Merge branch 'fixes-2.6.24' of master.kernel.org:/pub/scm/linux/kernel/git/galak...
[deliverable/linux.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifdef __KERNEL__
5 #ifndef __ASSEMBLY__
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/cache.h>
11 #include <linux/threads.h>
12 #include <linux/numa.h>
13 #include <linux/init.h>
14 #include <linux/seqlock.h>
15 #include <linux/nodemask.h>
16 #include <linux/pageblock-flags.h>
17 #include <asm/atomic.h>
18 #include <asm/page.h>
19
20 /* Free memory management - zoned buddy allocator. */
21 #ifndef CONFIG_FORCE_MAX_ZONEORDER
22 #define MAX_ORDER 11
23 #else
24 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
25 #endif
26 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
27
28 /*
29 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
30 * costly to service. That is between allocation orders which should
31 * coelesce naturally under reasonable reclaim pressure and those which
32 * will not.
33 */
34 #define PAGE_ALLOC_COSTLY_ORDER 3
35
36 #define MIGRATE_UNMOVABLE 0
37 #define MIGRATE_RECLAIMABLE 1
38 #define MIGRATE_MOVABLE 2
39 #define MIGRATE_RESERVE 3
40 #define MIGRATE_ISOLATE 4 /* can't allocate from here */
41 #define MIGRATE_TYPES 5
42
43 #define for_each_migratetype_order(order, type) \
44 for (order = 0; order < MAX_ORDER; order++) \
45 for (type = 0; type < MIGRATE_TYPES; type++)
46
47 extern int page_group_by_mobility_disabled;
48
49 static inline int get_pageblock_migratetype(struct page *page)
50 {
51 if (unlikely(page_group_by_mobility_disabled))
52 return MIGRATE_UNMOVABLE;
53
54 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
55 }
56
57 struct free_area {
58 struct list_head free_list[MIGRATE_TYPES];
59 unsigned long nr_free;
60 };
61
62 struct pglist_data;
63
64 /*
65 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
66 * So add a wild amount of padding here to ensure that they fall into separate
67 * cachelines. There are very few zone structures in the machine, so space
68 * consumption is not a concern here.
69 */
70 #if defined(CONFIG_SMP)
71 struct zone_padding {
72 char x[0];
73 } ____cacheline_internodealigned_in_smp;
74 #define ZONE_PADDING(name) struct zone_padding name;
75 #else
76 #define ZONE_PADDING(name)
77 #endif
78
79 enum zone_stat_item {
80 /* First 128 byte cacheline (assuming 64 bit words) */
81 NR_FREE_PAGES,
82 NR_INACTIVE,
83 NR_ACTIVE,
84 NR_ANON_PAGES, /* Mapped anonymous pages */
85 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
86 only modified from process context */
87 NR_FILE_PAGES,
88 NR_FILE_DIRTY,
89 NR_WRITEBACK,
90 /* Second 128 byte cacheline */
91 NR_SLAB_RECLAIMABLE,
92 NR_SLAB_UNRECLAIMABLE,
93 NR_PAGETABLE, /* used for pagetables */
94 NR_UNSTABLE_NFS, /* NFS unstable pages */
95 NR_BOUNCE,
96 NR_VMSCAN_WRITE,
97 #ifdef CONFIG_NUMA
98 NUMA_HIT, /* allocated in intended node */
99 NUMA_MISS, /* allocated in non intended node */
100 NUMA_FOREIGN, /* was intended here, hit elsewhere */
101 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
102 NUMA_LOCAL, /* allocation from local node */
103 NUMA_OTHER, /* allocation from other node */
104 #endif
105 NR_VM_ZONE_STAT_ITEMS };
106
107 struct per_cpu_pages {
108 int count; /* number of pages in the list */
109 int high; /* high watermark, emptying needed */
110 int batch; /* chunk size for buddy add/remove */
111 struct list_head list; /* the list of pages */
112 };
113
114 struct per_cpu_pageset {
115 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
116 #ifdef CONFIG_NUMA
117 s8 expire;
118 #endif
119 #ifdef CONFIG_SMP
120 s8 stat_threshold;
121 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
122 #endif
123 } ____cacheline_aligned_in_smp;
124
125 #ifdef CONFIG_NUMA
126 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
127 #else
128 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
129 #endif
130
131 enum zone_type {
132 #ifdef CONFIG_ZONE_DMA
133 /*
134 * ZONE_DMA is used when there are devices that are not able
135 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
136 * carve out the portion of memory that is needed for these devices.
137 * The range is arch specific.
138 *
139 * Some examples
140 *
141 * Architecture Limit
142 * ---------------------------
143 * parisc, ia64, sparc <4G
144 * s390 <2G
145 * arm Various
146 * alpha Unlimited or 0-16MB.
147 *
148 * i386, x86_64 and multiple other arches
149 * <16M.
150 */
151 ZONE_DMA,
152 #endif
153 #ifdef CONFIG_ZONE_DMA32
154 /*
155 * x86_64 needs two ZONE_DMAs because it supports devices that are
156 * only able to do DMA to the lower 16M but also 32 bit devices that
157 * can only do DMA areas below 4G.
158 */
159 ZONE_DMA32,
160 #endif
161 /*
162 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
163 * performed on pages in ZONE_NORMAL if the DMA devices support
164 * transfers to all addressable memory.
165 */
166 ZONE_NORMAL,
167 #ifdef CONFIG_HIGHMEM
168 /*
169 * A memory area that is only addressable by the kernel through
170 * mapping portions into its own address space. This is for example
171 * used by i386 to allow the kernel to address the memory beyond
172 * 900MB. The kernel will set up special mappings (page
173 * table entries on i386) for each page that the kernel needs to
174 * access.
175 */
176 ZONE_HIGHMEM,
177 #endif
178 ZONE_MOVABLE,
179 MAX_NR_ZONES
180 };
181
182 /*
183 * When a memory allocation must conform to specific limitations (such
184 * as being suitable for DMA) the caller will pass in hints to the
185 * allocator in the gfp_mask, in the zone modifier bits. These bits
186 * are used to select a priority ordered list of memory zones which
187 * match the requested limits. See gfp_zone() in include/linux/gfp.h
188 */
189
190 /*
191 * Count the active zones. Note that the use of defined(X) outside
192 * #if and family is not necessarily defined so ensure we cannot use
193 * it later. Use __ZONE_COUNT to work out how many shift bits we need.
194 */
195 #define __ZONE_COUNT ( \
196 defined(CONFIG_ZONE_DMA) \
197 + defined(CONFIG_ZONE_DMA32) \
198 + 1 \
199 + defined(CONFIG_HIGHMEM) \
200 + 1 \
201 )
202 #if __ZONE_COUNT < 2
203 #define ZONES_SHIFT 0
204 #elif __ZONE_COUNT <= 2
205 #define ZONES_SHIFT 1
206 #elif __ZONE_COUNT <= 4
207 #define ZONES_SHIFT 2
208 #else
209 #error ZONES_SHIFT -- too many zones configured adjust calculation
210 #endif
211 #undef __ZONE_COUNT
212
213 struct zone {
214 /* Fields commonly accessed by the page allocator */
215 unsigned long pages_min, pages_low, pages_high;
216 /*
217 * We don't know if the memory that we're going to allocate will be freeable
218 * or/and it will be released eventually, so to avoid totally wasting several
219 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
220 * to run OOM on the lower zones despite there's tons of freeable ram
221 * on the higher zones). This array is recalculated at runtime if the
222 * sysctl_lowmem_reserve_ratio sysctl changes.
223 */
224 unsigned long lowmem_reserve[MAX_NR_ZONES];
225
226 #ifdef CONFIG_NUMA
227 int node;
228 /*
229 * zone reclaim becomes active if more unmapped pages exist.
230 */
231 unsigned long min_unmapped_pages;
232 unsigned long min_slab_pages;
233 struct per_cpu_pageset *pageset[NR_CPUS];
234 #else
235 struct per_cpu_pageset pageset[NR_CPUS];
236 #endif
237 /*
238 * free areas of different sizes
239 */
240 spinlock_t lock;
241 #ifdef CONFIG_MEMORY_HOTPLUG
242 /* see spanned/present_pages for more description */
243 seqlock_t span_seqlock;
244 #endif
245 struct free_area free_area[MAX_ORDER];
246
247 #ifndef CONFIG_SPARSEMEM
248 /*
249 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
250 * In SPARSEMEM, this map is stored in struct mem_section
251 */
252 unsigned long *pageblock_flags;
253 #endif /* CONFIG_SPARSEMEM */
254
255
256 ZONE_PADDING(_pad1_)
257
258 /* Fields commonly accessed by the page reclaim scanner */
259 spinlock_t lru_lock;
260 struct list_head active_list;
261 struct list_head inactive_list;
262 unsigned long nr_scan_active;
263 unsigned long nr_scan_inactive;
264 unsigned long pages_scanned; /* since last reclaim */
265 int all_unreclaimable; /* All pages pinned */
266
267 /* A count of how many reclaimers are scanning this zone */
268 atomic_t reclaim_in_progress;
269
270 /* Zone statistics */
271 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
272
273 /*
274 * prev_priority holds the scanning priority for this zone. It is
275 * defined as the scanning priority at which we achieved our reclaim
276 * target at the previous try_to_free_pages() or balance_pgdat()
277 * invokation.
278 *
279 * We use prev_priority as a measure of how much stress page reclaim is
280 * under - it drives the swappiness decision: whether to unmap mapped
281 * pages.
282 *
283 * Access to both this field is quite racy even on uniprocessor. But
284 * it is expected to average out OK.
285 */
286 int prev_priority;
287
288
289 ZONE_PADDING(_pad2_)
290 /* Rarely used or read-mostly fields */
291
292 /*
293 * wait_table -- the array holding the hash table
294 * wait_table_hash_nr_entries -- the size of the hash table array
295 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
296 *
297 * The purpose of all these is to keep track of the people
298 * waiting for a page to become available and make them
299 * runnable again when possible. The trouble is that this
300 * consumes a lot of space, especially when so few things
301 * wait on pages at a given time. So instead of using
302 * per-page waitqueues, we use a waitqueue hash table.
303 *
304 * The bucket discipline is to sleep on the same queue when
305 * colliding and wake all in that wait queue when removing.
306 * When something wakes, it must check to be sure its page is
307 * truly available, a la thundering herd. The cost of a
308 * collision is great, but given the expected load of the
309 * table, they should be so rare as to be outweighed by the
310 * benefits from the saved space.
311 *
312 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
313 * primary users of these fields, and in mm/page_alloc.c
314 * free_area_init_core() performs the initialization of them.
315 */
316 wait_queue_head_t * wait_table;
317 unsigned long wait_table_hash_nr_entries;
318 unsigned long wait_table_bits;
319
320 /*
321 * Discontig memory support fields.
322 */
323 struct pglist_data *zone_pgdat;
324 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
325 unsigned long zone_start_pfn;
326
327 /*
328 * zone_start_pfn, spanned_pages and present_pages are all
329 * protected by span_seqlock. It is a seqlock because it has
330 * to be read outside of zone->lock, and it is done in the main
331 * allocator path. But, it is written quite infrequently.
332 *
333 * The lock is declared along with zone->lock because it is
334 * frequently read in proximity to zone->lock. It's good to
335 * give them a chance of being in the same cacheline.
336 */
337 unsigned long spanned_pages; /* total size, including holes */
338 unsigned long present_pages; /* amount of memory (excluding holes) */
339
340 /*
341 * rarely used fields:
342 */
343 const char *name;
344 } ____cacheline_internodealigned_in_smp;
345
346 /*
347 * The "priority" of VM scanning is how much of the queues we will scan in one
348 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
349 * queues ("queue_length >> 12") during an aging round.
350 */
351 #define DEF_PRIORITY 12
352
353 /* Maximum number of zones on a zonelist */
354 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
355
356 #ifdef CONFIG_NUMA
357
358 /*
359 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
360 * allocations to a single node for GFP_THISNODE.
361 *
362 * [0 .. MAX_NR_ZONES -1] : Zonelists with fallback
363 * [MAZ_NR_ZONES ... MAZ_ZONELISTS -1] : No fallback (GFP_THISNODE)
364 */
365 #define MAX_ZONELISTS (2 * MAX_NR_ZONES)
366
367
368 /*
369 * We cache key information from each zonelist for smaller cache
370 * footprint when scanning for free pages in get_page_from_freelist().
371 *
372 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
373 * up short of free memory since the last time (last_fullzone_zap)
374 * we zero'd fullzones.
375 * 2) The array z_to_n[] maps each zone in the zonelist to its node
376 * id, so that we can efficiently evaluate whether that node is
377 * set in the current tasks mems_allowed.
378 *
379 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
380 * indexed by a zones offset in the zonelist zones[] array.
381 *
382 * The get_page_from_freelist() routine does two scans. During the
383 * first scan, we skip zones whose corresponding bit in 'fullzones'
384 * is set or whose corresponding node in current->mems_allowed (which
385 * comes from cpusets) is not set. During the second scan, we bypass
386 * this zonelist_cache, to ensure we look methodically at each zone.
387 *
388 * Once per second, we zero out (zap) fullzones, forcing us to
389 * reconsider nodes that might have regained more free memory.
390 * The field last_full_zap is the time we last zapped fullzones.
391 *
392 * This mechanism reduces the amount of time we waste repeatedly
393 * reexaming zones for free memory when they just came up low on
394 * memory momentarilly ago.
395 *
396 * The zonelist_cache struct members logically belong in struct
397 * zonelist. However, the mempolicy zonelists constructed for
398 * MPOL_BIND are intentionally variable length (and usually much
399 * shorter). A general purpose mechanism for handling structs with
400 * multiple variable length members is more mechanism than we want
401 * here. We resort to some special case hackery instead.
402 *
403 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
404 * part because they are shorter), so we put the fixed length stuff
405 * at the front of the zonelist struct, ending in a variable length
406 * zones[], as is needed by MPOL_BIND.
407 *
408 * Then we put the optional zonelist cache on the end of the zonelist
409 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
410 * the fixed length portion at the front of the struct. This pointer
411 * both enables us to find the zonelist cache, and in the case of
412 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
413 * to know that the zonelist cache is not there.
414 *
415 * The end result is that struct zonelists come in two flavors:
416 * 1) The full, fixed length version, shown below, and
417 * 2) The custom zonelists for MPOL_BIND.
418 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
419 *
420 * Even though there may be multiple CPU cores on a node modifying
421 * fullzones or last_full_zap in the same zonelist_cache at the same
422 * time, we don't lock it. This is just hint data - if it is wrong now
423 * and then, the allocator will still function, perhaps a bit slower.
424 */
425
426
427 struct zonelist_cache {
428 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
429 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
430 unsigned long last_full_zap; /* when last zap'd (jiffies) */
431 };
432 #else
433 #define MAX_ZONELISTS MAX_NR_ZONES
434 struct zonelist_cache;
435 #endif
436
437 /*
438 * One allocation request operates on a zonelist. A zonelist
439 * is a list of zones, the first one is the 'goal' of the
440 * allocation, the other zones are fallback zones, in decreasing
441 * priority.
442 *
443 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
444 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
445 */
446
447 struct zonelist {
448 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
449 struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited
450 #ifdef CONFIG_NUMA
451 struct zonelist_cache zlcache; // optional ...
452 #endif
453 };
454
455 #ifdef CONFIG_NUMA
456 /*
457 * Only custom zonelists like MPOL_BIND need to be filtered as part of
458 * policies. As described in the comment for struct zonelist_cache, these
459 * zonelists will not have a zlcache so zlcache_ptr will not be set. Use
460 * that to determine if the zonelists needs to be filtered or not.
461 */
462 static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
463 {
464 return !zonelist->zlcache_ptr;
465 }
466 #else
467 static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
468 {
469 return 0;
470 }
471 #endif /* CONFIG_NUMA */
472
473 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
474 struct node_active_region {
475 unsigned long start_pfn;
476 unsigned long end_pfn;
477 int nid;
478 };
479 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
480
481 #ifndef CONFIG_DISCONTIGMEM
482 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
483 extern struct page *mem_map;
484 #endif
485
486 /*
487 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
488 * (mostly NUMA machines?) to denote a higher-level memory zone than the
489 * zone denotes.
490 *
491 * On NUMA machines, each NUMA node would have a pg_data_t to describe
492 * it's memory layout.
493 *
494 * Memory statistics and page replacement data structures are maintained on a
495 * per-zone basis.
496 */
497 struct bootmem_data;
498 typedef struct pglist_data {
499 struct zone node_zones[MAX_NR_ZONES];
500 struct zonelist node_zonelists[MAX_ZONELISTS];
501 int nr_zones;
502 #ifdef CONFIG_FLAT_NODE_MEM_MAP
503 struct page *node_mem_map;
504 #endif
505 struct bootmem_data *bdata;
506 #ifdef CONFIG_MEMORY_HOTPLUG
507 /*
508 * Must be held any time you expect node_start_pfn, node_present_pages
509 * or node_spanned_pages stay constant. Holding this will also
510 * guarantee that any pfn_valid() stays that way.
511 *
512 * Nests above zone->lock and zone->size_seqlock.
513 */
514 spinlock_t node_size_lock;
515 #endif
516 unsigned long node_start_pfn;
517 unsigned long node_present_pages; /* total number of physical pages */
518 unsigned long node_spanned_pages; /* total size of physical page
519 range, including holes */
520 int node_id;
521 wait_queue_head_t kswapd_wait;
522 struct task_struct *kswapd;
523 int kswapd_max_order;
524 } pg_data_t;
525
526 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
527 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
528 #ifdef CONFIG_FLAT_NODE_MEM_MAP
529 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
530 #else
531 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
532 #endif
533 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
534
535 #include <linux/memory_hotplug.h>
536
537 void get_zone_counts(unsigned long *active, unsigned long *inactive,
538 unsigned long *free);
539 void build_all_zonelists(void);
540 void wakeup_kswapd(struct zone *zone, int order);
541 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
542 int classzone_idx, int alloc_flags);
543 enum memmap_context {
544 MEMMAP_EARLY,
545 MEMMAP_HOTPLUG,
546 };
547 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
548 unsigned long size,
549 enum memmap_context context);
550
551 #ifdef CONFIG_HAVE_MEMORY_PRESENT
552 void memory_present(int nid, unsigned long start, unsigned long end);
553 #else
554 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
555 #endif
556
557 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
558 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
559 #endif
560
561 /*
562 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
563 */
564 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
565
566 static inline int populated_zone(struct zone *zone)
567 {
568 return (!!zone->present_pages);
569 }
570
571 extern int movable_zone;
572
573 static inline int zone_movable_is_highmem(void)
574 {
575 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
576 return movable_zone == ZONE_HIGHMEM;
577 #else
578 return 0;
579 #endif
580 }
581
582 static inline int is_highmem_idx(enum zone_type idx)
583 {
584 #ifdef CONFIG_HIGHMEM
585 return (idx == ZONE_HIGHMEM ||
586 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
587 #else
588 return 0;
589 #endif
590 }
591
592 static inline int is_normal_idx(enum zone_type idx)
593 {
594 return (idx == ZONE_NORMAL);
595 }
596
597 /**
598 * is_highmem - helper function to quickly check if a struct zone is a
599 * highmem zone or not. This is an attempt to keep references
600 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
601 * @zone - pointer to struct zone variable
602 */
603 static inline int is_highmem(struct zone *zone)
604 {
605 #ifdef CONFIG_HIGHMEM
606 int zone_idx = zone - zone->zone_pgdat->node_zones;
607 return zone_idx == ZONE_HIGHMEM ||
608 (zone_idx == ZONE_MOVABLE && zone_movable_is_highmem());
609 #else
610 return 0;
611 #endif
612 }
613
614 static inline int is_normal(struct zone *zone)
615 {
616 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
617 }
618
619 static inline int is_dma32(struct zone *zone)
620 {
621 #ifdef CONFIG_ZONE_DMA32
622 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
623 #else
624 return 0;
625 #endif
626 }
627
628 static inline int is_dma(struct zone *zone)
629 {
630 #ifdef CONFIG_ZONE_DMA
631 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
632 #else
633 return 0;
634 #endif
635 }
636
637 /* These two functions are used to setup the per zone pages min values */
638 struct ctl_table;
639 struct file;
640 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
641 void __user *, size_t *, loff_t *);
642 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
643 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
644 void __user *, size_t *, loff_t *);
645 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
646 void __user *, size_t *, loff_t *);
647 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
648 struct file *, void __user *, size_t *, loff_t *);
649 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
650 struct file *, void __user *, size_t *, loff_t *);
651
652 extern int numa_zonelist_order_handler(struct ctl_table *, int,
653 struct file *, void __user *, size_t *, loff_t *);
654 extern char numa_zonelist_order[];
655 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
656
657 #include <linux/topology.h>
658 /* Returns the number of the current Node. */
659 #ifndef numa_node_id
660 #define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
661 #endif
662
663 #ifndef CONFIG_NEED_MULTIPLE_NODES
664
665 extern struct pglist_data contig_page_data;
666 #define NODE_DATA(nid) (&contig_page_data)
667 #define NODE_MEM_MAP(nid) mem_map
668 #define MAX_NODES_SHIFT 1
669
670 #else /* CONFIG_NEED_MULTIPLE_NODES */
671
672 #include <asm/mmzone.h>
673
674 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
675
676 extern struct pglist_data *first_online_pgdat(void);
677 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
678 extern struct zone *next_zone(struct zone *zone);
679
680 /**
681 * for_each_pgdat - helper macro to iterate over all nodes
682 * @pgdat - pointer to a pg_data_t variable
683 */
684 #define for_each_online_pgdat(pgdat) \
685 for (pgdat = first_online_pgdat(); \
686 pgdat; \
687 pgdat = next_online_pgdat(pgdat))
688 /**
689 * for_each_zone - helper macro to iterate over all memory zones
690 * @zone - pointer to struct zone variable
691 *
692 * The user only needs to declare the zone variable, for_each_zone
693 * fills it in.
694 */
695 #define for_each_zone(zone) \
696 for (zone = (first_online_pgdat())->node_zones; \
697 zone; \
698 zone = next_zone(zone))
699
700 #ifdef CONFIG_SPARSEMEM
701 #include <asm/sparsemem.h>
702 #endif
703
704 #if BITS_PER_LONG == 32
705 /*
706 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
707 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
708 */
709 #define FLAGS_RESERVED 9
710
711 #elif BITS_PER_LONG == 64
712 /*
713 * with 64 bit flags field, there's plenty of room.
714 */
715 #define FLAGS_RESERVED 32
716
717 #else
718
719 #error BITS_PER_LONG not defined
720
721 #endif
722
723 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
724 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
725 #define early_pfn_to_nid(nid) (0UL)
726 #endif
727
728 #ifdef CONFIG_FLATMEM
729 #define pfn_to_nid(pfn) (0)
730 #endif
731
732 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
733 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
734
735 #ifdef CONFIG_SPARSEMEM
736
737 /*
738 * SECTION_SHIFT #bits space required to store a section #
739 *
740 * PA_SECTION_SHIFT physical address to/from section number
741 * PFN_SECTION_SHIFT pfn to/from section number
742 */
743 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
744
745 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
746 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
747
748 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
749
750 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
751 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
752
753 #define SECTION_BLOCKFLAGS_BITS \
754 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
755
756 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
757 #error Allocator MAX_ORDER exceeds SECTION_SIZE
758 #endif
759
760 struct page;
761 struct mem_section {
762 /*
763 * This is, logically, a pointer to an array of struct
764 * pages. However, it is stored with some other magic.
765 * (see sparse.c::sparse_init_one_section())
766 *
767 * Additionally during early boot we encode node id of
768 * the location of the section here to guide allocation.
769 * (see sparse.c::memory_present())
770 *
771 * Making it a UL at least makes someone do a cast
772 * before using it wrong.
773 */
774 unsigned long section_mem_map;
775
776 /* See declaration of similar field in struct zone */
777 unsigned long *pageblock_flags;
778 };
779
780 #ifdef CONFIG_SPARSEMEM_EXTREME
781 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
782 #else
783 #define SECTIONS_PER_ROOT 1
784 #endif
785
786 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
787 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
788 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
789
790 #ifdef CONFIG_SPARSEMEM_EXTREME
791 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
792 #else
793 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
794 #endif
795
796 static inline struct mem_section *__nr_to_section(unsigned long nr)
797 {
798 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
799 return NULL;
800 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
801 }
802 extern int __section_nr(struct mem_section* ms);
803
804 /*
805 * We use the lower bits of the mem_map pointer to store
806 * a little bit of information. There should be at least
807 * 3 bits here due to 32-bit alignment.
808 */
809 #define SECTION_MARKED_PRESENT (1UL<<0)
810 #define SECTION_HAS_MEM_MAP (1UL<<1)
811 #define SECTION_MAP_LAST_BIT (1UL<<2)
812 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
813 #define SECTION_NID_SHIFT 2
814
815 static inline struct page *__section_mem_map_addr(struct mem_section *section)
816 {
817 unsigned long map = section->section_mem_map;
818 map &= SECTION_MAP_MASK;
819 return (struct page *)map;
820 }
821
822 static inline int present_section(struct mem_section *section)
823 {
824 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
825 }
826
827 static inline int present_section_nr(unsigned long nr)
828 {
829 return present_section(__nr_to_section(nr));
830 }
831
832 static inline int valid_section(struct mem_section *section)
833 {
834 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
835 }
836
837 static inline int valid_section_nr(unsigned long nr)
838 {
839 return valid_section(__nr_to_section(nr));
840 }
841
842 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
843 {
844 return __nr_to_section(pfn_to_section_nr(pfn));
845 }
846
847 static inline int pfn_valid(unsigned long pfn)
848 {
849 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
850 return 0;
851 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
852 }
853
854 static inline int pfn_present(unsigned long pfn)
855 {
856 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
857 return 0;
858 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
859 }
860
861 /*
862 * These are _only_ used during initialisation, therefore they
863 * can use __initdata ... They could have names to indicate
864 * this restriction.
865 */
866 #ifdef CONFIG_NUMA
867 #define pfn_to_nid(pfn) \
868 ({ \
869 unsigned long __pfn_to_nid_pfn = (pfn); \
870 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
871 })
872 #else
873 #define pfn_to_nid(pfn) (0)
874 #endif
875
876 #define early_pfn_valid(pfn) pfn_valid(pfn)
877 void sparse_init(void);
878 #else
879 #define sparse_init() do {} while (0)
880 #define sparse_index_init(_sec, _nid) do {} while (0)
881 #endif /* CONFIG_SPARSEMEM */
882
883 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
884 #define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
885 #else
886 #define early_pfn_in_nid(pfn, nid) (1)
887 #endif
888
889 #ifndef early_pfn_valid
890 #define early_pfn_valid(pfn) (1)
891 #endif
892
893 void memory_present(int nid, unsigned long start, unsigned long end);
894 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
895
896 /*
897 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
898 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
899 * pfn_valid_within() should be used in this case; we optimise this away
900 * when we have no holes within a MAX_ORDER_NR_PAGES block.
901 */
902 #ifdef CONFIG_HOLES_IN_ZONE
903 #define pfn_valid_within(pfn) pfn_valid(pfn)
904 #else
905 #define pfn_valid_within(pfn) (1)
906 #endif
907
908 #endif /* !__ASSEMBLY__ */
909 #endif /* __KERNEL__ */
910 #endif /* _LINUX_MMZONE_H */
This page took 0.062068 seconds and 6 git commands to generate.