pageflags: get rid of FLAGS_RESERVED
[deliverable/linux.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifdef __KERNEL__
5 #ifndef __ASSEMBLY__
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <asm/atomic.h>
19 #include <asm/page.h>
20
21 /* Free memory management - zoned buddy allocator. */
22 #ifndef CONFIG_FORCE_MAX_ZONEORDER
23 #define MAX_ORDER 11
24 #else
25 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
26 #endif
27 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
28
29 /*
30 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
31 * costly to service. That is between allocation orders which should
32 * coelesce naturally under reasonable reclaim pressure and those which
33 * will not.
34 */
35 #define PAGE_ALLOC_COSTLY_ORDER 3
36
37 #define MIGRATE_UNMOVABLE 0
38 #define MIGRATE_RECLAIMABLE 1
39 #define MIGRATE_MOVABLE 2
40 #define MIGRATE_RESERVE 3
41 #define MIGRATE_ISOLATE 4 /* can't allocate from here */
42 #define MIGRATE_TYPES 5
43
44 #define for_each_migratetype_order(order, type) \
45 for (order = 0; order < MAX_ORDER; order++) \
46 for (type = 0; type < MIGRATE_TYPES; type++)
47
48 extern int page_group_by_mobility_disabled;
49
50 static inline int get_pageblock_migratetype(struct page *page)
51 {
52 if (unlikely(page_group_by_mobility_disabled))
53 return MIGRATE_UNMOVABLE;
54
55 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
56 }
57
58 struct free_area {
59 struct list_head free_list[MIGRATE_TYPES];
60 unsigned long nr_free;
61 };
62
63 struct pglist_data;
64
65 /*
66 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
67 * So add a wild amount of padding here to ensure that they fall into separate
68 * cachelines. There are very few zone structures in the machine, so space
69 * consumption is not a concern here.
70 */
71 #if defined(CONFIG_SMP)
72 struct zone_padding {
73 char x[0];
74 } ____cacheline_internodealigned_in_smp;
75 #define ZONE_PADDING(name) struct zone_padding name;
76 #else
77 #define ZONE_PADDING(name)
78 #endif
79
80 enum zone_stat_item {
81 /* First 128 byte cacheline (assuming 64 bit words) */
82 NR_FREE_PAGES,
83 NR_INACTIVE,
84 NR_ACTIVE,
85 NR_ANON_PAGES, /* Mapped anonymous pages */
86 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
87 only modified from process context */
88 NR_FILE_PAGES,
89 NR_FILE_DIRTY,
90 NR_WRITEBACK,
91 /* Second 128 byte cacheline */
92 NR_SLAB_RECLAIMABLE,
93 NR_SLAB_UNRECLAIMABLE,
94 NR_PAGETABLE, /* used for pagetables */
95 NR_UNSTABLE_NFS, /* NFS unstable pages */
96 NR_BOUNCE,
97 NR_VMSCAN_WRITE,
98 #ifdef CONFIG_NUMA
99 NUMA_HIT, /* allocated in intended node */
100 NUMA_MISS, /* allocated in non intended node */
101 NUMA_FOREIGN, /* was intended here, hit elsewhere */
102 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
103 NUMA_LOCAL, /* allocation from local node */
104 NUMA_OTHER, /* allocation from other node */
105 #endif
106 NR_VM_ZONE_STAT_ITEMS };
107
108 struct per_cpu_pages {
109 int count; /* number of pages in the list */
110 int high; /* high watermark, emptying needed */
111 int batch; /* chunk size for buddy add/remove */
112 struct list_head list; /* the list of pages */
113 };
114
115 struct per_cpu_pageset {
116 struct per_cpu_pages pcp;
117 #ifdef CONFIG_NUMA
118 s8 expire;
119 #endif
120 #ifdef CONFIG_SMP
121 s8 stat_threshold;
122 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
123 #endif
124 } ____cacheline_aligned_in_smp;
125
126 #ifdef CONFIG_NUMA
127 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
128 #else
129 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
130 #endif
131
132 enum zone_type {
133 #ifdef CONFIG_ZONE_DMA
134 /*
135 * ZONE_DMA is used when there are devices that are not able
136 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
137 * carve out the portion of memory that is needed for these devices.
138 * The range is arch specific.
139 *
140 * Some examples
141 *
142 * Architecture Limit
143 * ---------------------------
144 * parisc, ia64, sparc <4G
145 * s390 <2G
146 * arm Various
147 * alpha Unlimited or 0-16MB.
148 *
149 * i386, x86_64 and multiple other arches
150 * <16M.
151 */
152 ZONE_DMA,
153 #endif
154 #ifdef CONFIG_ZONE_DMA32
155 /*
156 * x86_64 needs two ZONE_DMAs because it supports devices that are
157 * only able to do DMA to the lower 16M but also 32 bit devices that
158 * can only do DMA areas below 4G.
159 */
160 ZONE_DMA32,
161 #endif
162 /*
163 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
164 * performed on pages in ZONE_NORMAL if the DMA devices support
165 * transfers to all addressable memory.
166 */
167 ZONE_NORMAL,
168 #ifdef CONFIG_HIGHMEM
169 /*
170 * A memory area that is only addressable by the kernel through
171 * mapping portions into its own address space. This is for example
172 * used by i386 to allow the kernel to address the memory beyond
173 * 900MB. The kernel will set up special mappings (page
174 * table entries on i386) for each page that the kernel needs to
175 * access.
176 */
177 ZONE_HIGHMEM,
178 #endif
179 ZONE_MOVABLE,
180 MAX_NR_ZONES
181 };
182
183 /*
184 * When a memory allocation must conform to specific limitations (such
185 * as being suitable for DMA) the caller will pass in hints to the
186 * allocator in the gfp_mask, in the zone modifier bits. These bits
187 * are used to select a priority ordered list of memory zones which
188 * match the requested limits. See gfp_zone() in include/linux/gfp.h
189 */
190
191 /*
192 * Count the active zones. Note that the use of defined(X) outside
193 * #if and family is not necessarily defined so ensure we cannot use
194 * it later. Use __ZONE_COUNT to work out how many shift bits we need.
195 */
196 #define __ZONE_COUNT ( \
197 defined(CONFIG_ZONE_DMA) \
198 + defined(CONFIG_ZONE_DMA32) \
199 + 1 \
200 + defined(CONFIG_HIGHMEM) \
201 + 1 \
202 )
203 #if __ZONE_COUNT < 2
204 #define ZONES_SHIFT 0
205 #elif __ZONE_COUNT <= 2
206 #define ZONES_SHIFT 1
207 #elif __ZONE_COUNT <= 4
208 #define ZONES_SHIFT 2
209 #else
210 #error ZONES_SHIFT -- too many zones configured adjust calculation
211 #endif
212 #undef __ZONE_COUNT
213
214 struct zone {
215 /* Fields commonly accessed by the page allocator */
216 unsigned long pages_min, pages_low, pages_high;
217 /*
218 * We don't know if the memory that we're going to allocate will be freeable
219 * or/and it will be released eventually, so to avoid totally wasting several
220 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
221 * to run OOM on the lower zones despite there's tons of freeable ram
222 * on the higher zones). This array is recalculated at runtime if the
223 * sysctl_lowmem_reserve_ratio sysctl changes.
224 */
225 unsigned long lowmem_reserve[MAX_NR_ZONES];
226
227 #ifdef CONFIG_NUMA
228 int node;
229 /*
230 * zone reclaim becomes active if more unmapped pages exist.
231 */
232 unsigned long min_unmapped_pages;
233 unsigned long min_slab_pages;
234 struct per_cpu_pageset *pageset[NR_CPUS];
235 #else
236 struct per_cpu_pageset pageset[NR_CPUS];
237 #endif
238 /*
239 * free areas of different sizes
240 */
241 spinlock_t lock;
242 #ifdef CONFIG_MEMORY_HOTPLUG
243 /* see spanned/present_pages for more description */
244 seqlock_t span_seqlock;
245 #endif
246 struct free_area free_area[MAX_ORDER];
247
248 #ifndef CONFIG_SPARSEMEM
249 /*
250 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
251 * In SPARSEMEM, this map is stored in struct mem_section
252 */
253 unsigned long *pageblock_flags;
254 #endif /* CONFIG_SPARSEMEM */
255
256
257 ZONE_PADDING(_pad1_)
258
259 /* Fields commonly accessed by the page reclaim scanner */
260 spinlock_t lru_lock;
261 struct list_head active_list;
262 struct list_head inactive_list;
263 unsigned long nr_scan_active;
264 unsigned long nr_scan_inactive;
265 unsigned long pages_scanned; /* since last reclaim */
266 unsigned long flags; /* zone flags, see below */
267
268 /* Zone statistics */
269 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
270
271 /*
272 * prev_priority holds the scanning priority for this zone. It is
273 * defined as the scanning priority at which we achieved our reclaim
274 * target at the previous try_to_free_pages() or balance_pgdat()
275 * invokation.
276 *
277 * We use prev_priority as a measure of how much stress page reclaim is
278 * under - it drives the swappiness decision: whether to unmap mapped
279 * pages.
280 *
281 * Access to both this field is quite racy even on uniprocessor. But
282 * it is expected to average out OK.
283 */
284 int prev_priority;
285
286
287 ZONE_PADDING(_pad2_)
288 /* Rarely used or read-mostly fields */
289
290 /*
291 * wait_table -- the array holding the hash table
292 * wait_table_hash_nr_entries -- the size of the hash table array
293 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
294 *
295 * The purpose of all these is to keep track of the people
296 * waiting for a page to become available and make them
297 * runnable again when possible. The trouble is that this
298 * consumes a lot of space, especially when so few things
299 * wait on pages at a given time. So instead of using
300 * per-page waitqueues, we use a waitqueue hash table.
301 *
302 * The bucket discipline is to sleep on the same queue when
303 * colliding and wake all in that wait queue when removing.
304 * When something wakes, it must check to be sure its page is
305 * truly available, a la thundering herd. The cost of a
306 * collision is great, but given the expected load of the
307 * table, they should be so rare as to be outweighed by the
308 * benefits from the saved space.
309 *
310 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
311 * primary users of these fields, and in mm/page_alloc.c
312 * free_area_init_core() performs the initialization of them.
313 */
314 wait_queue_head_t * wait_table;
315 unsigned long wait_table_hash_nr_entries;
316 unsigned long wait_table_bits;
317
318 /*
319 * Discontig memory support fields.
320 */
321 struct pglist_data *zone_pgdat;
322 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
323 unsigned long zone_start_pfn;
324
325 /*
326 * zone_start_pfn, spanned_pages and present_pages are all
327 * protected by span_seqlock. It is a seqlock because it has
328 * to be read outside of zone->lock, and it is done in the main
329 * allocator path. But, it is written quite infrequently.
330 *
331 * The lock is declared along with zone->lock because it is
332 * frequently read in proximity to zone->lock. It's good to
333 * give them a chance of being in the same cacheline.
334 */
335 unsigned long spanned_pages; /* total size, including holes */
336 unsigned long present_pages; /* amount of memory (excluding holes) */
337
338 /*
339 * rarely used fields:
340 */
341 const char *name;
342 } ____cacheline_internodealigned_in_smp;
343
344 typedef enum {
345 ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */
346 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
347 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
348 } zone_flags_t;
349
350 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
351 {
352 set_bit(flag, &zone->flags);
353 }
354
355 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
356 {
357 return test_and_set_bit(flag, &zone->flags);
358 }
359
360 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
361 {
362 clear_bit(flag, &zone->flags);
363 }
364
365 static inline int zone_is_all_unreclaimable(const struct zone *zone)
366 {
367 return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags);
368 }
369
370 static inline int zone_is_reclaim_locked(const struct zone *zone)
371 {
372 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
373 }
374
375 static inline int zone_is_oom_locked(const struct zone *zone)
376 {
377 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
378 }
379
380 /*
381 * The "priority" of VM scanning is how much of the queues we will scan in one
382 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
383 * queues ("queue_length >> 12") during an aging round.
384 */
385 #define DEF_PRIORITY 12
386
387 /* Maximum number of zones on a zonelist */
388 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
389
390 #ifdef CONFIG_NUMA
391
392 /*
393 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
394 * allocations to a single node for GFP_THISNODE.
395 *
396 * [0] : Zonelist with fallback
397 * [1] : No fallback (GFP_THISNODE)
398 */
399 #define MAX_ZONELISTS 2
400
401
402 /*
403 * We cache key information from each zonelist for smaller cache
404 * footprint when scanning for free pages in get_page_from_freelist().
405 *
406 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
407 * up short of free memory since the last time (last_fullzone_zap)
408 * we zero'd fullzones.
409 * 2) The array z_to_n[] maps each zone in the zonelist to its node
410 * id, so that we can efficiently evaluate whether that node is
411 * set in the current tasks mems_allowed.
412 *
413 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
414 * indexed by a zones offset in the zonelist zones[] array.
415 *
416 * The get_page_from_freelist() routine does two scans. During the
417 * first scan, we skip zones whose corresponding bit in 'fullzones'
418 * is set or whose corresponding node in current->mems_allowed (which
419 * comes from cpusets) is not set. During the second scan, we bypass
420 * this zonelist_cache, to ensure we look methodically at each zone.
421 *
422 * Once per second, we zero out (zap) fullzones, forcing us to
423 * reconsider nodes that might have regained more free memory.
424 * The field last_full_zap is the time we last zapped fullzones.
425 *
426 * This mechanism reduces the amount of time we waste repeatedly
427 * reexaming zones for free memory when they just came up low on
428 * memory momentarilly ago.
429 *
430 * The zonelist_cache struct members logically belong in struct
431 * zonelist. However, the mempolicy zonelists constructed for
432 * MPOL_BIND are intentionally variable length (and usually much
433 * shorter). A general purpose mechanism for handling structs with
434 * multiple variable length members is more mechanism than we want
435 * here. We resort to some special case hackery instead.
436 *
437 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
438 * part because they are shorter), so we put the fixed length stuff
439 * at the front of the zonelist struct, ending in a variable length
440 * zones[], as is needed by MPOL_BIND.
441 *
442 * Then we put the optional zonelist cache on the end of the zonelist
443 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
444 * the fixed length portion at the front of the struct. This pointer
445 * both enables us to find the zonelist cache, and in the case of
446 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
447 * to know that the zonelist cache is not there.
448 *
449 * The end result is that struct zonelists come in two flavors:
450 * 1) The full, fixed length version, shown below, and
451 * 2) The custom zonelists for MPOL_BIND.
452 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
453 *
454 * Even though there may be multiple CPU cores on a node modifying
455 * fullzones or last_full_zap in the same zonelist_cache at the same
456 * time, we don't lock it. This is just hint data - if it is wrong now
457 * and then, the allocator will still function, perhaps a bit slower.
458 */
459
460
461 struct zonelist_cache {
462 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
463 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
464 unsigned long last_full_zap; /* when last zap'd (jiffies) */
465 };
466 #else
467 #define MAX_ZONELISTS 1
468 struct zonelist_cache;
469 #endif
470
471 /*
472 * This struct contains information about a zone in a zonelist. It is stored
473 * here to avoid dereferences into large structures and lookups of tables
474 */
475 struct zoneref {
476 struct zone *zone; /* Pointer to actual zone */
477 int zone_idx; /* zone_idx(zoneref->zone) */
478 };
479
480 /*
481 * One allocation request operates on a zonelist. A zonelist
482 * is a list of zones, the first one is the 'goal' of the
483 * allocation, the other zones are fallback zones, in decreasing
484 * priority.
485 *
486 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
487 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
488 * *
489 * To speed the reading of the zonelist, the zonerefs contain the zone index
490 * of the entry being read. Helper functions to access information given
491 * a struct zoneref are
492 *
493 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
494 * zonelist_zone_idx() - Return the index of the zone for an entry
495 * zonelist_node_idx() - Return the index of the node for an entry
496 */
497 struct zonelist {
498 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
499 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
500 #ifdef CONFIG_NUMA
501 struct zonelist_cache zlcache; // optional ...
502 #endif
503 };
504
505 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
506 struct node_active_region {
507 unsigned long start_pfn;
508 unsigned long end_pfn;
509 int nid;
510 };
511 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
512
513 #ifndef CONFIG_DISCONTIGMEM
514 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
515 extern struct page *mem_map;
516 #endif
517
518 /*
519 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
520 * (mostly NUMA machines?) to denote a higher-level memory zone than the
521 * zone denotes.
522 *
523 * On NUMA machines, each NUMA node would have a pg_data_t to describe
524 * it's memory layout.
525 *
526 * Memory statistics and page replacement data structures are maintained on a
527 * per-zone basis.
528 */
529 struct bootmem_data;
530 typedef struct pglist_data {
531 struct zone node_zones[MAX_NR_ZONES];
532 struct zonelist node_zonelists[MAX_ZONELISTS];
533 int nr_zones;
534 #ifdef CONFIG_FLAT_NODE_MEM_MAP
535 struct page *node_mem_map;
536 #endif
537 struct bootmem_data *bdata;
538 #ifdef CONFIG_MEMORY_HOTPLUG
539 /*
540 * Must be held any time you expect node_start_pfn, node_present_pages
541 * or node_spanned_pages stay constant. Holding this will also
542 * guarantee that any pfn_valid() stays that way.
543 *
544 * Nests above zone->lock and zone->size_seqlock.
545 */
546 spinlock_t node_size_lock;
547 #endif
548 unsigned long node_start_pfn;
549 unsigned long node_present_pages; /* total number of physical pages */
550 unsigned long node_spanned_pages; /* total size of physical page
551 range, including holes */
552 int node_id;
553 wait_queue_head_t kswapd_wait;
554 struct task_struct *kswapd;
555 int kswapd_max_order;
556 } pg_data_t;
557
558 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
559 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
560 #ifdef CONFIG_FLAT_NODE_MEM_MAP
561 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
562 #else
563 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
564 #endif
565 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
566
567 #include <linux/memory_hotplug.h>
568
569 void get_zone_counts(unsigned long *active, unsigned long *inactive,
570 unsigned long *free);
571 void build_all_zonelists(void);
572 void wakeup_kswapd(struct zone *zone, int order);
573 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
574 int classzone_idx, int alloc_flags);
575 enum memmap_context {
576 MEMMAP_EARLY,
577 MEMMAP_HOTPLUG,
578 };
579 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
580 unsigned long size,
581 enum memmap_context context);
582
583 #ifdef CONFIG_HAVE_MEMORY_PRESENT
584 void memory_present(int nid, unsigned long start, unsigned long end);
585 #else
586 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
587 #endif
588
589 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
590 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
591 #endif
592
593 /*
594 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
595 */
596 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
597
598 static inline int populated_zone(struct zone *zone)
599 {
600 return (!!zone->present_pages);
601 }
602
603 extern int movable_zone;
604
605 static inline int zone_movable_is_highmem(void)
606 {
607 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
608 return movable_zone == ZONE_HIGHMEM;
609 #else
610 return 0;
611 #endif
612 }
613
614 static inline int is_highmem_idx(enum zone_type idx)
615 {
616 #ifdef CONFIG_HIGHMEM
617 return (idx == ZONE_HIGHMEM ||
618 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
619 #else
620 return 0;
621 #endif
622 }
623
624 static inline int is_normal_idx(enum zone_type idx)
625 {
626 return (idx == ZONE_NORMAL);
627 }
628
629 /**
630 * is_highmem - helper function to quickly check if a struct zone is a
631 * highmem zone or not. This is an attempt to keep references
632 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
633 * @zone - pointer to struct zone variable
634 */
635 static inline int is_highmem(struct zone *zone)
636 {
637 #ifdef CONFIG_HIGHMEM
638 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
639 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
640 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
641 zone_movable_is_highmem());
642 #else
643 return 0;
644 #endif
645 }
646
647 static inline int is_normal(struct zone *zone)
648 {
649 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
650 }
651
652 static inline int is_dma32(struct zone *zone)
653 {
654 #ifdef CONFIG_ZONE_DMA32
655 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
656 #else
657 return 0;
658 #endif
659 }
660
661 static inline int is_dma(struct zone *zone)
662 {
663 #ifdef CONFIG_ZONE_DMA
664 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
665 #else
666 return 0;
667 #endif
668 }
669
670 /* These two functions are used to setup the per zone pages min values */
671 struct ctl_table;
672 struct file;
673 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
674 void __user *, size_t *, loff_t *);
675 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
676 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
677 void __user *, size_t *, loff_t *);
678 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
679 void __user *, size_t *, loff_t *);
680 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
681 struct file *, void __user *, size_t *, loff_t *);
682 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
683 struct file *, void __user *, size_t *, loff_t *);
684
685 extern int numa_zonelist_order_handler(struct ctl_table *, int,
686 struct file *, void __user *, size_t *, loff_t *);
687 extern char numa_zonelist_order[];
688 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
689
690 #include <linux/topology.h>
691 /* Returns the number of the current Node. */
692 #ifndef numa_node_id
693 #define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
694 #endif
695
696 #ifndef CONFIG_NEED_MULTIPLE_NODES
697
698 extern struct pglist_data contig_page_data;
699 #define NODE_DATA(nid) (&contig_page_data)
700 #define NODE_MEM_MAP(nid) mem_map
701
702 #else /* CONFIG_NEED_MULTIPLE_NODES */
703
704 #include <asm/mmzone.h>
705
706 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
707
708 extern struct pglist_data *first_online_pgdat(void);
709 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
710 extern struct zone *next_zone(struct zone *zone);
711
712 /**
713 * for_each_pgdat - helper macro to iterate over all nodes
714 * @pgdat - pointer to a pg_data_t variable
715 */
716 #define for_each_online_pgdat(pgdat) \
717 for (pgdat = first_online_pgdat(); \
718 pgdat; \
719 pgdat = next_online_pgdat(pgdat))
720 /**
721 * for_each_zone - helper macro to iterate over all memory zones
722 * @zone - pointer to struct zone variable
723 *
724 * The user only needs to declare the zone variable, for_each_zone
725 * fills it in.
726 */
727 #define for_each_zone(zone) \
728 for (zone = (first_online_pgdat())->node_zones; \
729 zone; \
730 zone = next_zone(zone))
731
732 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
733 {
734 return zoneref->zone;
735 }
736
737 static inline int zonelist_zone_idx(struct zoneref *zoneref)
738 {
739 return zoneref->zone_idx;
740 }
741
742 static inline int zonelist_node_idx(struct zoneref *zoneref)
743 {
744 #ifdef CONFIG_NUMA
745 /* zone_to_nid not available in this context */
746 return zoneref->zone->node;
747 #else
748 return 0;
749 #endif /* CONFIG_NUMA */
750 }
751
752 /**
753 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
754 * @z - The cursor used as a starting point for the search
755 * @highest_zoneidx - The zone index of the highest zone to return
756 * @nodes - An optional nodemask to filter the zonelist with
757 * @zone - The first suitable zone found is returned via this parameter
758 *
759 * This function returns the next zone at or below a given zone index that is
760 * within the allowed nodemask using a cursor as the starting point for the
761 * search. The zoneref returned is a cursor that is used as the next starting
762 * point for future calls to next_zones_zonelist().
763 */
764 struct zoneref *next_zones_zonelist(struct zoneref *z,
765 enum zone_type highest_zoneidx,
766 nodemask_t *nodes,
767 struct zone **zone);
768
769 /**
770 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
771 * @zonelist - The zonelist to search for a suitable zone
772 * @highest_zoneidx - The zone index of the highest zone to return
773 * @nodes - An optional nodemask to filter the zonelist with
774 * @zone - The first suitable zone found is returned via this parameter
775 *
776 * This function returns the first zone at or below a given zone index that is
777 * within the allowed nodemask. The zoneref returned is a cursor that can be
778 * used to iterate the zonelist with next_zones_zonelist. The cursor should
779 * not be used by the caller as it does not match the value of the zone
780 * returned.
781 */
782 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
783 enum zone_type highest_zoneidx,
784 nodemask_t *nodes,
785 struct zone **zone)
786 {
787 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
788 zone);
789 }
790
791 /**
792 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
793 * @zone - The current zone in the iterator
794 * @z - The current pointer within zonelist->zones being iterated
795 * @zlist - The zonelist being iterated
796 * @highidx - The zone index of the highest zone to return
797 * @nodemask - Nodemask allowed by the allocator
798 *
799 * This iterator iterates though all zones at or below a given zone index and
800 * within a given nodemask
801 */
802 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
803 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
804 zone; \
805 z = next_zones_zonelist(z, highidx, nodemask, &zone)) \
806
807 /**
808 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
809 * @zone - The current zone in the iterator
810 * @z - The current pointer within zonelist->zones being iterated
811 * @zlist - The zonelist being iterated
812 * @highidx - The zone index of the highest zone to return
813 *
814 * This iterator iterates though all zones at or below a given zone index.
815 */
816 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
817 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
818
819 #ifdef CONFIG_SPARSEMEM
820 #include <asm/sparsemem.h>
821 #endif
822
823 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
824 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
825 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
826 {
827 return 0;
828 }
829 #endif
830
831 #ifdef CONFIG_FLATMEM
832 #define pfn_to_nid(pfn) (0)
833 #endif
834
835 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
836 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
837
838 #ifdef CONFIG_SPARSEMEM
839
840 /*
841 * SECTION_SHIFT #bits space required to store a section #
842 *
843 * PA_SECTION_SHIFT physical address to/from section number
844 * PFN_SECTION_SHIFT pfn to/from section number
845 */
846 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
847
848 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
849 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
850
851 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
852
853 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
854 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
855
856 #define SECTION_BLOCKFLAGS_BITS \
857 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
858
859 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
860 #error Allocator MAX_ORDER exceeds SECTION_SIZE
861 #endif
862
863 struct page;
864 struct mem_section {
865 /*
866 * This is, logically, a pointer to an array of struct
867 * pages. However, it is stored with some other magic.
868 * (see sparse.c::sparse_init_one_section())
869 *
870 * Additionally during early boot we encode node id of
871 * the location of the section here to guide allocation.
872 * (see sparse.c::memory_present())
873 *
874 * Making it a UL at least makes someone do a cast
875 * before using it wrong.
876 */
877 unsigned long section_mem_map;
878
879 /* See declaration of similar field in struct zone */
880 unsigned long *pageblock_flags;
881 };
882
883 #ifdef CONFIG_SPARSEMEM_EXTREME
884 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
885 #else
886 #define SECTIONS_PER_ROOT 1
887 #endif
888
889 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
890 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
891 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
892
893 #ifdef CONFIG_SPARSEMEM_EXTREME
894 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
895 #else
896 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
897 #endif
898
899 static inline struct mem_section *__nr_to_section(unsigned long nr)
900 {
901 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
902 return NULL;
903 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
904 }
905 extern int __section_nr(struct mem_section* ms);
906
907 /*
908 * We use the lower bits of the mem_map pointer to store
909 * a little bit of information. There should be at least
910 * 3 bits here due to 32-bit alignment.
911 */
912 #define SECTION_MARKED_PRESENT (1UL<<0)
913 #define SECTION_HAS_MEM_MAP (1UL<<1)
914 #define SECTION_MAP_LAST_BIT (1UL<<2)
915 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
916 #define SECTION_NID_SHIFT 2
917
918 static inline struct page *__section_mem_map_addr(struct mem_section *section)
919 {
920 unsigned long map = section->section_mem_map;
921 map &= SECTION_MAP_MASK;
922 return (struct page *)map;
923 }
924
925 static inline int present_section(struct mem_section *section)
926 {
927 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
928 }
929
930 static inline int present_section_nr(unsigned long nr)
931 {
932 return present_section(__nr_to_section(nr));
933 }
934
935 static inline int valid_section(struct mem_section *section)
936 {
937 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
938 }
939
940 static inline int valid_section_nr(unsigned long nr)
941 {
942 return valid_section(__nr_to_section(nr));
943 }
944
945 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
946 {
947 return __nr_to_section(pfn_to_section_nr(pfn));
948 }
949
950 static inline int pfn_valid(unsigned long pfn)
951 {
952 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
953 return 0;
954 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
955 }
956
957 static inline int pfn_present(unsigned long pfn)
958 {
959 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
960 return 0;
961 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
962 }
963
964 /*
965 * These are _only_ used during initialisation, therefore they
966 * can use __initdata ... They could have names to indicate
967 * this restriction.
968 */
969 #ifdef CONFIG_NUMA
970 #define pfn_to_nid(pfn) \
971 ({ \
972 unsigned long __pfn_to_nid_pfn = (pfn); \
973 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
974 })
975 #else
976 #define pfn_to_nid(pfn) (0)
977 #endif
978
979 #define early_pfn_valid(pfn) pfn_valid(pfn)
980 void sparse_init(void);
981 #else
982 #define sparse_init() do {} while (0)
983 #define sparse_index_init(_sec, _nid) do {} while (0)
984 #endif /* CONFIG_SPARSEMEM */
985
986 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
987 #define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
988 #else
989 #define early_pfn_in_nid(pfn, nid) (1)
990 #endif
991
992 #ifndef early_pfn_valid
993 #define early_pfn_valid(pfn) (1)
994 #endif
995
996 void memory_present(int nid, unsigned long start, unsigned long end);
997 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
998
999 /*
1000 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1001 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1002 * pfn_valid_within() should be used in this case; we optimise this away
1003 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1004 */
1005 #ifdef CONFIG_HOLES_IN_ZONE
1006 #define pfn_valid_within(pfn) pfn_valid(pfn)
1007 #else
1008 #define pfn_valid_within(pfn) (1)
1009 #endif
1010
1011 #endif /* !__ASSEMBLY__ */
1012 #endif /* __KERNEL__ */
1013 #endif /* _LINUX_MMZONE_H */
This page took 0.081694 seconds and 6 git commands to generate.