Memoryless nodes: Fix GFP_THISNODE behavior
[deliverable/linux.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifdef __KERNEL__
5 #ifndef __ASSEMBLY__
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/cache.h>
11 #include <linux/threads.h>
12 #include <linux/numa.h>
13 #include <linux/init.h>
14 #include <linux/seqlock.h>
15 #include <linux/nodemask.h>
16 #include <asm/atomic.h>
17 #include <asm/page.h>
18
19 /* Free memory management - zoned buddy allocator. */
20 #ifndef CONFIG_FORCE_MAX_ZONEORDER
21 #define MAX_ORDER 11
22 #else
23 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
24 #endif
25 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
26
27 /*
28 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
29 * costly to service. That is between allocation orders which should
30 * coelesce naturally under reasonable reclaim pressure and those which
31 * will not.
32 */
33 #define PAGE_ALLOC_COSTLY_ORDER 3
34
35 struct free_area {
36 struct list_head free_list;
37 unsigned long nr_free;
38 };
39
40 struct pglist_data;
41
42 /*
43 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
44 * So add a wild amount of padding here to ensure that they fall into separate
45 * cachelines. There are very few zone structures in the machine, so space
46 * consumption is not a concern here.
47 */
48 #if defined(CONFIG_SMP)
49 struct zone_padding {
50 char x[0];
51 } ____cacheline_internodealigned_in_smp;
52 #define ZONE_PADDING(name) struct zone_padding name;
53 #else
54 #define ZONE_PADDING(name)
55 #endif
56
57 enum zone_stat_item {
58 /* First 128 byte cacheline (assuming 64 bit words) */
59 NR_FREE_PAGES,
60 NR_INACTIVE,
61 NR_ACTIVE,
62 NR_ANON_PAGES, /* Mapped anonymous pages */
63 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
64 only modified from process context */
65 NR_FILE_PAGES,
66 NR_FILE_DIRTY,
67 NR_WRITEBACK,
68 /* Second 128 byte cacheline */
69 NR_SLAB_RECLAIMABLE,
70 NR_SLAB_UNRECLAIMABLE,
71 NR_PAGETABLE, /* used for pagetables */
72 NR_UNSTABLE_NFS, /* NFS unstable pages */
73 NR_BOUNCE,
74 NR_VMSCAN_WRITE,
75 #ifdef CONFIG_NUMA
76 NUMA_HIT, /* allocated in intended node */
77 NUMA_MISS, /* allocated in non intended node */
78 NUMA_FOREIGN, /* was intended here, hit elsewhere */
79 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
80 NUMA_LOCAL, /* allocation from local node */
81 NUMA_OTHER, /* allocation from other node */
82 #endif
83 NR_VM_ZONE_STAT_ITEMS };
84
85 struct per_cpu_pages {
86 int count; /* number of pages in the list */
87 int high; /* high watermark, emptying needed */
88 int batch; /* chunk size for buddy add/remove */
89 struct list_head list; /* the list of pages */
90 };
91
92 struct per_cpu_pageset {
93 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
94 #ifdef CONFIG_NUMA
95 s8 expire;
96 #endif
97 #ifdef CONFIG_SMP
98 s8 stat_threshold;
99 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
100 #endif
101 } ____cacheline_aligned_in_smp;
102
103 #ifdef CONFIG_NUMA
104 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
105 #else
106 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
107 #endif
108
109 enum zone_type {
110 #ifdef CONFIG_ZONE_DMA
111 /*
112 * ZONE_DMA is used when there are devices that are not able
113 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
114 * carve out the portion of memory that is needed for these devices.
115 * The range is arch specific.
116 *
117 * Some examples
118 *
119 * Architecture Limit
120 * ---------------------------
121 * parisc, ia64, sparc <4G
122 * s390 <2G
123 * arm Various
124 * alpha Unlimited or 0-16MB.
125 *
126 * i386, x86_64 and multiple other arches
127 * <16M.
128 */
129 ZONE_DMA,
130 #endif
131 #ifdef CONFIG_ZONE_DMA32
132 /*
133 * x86_64 needs two ZONE_DMAs because it supports devices that are
134 * only able to do DMA to the lower 16M but also 32 bit devices that
135 * can only do DMA areas below 4G.
136 */
137 ZONE_DMA32,
138 #endif
139 /*
140 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
141 * performed on pages in ZONE_NORMAL if the DMA devices support
142 * transfers to all addressable memory.
143 */
144 ZONE_NORMAL,
145 #ifdef CONFIG_HIGHMEM
146 /*
147 * A memory area that is only addressable by the kernel through
148 * mapping portions into its own address space. This is for example
149 * used by i386 to allow the kernel to address the memory beyond
150 * 900MB. The kernel will set up special mappings (page
151 * table entries on i386) for each page that the kernel needs to
152 * access.
153 */
154 ZONE_HIGHMEM,
155 #endif
156 ZONE_MOVABLE,
157 MAX_NR_ZONES
158 };
159
160 /*
161 * When a memory allocation must conform to specific limitations (such
162 * as being suitable for DMA) the caller will pass in hints to the
163 * allocator in the gfp_mask, in the zone modifier bits. These bits
164 * are used to select a priority ordered list of memory zones which
165 * match the requested limits. See gfp_zone() in include/linux/gfp.h
166 */
167
168 /*
169 * Count the active zones. Note that the use of defined(X) outside
170 * #if and family is not necessarily defined so ensure we cannot use
171 * it later. Use __ZONE_COUNT to work out how many shift bits we need.
172 */
173 #define __ZONE_COUNT ( \
174 defined(CONFIG_ZONE_DMA) \
175 + defined(CONFIG_ZONE_DMA32) \
176 + 1 \
177 + defined(CONFIG_HIGHMEM) \
178 + 1 \
179 )
180 #if __ZONE_COUNT < 2
181 #define ZONES_SHIFT 0
182 #elif __ZONE_COUNT <= 2
183 #define ZONES_SHIFT 1
184 #elif __ZONE_COUNT <= 4
185 #define ZONES_SHIFT 2
186 #else
187 #error ZONES_SHIFT -- too many zones configured adjust calculation
188 #endif
189 #undef __ZONE_COUNT
190
191 struct zone {
192 /* Fields commonly accessed by the page allocator */
193 unsigned long pages_min, pages_low, pages_high;
194 /*
195 * We don't know if the memory that we're going to allocate will be freeable
196 * or/and it will be released eventually, so to avoid totally wasting several
197 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
198 * to run OOM on the lower zones despite there's tons of freeable ram
199 * on the higher zones). This array is recalculated at runtime if the
200 * sysctl_lowmem_reserve_ratio sysctl changes.
201 */
202 unsigned long lowmem_reserve[MAX_NR_ZONES];
203
204 #ifdef CONFIG_NUMA
205 int node;
206 /*
207 * zone reclaim becomes active if more unmapped pages exist.
208 */
209 unsigned long min_unmapped_pages;
210 unsigned long min_slab_pages;
211 struct per_cpu_pageset *pageset[NR_CPUS];
212 #else
213 struct per_cpu_pageset pageset[NR_CPUS];
214 #endif
215 /*
216 * free areas of different sizes
217 */
218 spinlock_t lock;
219 #ifdef CONFIG_MEMORY_HOTPLUG
220 /* see spanned/present_pages for more description */
221 seqlock_t span_seqlock;
222 #endif
223 struct free_area free_area[MAX_ORDER];
224
225
226 ZONE_PADDING(_pad1_)
227
228 /* Fields commonly accessed by the page reclaim scanner */
229 spinlock_t lru_lock;
230 struct list_head active_list;
231 struct list_head inactive_list;
232 unsigned long nr_scan_active;
233 unsigned long nr_scan_inactive;
234 unsigned long pages_scanned; /* since last reclaim */
235 int all_unreclaimable; /* All pages pinned */
236
237 /* A count of how many reclaimers are scanning this zone */
238 atomic_t reclaim_in_progress;
239
240 /* Zone statistics */
241 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
242
243 /*
244 * prev_priority holds the scanning priority for this zone. It is
245 * defined as the scanning priority at which we achieved our reclaim
246 * target at the previous try_to_free_pages() or balance_pgdat()
247 * invokation.
248 *
249 * We use prev_priority as a measure of how much stress page reclaim is
250 * under - it drives the swappiness decision: whether to unmap mapped
251 * pages.
252 *
253 * Access to both this field is quite racy even on uniprocessor. But
254 * it is expected to average out OK.
255 */
256 int prev_priority;
257
258
259 ZONE_PADDING(_pad2_)
260 /* Rarely used or read-mostly fields */
261
262 /*
263 * wait_table -- the array holding the hash table
264 * wait_table_hash_nr_entries -- the size of the hash table array
265 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
266 *
267 * The purpose of all these is to keep track of the people
268 * waiting for a page to become available and make them
269 * runnable again when possible. The trouble is that this
270 * consumes a lot of space, especially when so few things
271 * wait on pages at a given time. So instead of using
272 * per-page waitqueues, we use a waitqueue hash table.
273 *
274 * The bucket discipline is to sleep on the same queue when
275 * colliding and wake all in that wait queue when removing.
276 * When something wakes, it must check to be sure its page is
277 * truly available, a la thundering herd. The cost of a
278 * collision is great, but given the expected load of the
279 * table, they should be so rare as to be outweighed by the
280 * benefits from the saved space.
281 *
282 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
283 * primary users of these fields, and in mm/page_alloc.c
284 * free_area_init_core() performs the initialization of them.
285 */
286 wait_queue_head_t * wait_table;
287 unsigned long wait_table_hash_nr_entries;
288 unsigned long wait_table_bits;
289
290 /*
291 * Discontig memory support fields.
292 */
293 struct pglist_data *zone_pgdat;
294 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
295 unsigned long zone_start_pfn;
296
297 /*
298 * zone_start_pfn, spanned_pages and present_pages are all
299 * protected by span_seqlock. It is a seqlock because it has
300 * to be read outside of zone->lock, and it is done in the main
301 * allocator path. But, it is written quite infrequently.
302 *
303 * The lock is declared along with zone->lock because it is
304 * frequently read in proximity to zone->lock. It's good to
305 * give them a chance of being in the same cacheline.
306 */
307 unsigned long spanned_pages; /* total size, including holes */
308 unsigned long present_pages; /* amount of memory (excluding holes) */
309
310 /*
311 * rarely used fields:
312 */
313 const char *name;
314 } ____cacheline_internodealigned_in_smp;
315
316 /*
317 * The "priority" of VM scanning is how much of the queues we will scan in one
318 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
319 * queues ("queue_length >> 12") during an aging round.
320 */
321 #define DEF_PRIORITY 12
322
323 /* Maximum number of zones on a zonelist */
324 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
325
326 #ifdef CONFIG_NUMA
327
328 /*
329 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
330 * allocations to a single node for GFP_THISNODE.
331 *
332 * [0 .. MAX_NR_ZONES -1] : Zonelists with fallback
333 * [MAZ_NR_ZONES ... MAZ_ZONELISTS -1] : No fallback (GFP_THISNODE)
334 */
335 #define MAX_ZONELISTS (2 * MAX_NR_ZONES)
336
337
338 /*
339 * We cache key information from each zonelist for smaller cache
340 * footprint when scanning for free pages in get_page_from_freelist().
341 *
342 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
343 * up short of free memory since the last time (last_fullzone_zap)
344 * we zero'd fullzones.
345 * 2) The array z_to_n[] maps each zone in the zonelist to its node
346 * id, so that we can efficiently evaluate whether that node is
347 * set in the current tasks mems_allowed.
348 *
349 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
350 * indexed by a zones offset in the zonelist zones[] array.
351 *
352 * The get_page_from_freelist() routine does two scans. During the
353 * first scan, we skip zones whose corresponding bit in 'fullzones'
354 * is set or whose corresponding node in current->mems_allowed (which
355 * comes from cpusets) is not set. During the second scan, we bypass
356 * this zonelist_cache, to ensure we look methodically at each zone.
357 *
358 * Once per second, we zero out (zap) fullzones, forcing us to
359 * reconsider nodes that might have regained more free memory.
360 * The field last_full_zap is the time we last zapped fullzones.
361 *
362 * This mechanism reduces the amount of time we waste repeatedly
363 * reexaming zones for free memory when they just came up low on
364 * memory momentarilly ago.
365 *
366 * The zonelist_cache struct members logically belong in struct
367 * zonelist. However, the mempolicy zonelists constructed for
368 * MPOL_BIND are intentionally variable length (and usually much
369 * shorter). A general purpose mechanism for handling structs with
370 * multiple variable length members is more mechanism than we want
371 * here. We resort to some special case hackery instead.
372 *
373 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
374 * part because they are shorter), so we put the fixed length stuff
375 * at the front of the zonelist struct, ending in a variable length
376 * zones[], as is needed by MPOL_BIND.
377 *
378 * Then we put the optional zonelist cache on the end of the zonelist
379 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
380 * the fixed length portion at the front of the struct. This pointer
381 * both enables us to find the zonelist cache, and in the case of
382 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
383 * to know that the zonelist cache is not there.
384 *
385 * The end result is that struct zonelists come in two flavors:
386 * 1) The full, fixed length version, shown below, and
387 * 2) The custom zonelists for MPOL_BIND.
388 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
389 *
390 * Even though there may be multiple CPU cores on a node modifying
391 * fullzones or last_full_zap in the same zonelist_cache at the same
392 * time, we don't lock it. This is just hint data - if it is wrong now
393 * and then, the allocator will still function, perhaps a bit slower.
394 */
395
396
397 struct zonelist_cache {
398 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
399 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
400 unsigned long last_full_zap; /* when last zap'd (jiffies) */
401 };
402 #else
403 #define MAX_ZONELISTS MAX_NR_ZONES
404 struct zonelist_cache;
405 #endif
406
407 /*
408 * One allocation request operates on a zonelist. A zonelist
409 * is a list of zones, the first one is the 'goal' of the
410 * allocation, the other zones are fallback zones, in decreasing
411 * priority.
412 *
413 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
414 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
415 */
416
417 struct zonelist {
418 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
419 struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited
420 #ifdef CONFIG_NUMA
421 struct zonelist_cache zlcache; // optional ...
422 #endif
423 };
424
425 #ifdef CONFIG_NUMA
426 /*
427 * Only custom zonelists like MPOL_BIND need to be filtered as part of
428 * policies. As described in the comment for struct zonelist_cache, these
429 * zonelists will not have a zlcache so zlcache_ptr will not be set. Use
430 * that to determine if the zonelists needs to be filtered or not.
431 */
432 static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
433 {
434 return !zonelist->zlcache_ptr;
435 }
436 #else
437 static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
438 {
439 return 0;
440 }
441 #endif /* CONFIG_NUMA */
442
443 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
444 struct node_active_region {
445 unsigned long start_pfn;
446 unsigned long end_pfn;
447 int nid;
448 };
449 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
450
451 #ifndef CONFIG_DISCONTIGMEM
452 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
453 extern struct page *mem_map;
454 #endif
455
456 /*
457 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
458 * (mostly NUMA machines?) to denote a higher-level memory zone than the
459 * zone denotes.
460 *
461 * On NUMA machines, each NUMA node would have a pg_data_t to describe
462 * it's memory layout.
463 *
464 * Memory statistics and page replacement data structures are maintained on a
465 * per-zone basis.
466 */
467 struct bootmem_data;
468 typedef struct pglist_data {
469 struct zone node_zones[MAX_NR_ZONES];
470 struct zonelist node_zonelists[MAX_ZONELISTS];
471 int nr_zones;
472 #ifdef CONFIG_FLAT_NODE_MEM_MAP
473 struct page *node_mem_map;
474 #endif
475 struct bootmem_data *bdata;
476 #ifdef CONFIG_MEMORY_HOTPLUG
477 /*
478 * Must be held any time you expect node_start_pfn, node_present_pages
479 * or node_spanned_pages stay constant. Holding this will also
480 * guarantee that any pfn_valid() stays that way.
481 *
482 * Nests above zone->lock and zone->size_seqlock.
483 */
484 spinlock_t node_size_lock;
485 #endif
486 unsigned long node_start_pfn;
487 unsigned long node_present_pages; /* total number of physical pages */
488 unsigned long node_spanned_pages; /* total size of physical page
489 range, including holes */
490 int node_id;
491 wait_queue_head_t kswapd_wait;
492 struct task_struct *kswapd;
493 int kswapd_max_order;
494 } pg_data_t;
495
496 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
497 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
498 #ifdef CONFIG_FLAT_NODE_MEM_MAP
499 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
500 #else
501 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
502 #endif
503 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
504
505 #include <linux/memory_hotplug.h>
506
507 void get_zone_counts(unsigned long *active, unsigned long *inactive,
508 unsigned long *free);
509 void build_all_zonelists(void);
510 void wakeup_kswapd(struct zone *zone, int order);
511 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
512 int classzone_idx, int alloc_flags);
513 enum memmap_context {
514 MEMMAP_EARLY,
515 MEMMAP_HOTPLUG,
516 };
517 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
518 unsigned long size,
519 enum memmap_context context);
520
521 #ifdef CONFIG_HAVE_MEMORY_PRESENT
522 void memory_present(int nid, unsigned long start, unsigned long end);
523 #else
524 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
525 #endif
526
527 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
528 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
529 #endif
530
531 /*
532 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
533 */
534 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
535
536 static inline int populated_zone(struct zone *zone)
537 {
538 return (!!zone->present_pages);
539 }
540
541 extern int movable_zone;
542
543 static inline int zone_movable_is_highmem(void)
544 {
545 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
546 return movable_zone == ZONE_HIGHMEM;
547 #else
548 return 0;
549 #endif
550 }
551
552 static inline int is_highmem_idx(enum zone_type idx)
553 {
554 #ifdef CONFIG_HIGHMEM
555 return (idx == ZONE_HIGHMEM ||
556 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
557 #else
558 return 0;
559 #endif
560 }
561
562 static inline int is_normal_idx(enum zone_type idx)
563 {
564 return (idx == ZONE_NORMAL);
565 }
566
567 /**
568 * is_highmem - helper function to quickly check if a struct zone is a
569 * highmem zone or not. This is an attempt to keep references
570 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
571 * @zone - pointer to struct zone variable
572 */
573 static inline int is_highmem(struct zone *zone)
574 {
575 #ifdef CONFIG_HIGHMEM
576 int zone_idx = zone - zone->zone_pgdat->node_zones;
577 return zone_idx == ZONE_HIGHMEM ||
578 (zone_idx == ZONE_MOVABLE && zone_movable_is_highmem());
579 #else
580 return 0;
581 #endif
582 }
583
584 static inline int is_normal(struct zone *zone)
585 {
586 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
587 }
588
589 static inline int is_dma32(struct zone *zone)
590 {
591 #ifdef CONFIG_ZONE_DMA32
592 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
593 #else
594 return 0;
595 #endif
596 }
597
598 static inline int is_dma(struct zone *zone)
599 {
600 #ifdef CONFIG_ZONE_DMA
601 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
602 #else
603 return 0;
604 #endif
605 }
606
607 /* These two functions are used to setup the per zone pages min values */
608 struct ctl_table;
609 struct file;
610 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
611 void __user *, size_t *, loff_t *);
612 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
613 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
614 void __user *, size_t *, loff_t *);
615 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
616 void __user *, size_t *, loff_t *);
617 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
618 struct file *, void __user *, size_t *, loff_t *);
619 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
620 struct file *, void __user *, size_t *, loff_t *);
621
622 extern int numa_zonelist_order_handler(struct ctl_table *, int,
623 struct file *, void __user *, size_t *, loff_t *);
624 extern char numa_zonelist_order[];
625 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
626
627 #include <linux/topology.h>
628 /* Returns the number of the current Node. */
629 #ifndef numa_node_id
630 #define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
631 #endif
632
633 #ifndef CONFIG_NEED_MULTIPLE_NODES
634
635 extern struct pglist_data contig_page_data;
636 #define NODE_DATA(nid) (&contig_page_data)
637 #define NODE_MEM_MAP(nid) mem_map
638 #define MAX_NODES_SHIFT 1
639
640 #else /* CONFIG_NEED_MULTIPLE_NODES */
641
642 #include <asm/mmzone.h>
643
644 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
645
646 extern struct pglist_data *first_online_pgdat(void);
647 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
648 extern struct zone *next_zone(struct zone *zone);
649
650 /**
651 * for_each_pgdat - helper macro to iterate over all nodes
652 * @pgdat - pointer to a pg_data_t variable
653 */
654 #define for_each_online_pgdat(pgdat) \
655 for (pgdat = first_online_pgdat(); \
656 pgdat; \
657 pgdat = next_online_pgdat(pgdat))
658 /**
659 * for_each_zone - helper macro to iterate over all memory zones
660 * @zone - pointer to struct zone variable
661 *
662 * The user only needs to declare the zone variable, for_each_zone
663 * fills it in.
664 */
665 #define for_each_zone(zone) \
666 for (zone = (first_online_pgdat())->node_zones; \
667 zone; \
668 zone = next_zone(zone))
669
670 #ifdef CONFIG_SPARSEMEM
671 #include <asm/sparsemem.h>
672 #endif
673
674 #if BITS_PER_LONG == 32
675 /*
676 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
677 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
678 */
679 #define FLAGS_RESERVED 9
680
681 #elif BITS_PER_LONG == 64
682 /*
683 * with 64 bit flags field, there's plenty of room.
684 */
685 #define FLAGS_RESERVED 32
686
687 #else
688
689 #error BITS_PER_LONG not defined
690
691 #endif
692
693 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
694 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
695 #define early_pfn_to_nid(nid) (0UL)
696 #endif
697
698 #ifdef CONFIG_FLATMEM
699 #define pfn_to_nid(pfn) (0)
700 #endif
701
702 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
703 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
704
705 #ifdef CONFIG_SPARSEMEM
706
707 /*
708 * SECTION_SHIFT #bits space required to store a section #
709 *
710 * PA_SECTION_SHIFT physical address to/from section number
711 * PFN_SECTION_SHIFT pfn to/from section number
712 */
713 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
714
715 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
716 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
717
718 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
719
720 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
721 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
722
723 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
724 #error Allocator MAX_ORDER exceeds SECTION_SIZE
725 #endif
726
727 struct page;
728 struct mem_section {
729 /*
730 * This is, logically, a pointer to an array of struct
731 * pages. However, it is stored with some other magic.
732 * (see sparse.c::sparse_init_one_section())
733 *
734 * Additionally during early boot we encode node id of
735 * the location of the section here to guide allocation.
736 * (see sparse.c::memory_present())
737 *
738 * Making it a UL at least makes someone do a cast
739 * before using it wrong.
740 */
741 unsigned long section_mem_map;
742 };
743
744 #ifdef CONFIG_SPARSEMEM_EXTREME
745 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
746 #else
747 #define SECTIONS_PER_ROOT 1
748 #endif
749
750 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
751 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
752 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
753
754 #ifdef CONFIG_SPARSEMEM_EXTREME
755 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
756 #else
757 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
758 #endif
759
760 static inline struct mem_section *__nr_to_section(unsigned long nr)
761 {
762 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
763 return NULL;
764 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
765 }
766 extern int __section_nr(struct mem_section* ms);
767
768 /*
769 * We use the lower bits of the mem_map pointer to store
770 * a little bit of information. There should be at least
771 * 3 bits here due to 32-bit alignment.
772 */
773 #define SECTION_MARKED_PRESENT (1UL<<0)
774 #define SECTION_HAS_MEM_MAP (1UL<<1)
775 #define SECTION_MAP_LAST_BIT (1UL<<2)
776 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
777 #define SECTION_NID_SHIFT 2
778
779 static inline struct page *__section_mem_map_addr(struct mem_section *section)
780 {
781 unsigned long map = section->section_mem_map;
782 map &= SECTION_MAP_MASK;
783 return (struct page *)map;
784 }
785
786 static inline int present_section(struct mem_section *section)
787 {
788 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
789 }
790
791 static inline int present_section_nr(unsigned long nr)
792 {
793 return present_section(__nr_to_section(nr));
794 }
795
796 static inline int valid_section(struct mem_section *section)
797 {
798 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
799 }
800
801 static inline int valid_section_nr(unsigned long nr)
802 {
803 return valid_section(__nr_to_section(nr));
804 }
805
806 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
807 {
808 return __nr_to_section(pfn_to_section_nr(pfn));
809 }
810
811 static inline int pfn_valid(unsigned long pfn)
812 {
813 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
814 return 0;
815 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
816 }
817
818 static inline int pfn_present(unsigned long pfn)
819 {
820 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
821 return 0;
822 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
823 }
824
825 /*
826 * These are _only_ used during initialisation, therefore they
827 * can use __initdata ... They could have names to indicate
828 * this restriction.
829 */
830 #ifdef CONFIG_NUMA
831 #define pfn_to_nid(pfn) \
832 ({ \
833 unsigned long __pfn_to_nid_pfn = (pfn); \
834 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
835 })
836 #else
837 #define pfn_to_nid(pfn) (0)
838 #endif
839
840 #define early_pfn_valid(pfn) pfn_valid(pfn)
841 void sparse_init(void);
842 #else
843 #define sparse_init() do {} while (0)
844 #define sparse_index_init(_sec, _nid) do {} while (0)
845 #endif /* CONFIG_SPARSEMEM */
846
847 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
848 #define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
849 #else
850 #define early_pfn_in_nid(pfn, nid) (1)
851 #endif
852
853 #ifndef early_pfn_valid
854 #define early_pfn_valid(pfn) (1)
855 #endif
856
857 void memory_present(int nid, unsigned long start, unsigned long end);
858 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
859
860 /*
861 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
862 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
863 * pfn_valid_within() should be used in this case; we optimise this away
864 * when we have no holes within a MAX_ORDER_NR_PAGES block.
865 */
866 #ifdef CONFIG_HOLES_IN_ZONE
867 #define pfn_valid_within(pfn) pfn_valid(pfn)
868 #else
869 #define pfn_valid_within(pfn) (1)
870 #endif
871
872 #endif /* !__ASSEMBLY__ */
873 #endif /* __KERNEL__ */
874 #endif /* _LINUX_MMZONE_H */
This page took 0.073945 seconds and 6 git commands to generate.