1049 #endif
1050
1051 #ifdef CONFIG_SPARSEMEM
1052
1053 /*
1054 * SECTION_SHIFT #bits space required to store a section #
1055 *
1056 * PA_SECTION_SHIFT physical address to/from section number
1057 * PFN_SECTION_SHIFT pfn to/from section number
1058 */
1059 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1060 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1061
1062 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1063
1064 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1065 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1066
1067 #define SECTION_BLOCKFLAGS_BITS \
1068 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1069
1070 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1071 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1072 #endif
1073
1074 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1075 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1076
1077 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1078 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1079
1080 struct page;
1081 struct page_ext;
1082 struct mem_section {
1083 /*
1084 * This is, logically, a pointer to an array of struct
1085 * pages. However, it is stored with some other magic.
1086 * (see sparse.c::sparse_init_one_section())
1087 *
1088 * Additionally during early boot we encode node id of
1089 * the location of the section here to guide allocation.
1090 * (see sparse.c::memory_present())
1091 *
1092 * Making it a UL at least makes someone do a cast
1093 * before using it wrong.
1094 */
1095 unsigned long section_mem_map;
1096
1097 /* See declaration of similar field in struct zone */
1098 unsigned long *pageblock_flags;
1099 #ifdef CONFIG_PAGE_EXTENSION
1100 /*
1101 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1102 * section. (see page_ext.h about this.)
1103 */
1104 struct page_ext *page_ext;
1105 unsigned long pad;
1106 #endif
1107 /*
1108 * WARNING: mem_section must be a power-of-2 in size for the
1109 * calculation and use of SECTION_ROOT_MASK to make sense.
1110 */
1111 };
1112
1113 #ifdef CONFIG_SPARSEMEM_EXTREME
1114 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1115 #else
1116 #define SECTIONS_PER_ROOT 1
1117 #endif
1118
1119 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1120 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1121 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1122
1123 #ifdef CONFIG_SPARSEMEM_EXTREME
1124 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1125 #else
1126 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1127 #endif
1128
1129 static inline struct mem_section *__nr_to_section(unsigned long nr)
1130 {
1131 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1132 return NULL;
1133 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1134 }
1135 extern int __section_nr(struct mem_section* ms);
1136 extern unsigned long usemap_size(void);
1137
1138 /*
1139 * We use the lower bits of the mem_map pointer to store
1140 * a little bit of information. There should be at least
1141 * 3 bits here due to 32-bit alignment.
1142 */
1143 #define SECTION_MARKED_PRESENT (1UL<<0)
1144 #define SECTION_HAS_MEM_MAP (1UL<<1)
1145 #define SECTION_MAP_LAST_BIT (1UL<<2)
1146 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1147 #define SECTION_NID_SHIFT 2
1148
1149 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1150 {
1151 unsigned long map = section->section_mem_map;
1152 map &= SECTION_MAP_MASK;
1153 return (struct page *)map;
1154 }
1155
1156 static inline int present_section(struct mem_section *section)
1157 {
1158 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1159 }
1160
1161 static inline int present_section_nr(unsigned long nr)
1162 {
1163 return present_section(__nr_to_section(nr));
1164 }
1165
1166 static inline int valid_section(struct mem_section *section)
1167 {
1168 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1169 }
1170
1171 static inline int valid_section_nr(unsigned long nr)
1172 {
1173 return valid_section(__nr_to_section(nr));
1174 }
1175
1176 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1177 {
1178 return __nr_to_section(pfn_to_section_nr(pfn));
1179 }
1180
1181 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1182 static inline int pfn_valid(unsigned long pfn)
1183 {
1184 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1185 return 0;
1186 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1187 }
1188 #endif
1189
1190 static inline int pfn_present(unsigned long pfn)
1191 {
1192 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1193 return 0;
1194 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1195 }
1196
1197 /*
1198 * These are _only_ used during initialisation, therefore they
1199 * can use __initdata ... They could have names to indicate
1200 * this restriction.
1201 */
1202 #ifdef CONFIG_NUMA
1203 #define pfn_to_nid(pfn) \
1204 ({ \
1205 unsigned long __pfn_to_nid_pfn = (pfn); \
1206 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1207 })
1208 #else
1209 #define pfn_to_nid(pfn) (0)
1210 #endif
1211
1212 #define early_pfn_valid(pfn) pfn_valid(pfn)
1213 void sparse_init(void);
1214 #else
1215 #define sparse_init() do {} while (0)
1216 #define sparse_index_init(_sec, _nid) do {} while (0)
1217 #endif /* CONFIG_SPARSEMEM */
1218
1219 /*
1220 * During memory init memblocks map pfns to nids. The search is expensive and
1221 * this caches recent lookups. The implementation of __early_pfn_to_nid
1222 * may treat start/end as pfns or sections.
1223 */
1224 struct mminit_pfnnid_cache {
1225 unsigned long last_start;
1226 unsigned long last_end;
1227 int last_nid;
1228 };
1229
1230 #ifndef early_pfn_valid
1231 #define early_pfn_valid(pfn) (1)
1232 #endif
1233
1234 void memory_present(int nid, unsigned long start, unsigned long end);
1235 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1236
1237 /*
1238 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1239 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1240 * pfn_valid_within() should be used in this case; we optimise this away
1241 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1242 */
1243 #ifdef CONFIG_HOLES_IN_ZONE
1244 #define pfn_valid_within(pfn) pfn_valid(pfn)
1245 #else
1246 #define pfn_valid_within(pfn) (1)
1247 #endif
1248
1249 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1250 /*
1251 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1252 * associated with it or not. In FLATMEM, it is expected that holes always
1253 * have valid memmap as long as there is valid PFNs either side of the hole.
1254 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1255 * entire section.
1256 *
1257 * However, an ARM, and maybe other embedded architectures in the future
1258 * free memmap backing holes to save memory on the assumption the memmap is
1259 * never used. The page_zone linkages are then broken even though pfn_valid()
1260 * returns true. A walker of the full memmap must then do this additional
1261 * check to ensure the memmap they are looking at is sane by making sure
1262 * the zone and PFN linkages are still valid. This is expensive, but walkers
1263 * of the full memmap are extremely rare.
1264 */
1265 bool memmap_valid_within(unsigned long pfn,
1266 struct page *page, struct zone *zone);
1267 #else
1268 static inline bool memmap_valid_within(unsigned long pfn,
1269 struct page *page, struct zone *zone)
1270 {
1271 return true;
1272 }
1273 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1274
1275 #endif /* !__GENERATING_BOUNDS.H */
1276 #endif /* !__ASSEMBLY__ */
1277 #endif /* _LINUX_MMZONE_H */
This page took 0.090758 seconds and 5 git commands to generate.