don't group high order atomic allocations
[deliverable/linux.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifdef __KERNEL__
5 #ifndef __ASSEMBLY__
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/cache.h>
11 #include <linux/threads.h>
12 #include <linux/numa.h>
13 #include <linux/init.h>
14 #include <linux/seqlock.h>
15 #include <linux/nodemask.h>
16 #include <linux/pageblock-flags.h>
17 #include <asm/atomic.h>
18 #include <asm/page.h>
19
20 /* Free memory management - zoned buddy allocator. */
21 #ifndef CONFIG_FORCE_MAX_ZONEORDER
22 #define MAX_ORDER 11
23 #else
24 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
25 #endif
26 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
27
28 /*
29 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
30 * costly to service. That is between allocation orders which should
31 * coelesce naturally under reasonable reclaim pressure and those which
32 * will not.
33 */
34 #define PAGE_ALLOC_COSTLY_ORDER 3
35
36 #define MIGRATE_UNMOVABLE 0
37 #define MIGRATE_RECLAIMABLE 1
38 #define MIGRATE_MOVABLE 2
39 #define MIGRATE_RESERVE 3
40 #define MIGRATE_TYPES 4
41
42 #define for_each_migratetype_order(order, type) \
43 for (order = 0; order < MAX_ORDER; order++) \
44 for (type = 0; type < MIGRATE_TYPES; type++)
45
46 struct free_area {
47 struct list_head free_list[MIGRATE_TYPES];
48 unsigned long nr_free;
49 };
50
51 struct pglist_data;
52
53 /*
54 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
55 * So add a wild amount of padding here to ensure that they fall into separate
56 * cachelines. There are very few zone structures in the machine, so space
57 * consumption is not a concern here.
58 */
59 #if defined(CONFIG_SMP)
60 struct zone_padding {
61 char x[0];
62 } ____cacheline_internodealigned_in_smp;
63 #define ZONE_PADDING(name) struct zone_padding name;
64 #else
65 #define ZONE_PADDING(name)
66 #endif
67
68 enum zone_stat_item {
69 /* First 128 byte cacheline (assuming 64 bit words) */
70 NR_FREE_PAGES,
71 NR_INACTIVE,
72 NR_ACTIVE,
73 NR_ANON_PAGES, /* Mapped anonymous pages */
74 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
75 only modified from process context */
76 NR_FILE_PAGES,
77 NR_FILE_DIRTY,
78 NR_WRITEBACK,
79 /* Second 128 byte cacheline */
80 NR_SLAB_RECLAIMABLE,
81 NR_SLAB_UNRECLAIMABLE,
82 NR_PAGETABLE, /* used for pagetables */
83 NR_UNSTABLE_NFS, /* NFS unstable pages */
84 NR_BOUNCE,
85 NR_VMSCAN_WRITE,
86 #ifdef CONFIG_NUMA
87 NUMA_HIT, /* allocated in intended node */
88 NUMA_MISS, /* allocated in non intended node */
89 NUMA_FOREIGN, /* was intended here, hit elsewhere */
90 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
91 NUMA_LOCAL, /* allocation from local node */
92 NUMA_OTHER, /* allocation from other node */
93 #endif
94 NR_VM_ZONE_STAT_ITEMS };
95
96 struct per_cpu_pages {
97 int count; /* number of pages in the list */
98 int high; /* high watermark, emptying needed */
99 int batch; /* chunk size for buddy add/remove */
100 struct list_head list; /* the list of pages */
101 };
102
103 struct per_cpu_pageset {
104 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
105 #ifdef CONFIG_NUMA
106 s8 expire;
107 #endif
108 #ifdef CONFIG_SMP
109 s8 stat_threshold;
110 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
111 #endif
112 } ____cacheline_aligned_in_smp;
113
114 #ifdef CONFIG_NUMA
115 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
116 #else
117 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
118 #endif
119
120 enum zone_type {
121 #ifdef CONFIG_ZONE_DMA
122 /*
123 * ZONE_DMA is used when there are devices that are not able
124 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
125 * carve out the portion of memory that is needed for these devices.
126 * The range is arch specific.
127 *
128 * Some examples
129 *
130 * Architecture Limit
131 * ---------------------------
132 * parisc, ia64, sparc <4G
133 * s390 <2G
134 * arm Various
135 * alpha Unlimited or 0-16MB.
136 *
137 * i386, x86_64 and multiple other arches
138 * <16M.
139 */
140 ZONE_DMA,
141 #endif
142 #ifdef CONFIG_ZONE_DMA32
143 /*
144 * x86_64 needs two ZONE_DMAs because it supports devices that are
145 * only able to do DMA to the lower 16M but also 32 bit devices that
146 * can only do DMA areas below 4G.
147 */
148 ZONE_DMA32,
149 #endif
150 /*
151 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
152 * performed on pages in ZONE_NORMAL if the DMA devices support
153 * transfers to all addressable memory.
154 */
155 ZONE_NORMAL,
156 #ifdef CONFIG_HIGHMEM
157 /*
158 * A memory area that is only addressable by the kernel through
159 * mapping portions into its own address space. This is for example
160 * used by i386 to allow the kernel to address the memory beyond
161 * 900MB. The kernel will set up special mappings (page
162 * table entries on i386) for each page that the kernel needs to
163 * access.
164 */
165 ZONE_HIGHMEM,
166 #endif
167 ZONE_MOVABLE,
168 MAX_NR_ZONES
169 };
170
171 /*
172 * When a memory allocation must conform to specific limitations (such
173 * as being suitable for DMA) the caller will pass in hints to the
174 * allocator in the gfp_mask, in the zone modifier bits. These bits
175 * are used to select a priority ordered list of memory zones which
176 * match the requested limits. See gfp_zone() in include/linux/gfp.h
177 */
178
179 /*
180 * Count the active zones. Note that the use of defined(X) outside
181 * #if and family is not necessarily defined so ensure we cannot use
182 * it later. Use __ZONE_COUNT to work out how many shift bits we need.
183 */
184 #define __ZONE_COUNT ( \
185 defined(CONFIG_ZONE_DMA) \
186 + defined(CONFIG_ZONE_DMA32) \
187 + 1 \
188 + defined(CONFIG_HIGHMEM) \
189 + 1 \
190 )
191 #if __ZONE_COUNT < 2
192 #define ZONES_SHIFT 0
193 #elif __ZONE_COUNT <= 2
194 #define ZONES_SHIFT 1
195 #elif __ZONE_COUNT <= 4
196 #define ZONES_SHIFT 2
197 #else
198 #error ZONES_SHIFT -- too many zones configured adjust calculation
199 #endif
200 #undef __ZONE_COUNT
201
202 struct zone {
203 /* Fields commonly accessed by the page allocator */
204 unsigned long pages_min, pages_low, pages_high;
205 /*
206 * We don't know if the memory that we're going to allocate will be freeable
207 * or/and it will be released eventually, so to avoid totally wasting several
208 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
209 * to run OOM on the lower zones despite there's tons of freeable ram
210 * on the higher zones). This array is recalculated at runtime if the
211 * sysctl_lowmem_reserve_ratio sysctl changes.
212 */
213 unsigned long lowmem_reserve[MAX_NR_ZONES];
214
215 #ifdef CONFIG_NUMA
216 int node;
217 /*
218 * zone reclaim becomes active if more unmapped pages exist.
219 */
220 unsigned long min_unmapped_pages;
221 unsigned long min_slab_pages;
222 struct per_cpu_pageset *pageset[NR_CPUS];
223 #else
224 struct per_cpu_pageset pageset[NR_CPUS];
225 #endif
226 /*
227 * free areas of different sizes
228 */
229 spinlock_t lock;
230 #ifdef CONFIG_MEMORY_HOTPLUG
231 /* see spanned/present_pages for more description */
232 seqlock_t span_seqlock;
233 #endif
234 struct free_area free_area[MAX_ORDER];
235
236 #ifndef CONFIG_SPARSEMEM
237 /*
238 * Flags for a MAX_ORDER_NR_PAGES block. See pageblock-flags.h.
239 * In SPARSEMEM, this map is stored in struct mem_section
240 */
241 unsigned long *pageblock_flags;
242 #endif /* CONFIG_SPARSEMEM */
243
244
245 ZONE_PADDING(_pad1_)
246
247 /* Fields commonly accessed by the page reclaim scanner */
248 spinlock_t lru_lock;
249 struct list_head active_list;
250 struct list_head inactive_list;
251 unsigned long nr_scan_active;
252 unsigned long nr_scan_inactive;
253 unsigned long pages_scanned; /* since last reclaim */
254 int all_unreclaimable; /* All pages pinned */
255
256 /* A count of how many reclaimers are scanning this zone */
257 atomic_t reclaim_in_progress;
258
259 /* Zone statistics */
260 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
261
262 /*
263 * prev_priority holds the scanning priority for this zone. It is
264 * defined as the scanning priority at which we achieved our reclaim
265 * target at the previous try_to_free_pages() or balance_pgdat()
266 * invokation.
267 *
268 * We use prev_priority as a measure of how much stress page reclaim is
269 * under - it drives the swappiness decision: whether to unmap mapped
270 * pages.
271 *
272 * Access to both this field is quite racy even on uniprocessor. But
273 * it is expected to average out OK.
274 */
275 int prev_priority;
276
277
278 ZONE_PADDING(_pad2_)
279 /* Rarely used or read-mostly fields */
280
281 /*
282 * wait_table -- the array holding the hash table
283 * wait_table_hash_nr_entries -- the size of the hash table array
284 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
285 *
286 * The purpose of all these is to keep track of the people
287 * waiting for a page to become available and make them
288 * runnable again when possible. The trouble is that this
289 * consumes a lot of space, especially when so few things
290 * wait on pages at a given time. So instead of using
291 * per-page waitqueues, we use a waitqueue hash table.
292 *
293 * The bucket discipline is to sleep on the same queue when
294 * colliding and wake all in that wait queue when removing.
295 * When something wakes, it must check to be sure its page is
296 * truly available, a la thundering herd. The cost of a
297 * collision is great, but given the expected load of the
298 * table, they should be so rare as to be outweighed by the
299 * benefits from the saved space.
300 *
301 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
302 * primary users of these fields, and in mm/page_alloc.c
303 * free_area_init_core() performs the initialization of them.
304 */
305 wait_queue_head_t * wait_table;
306 unsigned long wait_table_hash_nr_entries;
307 unsigned long wait_table_bits;
308
309 /*
310 * Discontig memory support fields.
311 */
312 struct pglist_data *zone_pgdat;
313 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
314 unsigned long zone_start_pfn;
315
316 /*
317 * zone_start_pfn, spanned_pages and present_pages are all
318 * protected by span_seqlock. It is a seqlock because it has
319 * to be read outside of zone->lock, and it is done in the main
320 * allocator path. But, it is written quite infrequently.
321 *
322 * The lock is declared along with zone->lock because it is
323 * frequently read in proximity to zone->lock. It's good to
324 * give them a chance of being in the same cacheline.
325 */
326 unsigned long spanned_pages; /* total size, including holes */
327 unsigned long present_pages; /* amount of memory (excluding holes) */
328
329 /*
330 * rarely used fields:
331 */
332 const char *name;
333 } ____cacheline_internodealigned_in_smp;
334
335 /*
336 * The "priority" of VM scanning is how much of the queues we will scan in one
337 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
338 * queues ("queue_length >> 12") during an aging round.
339 */
340 #define DEF_PRIORITY 12
341
342 /* Maximum number of zones on a zonelist */
343 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
344
345 #ifdef CONFIG_NUMA
346
347 /*
348 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
349 * allocations to a single node for GFP_THISNODE.
350 *
351 * [0 .. MAX_NR_ZONES -1] : Zonelists with fallback
352 * [MAZ_NR_ZONES ... MAZ_ZONELISTS -1] : No fallback (GFP_THISNODE)
353 */
354 #define MAX_ZONELISTS (2 * MAX_NR_ZONES)
355
356
357 /*
358 * We cache key information from each zonelist for smaller cache
359 * footprint when scanning for free pages in get_page_from_freelist().
360 *
361 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
362 * up short of free memory since the last time (last_fullzone_zap)
363 * we zero'd fullzones.
364 * 2) The array z_to_n[] maps each zone in the zonelist to its node
365 * id, so that we can efficiently evaluate whether that node is
366 * set in the current tasks mems_allowed.
367 *
368 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
369 * indexed by a zones offset in the zonelist zones[] array.
370 *
371 * The get_page_from_freelist() routine does two scans. During the
372 * first scan, we skip zones whose corresponding bit in 'fullzones'
373 * is set or whose corresponding node in current->mems_allowed (which
374 * comes from cpusets) is not set. During the second scan, we bypass
375 * this zonelist_cache, to ensure we look methodically at each zone.
376 *
377 * Once per second, we zero out (zap) fullzones, forcing us to
378 * reconsider nodes that might have regained more free memory.
379 * The field last_full_zap is the time we last zapped fullzones.
380 *
381 * This mechanism reduces the amount of time we waste repeatedly
382 * reexaming zones for free memory when they just came up low on
383 * memory momentarilly ago.
384 *
385 * The zonelist_cache struct members logically belong in struct
386 * zonelist. However, the mempolicy zonelists constructed for
387 * MPOL_BIND are intentionally variable length (and usually much
388 * shorter). A general purpose mechanism for handling structs with
389 * multiple variable length members is more mechanism than we want
390 * here. We resort to some special case hackery instead.
391 *
392 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
393 * part because they are shorter), so we put the fixed length stuff
394 * at the front of the zonelist struct, ending in a variable length
395 * zones[], as is needed by MPOL_BIND.
396 *
397 * Then we put the optional zonelist cache on the end of the zonelist
398 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
399 * the fixed length portion at the front of the struct. This pointer
400 * both enables us to find the zonelist cache, and in the case of
401 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
402 * to know that the zonelist cache is not there.
403 *
404 * The end result is that struct zonelists come in two flavors:
405 * 1) The full, fixed length version, shown below, and
406 * 2) The custom zonelists for MPOL_BIND.
407 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
408 *
409 * Even though there may be multiple CPU cores on a node modifying
410 * fullzones or last_full_zap in the same zonelist_cache at the same
411 * time, we don't lock it. This is just hint data - if it is wrong now
412 * and then, the allocator will still function, perhaps a bit slower.
413 */
414
415
416 struct zonelist_cache {
417 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
418 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
419 unsigned long last_full_zap; /* when last zap'd (jiffies) */
420 };
421 #else
422 #define MAX_ZONELISTS MAX_NR_ZONES
423 struct zonelist_cache;
424 #endif
425
426 /*
427 * One allocation request operates on a zonelist. A zonelist
428 * is a list of zones, the first one is the 'goal' of the
429 * allocation, the other zones are fallback zones, in decreasing
430 * priority.
431 *
432 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
433 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
434 */
435
436 struct zonelist {
437 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
438 struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited
439 #ifdef CONFIG_NUMA
440 struct zonelist_cache zlcache; // optional ...
441 #endif
442 };
443
444 #ifdef CONFIG_NUMA
445 /*
446 * Only custom zonelists like MPOL_BIND need to be filtered as part of
447 * policies. As described in the comment for struct zonelist_cache, these
448 * zonelists will not have a zlcache so zlcache_ptr will not be set. Use
449 * that to determine if the zonelists needs to be filtered or not.
450 */
451 static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
452 {
453 return !zonelist->zlcache_ptr;
454 }
455 #else
456 static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
457 {
458 return 0;
459 }
460 #endif /* CONFIG_NUMA */
461
462 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
463 struct node_active_region {
464 unsigned long start_pfn;
465 unsigned long end_pfn;
466 int nid;
467 };
468 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
469
470 #ifndef CONFIG_DISCONTIGMEM
471 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
472 extern struct page *mem_map;
473 #endif
474
475 /*
476 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
477 * (mostly NUMA machines?) to denote a higher-level memory zone than the
478 * zone denotes.
479 *
480 * On NUMA machines, each NUMA node would have a pg_data_t to describe
481 * it's memory layout.
482 *
483 * Memory statistics and page replacement data structures are maintained on a
484 * per-zone basis.
485 */
486 struct bootmem_data;
487 typedef struct pglist_data {
488 struct zone node_zones[MAX_NR_ZONES];
489 struct zonelist node_zonelists[MAX_ZONELISTS];
490 int nr_zones;
491 #ifdef CONFIG_FLAT_NODE_MEM_MAP
492 struct page *node_mem_map;
493 #endif
494 struct bootmem_data *bdata;
495 #ifdef CONFIG_MEMORY_HOTPLUG
496 /*
497 * Must be held any time you expect node_start_pfn, node_present_pages
498 * or node_spanned_pages stay constant. Holding this will also
499 * guarantee that any pfn_valid() stays that way.
500 *
501 * Nests above zone->lock and zone->size_seqlock.
502 */
503 spinlock_t node_size_lock;
504 #endif
505 unsigned long node_start_pfn;
506 unsigned long node_present_pages; /* total number of physical pages */
507 unsigned long node_spanned_pages; /* total size of physical page
508 range, including holes */
509 int node_id;
510 wait_queue_head_t kswapd_wait;
511 struct task_struct *kswapd;
512 int kswapd_max_order;
513 } pg_data_t;
514
515 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
516 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
517 #ifdef CONFIG_FLAT_NODE_MEM_MAP
518 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
519 #else
520 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
521 #endif
522 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
523
524 #include <linux/memory_hotplug.h>
525
526 void get_zone_counts(unsigned long *active, unsigned long *inactive,
527 unsigned long *free);
528 void build_all_zonelists(void);
529 void wakeup_kswapd(struct zone *zone, int order);
530 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
531 int classzone_idx, int alloc_flags);
532 enum memmap_context {
533 MEMMAP_EARLY,
534 MEMMAP_HOTPLUG,
535 };
536 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
537 unsigned long size,
538 enum memmap_context context);
539
540 #ifdef CONFIG_HAVE_MEMORY_PRESENT
541 void memory_present(int nid, unsigned long start, unsigned long end);
542 #else
543 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
544 #endif
545
546 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
547 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
548 #endif
549
550 /*
551 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
552 */
553 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
554
555 static inline int populated_zone(struct zone *zone)
556 {
557 return (!!zone->present_pages);
558 }
559
560 extern int movable_zone;
561
562 static inline int zone_movable_is_highmem(void)
563 {
564 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
565 return movable_zone == ZONE_HIGHMEM;
566 #else
567 return 0;
568 #endif
569 }
570
571 static inline int is_highmem_idx(enum zone_type idx)
572 {
573 #ifdef CONFIG_HIGHMEM
574 return (idx == ZONE_HIGHMEM ||
575 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
576 #else
577 return 0;
578 #endif
579 }
580
581 static inline int is_normal_idx(enum zone_type idx)
582 {
583 return (idx == ZONE_NORMAL);
584 }
585
586 /**
587 * is_highmem - helper function to quickly check if a struct zone is a
588 * highmem zone or not. This is an attempt to keep references
589 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
590 * @zone - pointer to struct zone variable
591 */
592 static inline int is_highmem(struct zone *zone)
593 {
594 #ifdef CONFIG_HIGHMEM
595 int zone_idx = zone - zone->zone_pgdat->node_zones;
596 return zone_idx == ZONE_HIGHMEM ||
597 (zone_idx == ZONE_MOVABLE && zone_movable_is_highmem());
598 #else
599 return 0;
600 #endif
601 }
602
603 static inline int is_normal(struct zone *zone)
604 {
605 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
606 }
607
608 static inline int is_dma32(struct zone *zone)
609 {
610 #ifdef CONFIG_ZONE_DMA32
611 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
612 #else
613 return 0;
614 #endif
615 }
616
617 static inline int is_dma(struct zone *zone)
618 {
619 #ifdef CONFIG_ZONE_DMA
620 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
621 #else
622 return 0;
623 #endif
624 }
625
626 /* These two functions are used to setup the per zone pages min values */
627 struct ctl_table;
628 struct file;
629 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
630 void __user *, size_t *, loff_t *);
631 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
632 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
633 void __user *, size_t *, loff_t *);
634 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
635 void __user *, size_t *, loff_t *);
636 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
637 struct file *, void __user *, size_t *, loff_t *);
638 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
639 struct file *, void __user *, size_t *, loff_t *);
640
641 extern int numa_zonelist_order_handler(struct ctl_table *, int,
642 struct file *, void __user *, size_t *, loff_t *);
643 extern char numa_zonelist_order[];
644 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
645
646 #include <linux/topology.h>
647 /* Returns the number of the current Node. */
648 #ifndef numa_node_id
649 #define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
650 #endif
651
652 #ifndef CONFIG_NEED_MULTIPLE_NODES
653
654 extern struct pglist_data contig_page_data;
655 #define NODE_DATA(nid) (&contig_page_data)
656 #define NODE_MEM_MAP(nid) mem_map
657 #define MAX_NODES_SHIFT 1
658
659 #else /* CONFIG_NEED_MULTIPLE_NODES */
660
661 #include <asm/mmzone.h>
662
663 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
664
665 extern struct pglist_data *first_online_pgdat(void);
666 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
667 extern struct zone *next_zone(struct zone *zone);
668
669 /**
670 * for_each_pgdat - helper macro to iterate over all nodes
671 * @pgdat - pointer to a pg_data_t variable
672 */
673 #define for_each_online_pgdat(pgdat) \
674 for (pgdat = first_online_pgdat(); \
675 pgdat; \
676 pgdat = next_online_pgdat(pgdat))
677 /**
678 * for_each_zone - helper macro to iterate over all memory zones
679 * @zone - pointer to struct zone variable
680 *
681 * The user only needs to declare the zone variable, for_each_zone
682 * fills it in.
683 */
684 #define for_each_zone(zone) \
685 for (zone = (first_online_pgdat())->node_zones; \
686 zone; \
687 zone = next_zone(zone))
688
689 #ifdef CONFIG_SPARSEMEM
690 #include <asm/sparsemem.h>
691 #endif
692
693 #if BITS_PER_LONG == 32
694 /*
695 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
696 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
697 */
698 #define FLAGS_RESERVED 9
699
700 #elif BITS_PER_LONG == 64
701 /*
702 * with 64 bit flags field, there's plenty of room.
703 */
704 #define FLAGS_RESERVED 32
705
706 #else
707
708 #error BITS_PER_LONG not defined
709
710 #endif
711
712 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
713 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
714 #define early_pfn_to_nid(nid) (0UL)
715 #endif
716
717 #ifdef CONFIG_FLATMEM
718 #define pfn_to_nid(pfn) (0)
719 #endif
720
721 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
722 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
723
724 #ifdef CONFIG_SPARSEMEM
725
726 /*
727 * SECTION_SHIFT #bits space required to store a section #
728 *
729 * PA_SECTION_SHIFT physical address to/from section number
730 * PFN_SECTION_SHIFT pfn to/from section number
731 */
732 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
733
734 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
735 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
736
737 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
738
739 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
740 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
741
742 #define SECTION_BLOCKFLAGS_BITS \
743 ((1 << (PFN_SECTION_SHIFT - (MAX_ORDER-1))) * NR_PAGEBLOCK_BITS)
744
745 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
746 #error Allocator MAX_ORDER exceeds SECTION_SIZE
747 #endif
748
749 struct page;
750 struct mem_section {
751 /*
752 * This is, logically, a pointer to an array of struct
753 * pages. However, it is stored with some other magic.
754 * (see sparse.c::sparse_init_one_section())
755 *
756 * Additionally during early boot we encode node id of
757 * the location of the section here to guide allocation.
758 * (see sparse.c::memory_present())
759 *
760 * Making it a UL at least makes someone do a cast
761 * before using it wrong.
762 */
763 unsigned long section_mem_map;
764
765 /* See declaration of similar field in struct zone */
766 unsigned long *pageblock_flags;
767 };
768
769 #ifdef CONFIG_SPARSEMEM_EXTREME
770 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
771 #else
772 #define SECTIONS_PER_ROOT 1
773 #endif
774
775 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
776 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
777 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
778
779 #ifdef CONFIG_SPARSEMEM_EXTREME
780 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
781 #else
782 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
783 #endif
784
785 static inline struct mem_section *__nr_to_section(unsigned long nr)
786 {
787 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
788 return NULL;
789 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
790 }
791 extern int __section_nr(struct mem_section* ms);
792
793 /*
794 * We use the lower bits of the mem_map pointer to store
795 * a little bit of information. There should be at least
796 * 3 bits here due to 32-bit alignment.
797 */
798 #define SECTION_MARKED_PRESENT (1UL<<0)
799 #define SECTION_HAS_MEM_MAP (1UL<<1)
800 #define SECTION_MAP_LAST_BIT (1UL<<2)
801 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
802 #define SECTION_NID_SHIFT 2
803
804 static inline struct page *__section_mem_map_addr(struct mem_section *section)
805 {
806 unsigned long map = section->section_mem_map;
807 map &= SECTION_MAP_MASK;
808 return (struct page *)map;
809 }
810
811 static inline int present_section(struct mem_section *section)
812 {
813 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
814 }
815
816 static inline int present_section_nr(unsigned long nr)
817 {
818 return present_section(__nr_to_section(nr));
819 }
820
821 static inline int valid_section(struct mem_section *section)
822 {
823 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
824 }
825
826 static inline int valid_section_nr(unsigned long nr)
827 {
828 return valid_section(__nr_to_section(nr));
829 }
830
831 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
832 {
833 return __nr_to_section(pfn_to_section_nr(pfn));
834 }
835
836 static inline int pfn_valid(unsigned long pfn)
837 {
838 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
839 return 0;
840 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
841 }
842
843 static inline int pfn_present(unsigned long pfn)
844 {
845 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
846 return 0;
847 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
848 }
849
850 /*
851 * These are _only_ used during initialisation, therefore they
852 * can use __initdata ... They could have names to indicate
853 * this restriction.
854 */
855 #ifdef CONFIG_NUMA
856 #define pfn_to_nid(pfn) \
857 ({ \
858 unsigned long __pfn_to_nid_pfn = (pfn); \
859 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
860 })
861 #else
862 #define pfn_to_nid(pfn) (0)
863 #endif
864
865 #define early_pfn_valid(pfn) pfn_valid(pfn)
866 void sparse_init(void);
867 #else
868 #define sparse_init() do {} while (0)
869 #define sparse_index_init(_sec, _nid) do {} while (0)
870 #endif /* CONFIG_SPARSEMEM */
871
872 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
873 #define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
874 #else
875 #define early_pfn_in_nid(pfn, nid) (1)
876 #endif
877
878 #ifndef early_pfn_valid
879 #define early_pfn_valid(pfn) (1)
880 #endif
881
882 void memory_present(int nid, unsigned long start, unsigned long end);
883 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
884
885 /*
886 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
887 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
888 * pfn_valid_within() should be used in this case; we optimise this away
889 * when we have no holes within a MAX_ORDER_NR_PAGES block.
890 */
891 #ifdef CONFIG_HOLES_IN_ZONE
892 #define pfn_valid_within(pfn) pfn_valid(pfn)
893 #else
894 #define pfn_valid_within(pfn) (1)
895 #endif
896
897 #endif /* !__ASSEMBLY__ */
898 #endif /* __KERNEL__ */
899 #endif /* _LINUX_MMZONE_H */
This page took 0.048398 seconds and 6 git commands to generate.