Merge remote-tracking branch 'iwlwifi-fixes/master' into next
[deliverable/linux.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30 /*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coalesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37
38 enum {
39 MIGRATE_UNMOVABLE,
40 MIGRATE_MOVABLE,
41 MIGRATE_RECLAIMABLE,
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59 #endif
60 #ifdef CONFIG_MEMORY_ISOLATION
61 MIGRATE_ISOLATE, /* can't allocate from here */
62 #endif
63 MIGRATE_TYPES
64 };
65
66 #ifdef CONFIG_CMA
67 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
68 #else
69 # define is_migrate_cma(migratetype) false
70 #endif
71
72 #define for_each_migratetype_order(order, type) \
73 for (order = 0; order < MAX_ORDER; order++) \
74 for (type = 0; type < MIGRATE_TYPES; type++)
75
76 extern int page_group_by_mobility_disabled;
77
78 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
79 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
80
81 #define get_pageblock_migratetype(page) \
82 get_pfnblock_flags_mask(page, page_to_pfn(page), \
83 PB_migrate_end, MIGRATETYPE_MASK)
84
85 static inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
86 {
87 BUILD_BUG_ON(PB_migrate_end - PB_migrate != 2);
88 return get_pfnblock_flags_mask(page, pfn, PB_migrate_end,
89 MIGRATETYPE_MASK);
90 }
91
92 struct free_area {
93 struct list_head free_list[MIGRATE_TYPES];
94 unsigned long nr_free;
95 };
96
97 struct pglist_data;
98
99 /*
100 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
101 * So add a wild amount of padding here to ensure that they fall into separate
102 * cachelines. There are very few zone structures in the machine, so space
103 * consumption is not a concern here.
104 */
105 #if defined(CONFIG_SMP)
106 struct zone_padding {
107 char x[0];
108 } ____cacheline_internodealigned_in_smp;
109 #define ZONE_PADDING(name) struct zone_padding name;
110 #else
111 #define ZONE_PADDING(name)
112 #endif
113
114 enum zone_stat_item {
115 /* First 128 byte cacheline (assuming 64 bit words) */
116 NR_FREE_PAGES,
117 NR_ALLOC_BATCH,
118 NR_LRU_BASE,
119 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
120 NR_ACTIVE_ANON, /* " " " " " */
121 NR_INACTIVE_FILE, /* " " " " " */
122 NR_ACTIVE_FILE, /* " " " " " */
123 NR_UNEVICTABLE, /* " " " " " */
124 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
125 NR_ANON_PAGES, /* Mapped anonymous pages */
126 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
127 only modified from process context */
128 NR_FILE_PAGES,
129 NR_FILE_DIRTY,
130 NR_WRITEBACK,
131 NR_SLAB_RECLAIMABLE,
132 NR_SLAB_UNRECLAIMABLE,
133 NR_PAGETABLE, /* used for pagetables */
134 NR_KERNEL_STACK,
135 /* Second 128 byte cacheline */
136 NR_UNSTABLE_NFS, /* NFS unstable pages */
137 NR_BOUNCE,
138 NR_VMSCAN_WRITE,
139 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
140 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
141 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
142 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
143 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
144 NR_DIRTIED, /* page dirtyings since bootup */
145 NR_WRITTEN, /* page writings since bootup */
146 NR_PAGES_SCANNED, /* pages scanned since last reclaim */
147 #ifdef CONFIG_NUMA
148 NUMA_HIT, /* allocated in intended node */
149 NUMA_MISS, /* allocated in non intended node */
150 NUMA_FOREIGN, /* was intended here, hit elsewhere */
151 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
152 NUMA_LOCAL, /* allocation from local node */
153 NUMA_OTHER, /* allocation from other node */
154 #endif
155 WORKINGSET_REFAULT,
156 WORKINGSET_ACTIVATE,
157 WORKINGSET_NODERECLAIM,
158 NR_ANON_TRANSPARENT_HUGEPAGES,
159 NR_FREE_CMA_PAGES,
160 NR_VM_ZONE_STAT_ITEMS };
161
162 /*
163 * We do arithmetic on the LRU lists in various places in the code,
164 * so it is important to keep the active lists LRU_ACTIVE higher in
165 * the array than the corresponding inactive lists, and to keep
166 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
167 *
168 * This has to be kept in sync with the statistics in zone_stat_item
169 * above and the descriptions in vmstat_text in mm/vmstat.c
170 */
171 #define LRU_BASE 0
172 #define LRU_ACTIVE 1
173 #define LRU_FILE 2
174
175 enum lru_list {
176 LRU_INACTIVE_ANON = LRU_BASE,
177 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
178 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
179 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
180 LRU_UNEVICTABLE,
181 NR_LRU_LISTS
182 };
183
184 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
185
186 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
187
188 static inline int is_file_lru(enum lru_list lru)
189 {
190 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
191 }
192
193 static inline int is_active_lru(enum lru_list lru)
194 {
195 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
196 }
197
198 static inline int is_unevictable_lru(enum lru_list lru)
199 {
200 return (lru == LRU_UNEVICTABLE);
201 }
202
203 struct zone_reclaim_stat {
204 /*
205 * The pageout code in vmscan.c keeps track of how many of the
206 * mem/swap backed and file backed pages are referenced.
207 * The higher the rotated/scanned ratio, the more valuable
208 * that cache is.
209 *
210 * The anon LRU stats live in [0], file LRU stats in [1]
211 */
212 unsigned long recent_rotated[2];
213 unsigned long recent_scanned[2];
214 };
215
216 struct lruvec {
217 struct list_head lists[NR_LRU_LISTS];
218 struct zone_reclaim_stat reclaim_stat;
219 #ifdef CONFIG_MEMCG
220 struct zone *zone;
221 #endif
222 };
223
224 /* Mask used at gathering information at once (see memcontrol.c) */
225 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
226 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
227 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
228
229 /* Isolate clean file */
230 #define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
231 /* Isolate unmapped file */
232 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
233 /* Isolate for asynchronous migration */
234 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
235 /* Isolate unevictable pages */
236 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
237
238 /* LRU Isolation modes. */
239 typedef unsigned __bitwise__ isolate_mode_t;
240
241 enum zone_watermarks {
242 WMARK_MIN,
243 WMARK_LOW,
244 WMARK_HIGH,
245 NR_WMARK
246 };
247
248 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
249 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
250 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
251
252 struct per_cpu_pages {
253 int count; /* number of pages in the list */
254 int high; /* high watermark, emptying needed */
255 int batch; /* chunk size for buddy add/remove */
256
257 /* Lists of pages, one per migrate type stored on the pcp-lists */
258 struct list_head lists[MIGRATE_PCPTYPES];
259 };
260
261 struct per_cpu_pageset {
262 struct per_cpu_pages pcp;
263 #ifdef CONFIG_NUMA
264 s8 expire;
265 #endif
266 #ifdef CONFIG_SMP
267 s8 stat_threshold;
268 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
269 #endif
270 };
271
272 #endif /* !__GENERATING_BOUNDS.H */
273
274 enum zone_type {
275 #ifdef CONFIG_ZONE_DMA
276 /*
277 * ZONE_DMA is used when there are devices that are not able
278 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
279 * carve out the portion of memory that is needed for these devices.
280 * The range is arch specific.
281 *
282 * Some examples
283 *
284 * Architecture Limit
285 * ---------------------------
286 * parisc, ia64, sparc <4G
287 * s390 <2G
288 * arm Various
289 * alpha Unlimited or 0-16MB.
290 *
291 * i386, x86_64 and multiple other arches
292 * <16M.
293 */
294 ZONE_DMA,
295 #endif
296 #ifdef CONFIG_ZONE_DMA32
297 /*
298 * x86_64 needs two ZONE_DMAs because it supports devices that are
299 * only able to do DMA to the lower 16M but also 32 bit devices that
300 * can only do DMA areas below 4G.
301 */
302 ZONE_DMA32,
303 #endif
304 /*
305 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
306 * performed on pages in ZONE_NORMAL if the DMA devices support
307 * transfers to all addressable memory.
308 */
309 ZONE_NORMAL,
310 #ifdef CONFIG_HIGHMEM
311 /*
312 * A memory area that is only addressable by the kernel through
313 * mapping portions into its own address space. This is for example
314 * used by i386 to allow the kernel to address the memory beyond
315 * 900MB. The kernel will set up special mappings (page
316 * table entries on i386) for each page that the kernel needs to
317 * access.
318 */
319 ZONE_HIGHMEM,
320 #endif
321 ZONE_MOVABLE,
322 #ifdef CONFIG_ZONE_DEVICE
323 ZONE_DEVICE,
324 #endif
325 __MAX_NR_ZONES
326
327 };
328
329 #ifndef __GENERATING_BOUNDS_H
330
331 struct zone {
332 /* Read-mostly fields */
333
334 /* zone watermarks, access with *_wmark_pages(zone) macros */
335 unsigned long watermark[NR_WMARK];
336
337 unsigned long nr_reserved_highatomic;
338
339 /*
340 * We don't know if the memory that we're going to allocate will be
341 * freeable or/and it will be released eventually, so to avoid totally
342 * wasting several GB of ram we must reserve some of the lower zone
343 * memory (otherwise we risk to run OOM on the lower zones despite
344 * there being tons of freeable ram on the higher zones). This array is
345 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
346 * changes.
347 */
348 long lowmem_reserve[MAX_NR_ZONES];
349
350 #ifdef CONFIG_NUMA
351 int node;
352 #endif
353
354 /*
355 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
356 * this zone's LRU. Maintained by the pageout code.
357 */
358 unsigned int inactive_ratio;
359
360 struct pglist_data *zone_pgdat;
361 struct per_cpu_pageset __percpu *pageset;
362
363 /*
364 * This is a per-zone reserve of pages that should not be
365 * considered dirtyable memory.
366 */
367 unsigned long dirty_balance_reserve;
368
369 #ifndef CONFIG_SPARSEMEM
370 /*
371 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
372 * In SPARSEMEM, this map is stored in struct mem_section
373 */
374 unsigned long *pageblock_flags;
375 #endif /* CONFIG_SPARSEMEM */
376
377 #ifdef CONFIG_NUMA
378 /*
379 * zone reclaim becomes active if more unmapped pages exist.
380 */
381 unsigned long min_unmapped_pages;
382 unsigned long min_slab_pages;
383 #endif /* CONFIG_NUMA */
384
385 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
386 unsigned long zone_start_pfn;
387
388 /*
389 * spanned_pages is the total pages spanned by the zone, including
390 * holes, which is calculated as:
391 * spanned_pages = zone_end_pfn - zone_start_pfn;
392 *
393 * present_pages is physical pages existing within the zone, which
394 * is calculated as:
395 * present_pages = spanned_pages - absent_pages(pages in holes);
396 *
397 * managed_pages is present pages managed by the buddy system, which
398 * is calculated as (reserved_pages includes pages allocated by the
399 * bootmem allocator):
400 * managed_pages = present_pages - reserved_pages;
401 *
402 * So present_pages may be used by memory hotplug or memory power
403 * management logic to figure out unmanaged pages by checking
404 * (present_pages - managed_pages). And managed_pages should be used
405 * by page allocator and vm scanner to calculate all kinds of watermarks
406 * and thresholds.
407 *
408 * Locking rules:
409 *
410 * zone_start_pfn and spanned_pages are protected by span_seqlock.
411 * It is a seqlock because it has to be read outside of zone->lock,
412 * and it is done in the main allocator path. But, it is written
413 * quite infrequently.
414 *
415 * The span_seq lock is declared along with zone->lock because it is
416 * frequently read in proximity to zone->lock. It's good to
417 * give them a chance of being in the same cacheline.
418 *
419 * Write access to present_pages at runtime should be protected by
420 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
421 * present_pages should get_online_mems() to get a stable value.
422 *
423 * Read access to managed_pages should be safe because it's unsigned
424 * long. Write access to zone->managed_pages and totalram_pages are
425 * protected by managed_page_count_lock at runtime. Idealy only
426 * adjust_managed_page_count() should be used instead of directly
427 * touching zone->managed_pages and totalram_pages.
428 */
429 unsigned long managed_pages;
430 unsigned long spanned_pages;
431 unsigned long present_pages;
432
433 const char *name;
434
435 #ifdef CONFIG_MEMORY_ISOLATION
436 /*
437 * Number of isolated pageblock. It is used to solve incorrect
438 * freepage counting problem due to racy retrieving migratetype
439 * of pageblock. Protected by zone->lock.
440 */
441 unsigned long nr_isolate_pageblock;
442 #endif
443
444 #ifdef CONFIG_MEMORY_HOTPLUG
445 /* see spanned/present_pages for more description */
446 seqlock_t span_seqlock;
447 #endif
448
449 /*
450 * wait_table -- the array holding the hash table
451 * wait_table_hash_nr_entries -- the size of the hash table array
452 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
453 *
454 * The purpose of all these is to keep track of the people
455 * waiting for a page to become available and make them
456 * runnable again when possible. The trouble is that this
457 * consumes a lot of space, especially when so few things
458 * wait on pages at a given time. So instead of using
459 * per-page waitqueues, we use a waitqueue hash table.
460 *
461 * The bucket discipline is to sleep on the same queue when
462 * colliding and wake all in that wait queue when removing.
463 * When something wakes, it must check to be sure its page is
464 * truly available, a la thundering herd. The cost of a
465 * collision is great, but given the expected load of the
466 * table, they should be so rare as to be outweighed by the
467 * benefits from the saved space.
468 *
469 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
470 * primary users of these fields, and in mm/page_alloc.c
471 * free_area_init_core() performs the initialization of them.
472 */
473 wait_queue_head_t *wait_table;
474 unsigned long wait_table_hash_nr_entries;
475 unsigned long wait_table_bits;
476
477 ZONE_PADDING(_pad1_)
478 /* free areas of different sizes */
479 struct free_area free_area[MAX_ORDER];
480
481 /* zone flags, see below */
482 unsigned long flags;
483
484 /* Write-intensive fields used from the page allocator */
485 spinlock_t lock;
486
487 ZONE_PADDING(_pad2_)
488
489 /* Write-intensive fields used by page reclaim */
490
491 /* Fields commonly accessed by the page reclaim scanner */
492 spinlock_t lru_lock;
493 struct lruvec lruvec;
494
495 /* Evictions & activations on the inactive file list */
496 atomic_long_t inactive_age;
497
498 /*
499 * When free pages are below this point, additional steps are taken
500 * when reading the number of free pages to avoid per-cpu counter
501 * drift allowing watermarks to be breached
502 */
503 unsigned long percpu_drift_mark;
504
505 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
506 /* pfn where compaction free scanner should start */
507 unsigned long compact_cached_free_pfn;
508 /* pfn where async and sync compaction migration scanner should start */
509 unsigned long compact_cached_migrate_pfn[2];
510 #endif
511
512 #ifdef CONFIG_COMPACTION
513 /*
514 * On compaction failure, 1<<compact_defer_shift compactions
515 * are skipped before trying again. The number attempted since
516 * last failure is tracked with compact_considered.
517 */
518 unsigned int compact_considered;
519 unsigned int compact_defer_shift;
520 int compact_order_failed;
521 #endif
522
523 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
524 /* Set to true when the PG_migrate_skip bits should be cleared */
525 bool compact_blockskip_flush;
526 #endif
527
528 ZONE_PADDING(_pad3_)
529 /* Zone statistics */
530 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
531 } ____cacheline_internodealigned_in_smp;
532
533 enum zone_flags {
534 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
535 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
536 ZONE_CONGESTED, /* zone has many dirty pages backed by
537 * a congested BDI
538 */
539 ZONE_DIRTY, /* reclaim scanning has recently found
540 * many dirty file pages at the tail
541 * of the LRU.
542 */
543 ZONE_WRITEBACK, /* reclaim scanning has recently found
544 * many pages under writeback
545 */
546 ZONE_FAIR_DEPLETED, /* fair zone policy batch depleted */
547 };
548
549 static inline unsigned long zone_end_pfn(const struct zone *zone)
550 {
551 return zone->zone_start_pfn + zone->spanned_pages;
552 }
553
554 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
555 {
556 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
557 }
558
559 static inline bool zone_is_initialized(struct zone *zone)
560 {
561 return !!zone->wait_table;
562 }
563
564 static inline bool zone_is_empty(struct zone *zone)
565 {
566 return zone->spanned_pages == 0;
567 }
568
569 /*
570 * The "priority" of VM scanning is how much of the queues we will scan in one
571 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
572 * queues ("queue_length >> 12") during an aging round.
573 */
574 #define DEF_PRIORITY 12
575
576 /* Maximum number of zones on a zonelist */
577 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
578
579 #ifdef CONFIG_NUMA
580
581 /*
582 * The NUMA zonelists are doubled because we need zonelists that restrict the
583 * allocations to a single node for __GFP_THISNODE.
584 *
585 * [0] : Zonelist with fallback
586 * [1] : No fallback (__GFP_THISNODE)
587 */
588 #define MAX_ZONELISTS 2
589 #else
590 #define MAX_ZONELISTS 1
591 #endif
592
593 /*
594 * This struct contains information about a zone in a zonelist. It is stored
595 * here to avoid dereferences into large structures and lookups of tables
596 */
597 struct zoneref {
598 struct zone *zone; /* Pointer to actual zone */
599 int zone_idx; /* zone_idx(zoneref->zone) */
600 };
601
602 /*
603 * One allocation request operates on a zonelist. A zonelist
604 * is a list of zones, the first one is the 'goal' of the
605 * allocation, the other zones are fallback zones, in decreasing
606 * priority.
607 *
608 * To speed the reading of the zonelist, the zonerefs contain the zone index
609 * of the entry being read. Helper functions to access information given
610 * a struct zoneref are
611 *
612 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
613 * zonelist_zone_idx() - Return the index of the zone for an entry
614 * zonelist_node_idx() - Return the index of the node for an entry
615 */
616 struct zonelist {
617 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
618 };
619
620 #ifndef CONFIG_DISCONTIGMEM
621 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
622 extern struct page *mem_map;
623 #endif
624
625 /*
626 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
627 * (mostly NUMA machines?) to denote a higher-level memory zone than the
628 * zone denotes.
629 *
630 * On NUMA machines, each NUMA node would have a pg_data_t to describe
631 * it's memory layout.
632 *
633 * Memory statistics and page replacement data structures are maintained on a
634 * per-zone basis.
635 */
636 struct bootmem_data;
637 typedef struct pglist_data {
638 struct zone node_zones[MAX_NR_ZONES];
639 struct zonelist node_zonelists[MAX_ZONELISTS];
640 int nr_zones;
641 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
642 struct page *node_mem_map;
643 #ifdef CONFIG_PAGE_EXTENSION
644 struct page_ext *node_page_ext;
645 #endif
646 #endif
647 #ifndef CONFIG_NO_BOOTMEM
648 struct bootmem_data *bdata;
649 #endif
650 #ifdef CONFIG_MEMORY_HOTPLUG
651 /*
652 * Must be held any time you expect node_start_pfn, node_present_pages
653 * or node_spanned_pages stay constant. Holding this will also
654 * guarantee that any pfn_valid() stays that way.
655 *
656 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
657 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
658 *
659 * Nests above zone->lock and zone->span_seqlock
660 */
661 spinlock_t node_size_lock;
662 #endif
663 unsigned long node_start_pfn;
664 unsigned long node_present_pages; /* total number of physical pages */
665 unsigned long node_spanned_pages; /* total size of physical page
666 range, including holes */
667 int node_id;
668 wait_queue_head_t kswapd_wait;
669 wait_queue_head_t pfmemalloc_wait;
670 struct task_struct *kswapd; /* Protected by
671 mem_hotplug_begin/end() */
672 int kswapd_max_order;
673 enum zone_type classzone_idx;
674 #ifdef CONFIG_NUMA_BALANCING
675 /* Lock serializing the migrate rate limiting window */
676 spinlock_t numabalancing_migrate_lock;
677
678 /* Rate limiting time interval */
679 unsigned long numabalancing_migrate_next_window;
680
681 /* Number of pages migrated during the rate limiting time interval */
682 unsigned long numabalancing_migrate_nr_pages;
683 #endif
684
685 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
686 /*
687 * If memory initialisation on large machines is deferred then this
688 * is the first PFN that needs to be initialised.
689 */
690 unsigned long first_deferred_pfn;
691 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
692 } pg_data_t;
693
694 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
695 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
696 #ifdef CONFIG_FLAT_NODE_MEM_MAP
697 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
698 #else
699 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
700 #endif
701 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
702
703 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
704 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
705
706 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
707 {
708 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
709 }
710
711 static inline bool pgdat_is_empty(pg_data_t *pgdat)
712 {
713 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
714 }
715
716 static inline int zone_id(const struct zone *zone)
717 {
718 struct pglist_data *pgdat = zone->zone_pgdat;
719
720 return zone - pgdat->node_zones;
721 }
722
723 #ifdef CONFIG_ZONE_DEVICE
724 static inline bool is_dev_zone(const struct zone *zone)
725 {
726 return zone_id(zone) == ZONE_DEVICE;
727 }
728 #else
729 static inline bool is_dev_zone(const struct zone *zone)
730 {
731 return false;
732 }
733 #endif
734
735 #include <linux/memory_hotplug.h>
736
737 extern struct mutex zonelists_mutex;
738 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
739 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
740 bool zone_watermark_ok(struct zone *z, unsigned int order,
741 unsigned long mark, int classzone_idx, int alloc_flags);
742 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
743 unsigned long mark, int classzone_idx);
744 enum memmap_context {
745 MEMMAP_EARLY,
746 MEMMAP_HOTPLUG,
747 };
748 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
749 unsigned long size);
750
751 extern void lruvec_init(struct lruvec *lruvec);
752
753 static inline struct zone *lruvec_zone(struct lruvec *lruvec)
754 {
755 #ifdef CONFIG_MEMCG
756 return lruvec->zone;
757 #else
758 return container_of(lruvec, struct zone, lruvec);
759 #endif
760 }
761
762 #ifdef CONFIG_HAVE_MEMORY_PRESENT
763 void memory_present(int nid, unsigned long start, unsigned long end);
764 #else
765 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
766 #endif
767
768 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
769 int local_memory_node(int node_id);
770 #else
771 static inline int local_memory_node(int node_id) { return node_id; };
772 #endif
773
774 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
775 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
776 #endif
777
778 /*
779 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
780 */
781 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
782
783 static inline int populated_zone(struct zone *zone)
784 {
785 return (!!zone->present_pages);
786 }
787
788 extern int movable_zone;
789
790 #ifdef CONFIG_HIGHMEM
791 static inline int zone_movable_is_highmem(void)
792 {
793 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
794 return movable_zone == ZONE_HIGHMEM;
795 #else
796 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
797 #endif
798 }
799 #endif
800
801 static inline int is_highmem_idx(enum zone_type idx)
802 {
803 #ifdef CONFIG_HIGHMEM
804 return (idx == ZONE_HIGHMEM ||
805 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
806 #else
807 return 0;
808 #endif
809 }
810
811 /**
812 * is_highmem - helper function to quickly check if a struct zone is a
813 * highmem zone or not. This is an attempt to keep references
814 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
815 * @zone - pointer to struct zone variable
816 */
817 static inline int is_highmem(struct zone *zone)
818 {
819 #ifdef CONFIG_HIGHMEM
820 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
821 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
822 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
823 zone_movable_is_highmem());
824 #else
825 return 0;
826 #endif
827 }
828
829 /* These two functions are used to setup the per zone pages min values */
830 struct ctl_table;
831 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
832 void __user *, size_t *, loff_t *);
833 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
834 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
835 void __user *, size_t *, loff_t *);
836 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
837 void __user *, size_t *, loff_t *);
838 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
839 void __user *, size_t *, loff_t *);
840 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
841 void __user *, size_t *, loff_t *);
842
843 extern int numa_zonelist_order_handler(struct ctl_table *, int,
844 void __user *, size_t *, loff_t *);
845 extern char numa_zonelist_order[];
846 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
847
848 #ifndef CONFIG_NEED_MULTIPLE_NODES
849
850 extern struct pglist_data contig_page_data;
851 #define NODE_DATA(nid) (&contig_page_data)
852 #define NODE_MEM_MAP(nid) mem_map
853
854 #else /* CONFIG_NEED_MULTIPLE_NODES */
855
856 #include <asm/mmzone.h>
857
858 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
859
860 extern struct pglist_data *first_online_pgdat(void);
861 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
862 extern struct zone *next_zone(struct zone *zone);
863
864 /**
865 * for_each_online_pgdat - helper macro to iterate over all online nodes
866 * @pgdat - pointer to a pg_data_t variable
867 */
868 #define for_each_online_pgdat(pgdat) \
869 for (pgdat = first_online_pgdat(); \
870 pgdat; \
871 pgdat = next_online_pgdat(pgdat))
872 /**
873 * for_each_zone - helper macro to iterate over all memory zones
874 * @zone - pointer to struct zone variable
875 *
876 * The user only needs to declare the zone variable, for_each_zone
877 * fills it in.
878 */
879 #define for_each_zone(zone) \
880 for (zone = (first_online_pgdat())->node_zones; \
881 zone; \
882 zone = next_zone(zone))
883
884 #define for_each_populated_zone(zone) \
885 for (zone = (first_online_pgdat())->node_zones; \
886 zone; \
887 zone = next_zone(zone)) \
888 if (!populated_zone(zone)) \
889 ; /* do nothing */ \
890 else
891
892 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
893 {
894 return zoneref->zone;
895 }
896
897 static inline int zonelist_zone_idx(struct zoneref *zoneref)
898 {
899 return zoneref->zone_idx;
900 }
901
902 static inline int zonelist_node_idx(struct zoneref *zoneref)
903 {
904 #ifdef CONFIG_NUMA
905 /* zone_to_nid not available in this context */
906 return zoneref->zone->node;
907 #else
908 return 0;
909 #endif /* CONFIG_NUMA */
910 }
911
912 /**
913 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
914 * @z - The cursor used as a starting point for the search
915 * @highest_zoneidx - The zone index of the highest zone to return
916 * @nodes - An optional nodemask to filter the zonelist with
917 *
918 * This function returns the next zone at or below a given zone index that is
919 * within the allowed nodemask using a cursor as the starting point for the
920 * search. The zoneref returned is a cursor that represents the current zone
921 * being examined. It should be advanced by one before calling
922 * next_zones_zonelist again.
923 */
924 struct zoneref *next_zones_zonelist(struct zoneref *z,
925 enum zone_type highest_zoneidx,
926 nodemask_t *nodes);
927
928 /**
929 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
930 * @zonelist - The zonelist to search for a suitable zone
931 * @highest_zoneidx - The zone index of the highest zone to return
932 * @nodes - An optional nodemask to filter the zonelist with
933 * @zone - The first suitable zone found is returned via this parameter
934 *
935 * This function returns the first zone at or below a given zone index that is
936 * within the allowed nodemask. The zoneref returned is a cursor that can be
937 * used to iterate the zonelist with next_zones_zonelist by advancing it by
938 * one before calling.
939 */
940 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
941 enum zone_type highest_zoneidx,
942 nodemask_t *nodes,
943 struct zone **zone)
944 {
945 struct zoneref *z = next_zones_zonelist(zonelist->_zonerefs,
946 highest_zoneidx, nodes);
947 *zone = zonelist_zone(z);
948 return z;
949 }
950
951 /**
952 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
953 * @zone - The current zone in the iterator
954 * @z - The current pointer within zonelist->zones being iterated
955 * @zlist - The zonelist being iterated
956 * @highidx - The zone index of the highest zone to return
957 * @nodemask - Nodemask allowed by the allocator
958 *
959 * This iterator iterates though all zones at or below a given zone index and
960 * within a given nodemask
961 */
962 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
963 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
964 zone; \
965 z = next_zones_zonelist(++z, highidx, nodemask), \
966 zone = zonelist_zone(z)) \
967
968 /**
969 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
970 * @zone - The current zone in the iterator
971 * @z - The current pointer within zonelist->zones being iterated
972 * @zlist - The zonelist being iterated
973 * @highidx - The zone index of the highest zone to return
974 *
975 * This iterator iterates though all zones at or below a given zone index.
976 */
977 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
978 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
979
980 #ifdef CONFIG_SPARSEMEM
981 #include <asm/sparsemem.h>
982 #endif
983
984 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
985 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
986 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
987 {
988 return 0;
989 }
990 #endif
991
992 #ifdef CONFIG_FLATMEM
993 #define pfn_to_nid(pfn) (0)
994 #endif
995
996 #ifdef CONFIG_SPARSEMEM
997
998 /*
999 * SECTION_SHIFT #bits space required to store a section #
1000 *
1001 * PA_SECTION_SHIFT physical address to/from section number
1002 * PFN_SECTION_SHIFT pfn to/from section number
1003 */
1004 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1005 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1006
1007 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1008
1009 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1010 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1011
1012 #define SECTION_BLOCKFLAGS_BITS \
1013 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1014
1015 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1016 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1017 #endif
1018
1019 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1020 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1021
1022 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1023 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1024
1025 struct page;
1026 struct page_ext;
1027 struct mem_section {
1028 /*
1029 * This is, logically, a pointer to an array of struct
1030 * pages. However, it is stored with some other magic.
1031 * (see sparse.c::sparse_init_one_section())
1032 *
1033 * Additionally during early boot we encode node id of
1034 * the location of the section here to guide allocation.
1035 * (see sparse.c::memory_present())
1036 *
1037 * Making it a UL at least makes someone do a cast
1038 * before using it wrong.
1039 */
1040 unsigned long section_mem_map;
1041
1042 /* See declaration of similar field in struct zone */
1043 unsigned long *pageblock_flags;
1044 #ifdef CONFIG_PAGE_EXTENSION
1045 /*
1046 * If !SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1047 * section. (see page_ext.h about this.)
1048 */
1049 struct page_ext *page_ext;
1050 unsigned long pad;
1051 #endif
1052 /*
1053 * WARNING: mem_section must be a power-of-2 in size for the
1054 * calculation and use of SECTION_ROOT_MASK to make sense.
1055 */
1056 };
1057
1058 #ifdef CONFIG_SPARSEMEM_EXTREME
1059 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1060 #else
1061 #define SECTIONS_PER_ROOT 1
1062 #endif
1063
1064 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1065 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1066 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1067
1068 #ifdef CONFIG_SPARSEMEM_EXTREME
1069 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1070 #else
1071 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1072 #endif
1073
1074 static inline struct mem_section *__nr_to_section(unsigned long nr)
1075 {
1076 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1077 return NULL;
1078 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1079 }
1080 extern int __section_nr(struct mem_section* ms);
1081 extern unsigned long usemap_size(void);
1082
1083 /*
1084 * We use the lower bits of the mem_map pointer to store
1085 * a little bit of information. There should be at least
1086 * 3 bits here due to 32-bit alignment.
1087 */
1088 #define SECTION_MARKED_PRESENT (1UL<<0)
1089 #define SECTION_HAS_MEM_MAP (1UL<<1)
1090 #define SECTION_MAP_LAST_BIT (1UL<<2)
1091 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1092 #define SECTION_NID_SHIFT 2
1093
1094 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1095 {
1096 unsigned long map = section->section_mem_map;
1097 map &= SECTION_MAP_MASK;
1098 return (struct page *)map;
1099 }
1100
1101 static inline int present_section(struct mem_section *section)
1102 {
1103 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1104 }
1105
1106 static inline int present_section_nr(unsigned long nr)
1107 {
1108 return present_section(__nr_to_section(nr));
1109 }
1110
1111 static inline int valid_section(struct mem_section *section)
1112 {
1113 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1114 }
1115
1116 static inline int valid_section_nr(unsigned long nr)
1117 {
1118 return valid_section(__nr_to_section(nr));
1119 }
1120
1121 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1122 {
1123 return __nr_to_section(pfn_to_section_nr(pfn));
1124 }
1125
1126 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1127 static inline int pfn_valid(unsigned long pfn)
1128 {
1129 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1130 return 0;
1131 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1132 }
1133 #endif
1134
1135 static inline int pfn_present(unsigned long pfn)
1136 {
1137 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1138 return 0;
1139 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1140 }
1141
1142 /*
1143 * These are _only_ used during initialisation, therefore they
1144 * can use __initdata ... They could have names to indicate
1145 * this restriction.
1146 */
1147 #ifdef CONFIG_NUMA
1148 #define pfn_to_nid(pfn) \
1149 ({ \
1150 unsigned long __pfn_to_nid_pfn = (pfn); \
1151 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1152 })
1153 #else
1154 #define pfn_to_nid(pfn) (0)
1155 #endif
1156
1157 #define early_pfn_valid(pfn) pfn_valid(pfn)
1158 void sparse_init(void);
1159 #else
1160 #define sparse_init() do {} while (0)
1161 #define sparse_index_init(_sec, _nid) do {} while (0)
1162 #endif /* CONFIG_SPARSEMEM */
1163
1164 /*
1165 * During memory init memblocks map pfns to nids. The search is expensive and
1166 * this caches recent lookups. The implementation of __early_pfn_to_nid
1167 * may treat start/end as pfns or sections.
1168 */
1169 struct mminit_pfnnid_cache {
1170 unsigned long last_start;
1171 unsigned long last_end;
1172 int last_nid;
1173 };
1174
1175 #ifndef early_pfn_valid
1176 #define early_pfn_valid(pfn) (1)
1177 #endif
1178
1179 void memory_present(int nid, unsigned long start, unsigned long end);
1180 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1181
1182 /*
1183 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1184 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1185 * pfn_valid_within() should be used in this case; we optimise this away
1186 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1187 */
1188 #ifdef CONFIG_HOLES_IN_ZONE
1189 #define pfn_valid_within(pfn) pfn_valid(pfn)
1190 #else
1191 #define pfn_valid_within(pfn) (1)
1192 #endif
1193
1194 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1195 /*
1196 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1197 * associated with it or not. In FLATMEM, it is expected that holes always
1198 * have valid memmap as long as there is valid PFNs either side of the hole.
1199 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1200 * entire section.
1201 *
1202 * However, an ARM, and maybe other embedded architectures in the future
1203 * free memmap backing holes to save memory on the assumption the memmap is
1204 * never used. The page_zone linkages are then broken even though pfn_valid()
1205 * returns true. A walker of the full memmap must then do this additional
1206 * check to ensure the memmap they are looking at is sane by making sure
1207 * the zone and PFN linkages are still valid. This is expensive, but walkers
1208 * of the full memmap are extremely rare.
1209 */
1210 int memmap_valid_within(unsigned long pfn,
1211 struct page *page, struct zone *zone);
1212 #else
1213 static inline int memmap_valid_within(unsigned long pfn,
1214 struct page *page, struct zone *zone)
1215 {
1216 return 1;
1217 }
1218 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1219
1220 #endif /* !__GENERATING_BOUNDS.H */
1221 #endif /* !__ASSEMBLY__ */
1222 #endif /* _LINUX_MMZONE_H */
This page took 0.063558 seconds and 5 git commands to generate.