mm, vmscan: move lru_lock to the node
[deliverable/linux.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30 /*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coalesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37
38 enum {
39 MIGRATE_UNMOVABLE,
40 MIGRATE_MOVABLE,
41 MIGRATE_RECLAIMABLE,
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59 #endif
60 #ifdef CONFIG_MEMORY_ISOLATION
61 MIGRATE_ISOLATE, /* can't allocate from here */
62 #endif
63 MIGRATE_TYPES
64 };
65
66 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
67 extern char * const migratetype_names[MIGRATE_TYPES];
68
69 #ifdef CONFIG_CMA
70 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
71 #else
72 # define is_migrate_cma(migratetype) false
73 #endif
74
75 #define for_each_migratetype_order(order, type) \
76 for (order = 0; order < MAX_ORDER; order++) \
77 for (type = 0; type < MIGRATE_TYPES; type++)
78
79 extern int page_group_by_mobility_disabled;
80
81 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
82 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
83
84 #define get_pageblock_migratetype(page) \
85 get_pfnblock_flags_mask(page, page_to_pfn(page), \
86 PB_migrate_end, MIGRATETYPE_MASK)
87
88 struct free_area {
89 struct list_head free_list[MIGRATE_TYPES];
90 unsigned long nr_free;
91 };
92
93 struct pglist_data;
94
95 /*
96 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
97 * So add a wild amount of padding here to ensure that they fall into separate
98 * cachelines. There are very few zone structures in the machine, so space
99 * consumption is not a concern here.
100 */
101 #if defined(CONFIG_SMP)
102 struct zone_padding {
103 char x[0];
104 } ____cacheline_internodealigned_in_smp;
105 #define ZONE_PADDING(name) struct zone_padding name;
106 #else
107 #define ZONE_PADDING(name)
108 #endif
109
110 enum zone_stat_item {
111 /* First 128 byte cacheline (assuming 64 bit words) */
112 NR_FREE_PAGES,
113 NR_ALLOC_BATCH,
114 NR_LRU_BASE,
115 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
116 NR_ACTIVE_ANON, /* " " " " " */
117 NR_INACTIVE_FILE, /* " " " " " */
118 NR_ACTIVE_FILE, /* " " " " " */
119 NR_UNEVICTABLE, /* " " " " " */
120 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
121 NR_ANON_PAGES, /* Mapped anonymous pages */
122 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
123 only modified from process context */
124 NR_FILE_PAGES,
125 NR_FILE_DIRTY,
126 NR_WRITEBACK,
127 NR_SLAB_RECLAIMABLE,
128 NR_SLAB_UNRECLAIMABLE,
129 NR_PAGETABLE, /* used for pagetables */
130 NR_KERNEL_STACK,
131 /* Second 128 byte cacheline */
132 NR_UNSTABLE_NFS, /* NFS unstable pages */
133 NR_BOUNCE,
134 NR_VMSCAN_WRITE,
135 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
136 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
137 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
138 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
139 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
140 NR_DIRTIED, /* page dirtyings since bootup */
141 NR_WRITTEN, /* page writings since bootup */
142 NR_PAGES_SCANNED, /* pages scanned since last reclaim */
143 #if IS_ENABLED(CONFIG_ZSMALLOC)
144 NR_ZSPAGES, /* allocated in zsmalloc */
145 #endif
146 #ifdef CONFIG_NUMA
147 NUMA_HIT, /* allocated in intended node */
148 NUMA_MISS, /* allocated in non intended node */
149 NUMA_FOREIGN, /* was intended here, hit elsewhere */
150 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
151 NUMA_LOCAL, /* allocation from local node */
152 NUMA_OTHER, /* allocation from other node */
153 #endif
154 WORKINGSET_REFAULT,
155 WORKINGSET_ACTIVATE,
156 WORKINGSET_NODERECLAIM,
157 NR_ANON_THPS,
158 NR_SHMEM_THPS,
159 NR_SHMEM_PMDMAPPED,
160 NR_FREE_CMA_PAGES,
161 NR_VM_ZONE_STAT_ITEMS };
162
163 enum node_stat_item {
164 NR_VM_NODE_STAT_ITEMS
165 };
166
167 /*
168 * We do arithmetic on the LRU lists in various places in the code,
169 * so it is important to keep the active lists LRU_ACTIVE higher in
170 * the array than the corresponding inactive lists, and to keep
171 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
172 *
173 * This has to be kept in sync with the statistics in zone_stat_item
174 * above and the descriptions in vmstat_text in mm/vmstat.c
175 */
176 #define LRU_BASE 0
177 #define LRU_ACTIVE 1
178 #define LRU_FILE 2
179
180 enum lru_list {
181 LRU_INACTIVE_ANON = LRU_BASE,
182 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
183 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
184 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
185 LRU_UNEVICTABLE,
186 NR_LRU_LISTS
187 };
188
189 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
190
191 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
192
193 static inline int is_file_lru(enum lru_list lru)
194 {
195 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
196 }
197
198 static inline int is_active_lru(enum lru_list lru)
199 {
200 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
201 }
202
203 struct zone_reclaim_stat {
204 /*
205 * The pageout code in vmscan.c keeps track of how many of the
206 * mem/swap backed and file backed pages are referenced.
207 * The higher the rotated/scanned ratio, the more valuable
208 * that cache is.
209 *
210 * The anon LRU stats live in [0], file LRU stats in [1]
211 */
212 unsigned long recent_rotated[2];
213 unsigned long recent_scanned[2];
214 };
215
216 struct lruvec {
217 struct list_head lists[NR_LRU_LISTS];
218 struct zone_reclaim_stat reclaim_stat;
219 /* Evictions & activations on the inactive file list */
220 atomic_long_t inactive_age;
221 #ifdef CONFIG_MEMCG
222 struct zone *zone;
223 #endif
224 };
225
226 /* Mask used at gathering information at once (see memcontrol.c) */
227 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
228 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
229 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
230
231 /* Isolate clean file */
232 #define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
233 /* Isolate unmapped file */
234 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
235 /* Isolate for asynchronous migration */
236 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
237 /* Isolate unevictable pages */
238 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
239
240 /* LRU Isolation modes. */
241 typedef unsigned __bitwise__ isolate_mode_t;
242
243 enum zone_watermarks {
244 WMARK_MIN,
245 WMARK_LOW,
246 WMARK_HIGH,
247 NR_WMARK
248 };
249
250 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
251 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
252 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
253
254 struct per_cpu_pages {
255 int count; /* number of pages in the list */
256 int high; /* high watermark, emptying needed */
257 int batch; /* chunk size for buddy add/remove */
258
259 /* Lists of pages, one per migrate type stored on the pcp-lists */
260 struct list_head lists[MIGRATE_PCPTYPES];
261 };
262
263 struct per_cpu_pageset {
264 struct per_cpu_pages pcp;
265 #ifdef CONFIG_NUMA
266 s8 expire;
267 #endif
268 #ifdef CONFIG_SMP
269 s8 stat_threshold;
270 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
271 #endif
272 };
273
274 struct per_cpu_nodestat {
275 s8 stat_threshold;
276 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
277 };
278
279 #endif /* !__GENERATING_BOUNDS.H */
280
281 enum zone_type {
282 #ifdef CONFIG_ZONE_DMA
283 /*
284 * ZONE_DMA is used when there are devices that are not able
285 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
286 * carve out the portion of memory that is needed for these devices.
287 * The range is arch specific.
288 *
289 * Some examples
290 *
291 * Architecture Limit
292 * ---------------------------
293 * parisc, ia64, sparc <4G
294 * s390 <2G
295 * arm Various
296 * alpha Unlimited or 0-16MB.
297 *
298 * i386, x86_64 and multiple other arches
299 * <16M.
300 */
301 ZONE_DMA,
302 #endif
303 #ifdef CONFIG_ZONE_DMA32
304 /*
305 * x86_64 needs two ZONE_DMAs because it supports devices that are
306 * only able to do DMA to the lower 16M but also 32 bit devices that
307 * can only do DMA areas below 4G.
308 */
309 ZONE_DMA32,
310 #endif
311 /*
312 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
313 * performed on pages in ZONE_NORMAL if the DMA devices support
314 * transfers to all addressable memory.
315 */
316 ZONE_NORMAL,
317 #ifdef CONFIG_HIGHMEM
318 /*
319 * A memory area that is only addressable by the kernel through
320 * mapping portions into its own address space. This is for example
321 * used by i386 to allow the kernel to address the memory beyond
322 * 900MB. The kernel will set up special mappings (page
323 * table entries on i386) for each page that the kernel needs to
324 * access.
325 */
326 ZONE_HIGHMEM,
327 #endif
328 ZONE_MOVABLE,
329 #ifdef CONFIG_ZONE_DEVICE
330 ZONE_DEVICE,
331 #endif
332 __MAX_NR_ZONES
333
334 };
335
336 #ifndef __GENERATING_BOUNDS_H
337
338 struct zone {
339 /* Read-mostly fields */
340
341 /* zone watermarks, access with *_wmark_pages(zone) macros */
342 unsigned long watermark[NR_WMARK];
343
344 unsigned long nr_reserved_highatomic;
345
346 /*
347 * We don't know if the memory that we're going to allocate will be
348 * freeable or/and it will be released eventually, so to avoid totally
349 * wasting several GB of ram we must reserve some of the lower zone
350 * memory (otherwise we risk to run OOM on the lower zones despite
351 * there being tons of freeable ram on the higher zones). This array is
352 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
353 * changes.
354 */
355 long lowmem_reserve[MAX_NR_ZONES];
356
357 #ifdef CONFIG_NUMA
358 int node;
359 #endif
360
361 /*
362 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
363 * this zone's LRU. Maintained by the pageout code.
364 */
365 unsigned int inactive_ratio;
366
367 struct pglist_data *zone_pgdat;
368 struct per_cpu_pageset __percpu *pageset;
369
370 /*
371 * This is a per-zone reserve of pages that are not available
372 * to userspace allocations.
373 */
374 unsigned long totalreserve_pages;
375
376 #ifndef CONFIG_SPARSEMEM
377 /*
378 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
379 * In SPARSEMEM, this map is stored in struct mem_section
380 */
381 unsigned long *pageblock_flags;
382 #endif /* CONFIG_SPARSEMEM */
383
384 #ifdef CONFIG_NUMA
385 /*
386 * zone reclaim becomes active if more unmapped pages exist.
387 */
388 unsigned long min_unmapped_pages;
389 unsigned long min_slab_pages;
390 #endif /* CONFIG_NUMA */
391
392 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
393 unsigned long zone_start_pfn;
394
395 /*
396 * spanned_pages is the total pages spanned by the zone, including
397 * holes, which is calculated as:
398 * spanned_pages = zone_end_pfn - zone_start_pfn;
399 *
400 * present_pages is physical pages existing within the zone, which
401 * is calculated as:
402 * present_pages = spanned_pages - absent_pages(pages in holes);
403 *
404 * managed_pages is present pages managed by the buddy system, which
405 * is calculated as (reserved_pages includes pages allocated by the
406 * bootmem allocator):
407 * managed_pages = present_pages - reserved_pages;
408 *
409 * So present_pages may be used by memory hotplug or memory power
410 * management logic to figure out unmanaged pages by checking
411 * (present_pages - managed_pages). And managed_pages should be used
412 * by page allocator and vm scanner to calculate all kinds of watermarks
413 * and thresholds.
414 *
415 * Locking rules:
416 *
417 * zone_start_pfn and spanned_pages are protected by span_seqlock.
418 * It is a seqlock because it has to be read outside of zone->lock,
419 * and it is done in the main allocator path. But, it is written
420 * quite infrequently.
421 *
422 * The span_seq lock is declared along with zone->lock because it is
423 * frequently read in proximity to zone->lock. It's good to
424 * give them a chance of being in the same cacheline.
425 *
426 * Write access to present_pages at runtime should be protected by
427 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
428 * present_pages should get_online_mems() to get a stable value.
429 *
430 * Read access to managed_pages should be safe because it's unsigned
431 * long. Write access to zone->managed_pages and totalram_pages are
432 * protected by managed_page_count_lock at runtime. Idealy only
433 * adjust_managed_page_count() should be used instead of directly
434 * touching zone->managed_pages and totalram_pages.
435 */
436 unsigned long managed_pages;
437 unsigned long spanned_pages;
438 unsigned long present_pages;
439
440 const char *name;
441
442 #ifdef CONFIG_MEMORY_ISOLATION
443 /*
444 * Number of isolated pageblock. It is used to solve incorrect
445 * freepage counting problem due to racy retrieving migratetype
446 * of pageblock. Protected by zone->lock.
447 */
448 unsigned long nr_isolate_pageblock;
449 #endif
450
451 #ifdef CONFIG_MEMORY_HOTPLUG
452 /* see spanned/present_pages for more description */
453 seqlock_t span_seqlock;
454 #endif
455
456 /*
457 * wait_table -- the array holding the hash table
458 * wait_table_hash_nr_entries -- the size of the hash table array
459 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
460 *
461 * The purpose of all these is to keep track of the people
462 * waiting for a page to become available and make them
463 * runnable again when possible. The trouble is that this
464 * consumes a lot of space, especially when so few things
465 * wait on pages at a given time. So instead of using
466 * per-page waitqueues, we use a waitqueue hash table.
467 *
468 * The bucket discipline is to sleep on the same queue when
469 * colliding and wake all in that wait queue when removing.
470 * When something wakes, it must check to be sure its page is
471 * truly available, a la thundering herd. The cost of a
472 * collision is great, but given the expected load of the
473 * table, they should be so rare as to be outweighed by the
474 * benefits from the saved space.
475 *
476 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
477 * primary users of these fields, and in mm/page_alloc.c
478 * free_area_init_core() performs the initialization of them.
479 */
480 wait_queue_head_t *wait_table;
481 unsigned long wait_table_hash_nr_entries;
482 unsigned long wait_table_bits;
483
484 ZONE_PADDING(_pad1_)
485 /* free areas of different sizes */
486 struct free_area free_area[MAX_ORDER];
487
488 /* zone flags, see below */
489 unsigned long flags;
490
491 /* Write-intensive fields used from the page allocator */
492 spinlock_t lock;
493
494 ZONE_PADDING(_pad2_)
495
496 /* Write-intensive fields used by page reclaim */
497
498 /* Fields commonly accessed by the page reclaim scanner */
499 struct lruvec lruvec;
500
501 /*
502 * When free pages are below this point, additional steps are taken
503 * when reading the number of free pages to avoid per-cpu counter
504 * drift allowing watermarks to be breached
505 */
506 unsigned long percpu_drift_mark;
507
508 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
509 /* pfn where compaction free scanner should start */
510 unsigned long compact_cached_free_pfn;
511 /* pfn where async and sync compaction migration scanner should start */
512 unsigned long compact_cached_migrate_pfn[2];
513 #endif
514
515 #ifdef CONFIG_COMPACTION
516 /*
517 * On compaction failure, 1<<compact_defer_shift compactions
518 * are skipped before trying again. The number attempted since
519 * last failure is tracked with compact_considered.
520 */
521 unsigned int compact_considered;
522 unsigned int compact_defer_shift;
523 int compact_order_failed;
524 #endif
525
526 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
527 /* Set to true when the PG_migrate_skip bits should be cleared */
528 bool compact_blockskip_flush;
529 #endif
530
531 bool contiguous;
532
533 ZONE_PADDING(_pad3_)
534 /* Zone statistics */
535 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
536 } ____cacheline_internodealigned_in_smp;
537
538 enum zone_flags {
539 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
540 ZONE_CONGESTED, /* zone has many dirty pages backed by
541 * a congested BDI
542 */
543 ZONE_DIRTY, /* reclaim scanning has recently found
544 * many dirty file pages at the tail
545 * of the LRU.
546 */
547 ZONE_WRITEBACK, /* reclaim scanning has recently found
548 * many pages under writeback
549 */
550 ZONE_FAIR_DEPLETED, /* fair zone policy batch depleted */
551 };
552
553 static inline unsigned long zone_end_pfn(const struct zone *zone)
554 {
555 return zone->zone_start_pfn + zone->spanned_pages;
556 }
557
558 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
559 {
560 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
561 }
562
563 static inline bool zone_is_initialized(struct zone *zone)
564 {
565 return !!zone->wait_table;
566 }
567
568 static inline bool zone_is_empty(struct zone *zone)
569 {
570 return zone->spanned_pages == 0;
571 }
572
573 /*
574 * The "priority" of VM scanning is how much of the queues we will scan in one
575 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
576 * queues ("queue_length >> 12") during an aging round.
577 */
578 #define DEF_PRIORITY 12
579
580 /* Maximum number of zones on a zonelist */
581 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
582
583 enum {
584 ZONELIST_FALLBACK, /* zonelist with fallback */
585 #ifdef CONFIG_NUMA
586 /*
587 * The NUMA zonelists are doubled because we need zonelists that
588 * restrict the allocations to a single node for __GFP_THISNODE.
589 */
590 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
591 #endif
592 MAX_ZONELISTS
593 };
594
595 /*
596 * This struct contains information about a zone in a zonelist. It is stored
597 * here to avoid dereferences into large structures and lookups of tables
598 */
599 struct zoneref {
600 struct zone *zone; /* Pointer to actual zone */
601 int zone_idx; /* zone_idx(zoneref->zone) */
602 };
603
604 /*
605 * One allocation request operates on a zonelist. A zonelist
606 * is a list of zones, the first one is the 'goal' of the
607 * allocation, the other zones are fallback zones, in decreasing
608 * priority.
609 *
610 * To speed the reading of the zonelist, the zonerefs contain the zone index
611 * of the entry being read. Helper functions to access information given
612 * a struct zoneref are
613 *
614 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
615 * zonelist_zone_idx() - Return the index of the zone for an entry
616 * zonelist_node_idx() - Return the index of the node for an entry
617 */
618 struct zonelist {
619 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
620 };
621
622 #ifndef CONFIG_DISCONTIGMEM
623 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
624 extern struct page *mem_map;
625 #endif
626
627 /*
628 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
629 * (mostly NUMA machines?) to denote a higher-level memory zone than the
630 * zone denotes.
631 *
632 * On NUMA machines, each NUMA node would have a pg_data_t to describe
633 * it's memory layout.
634 *
635 * Memory statistics and page replacement data structures are maintained on a
636 * per-zone basis.
637 */
638 struct bootmem_data;
639 typedef struct pglist_data {
640 struct zone node_zones[MAX_NR_ZONES];
641 struct zonelist node_zonelists[MAX_ZONELISTS];
642 int nr_zones;
643 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
644 struct page *node_mem_map;
645 #ifdef CONFIG_PAGE_EXTENSION
646 struct page_ext *node_page_ext;
647 #endif
648 #endif
649 #ifndef CONFIG_NO_BOOTMEM
650 struct bootmem_data *bdata;
651 #endif
652 #ifdef CONFIG_MEMORY_HOTPLUG
653 /*
654 * Must be held any time you expect node_start_pfn, node_present_pages
655 * or node_spanned_pages stay constant. Holding this will also
656 * guarantee that any pfn_valid() stays that way.
657 *
658 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
659 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
660 *
661 * Nests above zone->lock and zone->span_seqlock
662 */
663 spinlock_t node_size_lock;
664 #endif
665 unsigned long node_start_pfn;
666 unsigned long node_present_pages; /* total number of physical pages */
667 unsigned long node_spanned_pages; /* total size of physical page
668 range, including holes */
669 int node_id;
670 wait_queue_head_t kswapd_wait;
671 wait_queue_head_t pfmemalloc_wait;
672 struct task_struct *kswapd; /* Protected by
673 mem_hotplug_begin/end() */
674 int kswapd_max_order;
675 enum zone_type classzone_idx;
676 #ifdef CONFIG_COMPACTION
677 int kcompactd_max_order;
678 enum zone_type kcompactd_classzone_idx;
679 wait_queue_head_t kcompactd_wait;
680 struct task_struct *kcompactd;
681 #endif
682 #ifdef CONFIG_NUMA_BALANCING
683 /* Lock serializing the migrate rate limiting window */
684 spinlock_t numabalancing_migrate_lock;
685
686 /* Rate limiting time interval */
687 unsigned long numabalancing_migrate_next_window;
688
689 /* Number of pages migrated during the rate limiting time interval */
690 unsigned long numabalancing_migrate_nr_pages;
691 #endif
692 /* Write-intensive fields used by page reclaim */
693 ZONE_PADDING(_pad1_)
694 spinlock_t lru_lock;
695
696 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
697 /*
698 * If memory initialisation on large machines is deferred then this
699 * is the first PFN that needs to be initialised.
700 */
701 unsigned long first_deferred_pfn;
702 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
703
704 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
705 spinlock_t split_queue_lock;
706 struct list_head split_queue;
707 unsigned long split_queue_len;
708 #endif
709
710 /* Per-node vmstats */
711 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
712 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
713 } pg_data_t;
714
715 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
716 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
717 #ifdef CONFIG_FLAT_NODE_MEM_MAP
718 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
719 #else
720 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
721 #endif
722 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
723
724 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
725 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
726 static inline spinlock_t *zone_lru_lock(struct zone *zone)
727 {
728 return &zone->zone_pgdat->lru_lock;
729 }
730
731 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
732 {
733 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
734 }
735
736 static inline bool pgdat_is_empty(pg_data_t *pgdat)
737 {
738 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
739 }
740
741 static inline int zone_id(const struct zone *zone)
742 {
743 struct pglist_data *pgdat = zone->zone_pgdat;
744
745 return zone - pgdat->node_zones;
746 }
747
748 #ifdef CONFIG_ZONE_DEVICE
749 static inline bool is_dev_zone(const struct zone *zone)
750 {
751 return zone_id(zone) == ZONE_DEVICE;
752 }
753 #else
754 static inline bool is_dev_zone(const struct zone *zone)
755 {
756 return false;
757 }
758 #endif
759
760 #include <linux/memory_hotplug.h>
761
762 extern struct mutex zonelists_mutex;
763 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
764 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
765 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
766 int classzone_idx, unsigned int alloc_flags,
767 long free_pages);
768 bool zone_watermark_ok(struct zone *z, unsigned int order,
769 unsigned long mark, int classzone_idx,
770 unsigned int alloc_flags);
771 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
772 unsigned long mark, int classzone_idx);
773 enum memmap_context {
774 MEMMAP_EARLY,
775 MEMMAP_HOTPLUG,
776 };
777 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
778 unsigned long size);
779
780 extern void lruvec_init(struct lruvec *lruvec);
781
782 static inline struct zone *lruvec_zone(struct lruvec *lruvec)
783 {
784 #ifdef CONFIG_MEMCG
785 return lruvec->zone;
786 #else
787 return container_of(lruvec, struct zone, lruvec);
788 #endif
789 }
790
791 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru);
792
793 #ifdef CONFIG_HAVE_MEMORY_PRESENT
794 void memory_present(int nid, unsigned long start, unsigned long end);
795 #else
796 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
797 #endif
798
799 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
800 int local_memory_node(int node_id);
801 #else
802 static inline int local_memory_node(int node_id) { return node_id; };
803 #endif
804
805 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
806 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
807 #endif
808
809 /*
810 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
811 */
812 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
813
814 static inline int populated_zone(struct zone *zone)
815 {
816 return (!!zone->present_pages);
817 }
818
819 extern int movable_zone;
820
821 #ifdef CONFIG_HIGHMEM
822 static inline int zone_movable_is_highmem(void)
823 {
824 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
825 return movable_zone == ZONE_HIGHMEM;
826 #else
827 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
828 #endif
829 }
830 #endif
831
832 static inline int is_highmem_idx(enum zone_type idx)
833 {
834 #ifdef CONFIG_HIGHMEM
835 return (idx == ZONE_HIGHMEM ||
836 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
837 #else
838 return 0;
839 #endif
840 }
841
842 /**
843 * is_highmem - helper function to quickly check if a struct zone is a
844 * highmem zone or not. This is an attempt to keep references
845 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
846 * @zone - pointer to struct zone variable
847 */
848 static inline int is_highmem(struct zone *zone)
849 {
850 #ifdef CONFIG_HIGHMEM
851 return is_highmem_idx(zone_idx(zone));
852 #else
853 return 0;
854 #endif
855 }
856
857 /* These two functions are used to setup the per zone pages min values */
858 struct ctl_table;
859 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
860 void __user *, size_t *, loff_t *);
861 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
862 void __user *, size_t *, loff_t *);
863 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
864 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
865 void __user *, size_t *, loff_t *);
866 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
867 void __user *, size_t *, loff_t *);
868 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
869 void __user *, size_t *, loff_t *);
870 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
871 void __user *, size_t *, loff_t *);
872
873 extern int numa_zonelist_order_handler(struct ctl_table *, int,
874 void __user *, size_t *, loff_t *);
875 extern char numa_zonelist_order[];
876 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
877
878 #ifndef CONFIG_NEED_MULTIPLE_NODES
879
880 extern struct pglist_data contig_page_data;
881 #define NODE_DATA(nid) (&contig_page_data)
882 #define NODE_MEM_MAP(nid) mem_map
883
884 #else /* CONFIG_NEED_MULTIPLE_NODES */
885
886 #include <asm/mmzone.h>
887
888 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
889
890 extern struct pglist_data *first_online_pgdat(void);
891 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
892 extern struct zone *next_zone(struct zone *zone);
893
894 /**
895 * for_each_online_pgdat - helper macro to iterate over all online nodes
896 * @pgdat - pointer to a pg_data_t variable
897 */
898 #define for_each_online_pgdat(pgdat) \
899 for (pgdat = first_online_pgdat(); \
900 pgdat; \
901 pgdat = next_online_pgdat(pgdat))
902 /**
903 * for_each_zone - helper macro to iterate over all memory zones
904 * @zone - pointer to struct zone variable
905 *
906 * The user only needs to declare the zone variable, for_each_zone
907 * fills it in.
908 */
909 #define for_each_zone(zone) \
910 for (zone = (first_online_pgdat())->node_zones; \
911 zone; \
912 zone = next_zone(zone))
913
914 #define for_each_populated_zone(zone) \
915 for (zone = (first_online_pgdat())->node_zones; \
916 zone; \
917 zone = next_zone(zone)) \
918 if (!populated_zone(zone)) \
919 ; /* do nothing */ \
920 else
921
922 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
923 {
924 return zoneref->zone;
925 }
926
927 static inline int zonelist_zone_idx(struct zoneref *zoneref)
928 {
929 return zoneref->zone_idx;
930 }
931
932 static inline int zonelist_node_idx(struct zoneref *zoneref)
933 {
934 #ifdef CONFIG_NUMA
935 /* zone_to_nid not available in this context */
936 return zoneref->zone->node;
937 #else
938 return 0;
939 #endif /* CONFIG_NUMA */
940 }
941
942 struct zoneref *__next_zones_zonelist(struct zoneref *z,
943 enum zone_type highest_zoneidx,
944 nodemask_t *nodes);
945
946 /**
947 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
948 * @z - The cursor used as a starting point for the search
949 * @highest_zoneidx - The zone index of the highest zone to return
950 * @nodes - An optional nodemask to filter the zonelist with
951 *
952 * This function returns the next zone at or below a given zone index that is
953 * within the allowed nodemask using a cursor as the starting point for the
954 * search. The zoneref returned is a cursor that represents the current zone
955 * being examined. It should be advanced by one before calling
956 * next_zones_zonelist again.
957 */
958 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
959 enum zone_type highest_zoneidx,
960 nodemask_t *nodes)
961 {
962 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
963 return z;
964 return __next_zones_zonelist(z, highest_zoneidx, nodes);
965 }
966
967 /**
968 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
969 * @zonelist - The zonelist to search for a suitable zone
970 * @highest_zoneidx - The zone index of the highest zone to return
971 * @nodes - An optional nodemask to filter the zonelist with
972 * @zone - The first suitable zone found is returned via this parameter
973 *
974 * This function returns the first zone at or below a given zone index that is
975 * within the allowed nodemask. The zoneref returned is a cursor that can be
976 * used to iterate the zonelist with next_zones_zonelist by advancing it by
977 * one before calling.
978 */
979 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
980 enum zone_type highest_zoneidx,
981 nodemask_t *nodes)
982 {
983 return next_zones_zonelist(zonelist->_zonerefs,
984 highest_zoneidx, nodes);
985 }
986
987 /**
988 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
989 * @zone - The current zone in the iterator
990 * @z - The current pointer within zonelist->zones being iterated
991 * @zlist - The zonelist being iterated
992 * @highidx - The zone index of the highest zone to return
993 * @nodemask - Nodemask allowed by the allocator
994 *
995 * This iterator iterates though all zones at or below a given zone index and
996 * within a given nodemask
997 */
998 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
999 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1000 zone; \
1001 z = next_zones_zonelist(++z, highidx, nodemask), \
1002 zone = zonelist_zone(z))
1003
1004 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1005 for (zone = z->zone; \
1006 zone; \
1007 z = next_zones_zonelist(++z, highidx, nodemask), \
1008 zone = zonelist_zone(z))
1009
1010
1011 /**
1012 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1013 * @zone - The current zone in the iterator
1014 * @z - The current pointer within zonelist->zones being iterated
1015 * @zlist - The zonelist being iterated
1016 * @highidx - The zone index of the highest zone to return
1017 *
1018 * This iterator iterates though all zones at or below a given zone index.
1019 */
1020 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1021 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1022
1023 #ifdef CONFIG_SPARSEMEM
1024 #include <asm/sparsemem.h>
1025 #endif
1026
1027 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1028 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1029 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1030 {
1031 return 0;
1032 }
1033 #endif
1034
1035 #ifdef CONFIG_FLATMEM
1036 #define pfn_to_nid(pfn) (0)
1037 #endif
1038
1039 #ifdef CONFIG_SPARSEMEM
1040
1041 /*
1042 * SECTION_SHIFT #bits space required to store a section #
1043 *
1044 * PA_SECTION_SHIFT physical address to/from section number
1045 * PFN_SECTION_SHIFT pfn to/from section number
1046 */
1047 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1048 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1049
1050 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1051
1052 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1053 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1054
1055 #define SECTION_BLOCKFLAGS_BITS \
1056 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1057
1058 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1059 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1060 #endif
1061
1062 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1063 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1064
1065 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1066 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1067
1068 struct page;
1069 struct page_ext;
1070 struct mem_section {
1071 /*
1072 * This is, logically, a pointer to an array of struct
1073 * pages. However, it is stored with some other magic.
1074 * (see sparse.c::sparse_init_one_section())
1075 *
1076 * Additionally during early boot we encode node id of
1077 * the location of the section here to guide allocation.
1078 * (see sparse.c::memory_present())
1079 *
1080 * Making it a UL at least makes someone do a cast
1081 * before using it wrong.
1082 */
1083 unsigned long section_mem_map;
1084
1085 /* See declaration of similar field in struct zone */
1086 unsigned long *pageblock_flags;
1087 #ifdef CONFIG_PAGE_EXTENSION
1088 /*
1089 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1090 * section. (see page_ext.h about this.)
1091 */
1092 struct page_ext *page_ext;
1093 unsigned long pad;
1094 #endif
1095 /*
1096 * WARNING: mem_section must be a power-of-2 in size for the
1097 * calculation and use of SECTION_ROOT_MASK to make sense.
1098 */
1099 };
1100
1101 #ifdef CONFIG_SPARSEMEM_EXTREME
1102 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1103 #else
1104 #define SECTIONS_PER_ROOT 1
1105 #endif
1106
1107 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1108 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1109 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1110
1111 #ifdef CONFIG_SPARSEMEM_EXTREME
1112 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1113 #else
1114 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1115 #endif
1116
1117 static inline struct mem_section *__nr_to_section(unsigned long nr)
1118 {
1119 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1120 return NULL;
1121 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1122 }
1123 extern int __section_nr(struct mem_section* ms);
1124 extern unsigned long usemap_size(void);
1125
1126 /*
1127 * We use the lower bits of the mem_map pointer to store
1128 * a little bit of information. There should be at least
1129 * 3 bits here due to 32-bit alignment.
1130 */
1131 #define SECTION_MARKED_PRESENT (1UL<<0)
1132 #define SECTION_HAS_MEM_MAP (1UL<<1)
1133 #define SECTION_MAP_LAST_BIT (1UL<<2)
1134 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1135 #define SECTION_NID_SHIFT 2
1136
1137 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1138 {
1139 unsigned long map = section->section_mem_map;
1140 map &= SECTION_MAP_MASK;
1141 return (struct page *)map;
1142 }
1143
1144 static inline int present_section(struct mem_section *section)
1145 {
1146 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1147 }
1148
1149 static inline int present_section_nr(unsigned long nr)
1150 {
1151 return present_section(__nr_to_section(nr));
1152 }
1153
1154 static inline int valid_section(struct mem_section *section)
1155 {
1156 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1157 }
1158
1159 static inline int valid_section_nr(unsigned long nr)
1160 {
1161 return valid_section(__nr_to_section(nr));
1162 }
1163
1164 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1165 {
1166 return __nr_to_section(pfn_to_section_nr(pfn));
1167 }
1168
1169 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1170 static inline int pfn_valid(unsigned long pfn)
1171 {
1172 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1173 return 0;
1174 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1175 }
1176 #endif
1177
1178 static inline int pfn_present(unsigned long pfn)
1179 {
1180 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1181 return 0;
1182 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1183 }
1184
1185 /*
1186 * These are _only_ used during initialisation, therefore they
1187 * can use __initdata ... They could have names to indicate
1188 * this restriction.
1189 */
1190 #ifdef CONFIG_NUMA
1191 #define pfn_to_nid(pfn) \
1192 ({ \
1193 unsigned long __pfn_to_nid_pfn = (pfn); \
1194 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1195 })
1196 #else
1197 #define pfn_to_nid(pfn) (0)
1198 #endif
1199
1200 #define early_pfn_valid(pfn) pfn_valid(pfn)
1201 void sparse_init(void);
1202 #else
1203 #define sparse_init() do {} while (0)
1204 #define sparse_index_init(_sec, _nid) do {} while (0)
1205 #endif /* CONFIG_SPARSEMEM */
1206
1207 /*
1208 * During memory init memblocks map pfns to nids. The search is expensive and
1209 * this caches recent lookups. The implementation of __early_pfn_to_nid
1210 * may treat start/end as pfns or sections.
1211 */
1212 struct mminit_pfnnid_cache {
1213 unsigned long last_start;
1214 unsigned long last_end;
1215 int last_nid;
1216 };
1217
1218 #ifndef early_pfn_valid
1219 #define early_pfn_valid(pfn) (1)
1220 #endif
1221
1222 void memory_present(int nid, unsigned long start, unsigned long end);
1223 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1224
1225 /*
1226 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1227 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1228 * pfn_valid_within() should be used in this case; we optimise this away
1229 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1230 */
1231 #ifdef CONFIG_HOLES_IN_ZONE
1232 #define pfn_valid_within(pfn) pfn_valid(pfn)
1233 #else
1234 #define pfn_valid_within(pfn) (1)
1235 #endif
1236
1237 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1238 /*
1239 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1240 * associated with it or not. In FLATMEM, it is expected that holes always
1241 * have valid memmap as long as there is valid PFNs either side of the hole.
1242 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1243 * entire section.
1244 *
1245 * However, an ARM, and maybe other embedded architectures in the future
1246 * free memmap backing holes to save memory on the assumption the memmap is
1247 * never used. The page_zone linkages are then broken even though pfn_valid()
1248 * returns true. A walker of the full memmap must then do this additional
1249 * check to ensure the memmap they are looking at is sane by making sure
1250 * the zone and PFN linkages are still valid. This is expensive, but walkers
1251 * of the full memmap are extremely rare.
1252 */
1253 bool memmap_valid_within(unsigned long pfn,
1254 struct page *page, struct zone *zone);
1255 #else
1256 static inline bool memmap_valid_within(unsigned long pfn,
1257 struct page *page, struct zone *zone)
1258 {
1259 return true;
1260 }
1261 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1262
1263 #endif /* !__GENERATING_BOUNDS.H */
1264 #endif /* !__ASSEMBLY__ */
1265 #endif /* _LINUX_MMZONE_H */
This page took 0.075638 seconds and 5 git commands to generate.