mm: oom analysis: Show kernel stack usage in /proc/meminfo and OOM log output
[deliverable/linux.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/bounds.h>
19 #include <asm/atomic.h>
20 #include <asm/page.h>
21
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30 /*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coelesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37
38 #define MIGRATE_UNMOVABLE 0
39 #define MIGRATE_RECLAIMABLE 1
40 #define MIGRATE_MOVABLE 2
41 #define MIGRATE_RESERVE 3
42 #define MIGRATE_ISOLATE 4 /* can't allocate from here */
43 #define MIGRATE_TYPES 5
44
45 #define for_each_migratetype_order(order, type) \
46 for (order = 0; order < MAX_ORDER; order++) \
47 for (type = 0; type < MIGRATE_TYPES; type++)
48
49 extern int page_group_by_mobility_disabled;
50
51 static inline int get_pageblock_migratetype(struct page *page)
52 {
53 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
54 }
55
56 struct free_area {
57 struct list_head free_list[MIGRATE_TYPES];
58 unsigned long nr_free;
59 };
60
61 struct pglist_data;
62
63 /*
64 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
65 * So add a wild amount of padding here to ensure that they fall into separate
66 * cachelines. There are very few zone structures in the machine, so space
67 * consumption is not a concern here.
68 */
69 #if defined(CONFIG_SMP)
70 struct zone_padding {
71 char x[0];
72 } ____cacheline_internodealigned_in_smp;
73 #define ZONE_PADDING(name) struct zone_padding name;
74 #else
75 #define ZONE_PADDING(name)
76 #endif
77
78 enum zone_stat_item {
79 /* First 128 byte cacheline (assuming 64 bit words) */
80 NR_FREE_PAGES,
81 NR_LRU_BASE,
82 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
83 NR_ACTIVE_ANON, /* " " " " " */
84 NR_INACTIVE_FILE, /* " " " " " */
85 NR_ACTIVE_FILE, /* " " " " " */
86 NR_UNEVICTABLE, /* " " " " " */
87 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
88 NR_ANON_PAGES, /* Mapped anonymous pages */
89 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
90 only modified from process context */
91 NR_FILE_PAGES,
92 NR_FILE_DIRTY,
93 NR_WRITEBACK,
94 NR_SLAB_RECLAIMABLE,
95 NR_SLAB_UNRECLAIMABLE,
96 NR_PAGETABLE, /* used for pagetables */
97 NR_KERNEL_STACK,
98 /* Second 128 byte cacheline */
99 NR_UNSTABLE_NFS, /* NFS unstable pages */
100 NR_BOUNCE,
101 NR_VMSCAN_WRITE,
102 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
103 #ifdef CONFIG_NUMA
104 NUMA_HIT, /* allocated in intended node */
105 NUMA_MISS, /* allocated in non intended node */
106 NUMA_FOREIGN, /* was intended here, hit elsewhere */
107 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
108 NUMA_LOCAL, /* allocation from local node */
109 NUMA_OTHER, /* allocation from other node */
110 #endif
111 NR_VM_ZONE_STAT_ITEMS };
112
113 /*
114 * We do arithmetic on the LRU lists in various places in the code,
115 * so it is important to keep the active lists LRU_ACTIVE higher in
116 * the array than the corresponding inactive lists, and to keep
117 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
118 *
119 * This has to be kept in sync with the statistics in zone_stat_item
120 * above and the descriptions in vmstat_text in mm/vmstat.c
121 */
122 #define LRU_BASE 0
123 #define LRU_ACTIVE 1
124 #define LRU_FILE 2
125
126 enum lru_list {
127 LRU_INACTIVE_ANON = LRU_BASE,
128 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
129 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
130 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
131 LRU_UNEVICTABLE,
132 NR_LRU_LISTS
133 };
134
135 #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
136
137 #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
138
139 static inline int is_file_lru(enum lru_list l)
140 {
141 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
142 }
143
144 static inline int is_active_lru(enum lru_list l)
145 {
146 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
147 }
148
149 static inline int is_unevictable_lru(enum lru_list l)
150 {
151 return (l == LRU_UNEVICTABLE);
152 }
153
154 enum zone_watermarks {
155 WMARK_MIN,
156 WMARK_LOW,
157 WMARK_HIGH,
158 NR_WMARK
159 };
160
161 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
162 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
163 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
164
165 struct per_cpu_pages {
166 int count; /* number of pages in the list */
167 int high; /* high watermark, emptying needed */
168 int batch; /* chunk size for buddy add/remove */
169 struct list_head list; /* the list of pages */
170 };
171
172 struct per_cpu_pageset {
173 struct per_cpu_pages pcp;
174 #ifdef CONFIG_NUMA
175 s8 expire;
176 #endif
177 #ifdef CONFIG_SMP
178 s8 stat_threshold;
179 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
180 #endif
181 } ____cacheline_aligned_in_smp;
182
183 #ifdef CONFIG_NUMA
184 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
185 #else
186 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
187 #endif
188
189 #endif /* !__GENERATING_BOUNDS.H */
190
191 enum zone_type {
192 #ifdef CONFIG_ZONE_DMA
193 /*
194 * ZONE_DMA is used when there are devices that are not able
195 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
196 * carve out the portion of memory that is needed for these devices.
197 * The range is arch specific.
198 *
199 * Some examples
200 *
201 * Architecture Limit
202 * ---------------------------
203 * parisc, ia64, sparc <4G
204 * s390 <2G
205 * arm Various
206 * alpha Unlimited or 0-16MB.
207 *
208 * i386, x86_64 and multiple other arches
209 * <16M.
210 */
211 ZONE_DMA,
212 #endif
213 #ifdef CONFIG_ZONE_DMA32
214 /*
215 * x86_64 needs two ZONE_DMAs because it supports devices that are
216 * only able to do DMA to the lower 16M but also 32 bit devices that
217 * can only do DMA areas below 4G.
218 */
219 ZONE_DMA32,
220 #endif
221 /*
222 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
223 * performed on pages in ZONE_NORMAL if the DMA devices support
224 * transfers to all addressable memory.
225 */
226 ZONE_NORMAL,
227 #ifdef CONFIG_HIGHMEM
228 /*
229 * A memory area that is only addressable by the kernel through
230 * mapping portions into its own address space. This is for example
231 * used by i386 to allow the kernel to address the memory beyond
232 * 900MB. The kernel will set up special mappings (page
233 * table entries on i386) for each page that the kernel needs to
234 * access.
235 */
236 ZONE_HIGHMEM,
237 #endif
238 ZONE_MOVABLE,
239 __MAX_NR_ZONES
240 };
241
242 #ifndef __GENERATING_BOUNDS_H
243
244 /*
245 * When a memory allocation must conform to specific limitations (such
246 * as being suitable for DMA) the caller will pass in hints to the
247 * allocator in the gfp_mask, in the zone modifier bits. These bits
248 * are used to select a priority ordered list of memory zones which
249 * match the requested limits. See gfp_zone() in include/linux/gfp.h
250 */
251
252 #if MAX_NR_ZONES < 2
253 #define ZONES_SHIFT 0
254 #elif MAX_NR_ZONES <= 2
255 #define ZONES_SHIFT 1
256 #elif MAX_NR_ZONES <= 4
257 #define ZONES_SHIFT 2
258 #else
259 #error ZONES_SHIFT -- too many zones configured adjust calculation
260 #endif
261
262 struct zone_reclaim_stat {
263 /*
264 * The pageout code in vmscan.c keeps track of how many of the
265 * mem/swap backed and file backed pages are refeferenced.
266 * The higher the rotated/scanned ratio, the more valuable
267 * that cache is.
268 *
269 * The anon LRU stats live in [0], file LRU stats in [1]
270 */
271 unsigned long recent_rotated[2];
272 unsigned long recent_scanned[2];
273 };
274
275 struct zone {
276 /* Fields commonly accessed by the page allocator */
277
278 /* zone watermarks, access with *_wmark_pages(zone) macros */
279 unsigned long watermark[NR_WMARK];
280
281 /*
282 * We don't know if the memory that we're going to allocate will be freeable
283 * or/and it will be released eventually, so to avoid totally wasting several
284 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
285 * to run OOM on the lower zones despite there's tons of freeable ram
286 * on the higher zones). This array is recalculated at runtime if the
287 * sysctl_lowmem_reserve_ratio sysctl changes.
288 */
289 unsigned long lowmem_reserve[MAX_NR_ZONES];
290
291 #ifdef CONFIG_NUMA
292 int node;
293 /*
294 * zone reclaim becomes active if more unmapped pages exist.
295 */
296 unsigned long min_unmapped_pages;
297 unsigned long min_slab_pages;
298 struct per_cpu_pageset *pageset[NR_CPUS];
299 #else
300 struct per_cpu_pageset pageset[NR_CPUS];
301 #endif
302 /*
303 * free areas of different sizes
304 */
305 spinlock_t lock;
306 #ifdef CONFIG_MEMORY_HOTPLUG
307 /* see spanned/present_pages for more description */
308 seqlock_t span_seqlock;
309 #endif
310 struct free_area free_area[MAX_ORDER];
311
312 #ifndef CONFIG_SPARSEMEM
313 /*
314 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
315 * In SPARSEMEM, this map is stored in struct mem_section
316 */
317 unsigned long *pageblock_flags;
318 #endif /* CONFIG_SPARSEMEM */
319
320
321 ZONE_PADDING(_pad1_)
322
323 /* Fields commonly accessed by the page reclaim scanner */
324 spinlock_t lru_lock;
325 struct zone_lru {
326 struct list_head list;
327 unsigned long nr_saved_scan; /* accumulated for batching */
328 } lru[NR_LRU_LISTS];
329
330 struct zone_reclaim_stat reclaim_stat;
331
332 unsigned long pages_scanned; /* since last reclaim */
333 unsigned long flags; /* zone flags, see below */
334
335 /* Zone statistics */
336 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
337
338 /*
339 * prev_priority holds the scanning priority for this zone. It is
340 * defined as the scanning priority at which we achieved our reclaim
341 * target at the previous try_to_free_pages() or balance_pgdat()
342 * invokation.
343 *
344 * We use prev_priority as a measure of how much stress page reclaim is
345 * under - it drives the swappiness decision: whether to unmap mapped
346 * pages.
347 *
348 * Access to both this field is quite racy even on uniprocessor. But
349 * it is expected to average out OK.
350 */
351 int prev_priority;
352
353 /*
354 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
355 * this zone's LRU. Maintained by the pageout code.
356 */
357 unsigned int inactive_ratio;
358
359
360 ZONE_PADDING(_pad2_)
361 /* Rarely used or read-mostly fields */
362
363 /*
364 * wait_table -- the array holding the hash table
365 * wait_table_hash_nr_entries -- the size of the hash table array
366 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
367 *
368 * The purpose of all these is to keep track of the people
369 * waiting for a page to become available and make them
370 * runnable again when possible. The trouble is that this
371 * consumes a lot of space, especially when so few things
372 * wait on pages at a given time. So instead of using
373 * per-page waitqueues, we use a waitqueue hash table.
374 *
375 * The bucket discipline is to sleep on the same queue when
376 * colliding and wake all in that wait queue when removing.
377 * When something wakes, it must check to be sure its page is
378 * truly available, a la thundering herd. The cost of a
379 * collision is great, but given the expected load of the
380 * table, they should be so rare as to be outweighed by the
381 * benefits from the saved space.
382 *
383 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
384 * primary users of these fields, and in mm/page_alloc.c
385 * free_area_init_core() performs the initialization of them.
386 */
387 wait_queue_head_t * wait_table;
388 unsigned long wait_table_hash_nr_entries;
389 unsigned long wait_table_bits;
390
391 /*
392 * Discontig memory support fields.
393 */
394 struct pglist_data *zone_pgdat;
395 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
396 unsigned long zone_start_pfn;
397
398 /*
399 * zone_start_pfn, spanned_pages and present_pages are all
400 * protected by span_seqlock. It is a seqlock because it has
401 * to be read outside of zone->lock, and it is done in the main
402 * allocator path. But, it is written quite infrequently.
403 *
404 * The lock is declared along with zone->lock because it is
405 * frequently read in proximity to zone->lock. It's good to
406 * give them a chance of being in the same cacheline.
407 */
408 unsigned long spanned_pages; /* total size, including holes */
409 unsigned long present_pages; /* amount of memory (excluding holes) */
410
411 /*
412 * rarely used fields:
413 */
414 const char *name;
415 } ____cacheline_internodealigned_in_smp;
416
417 typedef enum {
418 ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */
419 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
420 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
421 } zone_flags_t;
422
423 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
424 {
425 set_bit(flag, &zone->flags);
426 }
427
428 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
429 {
430 return test_and_set_bit(flag, &zone->flags);
431 }
432
433 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
434 {
435 clear_bit(flag, &zone->flags);
436 }
437
438 static inline int zone_is_all_unreclaimable(const struct zone *zone)
439 {
440 return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags);
441 }
442
443 static inline int zone_is_reclaim_locked(const struct zone *zone)
444 {
445 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
446 }
447
448 static inline int zone_is_oom_locked(const struct zone *zone)
449 {
450 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
451 }
452
453 /*
454 * The "priority" of VM scanning is how much of the queues we will scan in one
455 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
456 * queues ("queue_length >> 12") during an aging round.
457 */
458 #define DEF_PRIORITY 12
459
460 /* Maximum number of zones on a zonelist */
461 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
462
463 #ifdef CONFIG_NUMA
464
465 /*
466 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
467 * allocations to a single node for GFP_THISNODE.
468 *
469 * [0] : Zonelist with fallback
470 * [1] : No fallback (GFP_THISNODE)
471 */
472 #define MAX_ZONELISTS 2
473
474
475 /*
476 * We cache key information from each zonelist for smaller cache
477 * footprint when scanning for free pages in get_page_from_freelist().
478 *
479 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
480 * up short of free memory since the last time (last_fullzone_zap)
481 * we zero'd fullzones.
482 * 2) The array z_to_n[] maps each zone in the zonelist to its node
483 * id, so that we can efficiently evaluate whether that node is
484 * set in the current tasks mems_allowed.
485 *
486 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
487 * indexed by a zones offset in the zonelist zones[] array.
488 *
489 * The get_page_from_freelist() routine does two scans. During the
490 * first scan, we skip zones whose corresponding bit in 'fullzones'
491 * is set or whose corresponding node in current->mems_allowed (which
492 * comes from cpusets) is not set. During the second scan, we bypass
493 * this zonelist_cache, to ensure we look methodically at each zone.
494 *
495 * Once per second, we zero out (zap) fullzones, forcing us to
496 * reconsider nodes that might have regained more free memory.
497 * The field last_full_zap is the time we last zapped fullzones.
498 *
499 * This mechanism reduces the amount of time we waste repeatedly
500 * reexaming zones for free memory when they just came up low on
501 * memory momentarilly ago.
502 *
503 * The zonelist_cache struct members logically belong in struct
504 * zonelist. However, the mempolicy zonelists constructed for
505 * MPOL_BIND are intentionally variable length (and usually much
506 * shorter). A general purpose mechanism for handling structs with
507 * multiple variable length members is more mechanism than we want
508 * here. We resort to some special case hackery instead.
509 *
510 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
511 * part because they are shorter), so we put the fixed length stuff
512 * at the front of the zonelist struct, ending in a variable length
513 * zones[], as is needed by MPOL_BIND.
514 *
515 * Then we put the optional zonelist cache on the end of the zonelist
516 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
517 * the fixed length portion at the front of the struct. This pointer
518 * both enables us to find the zonelist cache, and in the case of
519 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
520 * to know that the zonelist cache is not there.
521 *
522 * The end result is that struct zonelists come in two flavors:
523 * 1) The full, fixed length version, shown below, and
524 * 2) The custom zonelists for MPOL_BIND.
525 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
526 *
527 * Even though there may be multiple CPU cores on a node modifying
528 * fullzones or last_full_zap in the same zonelist_cache at the same
529 * time, we don't lock it. This is just hint data - if it is wrong now
530 * and then, the allocator will still function, perhaps a bit slower.
531 */
532
533
534 struct zonelist_cache {
535 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
536 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
537 unsigned long last_full_zap; /* when last zap'd (jiffies) */
538 };
539 #else
540 #define MAX_ZONELISTS 1
541 struct zonelist_cache;
542 #endif
543
544 /*
545 * This struct contains information about a zone in a zonelist. It is stored
546 * here to avoid dereferences into large structures and lookups of tables
547 */
548 struct zoneref {
549 struct zone *zone; /* Pointer to actual zone */
550 int zone_idx; /* zone_idx(zoneref->zone) */
551 };
552
553 /*
554 * One allocation request operates on a zonelist. A zonelist
555 * is a list of zones, the first one is the 'goal' of the
556 * allocation, the other zones are fallback zones, in decreasing
557 * priority.
558 *
559 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
560 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
561 * *
562 * To speed the reading of the zonelist, the zonerefs contain the zone index
563 * of the entry being read. Helper functions to access information given
564 * a struct zoneref are
565 *
566 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
567 * zonelist_zone_idx() - Return the index of the zone for an entry
568 * zonelist_node_idx() - Return the index of the node for an entry
569 */
570 struct zonelist {
571 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
572 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
573 #ifdef CONFIG_NUMA
574 struct zonelist_cache zlcache; // optional ...
575 #endif
576 };
577
578 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
579 struct node_active_region {
580 unsigned long start_pfn;
581 unsigned long end_pfn;
582 int nid;
583 };
584 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
585
586 #ifndef CONFIG_DISCONTIGMEM
587 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
588 extern struct page *mem_map;
589 #endif
590
591 /*
592 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
593 * (mostly NUMA machines?) to denote a higher-level memory zone than the
594 * zone denotes.
595 *
596 * On NUMA machines, each NUMA node would have a pg_data_t to describe
597 * it's memory layout.
598 *
599 * Memory statistics and page replacement data structures are maintained on a
600 * per-zone basis.
601 */
602 struct bootmem_data;
603 typedef struct pglist_data {
604 struct zone node_zones[MAX_NR_ZONES];
605 struct zonelist node_zonelists[MAX_ZONELISTS];
606 int nr_zones;
607 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
608 struct page *node_mem_map;
609 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
610 struct page_cgroup *node_page_cgroup;
611 #endif
612 #endif
613 struct bootmem_data *bdata;
614 #ifdef CONFIG_MEMORY_HOTPLUG
615 /*
616 * Must be held any time you expect node_start_pfn, node_present_pages
617 * or node_spanned_pages stay constant. Holding this will also
618 * guarantee that any pfn_valid() stays that way.
619 *
620 * Nests above zone->lock and zone->size_seqlock.
621 */
622 spinlock_t node_size_lock;
623 #endif
624 unsigned long node_start_pfn;
625 unsigned long node_present_pages; /* total number of physical pages */
626 unsigned long node_spanned_pages; /* total size of physical page
627 range, including holes */
628 int node_id;
629 wait_queue_head_t kswapd_wait;
630 struct task_struct *kswapd;
631 int kswapd_max_order;
632 } pg_data_t;
633
634 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
635 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
636 #ifdef CONFIG_FLAT_NODE_MEM_MAP
637 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
638 #else
639 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
640 #endif
641 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
642
643 #include <linux/memory_hotplug.h>
644
645 void get_zone_counts(unsigned long *active, unsigned long *inactive,
646 unsigned long *free);
647 void build_all_zonelists(void);
648 void wakeup_kswapd(struct zone *zone, int order);
649 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
650 int classzone_idx, int alloc_flags);
651 enum memmap_context {
652 MEMMAP_EARLY,
653 MEMMAP_HOTPLUG,
654 };
655 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
656 unsigned long size,
657 enum memmap_context context);
658
659 #ifdef CONFIG_HAVE_MEMORY_PRESENT
660 void memory_present(int nid, unsigned long start, unsigned long end);
661 #else
662 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
663 #endif
664
665 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
666 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
667 #endif
668
669 /*
670 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
671 */
672 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
673
674 static inline int populated_zone(struct zone *zone)
675 {
676 return (!!zone->present_pages);
677 }
678
679 extern int movable_zone;
680
681 static inline int zone_movable_is_highmem(void)
682 {
683 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
684 return movable_zone == ZONE_HIGHMEM;
685 #else
686 return 0;
687 #endif
688 }
689
690 static inline int is_highmem_idx(enum zone_type idx)
691 {
692 #ifdef CONFIG_HIGHMEM
693 return (idx == ZONE_HIGHMEM ||
694 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
695 #else
696 return 0;
697 #endif
698 }
699
700 static inline int is_normal_idx(enum zone_type idx)
701 {
702 return (idx == ZONE_NORMAL);
703 }
704
705 /**
706 * is_highmem - helper function to quickly check if a struct zone is a
707 * highmem zone or not. This is an attempt to keep references
708 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
709 * @zone - pointer to struct zone variable
710 */
711 static inline int is_highmem(struct zone *zone)
712 {
713 #ifdef CONFIG_HIGHMEM
714 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
715 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
716 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
717 zone_movable_is_highmem());
718 #else
719 return 0;
720 #endif
721 }
722
723 static inline int is_normal(struct zone *zone)
724 {
725 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
726 }
727
728 static inline int is_dma32(struct zone *zone)
729 {
730 #ifdef CONFIG_ZONE_DMA32
731 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
732 #else
733 return 0;
734 #endif
735 }
736
737 static inline int is_dma(struct zone *zone)
738 {
739 #ifdef CONFIG_ZONE_DMA
740 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
741 #else
742 return 0;
743 #endif
744 }
745
746 /* These two functions are used to setup the per zone pages min values */
747 struct ctl_table;
748 struct file;
749 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
750 void __user *, size_t *, loff_t *);
751 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
752 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
753 void __user *, size_t *, loff_t *);
754 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
755 void __user *, size_t *, loff_t *);
756 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
757 struct file *, void __user *, size_t *, loff_t *);
758 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
759 struct file *, void __user *, size_t *, loff_t *);
760
761 extern int numa_zonelist_order_handler(struct ctl_table *, int,
762 struct file *, void __user *, size_t *, loff_t *);
763 extern char numa_zonelist_order[];
764 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
765
766 #ifndef CONFIG_NEED_MULTIPLE_NODES
767
768 extern struct pglist_data contig_page_data;
769 #define NODE_DATA(nid) (&contig_page_data)
770 #define NODE_MEM_MAP(nid) mem_map
771
772 #else /* CONFIG_NEED_MULTIPLE_NODES */
773
774 #include <asm/mmzone.h>
775
776 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
777
778 extern struct pglist_data *first_online_pgdat(void);
779 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
780 extern struct zone *next_zone(struct zone *zone);
781
782 /**
783 * for_each_online_pgdat - helper macro to iterate over all online nodes
784 * @pgdat - pointer to a pg_data_t variable
785 */
786 #define for_each_online_pgdat(pgdat) \
787 for (pgdat = first_online_pgdat(); \
788 pgdat; \
789 pgdat = next_online_pgdat(pgdat))
790 /**
791 * for_each_zone - helper macro to iterate over all memory zones
792 * @zone - pointer to struct zone variable
793 *
794 * The user only needs to declare the zone variable, for_each_zone
795 * fills it in.
796 */
797 #define for_each_zone(zone) \
798 for (zone = (first_online_pgdat())->node_zones; \
799 zone; \
800 zone = next_zone(zone))
801
802 #define for_each_populated_zone(zone) \
803 for (zone = (first_online_pgdat())->node_zones; \
804 zone; \
805 zone = next_zone(zone)) \
806 if (!populated_zone(zone)) \
807 ; /* do nothing */ \
808 else
809
810 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
811 {
812 return zoneref->zone;
813 }
814
815 static inline int zonelist_zone_idx(struct zoneref *zoneref)
816 {
817 return zoneref->zone_idx;
818 }
819
820 static inline int zonelist_node_idx(struct zoneref *zoneref)
821 {
822 #ifdef CONFIG_NUMA
823 /* zone_to_nid not available in this context */
824 return zoneref->zone->node;
825 #else
826 return 0;
827 #endif /* CONFIG_NUMA */
828 }
829
830 /**
831 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
832 * @z - The cursor used as a starting point for the search
833 * @highest_zoneidx - The zone index of the highest zone to return
834 * @nodes - An optional nodemask to filter the zonelist with
835 * @zone - The first suitable zone found is returned via this parameter
836 *
837 * This function returns the next zone at or below a given zone index that is
838 * within the allowed nodemask using a cursor as the starting point for the
839 * search. The zoneref returned is a cursor that represents the current zone
840 * being examined. It should be advanced by one before calling
841 * next_zones_zonelist again.
842 */
843 struct zoneref *next_zones_zonelist(struct zoneref *z,
844 enum zone_type highest_zoneidx,
845 nodemask_t *nodes,
846 struct zone **zone);
847
848 /**
849 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
850 * @zonelist - The zonelist to search for a suitable zone
851 * @highest_zoneidx - The zone index of the highest zone to return
852 * @nodes - An optional nodemask to filter the zonelist with
853 * @zone - The first suitable zone found is returned via this parameter
854 *
855 * This function returns the first zone at or below a given zone index that is
856 * within the allowed nodemask. The zoneref returned is a cursor that can be
857 * used to iterate the zonelist with next_zones_zonelist by advancing it by
858 * one before calling.
859 */
860 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
861 enum zone_type highest_zoneidx,
862 nodemask_t *nodes,
863 struct zone **zone)
864 {
865 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
866 zone);
867 }
868
869 /**
870 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
871 * @zone - The current zone in the iterator
872 * @z - The current pointer within zonelist->zones being iterated
873 * @zlist - The zonelist being iterated
874 * @highidx - The zone index of the highest zone to return
875 * @nodemask - Nodemask allowed by the allocator
876 *
877 * This iterator iterates though all zones at or below a given zone index and
878 * within a given nodemask
879 */
880 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
881 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
882 zone; \
883 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
884
885 /**
886 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
887 * @zone - The current zone in the iterator
888 * @z - The current pointer within zonelist->zones being iterated
889 * @zlist - The zonelist being iterated
890 * @highidx - The zone index of the highest zone to return
891 *
892 * This iterator iterates though all zones at or below a given zone index.
893 */
894 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
895 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
896
897 #ifdef CONFIG_SPARSEMEM
898 #include <asm/sparsemem.h>
899 #endif
900
901 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
902 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
903 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
904 {
905 return 0;
906 }
907 #endif
908
909 #ifdef CONFIG_FLATMEM
910 #define pfn_to_nid(pfn) (0)
911 #endif
912
913 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
914 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
915
916 #ifdef CONFIG_SPARSEMEM
917
918 /*
919 * SECTION_SHIFT #bits space required to store a section #
920 *
921 * PA_SECTION_SHIFT physical address to/from section number
922 * PFN_SECTION_SHIFT pfn to/from section number
923 */
924 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
925
926 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
927 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
928
929 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
930
931 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
932 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
933
934 #define SECTION_BLOCKFLAGS_BITS \
935 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
936
937 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
938 #error Allocator MAX_ORDER exceeds SECTION_SIZE
939 #endif
940
941 struct page;
942 struct page_cgroup;
943 struct mem_section {
944 /*
945 * This is, logically, a pointer to an array of struct
946 * pages. However, it is stored with some other magic.
947 * (see sparse.c::sparse_init_one_section())
948 *
949 * Additionally during early boot we encode node id of
950 * the location of the section here to guide allocation.
951 * (see sparse.c::memory_present())
952 *
953 * Making it a UL at least makes someone do a cast
954 * before using it wrong.
955 */
956 unsigned long section_mem_map;
957
958 /* See declaration of similar field in struct zone */
959 unsigned long *pageblock_flags;
960 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
961 /*
962 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
963 * section. (see memcontrol.h/page_cgroup.h about this.)
964 */
965 struct page_cgroup *page_cgroup;
966 unsigned long pad;
967 #endif
968 };
969
970 #ifdef CONFIG_SPARSEMEM_EXTREME
971 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
972 #else
973 #define SECTIONS_PER_ROOT 1
974 #endif
975
976 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
977 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
978 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
979
980 #ifdef CONFIG_SPARSEMEM_EXTREME
981 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
982 #else
983 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
984 #endif
985
986 static inline struct mem_section *__nr_to_section(unsigned long nr)
987 {
988 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
989 return NULL;
990 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
991 }
992 extern int __section_nr(struct mem_section* ms);
993 extern unsigned long usemap_size(void);
994
995 /*
996 * We use the lower bits of the mem_map pointer to store
997 * a little bit of information. There should be at least
998 * 3 bits here due to 32-bit alignment.
999 */
1000 #define SECTION_MARKED_PRESENT (1UL<<0)
1001 #define SECTION_HAS_MEM_MAP (1UL<<1)
1002 #define SECTION_MAP_LAST_BIT (1UL<<2)
1003 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1004 #define SECTION_NID_SHIFT 2
1005
1006 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1007 {
1008 unsigned long map = section->section_mem_map;
1009 map &= SECTION_MAP_MASK;
1010 return (struct page *)map;
1011 }
1012
1013 static inline int present_section(struct mem_section *section)
1014 {
1015 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1016 }
1017
1018 static inline int present_section_nr(unsigned long nr)
1019 {
1020 return present_section(__nr_to_section(nr));
1021 }
1022
1023 static inline int valid_section(struct mem_section *section)
1024 {
1025 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1026 }
1027
1028 static inline int valid_section_nr(unsigned long nr)
1029 {
1030 return valid_section(__nr_to_section(nr));
1031 }
1032
1033 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1034 {
1035 return __nr_to_section(pfn_to_section_nr(pfn));
1036 }
1037
1038 static inline int pfn_valid(unsigned long pfn)
1039 {
1040 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1041 return 0;
1042 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1043 }
1044
1045 static inline int pfn_present(unsigned long pfn)
1046 {
1047 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1048 return 0;
1049 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1050 }
1051
1052 /*
1053 * These are _only_ used during initialisation, therefore they
1054 * can use __initdata ... They could have names to indicate
1055 * this restriction.
1056 */
1057 #ifdef CONFIG_NUMA
1058 #define pfn_to_nid(pfn) \
1059 ({ \
1060 unsigned long __pfn_to_nid_pfn = (pfn); \
1061 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1062 })
1063 #else
1064 #define pfn_to_nid(pfn) (0)
1065 #endif
1066
1067 #define early_pfn_valid(pfn) pfn_valid(pfn)
1068 void sparse_init(void);
1069 #else
1070 #define sparse_init() do {} while (0)
1071 #define sparse_index_init(_sec, _nid) do {} while (0)
1072 #endif /* CONFIG_SPARSEMEM */
1073
1074 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1075 bool early_pfn_in_nid(unsigned long pfn, int nid);
1076 #else
1077 #define early_pfn_in_nid(pfn, nid) (1)
1078 #endif
1079
1080 #ifndef early_pfn_valid
1081 #define early_pfn_valid(pfn) (1)
1082 #endif
1083
1084 void memory_present(int nid, unsigned long start, unsigned long end);
1085 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1086
1087 /*
1088 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1089 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1090 * pfn_valid_within() should be used in this case; we optimise this away
1091 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1092 */
1093 #ifdef CONFIG_HOLES_IN_ZONE
1094 #define pfn_valid_within(pfn) pfn_valid(pfn)
1095 #else
1096 #define pfn_valid_within(pfn) (1)
1097 #endif
1098
1099 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1100 /*
1101 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1102 * associated with it or not. In FLATMEM, it is expected that holes always
1103 * have valid memmap as long as there is valid PFNs either side of the hole.
1104 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1105 * entire section.
1106 *
1107 * However, an ARM, and maybe other embedded architectures in the future
1108 * free memmap backing holes to save memory on the assumption the memmap is
1109 * never used. The page_zone linkages are then broken even though pfn_valid()
1110 * returns true. A walker of the full memmap must then do this additional
1111 * check to ensure the memmap they are looking at is sane by making sure
1112 * the zone and PFN linkages are still valid. This is expensive, but walkers
1113 * of the full memmap are extremely rare.
1114 */
1115 int memmap_valid_within(unsigned long pfn,
1116 struct page *page, struct zone *zone);
1117 #else
1118 static inline int memmap_valid_within(unsigned long pfn,
1119 struct page *page, struct zone *zone)
1120 {
1121 return 1;
1122 }
1123 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1124
1125 #endif /* !__GENERATING_BOUNDS.H */
1126 #endif /* !__ASSEMBLY__ */
1127 #endif /* _LINUX_MMZONE_H */
This page took 0.060288 seconds and 5 git commands to generate.