mm: keep page cache radix tree nodes in check
[deliverable/linux.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30 /*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coalesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37
38 enum {
39 MIGRATE_UNMOVABLE,
40 MIGRATE_RECLAIMABLE,
41 MIGRATE_MOVABLE,
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_RESERVE = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59 #endif
60 #ifdef CONFIG_MEMORY_ISOLATION
61 MIGRATE_ISOLATE, /* can't allocate from here */
62 #endif
63 MIGRATE_TYPES
64 };
65
66 #ifdef CONFIG_CMA
67 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
68 #else
69 # define is_migrate_cma(migratetype) false
70 #endif
71
72 #define for_each_migratetype_order(order, type) \
73 for (order = 0; order < MAX_ORDER; order++) \
74 for (type = 0; type < MIGRATE_TYPES; type++)
75
76 extern int page_group_by_mobility_disabled;
77
78 static inline int get_pageblock_migratetype(struct page *page)
79 {
80 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
81 }
82
83 struct free_area {
84 struct list_head free_list[MIGRATE_TYPES];
85 unsigned long nr_free;
86 };
87
88 struct pglist_data;
89
90 /*
91 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
92 * So add a wild amount of padding here to ensure that they fall into separate
93 * cachelines. There are very few zone structures in the machine, so space
94 * consumption is not a concern here.
95 */
96 #if defined(CONFIG_SMP)
97 struct zone_padding {
98 char x[0];
99 } ____cacheline_internodealigned_in_smp;
100 #define ZONE_PADDING(name) struct zone_padding name;
101 #else
102 #define ZONE_PADDING(name)
103 #endif
104
105 enum zone_stat_item {
106 /* First 128 byte cacheline (assuming 64 bit words) */
107 NR_FREE_PAGES,
108 NR_ALLOC_BATCH,
109 NR_LRU_BASE,
110 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
111 NR_ACTIVE_ANON, /* " " " " " */
112 NR_INACTIVE_FILE, /* " " " " " */
113 NR_ACTIVE_FILE, /* " " " " " */
114 NR_UNEVICTABLE, /* " " " " " */
115 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
116 NR_ANON_PAGES, /* Mapped anonymous pages */
117 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
118 only modified from process context */
119 NR_FILE_PAGES,
120 NR_FILE_DIRTY,
121 NR_WRITEBACK,
122 NR_SLAB_RECLAIMABLE,
123 NR_SLAB_UNRECLAIMABLE,
124 NR_PAGETABLE, /* used for pagetables */
125 NR_KERNEL_STACK,
126 /* Second 128 byte cacheline */
127 NR_UNSTABLE_NFS, /* NFS unstable pages */
128 NR_BOUNCE,
129 NR_VMSCAN_WRITE,
130 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
131 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
132 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
133 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
134 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
135 NR_DIRTIED, /* page dirtyings since bootup */
136 NR_WRITTEN, /* page writings since bootup */
137 #ifdef CONFIG_NUMA
138 NUMA_HIT, /* allocated in intended node */
139 NUMA_MISS, /* allocated in non intended node */
140 NUMA_FOREIGN, /* was intended here, hit elsewhere */
141 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
142 NUMA_LOCAL, /* allocation from local node */
143 NUMA_OTHER, /* allocation from other node */
144 #endif
145 WORKINGSET_REFAULT,
146 WORKINGSET_ACTIVATE,
147 WORKINGSET_NODERECLAIM,
148 NR_ANON_TRANSPARENT_HUGEPAGES,
149 NR_FREE_CMA_PAGES,
150 NR_VM_ZONE_STAT_ITEMS };
151
152 /*
153 * We do arithmetic on the LRU lists in various places in the code,
154 * so it is important to keep the active lists LRU_ACTIVE higher in
155 * the array than the corresponding inactive lists, and to keep
156 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
157 *
158 * This has to be kept in sync with the statistics in zone_stat_item
159 * above and the descriptions in vmstat_text in mm/vmstat.c
160 */
161 #define LRU_BASE 0
162 #define LRU_ACTIVE 1
163 #define LRU_FILE 2
164
165 enum lru_list {
166 LRU_INACTIVE_ANON = LRU_BASE,
167 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
168 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
169 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
170 LRU_UNEVICTABLE,
171 NR_LRU_LISTS
172 };
173
174 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
175
176 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
177
178 static inline int is_file_lru(enum lru_list lru)
179 {
180 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
181 }
182
183 static inline int is_active_lru(enum lru_list lru)
184 {
185 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
186 }
187
188 static inline int is_unevictable_lru(enum lru_list lru)
189 {
190 return (lru == LRU_UNEVICTABLE);
191 }
192
193 struct zone_reclaim_stat {
194 /*
195 * The pageout code in vmscan.c keeps track of how many of the
196 * mem/swap backed and file backed pages are referenced.
197 * The higher the rotated/scanned ratio, the more valuable
198 * that cache is.
199 *
200 * The anon LRU stats live in [0], file LRU stats in [1]
201 */
202 unsigned long recent_rotated[2];
203 unsigned long recent_scanned[2];
204 };
205
206 struct lruvec {
207 struct list_head lists[NR_LRU_LISTS];
208 struct zone_reclaim_stat reclaim_stat;
209 #ifdef CONFIG_MEMCG
210 struct zone *zone;
211 #endif
212 };
213
214 /* Mask used at gathering information at once (see memcontrol.c) */
215 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
216 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
217 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
218
219 /* Isolate clean file */
220 #define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
221 /* Isolate unmapped file */
222 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
223 /* Isolate for asynchronous migration */
224 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
225 /* Isolate unevictable pages */
226 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
227
228 /* LRU Isolation modes. */
229 typedef unsigned __bitwise__ isolate_mode_t;
230
231 enum zone_watermarks {
232 WMARK_MIN,
233 WMARK_LOW,
234 WMARK_HIGH,
235 NR_WMARK
236 };
237
238 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
239 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
240 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
241
242 struct per_cpu_pages {
243 int count; /* number of pages in the list */
244 int high; /* high watermark, emptying needed */
245 int batch; /* chunk size for buddy add/remove */
246
247 /* Lists of pages, one per migrate type stored on the pcp-lists */
248 struct list_head lists[MIGRATE_PCPTYPES];
249 };
250
251 struct per_cpu_pageset {
252 struct per_cpu_pages pcp;
253 #ifdef CONFIG_NUMA
254 s8 expire;
255 #endif
256 #ifdef CONFIG_SMP
257 s8 stat_threshold;
258 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
259 #endif
260 };
261
262 #endif /* !__GENERATING_BOUNDS.H */
263
264 enum zone_type {
265 #ifdef CONFIG_ZONE_DMA
266 /*
267 * ZONE_DMA is used when there are devices that are not able
268 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
269 * carve out the portion of memory that is needed for these devices.
270 * The range is arch specific.
271 *
272 * Some examples
273 *
274 * Architecture Limit
275 * ---------------------------
276 * parisc, ia64, sparc <4G
277 * s390 <2G
278 * arm Various
279 * alpha Unlimited or 0-16MB.
280 *
281 * i386, x86_64 and multiple other arches
282 * <16M.
283 */
284 ZONE_DMA,
285 #endif
286 #ifdef CONFIG_ZONE_DMA32
287 /*
288 * x86_64 needs two ZONE_DMAs because it supports devices that are
289 * only able to do DMA to the lower 16M but also 32 bit devices that
290 * can only do DMA areas below 4G.
291 */
292 ZONE_DMA32,
293 #endif
294 /*
295 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
296 * performed on pages in ZONE_NORMAL if the DMA devices support
297 * transfers to all addressable memory.
298 */
299 ZONE_NORMAL,
300 #ifdef CONFIG_HIGHMEM
301 /*
302 * A memory area that is only addressable by the kernel through
303 * mapping portions into its own address space. This is for example
304 * used by i386 to allow the kernel to address the memory beyond
305 * 900MB. The kernel will set up special mappings (page
306 * table entries on i386) for each page that the kernel needs to
307 * access.
308 */
309 ZONE_HIGHMEM,
310 #endif
311 ZONE_MOVABLE,
312 __MAX_NR_ZONES
313 };
314
315 #ifndef __GENERATING_BOUNDS_H
316
317 struct zone {
318 /* Fields commonly accessed by the page allocator */
319
320 /* zone watermarks, access with *_wmark_pages(zone) macros */
321 unsigned long watermark[NR_WMARK];
322
323 /*
324 * When free pages are below this point, additional steps are taken
325 * when reading the number of free pages to avoid per-cpu counter
326 * drift allowing watermarks to be breached
327 */
328 unsigned long percpu_drift_mark;
329
330 /*
331 * We don't know if the memory that we're going to allocate will be freeable
332 * or/and it will be released eventually, so to avoid totally wasting several
333 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
334 * to run OOM on the lower zones despite there's tons of freeable ram
335 * on the higher zones). This array is recalculated at runtime if the
336 * sysctl_lowmem_reserve_ratio sysctl changes.
337 */
338 unsigned long lowmem_reserve[MAX_NR_ZONES];
339
340 /*
341 * This is a per-zone reserve of pages that should not be
342 * considered dirtyable memory.
343 */
344 unsigned long dirty_balance_reserve;
345
346 #ifdef CONFIG_NUMA
347 int node;
348 /*
349 * zone reclaim becomes active if more unmapped pages exist.
350 */
351 unsigned long min_unmapped_pages;
352 unsigned long min_slab_pages;
353 #endif
354 struct per_cpu_pageset __percpu *pageset;
355 /*
356 * free areas of different sizes
357 */
358 spinlock_t lock;
359 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
360 /* Set to true when the PG_migrate_skip bits should be cleared */
361 bool compact_blockskip_flush;
362
363 /* pfns where compaction scanners should start */
364 unsigned long compact_cached_free_pfn;
365 unsigned long compact_cached_migrate_pfn;
366 #endif
367 #ifdef CONFIG_MEMORY_HOTPLUG
368 /* see spanned/present_pages for more description */
369 seqlock_t span_seqlock;
370 #endif
371 struct free_area free_area[MAX_ORDER];
372
373 #ifndef CONFIG_SPARSEMEM
374 /*
375 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
376 * In SPARSEMEM, this map is stored in struct mem_section
377 */
378 unsigned long *pageblock_flags;
379 #endif /* CONFIG_SPARSEMEM */
380
381 #ifdef CONFIG_COMPACTION
382 /*
383 * On compaction failure, 1<<compact_defer_shift compactions
384 * are skipped before trying again. The number attempted since
385 * last failure is tracked with compact_considered.
386 */
387 unsigned int compact_considered;
388 unsigned int compact_defer_shift;
389 int compact_order_failed;
390 #endif
391
392 ZONE_PADDING(_pad1_)
393
394 /* Fields commonly accessed by the page reclaim scanner */
395 spinlock_t lru_lock;
396 struct lruvec lruvec;
397
398 /* Evictions & activations on the inactive file list */
399 atomic_long_t inactive_age;
400
401 unsigned long pages_scanned; /* since last reclaim */
402 unsigned long flags; /* zone flags, see below */
403
404 /* Zone statistics */
405 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
406
407 /*
408 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
409 * this zone's LRU. Maintained by the pageout code.
410 */
411 unsigned int inactive_ratio;
412
413
414 ZONE_PADDING(_pad2_)
415 /* Rarely used or read-mostly fields */
416
417 /*
418 * wait_table -- the array holding the hash table
419 * wait_table_hash_nr_entries -- the size of the hash table array
420 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
421 *
422 * The purpose of all these is to keep track of the people
423 * waiting for a page to become available and make them
424 * runnable again when possible. The trouble is that this
425 * consumes a lot of space, especially when so few things
426 * wait on pages at a given time. So instead of using
427 * per-page waitqueues, we use a waitqueue hash table.
428 *
429 * The bucket discipline is to sleep on the same queue when
430 * colliding and wake all in that wait queue when removing.
431 * When something wakes, it must check to be sure its page is
432 * truly available, a la thundering herd. The cost of a
433 * collision is great, but given the expected load of the
434 * table, they should be so rare as to be outweighed by the
435 * benefits from the saved space.
436 *
437 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
438 * primary users of these fields, and in mm/page_alloc.c
439 * free_area_init_core() performs the initialization of them.
440 */
441 wait_queue_head_t * wait_table;
442 unsigned long wait_table_hash_nr_entries;
443 unsigned long wait_table_bits;
444
445 /*
446 * Discontig memory support fields.
447 */
448 struct pglist_data *zone_pgdat;
449 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
450 unsigned long zone_start_pfn;
451
452 /*
453 * spanned_pages is the total pages spanned by the zone, including
454 * holes, which is calculated as:
455 * spanned_pages = zone_end_pfn - zone_start_pfn;
456 *
457 * present_pages is physical pages existing within the zone, which
458 * is calculated as:
459 * present_pages = spanned_pages - absent_pages(pages in holes);
460 *
461 * managed_pages is present pages managed by the buddy system, which
462 * is calculated as (reserved_pages includes pages allocated by the
463 * bootmem allocator):
464 * managed_pages = present_pages - reserved_pages;
465 *
466 * So present_pages may be used by memory hotplug or memory power
467 * management logic to figure out unmanaged pages by checking
468 * (present_pages - managed_pages). And managed_pages should be used
469 * by page allocator and vm scanner to calculate all kinds of watermarks
470 * and thresholds.
471 *
472 * Locking rules:
473 *
474 * zone_start_pfn and spanned_pages are protected by span_seqlock.
475 * It is a seqlock because it has to be read outside of zone->lock,
476 * and it is done in the main allocator path. But, it is written
477 * quite infrequently.
478 *
479 * The span_seq lock is declared along with zone->lock because it is
480 * frequently read in proximity to zone->lock. It's good to
481 * give them a chance of being in the same cacheline.
482 *
483 * Write access to present_pages at runtime should be protected by
484 * lock_memory_hotplug()/unlock_memory_hotplug(). Any reader who can't
485 * tolerant drift of present_pages should hold memory hotplug lock to
486 * get a stable value.
487 *
488 * Read access to managed_pages should be safe because it's unsigned
489 * long. Write access to zone->managed_pages and totalram_pages are
490 * protected by managed_page_count_lock at runtime. Idealy only
491 * adjust_managed_page_count() should be used instead of directly
492 * touching zone->managed_pages and totalram_pages.
493 */
494 unsigned long spanned_pages;
495 unsigned long present_pages;
496 unsigned long managed_pages;
497
498 /*
499 * Number of MIGRATE_RESEVE page block. To maintain for just
500 * optimization. Protected by zone->lock.
501 */
502 int nr_migrate_reserve_block;
503
504 /*
505 * rarely used fields:
506 */
507 const char *name;
508 } ____cacheline_internodealigned_in_smp;
509
510 typedef enum {
511 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
512 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
513 ZONE_CONGESTED, /* zone has many dirty pages backed by
514 * a congested BDI
515 */
516 ZONE_TAIL_LRU_DIRTY, /* reclaim scanning has recently found
517 * many dirty file pages at the tail
518 * of the LRU.
519 */
520 ZONE_WRITEBACK, /* reclaim scanning has recently found
521 * many pages under writeback
522 */
523 } zone_flags_t;
524
525 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
526 {
527 set_bit(flag, &zone->flags);
528 }
529
530 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
531 {
532 return test_and_set_bit(flag, &zone->flags);
533 }
534
535 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
536 {
537 clear_bit(flag, &zone->flags);
538 }
539
540 static inline int zone_is_reclaim_congested(const struct zone *zone)
541 {
542 return test_bit(ZONE_CONGESTED, &zone->flags);
543 }
544
545 static inline int zone_is_reclaim_dirty(const struct zone *zone)
546 {
547 return test_bit(ZONE_TAIL_LRU_DIRTY, &zone->flags);
548 }
549
550 static inline int zone_is_reclaim_writeback(const struct zone *zone)
551 {
552 return test_bit(ZONE_WRITEBACK, &zone->flags);
553 }
554
555 static inline int zone_is_reclaim_locked(const struct zone *zone)
556 {
557 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
558 }
559
560 static inline int zone_is_oom_locked(const struct zone *zone)
561 {
562 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
563 }
564
565 static inline unsigned long zone_end_pfn(const struct zone *zone)
566 {
567 return zone->zone_start_pfn + zone->spanned_pages;
568 }
569
570 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
571 {
572 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
573 }
574
575 static inline bool zone_is_initialized(struct zone *zone)
576 {
577 return !!zone->wait_table;
578 }
579
580 static inline bool zone_is_empty(struct zone *zone)
581 {
582 return zone->spanned_pages == 0;
583 }
584
585 /*
586 * The "priority" of VM scanning is how much of the queues we will scan in one
587 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
588 * queues ("queue_length >> 12") during an aging round.
589 */
590 #define DEF_PRIORITY 12
591
592 /* Maximum number of zones on a zonelist */
593 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
594
595 #ifdef CONFIG_NUMA
596
597 /*
598 * The NUMA zonelists are doubled because we need zonelists that restrict the
599 * allocations to a single node for __GFP_THISNODE.
600 *
601 * [0] : Zonelist with fallback
602 * [1] : No fallback (__GFP_THISNODE)
603 */
604 #define MAX_ZONELISTS 2
605
606
607 /*
608 * We cache key information from each zonelist for smaller cache
609 * footprint when scanning for free pages in get_page_from_freelist().
610 *
611 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
612 * up short of free memory since the last time (last_fullzone_zap)
613 * we zero'd fullzones.
614 * 2) The array z_to_n[] maps each zone in the zonelist to its node
615 * id, so that we can efficiently evaluate whether that node is
616 * set in the current tasks mems_allowed.
617 *
618 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
619 * indexed by a zones offset in the zonelist zones[] array.
620 *
621 * The get_page_from_freelist() routine does two scans. During the
622 * first scan, we skip zones whose corresponding bit in 'fullzones'
623 * is set or whose corresponding node in current->mems_allowed (which
624 * comes from cpusets) is not set. During the second scan, we bypass
625 * this zonelist_cache, to ensure we look methodically at each zone.
626 *
627 * Once per second, we zero out (zap) fullzones, forcing us to
628 * reconsider nodes that might have regained more free memory.
629 * The field last_full_zap is the time we last zapped fullzones.
630 *
631 * This mechanism reduces the amount of time we waste repeatedly
632 * reexaming zones for free memory when they just came up low on
633 * memory momentarilly ago.
634 *
635 * The zonelist_cache struct members logically belong in struct
636 * zonelist. However, the mempolicy zonelists constructed for
637 * MPOL_BIND are intentionally variable length (and usually much
638 * shorter). A general purpose mechanism for handling structs with
639 * multiple variable length members is more mechanism than we want
640 * here. We resort to some special case hackery instead.
641 *
642 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
643 * part because they are shorter), so we put the fixed length stuff
644 * at the front of the zonelist struct, ending in a variable length
645 * zones[], as is needed by MPOL_BIND.
646 *
647 * Then we put the optional zonelist cache on the end of the zonelist
648 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
649 * the fixed length portion at the front of the struct. This pointer
650 * both enables us to find the zonelist cache, and in the case of
651 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
652 * to know that the zonelist cache is not there.
653 *
654 * The end result is that struct zonelists come in two flavors:
655 * 1) The full, fixed length version, shown below, and
656 * 2) The custom zonelists for MPOL_BIND.
657 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
658 *
659 * Even though there may be multiple CPU cores on a node modifying
660 * fullzones or last_full_zap in the same zonelist_cache at the same
661 * time, we don't lock it. This is just hint data - if it is wrong now
662 * and then, the allocator will still function, perhaps a bit slower.
663 */
664
665
666 struct zonelist_cache {
667 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
668 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
669 unsigned long last_full_zap; /* when last zap'd (jiffies) */
670 };
671 #else
672 #define MAX_ZONELISTS 1
673 struct zonelist_cache;
674 #endif
675
676 /*
677 * This struct contains information about a zone in a zonelist. It is stored
678 * here to avoid dereferences into large structures and lookups of tables
679 */
680 struct zoneref {
681 struct zone *zone; /* Pointer to actual zone */
682 int zone_idx; /* zone_idx(zoneref->zone) */
683 };
684
685 /*
686 * One allocation request operates on a zonelist. A zonelist
687 * is a list of zones, the first one is the 'goal' of the
688 * allocation, the other zones are fallback zones, in decreasing
689 * priority.
690 *
691 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
692 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
693 * *
694 * To speed the reading of the zonelist, the zonerefs contain the zone index
695 * of the entry being read. Helper functions to access information given
696 * a struct zoneref are
697 *
698 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
699 * zonelist_zone_idx() - Return the index of the zone for an entry
700 * zonelist_node_idx() - Return the index of the node for an entry
701 */
702 struct zonelist {
703 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
704 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
705 #ifdef CONFIG_NUMA
706 struct zonelist_cache zlcache; // optional ...
707 #endif
708 };
709
710 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
711 struct node_active_region {
712 unsigned long start_pfn;
713 unsigned long end_pfn;
714 int nid;
715 };
716 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
717
718 #ifndef CONFIG_DISCONTIGMEM
719 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
720 extern struct page *mem_map;
721 #endif
722
723 /*
724 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
725 * (mostly NUMA machines?) to denote a higher-level memory zone than the
726 * zone denotes.
727 *
728 * On NUMA machines, each NUMA node would have a pg_data_t to describe
729 * it's memory layout.
730 *
731 * Memory statistics and page replacement data structures are maintained on a
732 * per-zone basis.
733 */
734 struct bootmem_data;
735 typedef struct pglist_data {
736 struct zone node_zones[MAX_NR_ZONES];
737 struct zonelist node_zonelists[MAX_ZONELISTS];
738 int nr_zones;
739 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
740 struct page *node_mem_map;
741 #ifdef CONFIG_MEMCG
742 struct page_cgroup *node_page_cgroup;
743 #endif
744 #endif
745 #ifndef CONFIG_NO_BOOTMEM
746 struct bootmem_data *bdata;
747 #endif
748 #ifdef CONFIG_MEMORY_HOTPLUG
749 /*
750 * Must be held any time you expect node_start_pfn, node_present_pages
751 * or node_spanned_pages stay constant. Holding this will also
752 * guarantee that any pfn_valid() stays that way.
753 *
754 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
755 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
756 *
757 * Nests above zone->lock and zone->span_seqlock
758 */
759 spinlock_t node_size_lock;
760 #endif
761 unsigned long node_start_pfn;
762 unsigned long node_present_pages; /* total number of physical pages */
763 unsigned long node_spanned_pages; /* total size of physical page
764 range, including holes */
765 int node_id;
766 nodemask_t reclaim_nodes; /* Nodes allowed to reclaim from */
767 wait_queue_head_t kswapd_wait;
768 wait_queue_head_t pfmemalloc_wait;
769 struct task_struct *kswapd; /* Protected by lock_memory_hotplug() */
770 int kswapd_max_order;
771 enum zone_type classzone_idx;
772 #ifdef CONFIG_NUMA_BALANCING
773 /* Lock serializing the migrate rate limiting window */
774 spinlock_t numabalancing_migrate_lock;
775
776 /* Rate limiting time interval */
777 unsigned long numabalancing_migrate_next_window;
778
779 /* Number of pages migrated during the rate limiting time interval */
780 unsigned long numabalancing_migrate_nr_pages;
781 #endif
782 } pg_data_t;
783
784 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
785 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
786 #ifdef CONFIG_FLAT_NODE_MEM_MAP
787 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
788 #else
789 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
790 #endif
791 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
792
793 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
794 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
795
796 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
797 {
798 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
799 }
800
801 static inline bool pgdat_is_empty(pg_data_t *pgdat)
802 {
803 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
804 }
805
806 #include <linux/memory_hotplug.h>
807
808 extern struct mutex zonelists_mutex;
809 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
810 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
811 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
812 int classzone_idx, int alloc_flags);
813 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
814 int classzone_idx, int alloc_flags);
815 enum memmap_context {
816 MEMMAP_EARLY,
817 MEMMAP_HOTPLUG,
818 };
819 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
820 unsigned long size,
821 enum memmap_context context);
822
823 extern void lruvec_init(struct lruvec *lruvec);
824
825 static inline struct zone *lruvec_zone(struct lruvec *lruvec)
826 {
827 #ifdef CONFIG_MEMCG
828 return lruvec->zone;
829 #else
830 return container_of(lruvec, struct zone, lruvec);
831 #endif
832 }
833
834 #ifdef CONFIG_HAVE_MEMORY_PRESENT
835 void memory_present(int nid, unsigned long start, unsigned long end);
836 #else
837 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
838 #endif
839
840 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
841 int local_memory_node(int node_id);
842 #else
843 static inline int local_memory_node(int node_id) { return node_id; };
844 #endif
845
846 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
847 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
848 #endif
849
850 /*
851 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
852 */
853 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
854
855 static inline int populated_zone(struct zone *zone)
856 {
857 return (!!zone->present_pages);
858 }
859
860 extern int movable_zone;
861
862 static inline int zone_movable_is_highmem(void)
863 {
864 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
865 return movable_zone == ZONE_HIGHMEM;
866 #else
867 return 0;
868 #endif
869 }
870
871 static inline int is_highmem_idx(enum zone_type idx)
872 {
873 #ifdef CONFIG_HIGHMEM
874 return (idx == ZONE_HIGHMEM ||
875 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
876 #else
877 return 0;
878 #endif
879 }
880
881 /**
882 * is_highmem - helper function to quickly check if a struct zone is a
883 * highmem zone or not. This is an attempt to keep references
884 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
885 * @zone - pointer to struct zone variable
886 */
887 static inline int is_highmem(struct zone *zone)
888 {
889 #ifdef CONFIG_HIGHMEM
890 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
891 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
892 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
893 zone_movable_is_highmem());
894 #else
895 return 0;
896 #endif
897 }
898
899 /* These two functions are used to setup the per zone pages min values */
900 struct ctl_table;
901 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
902 void __user *, size_t *, loff_t *);
903 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
904 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
905 void __user *, size_t *, loff_t *);
906 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
907 void __user *, size_t *, loff_t *);
908 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
909 void __user *, size_t *, loff_t *);
910 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
911 void __user *, size_t *, loff_t *);
912
913 extern int numa_zonelist_order_handler(struct ctl_table *, int,
914 void __user *, size_t *, loff_t *);
915 extern char numa_zonelist_order[];
916 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
917
918 #ifndef CONFIG_NEED_MULTIPLE_NODES
919
920 extern struct pglist_data contig_page_data;
921 #define NODE_DATA(nid) (&contig_page_data)
922 #define NODE_MEM_MAP(nid) mem_map
923
924 #else /* CONFIG_NEED_MULTIPLE_NODES */
925
926 #include <asm/mmzone.h>
927
928 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
929
930 extern struct pglist_data *first_online_pgdat(void);
931 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
932 extern struct zone *next_zone(struct zone *zone);
933
934 /**
935 * for_each_online_pgdat - helper macro to iterate over all online nodes
936 * @pgdat - pointer to a pg_data_t variable
937 */
938 #define for_each_online_pgdat(pgdat) \
939 for (pgdat = first_online_pgdat(); \
940 pgdat; \
941 pgdat = next_online_pgdat(pgdat))
942 /**
943 * for_each_zone - helper macro to iterate over all memory zones
944 * @zone - pointer to struct zone variable
945 *
946 * The user only needs to declare the zone variable, for_each_zone
947 * fills it in.
948 */
949 #define for_each_zone(zone) \
950 for (zone = (first_online_pgdat())->node_zones; \
951 zone; \
952 zone = next_zone(zone))
953
954 #define for_each_populated_zone(zone) \
955 for (zone = (first_online_pgdat())->node_zones; \
956 zone; \
957 zone = next_zone(zone)) \
958 if (!populated_zone(zone)) \
959 ; /* do nothing */ \
960 else
961
962 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
963 {
964 return zoneref->zone;
965 }
966
967 static inline int zonelist_zone_idx(struct zoneref *zoneref)
968 {
969 return zoneref->zone_idx;
970 }
971
972 static inline int zonelist_node_idx(struct zoneref *zoneref)
973 {
974 #ifdef CONFIG_NUMA
975 /* zone_to_nid not available in this context */
976 return zoneref->zone->node;
977 #else
978 return 0;
979 #endif /* CONFIG_NUMA */
980 }
981
982 /**
983 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
984 * @z - The cursor used as a starting point for the search
985 * @highest_zoneidx - The zone index of the highest zone to return
986 * @nodes - An optional nodemask to filter the zonelist with
987 * @zone - The first suitable zone found is returned via this parameter
988 *
989 * This function returns the next zone at or below a given zone index that is
990 * within the allowed nodemask using a cursor as the starting point for the
991 * search. The zoneref returned is a cursor that represents the current zone
992 * being examined. It should be advanced by one before calling
993 * next_zones_zonelist again.
994 */
995 struct zoneref *next_zones_zonelist(struct zoneref *z,
996 enum zone_type highest_zoneidx,
997 nodemask_t *nodes,
998 struct zone **zone);
999
1000 /**
1001 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1002 * @zonelist - The zonelist to search for a suitable zone
1003 * @highest_zoneidx - The zone index of the highest zone to return
1004 * @nodes - An optional nodemask to filter the zonelist with
1005 * @zone - The first suitable zone found is returned via this parameter
1006 *
1007 * This function returns the first zone at or below a given zone index that is
1008 * within the allowed nodemask. The zoneref returned is a cursor that can be
1009 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1010 * one before calling.
1011 */
1012 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1013 enum zone_type highest_zoneidx,
1014 nodemask_t *nodes,
1015 struct zone **zone)
1016 {
1017 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
1018 zone);
1019 }
1020
1021 /**
1022 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1023 * @zone - The current zone in the iterator
1024 * @z - The current pointer within zonelist->zones being iterated
1025 * @zlist - The zonelist being iterated
1026 * @highidx - The zone index of the highest zone to return
1027 * @nodemask - Nodemask allowed by the allocator
1028 *
1029 * This iterator iterates though all zones at or below a given zone index and
1030 * within a given nodemask
1031 */
1032 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1033 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
1034 zone; \
1035 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
1036
1037 /**
1038 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1039 * @zone - The current zone in the iterator
1040 * @z - The current pointer within zonelist->zones being iterated
1041 * @zlist - The zonelist being iterated
1042 * @highidx - The zone index of the highest zone to return
1043 *
1044 * This iterator iterates though all zones at or below a given zone index.
1045 */
1046 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1047 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1048
1049 #ifdef CONFIG_SPARSEMEM
1050 #include <asm/sparsemem.h>
1051 #endif
1052
1053 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1054 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1055 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1056 {
1057 return 0;
1058 }
1059 #endif
1060
1061 #ifdef CONFIG_FLATMEM
1062 #define pfn_to_nid(pfn) (0)
1063 #endif
1064
1065 #ifdef CONFIG_SPARSEMEM
1066
1067 /*
1068 * SECTION_SHIFT #bits space required to store a section #
1069 *
1070 * PA_SECTION_SHIFT physical address to/from section number
1071 * PFN_SECTION_SHIFT pfn to/from section number
1072 */
1073 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1074 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1075
1076 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1077
1078 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1079 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1080
1081 #define SECTION_BLOCKFLAGS_BITS \
1082 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1083
1084 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1085 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1086 #endif
1087
1088 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1089 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1090
1091 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1092 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1093
1094 struct page;
1095 struct page_cgroup;
1096 struct mem_section {
1097 /*
1098 * This is, logically, a pointer to an array of struct
1099 * pages. However, it is stored with some other magic.
1100 * (see sparse.c::sparse_init_one_section())
1101 *
1102 * Additionally during early boot we encode node id of
1103 * the location of the section here to guide allocation.
1104 * (see sparse.c::memory_present())
1105 *
1106 * Making it a UL at least makes someone do a cast
1107 * before using it wrong.
1108 */
1109 unsigned long section_mem_map;
1110
1111 /* See declaration of similar field in struct zone */
1112 unsigned long *pageblock_flags;
1113 #ifdef CONFIG_MEMCG
1114 /*
1115 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1116 * section. (see memcontrol.h/page_cgroup.h about this.)
1117 */
1118 struct page_cgroup *page_cgroup;
1119 unsigned long pad;
1120 #endif
1121 /*
1122 * WARNING: mem_section must be a power-of-2 in size for the
1123 * calculation and use of SECTION_ROOT_MASK to make sense.
1124 */
1125 };
1126
1127 #ifdef CONFIG_SPARSEMEM_EXTREME
1128 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1129 #else
1130 #define SECTIONS_PER_ROOT 1
1131 #endif
1132
1133 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1134 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1135 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1136
1137 #ifdef CONFIG_SPARSEMEM_EXTREME
1138 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1139 #else
1140 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1141 #endif
1142
1143 static inline struct mem_section *__nr_to_section(unsigned long nr)
1144 {
1145 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1146 return NULL;
1147 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1148 }
1149 extern int __section_nr(struct mem_section* ms);
1150 extern unsigned long usemap_size(void);
1151
1152 /*
1153 * We use the lower bits of the mem_map pointer to store
1154 * a little bit of information. There should be at least
1155 * 3 bits here due to 32-bit alignment.
1156 */
1157 #define SECTION_MARKED_PRESENT (1UL<<0)
1158 #define SECTION_HAS_MEM_MAP (1UL<<1)
1159 #define SECTION_MAP_LAST_BIT (1UL<<2)
1160 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1161 #define SECTION_NID_SHIFT 2
1162
1163 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1164 {
1165 unsigned long map = section->section_mem_map;
1166 map &= SECTION_MAP_MASK;
1167 return (struct page *)map;
1168 }
1169
1170 static inline int present_section(struct mem_section *section)
1171 {
1172 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1173 }
1174
1175 static inline int present_section_nr(unsigned long nr)
1176 {
1177 return present_section(__nr_to_section(nr));
1178 }
1179
1180 static inline int valid_section(struct mem_section *section)
1181 {
1182 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1183 }
1184
1185 static inline int valid_section_nr(unsigned long nr)
1186 {
1187 return valid_section(__nr_to_section(nr));
1188 }
1189
1190 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1191 {
1192 return __nr_to_section(pfn_to_section_nr(pfn));
1193 }
1194
1195 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1196 static inline int pfn_valid(unsigned long pfn)
1197 {
1198 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1199 return 0;
1200 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1201 }
1202 #endif
1203
1204 static inline int pfn_present(unsigned long pfn)
1205 {
1206 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1207 return 0;
1208 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1209 }
1210
1211 /*
1212 * These are _only_ used during initialisation, therefore they
1213 * can use __initdata ... They could have names to indicate
1214 * this restriction.
1215 */
1216 #ifdef CONFIG_NUMA
1217 #define pfn_to_nid(pfn) \
1218 ({ \
1219 unsigned long __pfn_to_nid_pfn = (pfn); \
1220 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1221 })
1222 #else
1223 #define pfn_to_nid(pfn) (0)
1224 #endif
1225
1226 #define early_pfn_valid(pfn) pfn_valid(pfn)
1227 void sparse_init(void);
1228 #else
1229 #define sparse_init() do {} while (0)
1230 #define sparse_index_init(_sec, _nid) do {} while (0)
1231 #endif /* CONFIG_SPARSEMEM */
1232
1233 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1234 bool early_pfn_in_nid(unsigned long pfn, int nid);
1235 #else
1236 #define early_pfn_in_nid(pfn, nid) (1)
1237 #endif
1238
1239 #ifndef early_pfn_valid
1240 #define early_pfn_valid(pfn) (1)
1241 #endif
1242
1243 void memory_present(int nid, unsigned long start, unsigned long end);
1244 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1245
1246 /*
1247 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1248 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1249 * pfn_valid_within() should be used in this case; we optimise this away
1250 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1251 */
1252 #ifdef CONFIG_HOLES_IN_ZONE
1253 #define pfn_valid_within(pfn) pfn_valid(pfn)
1254 #else
1255 #define pfn_valid_within(pfn) (1)
1256 #endif
1257
1258 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1259 /*
1260 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1261 * associated with it or not. In FLATMEM, it is expected that holes always
1262 * have valid memmap as long as there is valid PFNs either side of the hole.
1263 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1264 * entire section.
1265 *
1266 * However, an ARM, and maybe other embedded architectures in the future
1267 * free memmap backing holes to save memory on the assumption the memmap is
1268 * never used. The page_zone linkages are then broken even though pfn_valid()
1269 * returns true. A walker of the full memmap must then do this additional
1270 * check to ensure the memmap they are looking at is sane by making sure
1271 * the zone and PFN linkages are still valid. This is expensive, but walkers
1272 * of the full memmap are extremely rare.
1273 */
1274 int memmap_valid_within(unsigned long pfn,
1275 struct page *page, struct zone *zone);
1276 #else
1277 static inline int memmap_valid_within(unsigned long pfn,
1278 struct page *page, struct zone *zone)
1279 {
1280 return 1;
1281 }
1282 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1283
1284 #endif /* !__GENERATING_BOUNDS.H */
1285 #endif /* !__ASSEMBLY__ */
1286 #endif /* _LINUX_MMZONE_H */
This page took 0.13293 seconds and 5 git commands to generate.