mm, vmstat: remove zone and node double accounting by approximating retries
[deliverable/linux.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30 /*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coalesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37
38 enum {
39 MIGRATE_UNMOVABLE,
40 MIGRATE_MOVABLE,
41 MIGRATE_RECLAIMABLE,
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59 #endif
60 #ifdef CONFIG_MEMORY_ISOLATION
61 MIGRATE_ISOLATE, /* can't allocate from here */
62 #endif
63 MIGRATE_TYPES
64 };
65
66 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
67 extern char * const migratetype_names[MIGRATE_TYPES];
68
69 #ifdef CONFIG_CMA
70 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
71 #else
72 # define is_migrate_cma(migratetype) false
73 #endif
74
75 #define for_each_migratetype_order(order, type) \
76 for (order = 0; order < MAX_ORDER; order++) \
77 for (type = 0; type < MIGRATE_TYPES; type++)
78
79 extern int page_group_by_mobility_disabled;
80
81 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
82 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
83
84 #define get_pageblock_migratetype(page) \
85 get_pfnblock_flags_mask(page, page_to_pfn(page), \
86 PB_migrate_end, MIGRATETYPE_MASK)
87
88 struct free_area {
89 struct list_head free_list[MIGRATE_TYPES];
90 unsigned long nr_free;
91 };
92
93 struct pglist_data;
94
95 /*
96 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
97 * So add a wild amount of padding here to ensure that they fall into separate
98 * cachelines. There are very few zone structures in the machine, so space
99 * consumption is not a concern here.
100 */
101 #if defined(CONFIG_SMP)
102 struct zone_padding {
103 char x[0];
104 } ____cacheline_internodealigned_in_smp;
105 #define ZONE_PADDING(name) struct zone_padding name;
106 #else
107 #define ZONE_PADDING(name)
108 #endif
109
110 enum zone_stat_item {
111 /* First 128 byte cacheline (assuming 64 bit words) */
112 NR_FREE_PAGES,
113 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
114 NR_SLAB_RECLAIMABLE,
115 NR_SLAB_UNRECLAIMABLE,
116 NR_PAGETABLE, /* used for pagetables */
117 NR_KERNEL_STACK,
118 /* Second 128 byte cacheline */
119 NR_BOUNCE,
120 #if IS_ENABLED(CONFIG_ZSMALLOC)
121 NR_ZSPAGES, /* allocated in zsmalloc */
122 #endif
123 #ifdef CONFIG_NUMA
124 NUMA_HIT, /* allocated in intended node */
125 NUMA_MISS, /* allocated in non intended node */
126 NUMA_FOREIGN, /* was intended here, hit elsewhere */
127 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
128 NUMA_LOCAL, /* allocation from local node */
129 NUMA_OTHER, /* allocation from other node */
130 #endif
131 NR_FREE_CMA_PAGES,
132 NR_VM_ZONE_STAT_ITEMS };
133
134 enum node_stat_item {
135 NR_LRU_BASE,
136 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
137 NR_ACTIVE_ANON, /* " " " " " */
138 NR_INACTIVE_FILE, /* " " " " " */
139 NR_ACTIVE_FILE, /* " " " " " */
140 NR_UNEVICTABLE, /* " " " " " */
141 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
142 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
143 NR_PAGES_SCANNED, /* pages scanned since last reclaim */
144 WORKINGSET_REFAULT,
145 WORKINGSET_ACTIVATE,
146 WORKINGSET_NODERECLAIM,
147 NR_ANON_MAPPED, /* Mapped anonymous pages */
148 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
149 only modified from process context */
150 NR_FILE_PAGES,
151 NR_FILE_DIRTY,
152 NR_WRITEBACK,
153 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
154 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
155 NR_SHMEM_THPS,
156 NR_SHMEM_PMDMAPPED,
157 NR_ANON_THPS,
158 NR_UNSTABLE_NFS, /* NFS unstable pages */
159 NR_VMSCAN_WRITE,
160 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
161 NR_DIRTIED, /* page dirtyings since bootup */
162 NR_WRITTEN, /* page writings since bootup */
163 NR_VM_NODE_STAT_ITEMS
164 };
165
166 /*
167 * We do arithmetic on the LRU lists in various places in the code,
168 * so it is important to keep the active lists LRU_ACTIVE higher in
169 * the array than the corresponding inactive lists, and to keep
170 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
171 *
172 * This has to be kept in sync with the statistics in zone_stat_item
173 * above and the descriptions in vmstat_text in mm/vmstat.c
174 */
175 #define LRU_BASE 0
176 #define LRU_ACTIVE 1
177 #define LRU_FILE 2
178
179 enum lru_list {
180 LRU_INACTIVE_ANON = LRU_BASE,
181 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
182 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
183 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
184 LRU_UNEVICTABLE,
185 NR_LRU_LISTS
186 };
187
188 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
189
190 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
191
192 static inline int is_file_lru(enum lru_list lru)
193 {
194 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
195 }
196
197 static inline int is_active_lru(enum lru_list lru)
198 {
199 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
200 }
201
202 struct zone_reclaim_stat {
203 /*
204 * The pageout code in vmscan.c keeps track of how many of the
205 * mem/swap backed and file backed pages are referenced.
206 * The higher the rotated/scanned ratio, the more valuable
207 * that cache is.
208 *
209 * The anon LRU stats live in [0], file LRU stats in [1]
210 */
211 unsigned long recent_rotated[2];
212 unsigned long recent_scanned[2];
213 };
214
215 struct lruvec {
216 struct list_head lists[NR_LRU_LISTS];
217 struct zone_reclaim_stat reclaim_stat;
218 /* Evictions & activations on the inactive file list */
219 atomic_long_t inactive_age;
220 #ifdef CONFIG_MEMCG
221 struct pglist_data *pgdat;
222 #endif
223 };
224
225 /* Mask used at gathering information at once (see memcontrol.c) */
226 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
227 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
228 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
229
230 /* Isolate clean file */
231 #define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
232 /* Isolate unmapped file */
233 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
234 /* Isolate for asynchronous migration */
235 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
236 /* Isolate unevictable pages */
237 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
238
239 /* LRU Isolation modes. */
240 typedef unsigned __bitwise__ isolate_mode_t;
241
242 enum zone_watermarks {
243 WMARK_MIN,
244 WMARK_LOW,
245 WMARK_HIGH,
246 NR_WMARK
247 };
248
249 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
250 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
251 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
252
253 struct per_cpu_pages {
254 int count; /* number of pages in the list */
255 int high; /* high watermark, emptying needed */
256 int batch; /* chunk size for buddy add/remove */
257
258 /* Lists of pages, one per migrate type stored on the pcp-lists */
259 struct list_head lists[MIGRATE_PCPTYPES];
260 };
261
262 struct per_cpu_pageset {
263 struct per_cpu_pages pcp;
264 #ifdef CONFIG_NUMA
265 s8 expire;
266 #endif
267 #ifdef CONFIG_SMP
268 s8 stat_threshold;
269 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
270 #endif
271 };
272
273 struct per_cpu_nodestat {
274 s8 stat_threshold;
275 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
276 };
277
278 #endif /* !__GENERATING_BOUNDS.H */
279
280 enum zone_type {
281 #ifdef CONFIG_ZONE_DMA
282 /*
283 * ZONE_DMA is used when there are devices that are not able
284 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
285 * carve out the portion of memory that is needed for these devices.
286 * The range is arch specific.
287 *
288 * Some examples
289 *
290 * Architecture Limit
291 * ---------------------------
292 * parisc, ia64, sparc <4G
293 * s390 <2G
294 * arm Various
295 * alpha Unlimited or 0-16MB.
296 *
297 * i386, x86_64 and multiple other arches
298 * <16M.
299 */
300 ZONE_DMA,
301 #endif
302 #ifdef CONFIG_ZONE_DMA32
303 /*
304 * x86_64 needs two ZONE_DMAs because it supports devices that are
305 * only able to do DMA to the lower 16M but also 32 bit devices that
306 * can only do DMA areas below 4G.
307 */
308 ZONE_DMA32,
309 #endif
310 /*
311 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
312 * performed on pages in ZONE_NORMAL if the DMA devices support
313 * transfers to all addressable memory.
314 */
315 ZONE_NORMAL,
316 #ifdef CONFIG_HIGHMEM
317 /*
318 * A memory area that is only addressable by the kernel through
319 * mapping portions into its own address space. This is for example
320 * used by i386 to allow the kernel to address the memory beyond
321 * 900MB. The kernel will set up special mappings (page
322 * table entries on i386) for each page that the kernel needs to
323 * access.
324 */
325 ZONE_HIGHMEM,
326 #endif
327 ZONE_MOVABLE,
328 #ifdef CONFIG_ZONE_DEVICE
329 ZONE_DEVICE,
330 #endif
331 __MAX_NR_ZONES
332
333 };
334
335 #ifndef __GENERATING_BOUNDS_H
336
337 struct zone {
338 /* Read-mostly fields */
339
340 /* zone watermarks, access with *_wmark_pages(zone) macros */
341 unsigned long watermark[NR_WMARK];
342
343 unsigned long nr_reserved_highatomic;
344
345 /*
346 * We don't know if the memory that we're going to allocate will be
347 * freeable or/and it will be released eventually, so to avoid totally
348 * wasting several GB of ram we must reserve some of the lower zone
349 * memory (otherwise we risk to run OOM on the lower zones despite
350 * there being tons of freeable ram on the higher zones). This array is
351 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
352 * changes.
353 */
354 long lowmem_reserve[MAX_NR_ZONES];
355
356 #ifdef CONFIG_NUMA
357 int node;
358 #endif
359 struct pglist_data *zone_pgdat;
360 struct per_cpu_pageset __percpu *pageset;
361
362 #ifndef CONFIG_SPARSEMEM
363 /*
364 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
365 * In SPARSEMEM, this map is stored in struct mem_section
366 */
367 unsigned long *pageblock_flags;
368 #endif /* CONFIG_SPARSEMEM */
369
370 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
371 unsigned long zone_start_pfn;
372
373 /*
374 * spanned_pages is the total pages spanned by the zone, including
375 * holes, which is calculated as:
376 * spanned_pages = zone_end_pfn - zone_start_pfn;
377 *
378 * present_pages is physical pages existing within the zone, which
379 * is calculated as:
380 * present_pages = spanned_pages - absent_pages(pages in holes);
381 *
382 * managed_pages is present pages managed by the buddy system, which
383 * is calculated as (reserved_pages includes pages allocated by the
384 * bootmem allocator):
385 * managed_pages = present_pages - reserved_pages;
386 *
387 * So present_pages may be used by memory hotplug or memory power
388 * management logic to figure out unmanaged pages by checking
389 * (present_pages - managed_pages). And managed_pages should be used
390 * by page allocator and vm scanner to calculate all kinds of watermarks
391 * and thresholds.
392 *
393 * Locking rules:
394 *
395 * zone_start_pfn and spanned_pages are protected by span_seqlock.
396 * It is a seqlock because it has to be read outside of zone->lock,
397 * and it is done in the main allocator path. But, it is written
398 * quite infrequently.
399 *
400 * The span_seq lock is declared along with zone->lock because it is
401 * frequently read in proximity to zone->lock. It's good to
402 * give them a chance of being in the same cacheline.
403 *
404 * Write access to present_pages at runtime should be protected by
405 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
406 * present_pages should get_online_mems() to get a stable value.
407 *
408 * Read access to managed_pages should be safe because it's unsigned
409 * long. Write access to zone->managed_pages and totalram_pages are
410 * protected by managed_page_count_lock at runtime. Idealy only
411 * adjust_managed_page_count() should be used instead of directly
412 * touching zone->managed_pages and totalram_pages.
413 */
414 unsigned long managed_pages;
415 unsigned long spanned_pages;
416 unsigned long present_pages;
417
418 const char *name;
419
420 #ifdef CONFIG_MEMORY_ISOLATION
421 /*
422 * Number of isolated pageblock. It is used to solve incorrect
423 * freepage counting problem due to racy retrieving migratetype
424 * of pageblock. Protected by zone->lock.
425 */
426 unsigned long nr_isolate_pageblock;
427 #endif
428
429 #ifdef CONFIG_MEMORY_HOTPLUG
430 /* see spanned/present_pages for more description */
431 seqlock_t span_seqlock;
432 #endif
433
434 /*
435 * wait_table -- the array holding the hash table
436 * wait_table_hash_nr_entries -- the size of the hash table array
437 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
438 *
439 * The purpose of all these is to keep track of the people
440 * waiting for a page to become available and make them
441 * runnable again when possible. The trouble is that this
442 * consumes a lot of space, especially when so few things
443 * wait on pages at a given time. So instead of using
444 * per-page waitqueues, we use a waitqueue hash table.
445 *
446 * The bucket discipline is to sleep on the same queue when
447 * colliding and wake all in that wait queue when removing.
448 * When something wakes, it must check to be sure its page is
449 * truly available, a la thundering herd. The cost of a
450 * collision is great, but given the expected load of the
451 * table, they should be so rare as to be outweighed by the
452 * benefits from the saved space.
453 *
454 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
455 * primary users of these fields, and in mm/page_alloc.c
456 * free_area_init_core() performs the initialization of them.
457 */
458 wait_queue_head_t *wait_table;
459 unsigned long wait_table_hash_nr_entries;
460 unsigned long wait_table_bits;
461
462 /* Write-intensive fields used from the page allocator */
463 ZONE_PADDING(_pad1_)
464
465 /* free areas of different sizes */
466 struct free_area free_area[MAX_ORDER];
467
468 /* zone flags, see below */
469 unsigned long flags;
470
471 /* Primarily protects free_area */
472 spinlock_t lock;
473
474 /* Write-intensive fields used by compaction and vmstats. */
475 ZONE_PADDING(_pad2_)
476
477 /*
478 * When free pages are below this point, additional steps are taken
479 * when reading the number of free pages to avoid per-cpu counter
480 * drift allowing watermarks to be breached
481 */
482 unsigned long percpu_drift_mark;
483
484 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
485 /* pfn where compaction free scanner should start */
486 unsigned long compact_cached_free_pfn;
487 /* pfn where async and sync compaction migration scanner should start */
488 unsigned long compact_cached_migrate_pfn[2];
489 #endif
490
491 #ifdef CONFIG_COMPACTION
492 /*
493 * On compaction failure, 1<<compact_defer_shift compactions
494 * are skipped before trying again. The number attempted since
495 * last failure is tracked with compact_considered.
496 */
497 unsigned int compact_considered;
498 unsigned int compact_defer_shift;
499 int compact_order_failed;
500 #endif
501
502 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
503 /* Set to true when the PG_migrate_skip bits should be cleared */
504 bool compact_blockskip_flush;
505 #endif
506
507 bool contiguous;
508
509 ZONE_PADDING(_pad3_)
510 /* Zone statistics */
511 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
512 } ____cacheline_internodealigned_in_smp;
513
514 enum pgdat_flags {
515 PGDAT_CONGESTED, /* pgdat has many dirty pages backed by
516 * a congested BDI
517 */
518 PGDAT_DIRTY, /* reclaim scanning has recently found
519 * many dirty file pages at the tail
520 * of the LRU.
521 */
522 PGDAT_WRITEBACK, /* reclaim scanning has recently found
523 * many pages under writeback
524 */
525 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
526 };
527
528 static inline unsigned long zone_end_pfn(const struct zone *zone)
529 {
530 return zone->zone_start_pfn + zone->spanned_pages;
531 }
532
533 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
534 {
535 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
536 }
537
538 static inline bool zone_is_initialized(struct zone *zone)
539 {
540 return !!zone->wait_table;
541 }
542
543 static inline bool zone_is_empty(struct zone *zone)
544 {
545 return zone->spanned_pages == 0;
546 }
547
548 /*
549 * The "priority" of VM scanning is how much of the queues we will scan in one
550 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
551 * queues ("queue_length >> 12") during an aging round.
552 */
553 #define DEF_PRIORITY 12
554
555 /* Maximum number of zones on a zonelist */
556 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
557
558 enum {
559 ZONELIST_FALLBACK, /* zonelist with fallback */
560 #ifdef CONFIG_NUMA
561 /*
562 * The NUMA zonelists are doubled because we need zonelists that
563 * restrict the allocations to a single node for __GFP_THISNODE.
564 */
565 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
566 #endif
567 MAX_ZONELISTS
568 };
569
570 /*
571 * This struct contains information about a zone in a zonelist. It is stored
572 * here to avoid dereferences into large structures and lookups of tables
573 */
574 struct zoneref {
575 struct zone *zone; /* Pointer to actual zone */
576 int zone_idx; /* zone_idx(zoneref->zone) */
577 };
578
579 /*
580 * One allocation request operates on a zonelist. A zonelist
581 * is a list of zones, the first one is the 'goal' of the
582 * allocation, the other zones are fallback zones, in decreasing
583 * priority.
584 *
585 * To speed the reading of the zonelist, the zonerefs contain the zone index
586 * of the entry being read. Helper functions to access information given
587 * a struct zoneref are
588 *
589 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
590 * zonelist_zone_idx() - Return the index of the zone for an entry
591 * zonelist_node_idx() - Return the index of the node for an entry
592 */
593 struct zonelist {
594 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
595 };
596
597 #ifndef CONFIG_DISCONTIGMEM
598 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
599 extern struct page *mem_map;
600 #endif
601
602 /*
603 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
604 * (mostly NUMA machines?) to denote a higher-level memory zone than the
605 * zone denotes.
606 *
607 * On NUMA machines, each NUMA node would have a pg_data_t to describe
608 * it's memory layout.
609 *
610 * Memory statistics and page replacement data structures are maintained on a
611 * per-zone basis.
612 */
613 struct bootmem_data;
614 typedef struct pglist_data {
615 struct zone node_zones[MAX_NR_ZONES];
616 struct zonelist node_zonelists[MAX_ZONELISTS];
617 int nr_zones;
618 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
619 struct page *node_mem_map;
620 #ifdef CONFIG_PAGE_EXTENSION
621 struct page_ext *node_page_ext;
622 #endif
623 #endif
624 #ifndef CONFIG_NO_BOOTMEM
625 struct bootmem_data *bdata;
626 #endif
627 #ifdef CONFIG_MEMORY_HOTPLUG
628 /*
629 * Must be held any time you expect node_start_pfn, node_present_pages
630 * or node_spanned_pages stay constant. Holding this will also
631 * guarantee that any pfn_valid() stays that way.
632 *
633 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
634 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
635 *
636 * Nests above zone->lock and zone->span_seqlock
637 */
638 spinlock_t node_size_lock;
639 #endif
640 unsigned long node_start_pfn;
641 unsigned long node_present_pages; /* total number of physical pages */
642 unsigned long node_spanned_pages; /* total size of physical page
643 range, including holes */
644 int node_id;
645 wait_queue_head_t kswapd_wait;
646 wait_queue_head_t pfmemalloc_wait;
647 struct task_struct *kswapd; /* Protected by
648 mem_hotplug_begin/end() */
649 int kswapd_order;
650 enum zone_type kswapd_classzone_idx;
651
652 #ifdef CONFIG_COMPACTION
653 int kcompactd_max_order;
654 enum zone_type kcompactd_classzone_idx;
655 wait_queue_head_t kcompactd_wait;
656 struct task_struct *kcompactd;
657 #endif
658 #ifdef CONFIG_NUMA_BALANCING
659 /* Lock serializing the migrate rate limiting window */
660 spinlock_t numabalancing_migrate_lock;
661
662 /* Rate limiting time interval */
663 unsigned long numabalancing_migrate_next_window;
664
665 /* Number of pages migrated during the rate limiting time interval */
666 unsigned long numabalancing_migrate_nr_pages;
667 #endif
668 /*
669 * This is a per-node reserve of pages that are not available
670 * to userspace allocations.
671 */
672 unsigned long totalreserve_pages;
673
674 #ifdef CONFIG_NUMA
675 /*
676 * zone reclaim becomes active if more unmapped pages exist.
677 */
678 unsigned long min_unmapped_pages;
679 unsigned long min_slab_pages;
680 #endif /* CONFIG_NUMA */
681
682 /* Write-intensive fields used by page reclaim */
683 ZONE_PADDING(_pad1_)
684 spinlock_t lru_lock;
685
686 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
687 /*
688 * If memory initialisation on large machines is deferred then this
689 * is the first PFN that needs to be initialised.
690 */
691 unsigned long first_deferred_pfn;
692 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
693
694 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
695 spinlock_t split_queue_lock;
696 struct list_head split_queue;
697 unsigned long split_queue_len;
698 #endif
699
700 /* Fields commonly accessed by the page reclaim scanner */
701 struct lruvec lruvec;
702
703 /*
704 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
705 * this node's LRU. Maintained by the pageout code.
706 */
707 unsigned int inactive_ratio;
708
709 unsigned long flags;
710
711 ZONE_PADDING(_pad2_)
712
713 /* Per-node vmstats */
714 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
715 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
716 } pg_data_t;
717
718 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
719 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
720 #ifdef CONFIG_FLAT_NODE_MEM_MAP
721 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
722 #else
723 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
724 #endif
725 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
726
727 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
728 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
729 static inline spinlock_t *zone_lru_lock(struct zone *zone)
730 {
731 return &zone->zone_pgdat->lru_lock;
732 }
733
734 static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
735 {
736 return &pgdat->lruvec;
737 }
738
739 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
740 {
741 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
742 }
743
744 static inline bool pgdat_is_empty(pg_data_t *pgdat)
745 {
746 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
747 }
748
749 static inline int zone_id(const struct zone *zone)
750 {
751 struct pglist_data *pgdat = zone->zone_pgdat;
752
753 return zone - pgdat->node_zones;
754 }
755
756 #ifdef CONFIG_ZONE_DEVICE
757 static inline bool is_dev_zone(const struct zone *zone)
758 {
759 return zone_id(zone) == ZONE_DEVICE;
760 }
761 #else
762 static inline bool is_dev_zone(const struct zone *zone)
763 {
764 return false;
765 }
766 #endif
767
768 #include <linux/memory_hotplug.h>
769
770 extern struct mutex zonelists_mutex;
771 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
772 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
773 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
774 int classzone_idx, unsigned int alloc_flags,
775 long free_pages);
776 bool zone_watermark_ok(struct zone *z, unsigned int order,
777 unsigned long mark, int classzone_idx,
778 unsigned int alloc_flags);
779 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
780 unsigned long mark, int classzone_idx);
781 enum memmap_context {
782 MEMMAP_EARLY,
783 MEMMAP_HOTPLUG,
784 };
785 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
786 unsigned long size);
787
788 extern void lruvec_init(struct lruvec *lruvec);
789
790 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
791 {
792 #ifdef CONFIG_MEMCG
793 return lruvec->pgdat;
794 #else
795 return container_of(lruvec, struct pglist_data, lruvec);
796 #endif
797 }
798
799 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru);
800
801 #ifdef CONFIG_HAVE_MEMORY_PRESENT
802 void memory_present(int nid, unsigned long start, unsigned long end);
803 #else
804 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
805 #endif
806
807 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
808 int local_memory_node(int node_id);
809 #else
810 static inline int local_memory_node(int node_id) { return node_id; };
811 #endif
812
813 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
814 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
815 #endif
816
817 /*
818 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
819 */
820 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
821
822 static inline int populated_zone(struct zone *zone)
823 {
824 return (!!zone->present_pages);
825 }
826
827 extern int movable_zone;
828
829 #ifdef CONFIG_HIGHMEM
830 static inline int zone_movable_is_highmem(void)
831 {
832 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
833 return movable_zone == ZONE_HIGHMEM;
834 #else
835 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
836 #endif
837 }
838 #endif
839
840 static inline int is_highmem_idx(enum zone_type idx)
841 {
842 #ifdef CONFIG_HIGHMEM
843 return (idx == ZONE_HIGHMEM ||
844 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
845 #else
846 return 0;
847 #endif
848 }
849
850 /**
851 * is_highmem - helper function to quickly check if a struct zone is a
852 * highmem zone or not. This is an attempt to keep references
853 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
854 * @zone - pointer to struct zone variable
855 */
856 static inline int is_highmem(struct zone *zone)
857 {
858 #ifdef CONFIG_HIGHMEM
859 return is_highmem_idx(zone_idx(zone));
860 #else
861 return 0;
862 #endif
863 }
864
865 /* These two functions are used to setup the per zone pages min values */
866 struct ctl_table;
867 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
868 void __user *, size_t *, loff_t *);
869 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
870 void __user *, size_t *, loff_t *);
871 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
872 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
873 void __user *, size_t *, loff_t *);
874 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
875 void __user *, size_t *, loff_t *);
876 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
877 void __user *, size_t *, loff_t *);
878 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
879 void __user *, size_t *, loff_t *);
880
881 extern int numa_zonelist_order_handler(struct ctl_table *, int,
882 void __user *, size_t *, loff_t *);
883 extern char numa_zonelist_order[];
884 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
885
886 #ifndef CONFIG_NEED_MULTIPLE_NODES
887
888 extern struct pglist_data contig_page_data;
889 #define NODE_DATA(nid) (&contig_page_data)
890 #define NODE_MEM_MAP(nid) mem_map
891
892 #else /* CONFIG_NEED_MULTIPLE_NODES */
893
894 #include <asm/mmzone.h>
895
896 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
897
898 extern struct pglist_data *first_online_pgdat(void);
899 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
900 extern struct zone *next_zone(struct zone *zone);
901
902 /**
903 * for_each_online_pgdat - helper macro to iterate over all online nodes
904 * @pgdat - pointer to a pg_data_t variable
905 */
906 #define for_each_online_pgdat(pgdat) \
907 for (pgdat = first_online_pgdat(); \
908 pgdat; \
909 pgdat = next_online_pgdat(pgdat))
910 /**
911 * for_each_zone - helper macro to iterate over all memory zones
912 * @zone - pointer to struct zone variable
913 *
914 * The user only needs to declare the zone variable, for_each_zone
915 * fills it in.
916 */
917 #define for_each_zone(zone) \
918 for (zone = (first_online_pgdat())->node_zones; \
919 zone; \
920 zone = next_zone(zone))
921
922 #define for_each_populated_zone(zone) \
923 for (zone = (first_online_pgdat())->node_zones; \
924 zone; \
925 zone = next_zone(zone)) \
926 if (!populated_zone(zone)) \
927 ; /* do nothing */ \
928 else
929
930 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
931 {
932 return zoneref->zone;
933 }
934
935 static inline int zonelist_zone_idx(struct zoneref *zoneref)
936 {
937 return zoneref->zone_idx;
938 }
939
940 static inline int zonelist_node_idx(struct zoneref *zoneref)
941 {
942 #ifdef CONFIG_NUMA
943 /* zone_to_nid not available in this context */
944 return zoneref->zone->node;
945 #else
946 return 0;
947 #endif /* CONFIG_NUMA */
948 }
949
950 struct zoneref *__next_zones_zonelist(struct zoneref *z,
951 enum zone_type highest_zoneidx,
952 nodemask_t *nodes);
953
954 /**
955 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
956 * @z - The cursor used as a starting point for the search
957 * @highest_zoneidx - The zone index of the highest zone to return
958 * @nodes - An optional nodemask to filter the zonelist with
959 *
960 * This function returns the next zone at or below a given zone index that is
961 * within the allowed nodemask using a cursor as the starting point for the
962 * search. The zoneref returned is a cursor that represents the current zone
963 * being examined. It should be advanced by one before calling
964 * next_zones_zonelist again.
965 */
966 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
967 enum zone_type highest_zoneidx,
968 nodemask_t *nodes)
969 {
970 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
971 return z;
972 return __next_zones_zonelist(z, highest_zoneidx, nodes);
973 }
974
975 /**
976 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
977 * @zonelist - The zonelist to search for a suitable zone
978 * @highest_zoneidx - The zone index of the highest zone to return
979 * @nodes - An optional nodemask to filter the zonelist with
980 * @zone - The first suitable zone found is returned via this parameter
981 *
982 * This function returns the first zone at or below a given zone index that is
983 * within the allowed nodemask. The zoneref returned is a cursor that can be
984 * used to iterate the zonelist with next_zones_zonelist by advancing it by
985 * one before calling.
986 */
987 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
988 enum zone_type highest_zoneidx,
989 nodemask_t *nodes)
990 {
991 return next_zones_zonelist(zonelist->_zonerefs,
992 highest_zoneidx, nodes);
993 }
994
995 /**
996 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
997 * @zone - The current zone in the iterator
998 * @z - The current pointer within zonelist->zones being iterated
999 * @zlist - The zonelist being iterated
1000 * @highidx - The zone index of the highest zone to return
1001 * @nodemask - Nodemask allowed by the allocator
1002 *
1003 * This iterator iterates though all zones at or below a given zone index and
1004 * within a given nodemask
1005 */
1006 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1007 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1008 zone; \
1009 z = next_zones_zonelist(++z, highidx, nodemask), \
1010 zone = zonelist_zone(z))
1011
1012 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1013 for (zone = z->zone; \
1014 zone; \
1015 z = next_zones_zonelist(++z, highidx, nodemask), \
1016 zone = zonelist_zone(z))
1017
1018
1019 /**
1020 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1021 * @zone - The current zone in the iterator
1022 * @z - The current pointer within zonelist->zones being iterated
1023 * @zlist - The zonelist being iterated
1024 * @highidx - The zone index of the highest zone to return
1025 *
1026 * This iterator iterates though all zones at or below a given zone index.
1027 */
1028 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1029 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1030
1031 #ifdef CONFIG_SPARSEMEM
1032 #include <asm/sparsemem.h>
1033 #endif
1034
1035 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1036 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1037 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1038 {
1039 return 0;
1040 }
1041 #endif
1042
1043 #ifdef CONFIG_FLATMEM
1044 #define pfn_to_nid(pfn) (0)
1045 #endif
1046
1047 #ifdef CONFIG_SPARSEMEM
1048
1049 /*
1050 * SECTION_SHIFT #bits space required to store a section #
1051 *
1052 * PA_SECTION_SHIFT physical address to/from section number
1053 * PFN_SECTION_SHIFT pfn to/from section number
1054 */
1055 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1056 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1057
1058 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1059
1060 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1061 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1062
1063 #define SECTION_BLOCKFLAGS_BITS \
1064 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1065
1066 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1067 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1068 #endif
1069
1070 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1071 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1072
1073 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1074 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1075
1076 struct page;
1077 struct page_ext;
1078 struct mem_section {
1079 /*
1080 * This is, logically, a pointer to an array of struct
1081 * pages. However, it is stored with some other magic.
1082 * (see sparse.c::sparse_init_one_section())
1083 *
1084 * Additionally during early boot we encode node id of
1085 * the location of the section here to guide allocation.
1086 * (see sparse.c::memory_present())
1087 *
1088 * Making it a UL at least makes someone do a cast
1089 * before using it wrong.
1090 */
1091 unsigned long section_mem_map;
1092
1093 /* See declaration of similar field in struct zone */
1094 unsigned long *pageblock_flags;
1095 #ifdef CONFIG_PAGE_EXTENSION
1096 /*
1097 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1098 * section. (see page_ext.h about this.)
1099 */
1100 struct page_ext *page_ext;
1101 unsigned long pad;
1102 #endif
1103 /*
1104 * WARNING: mem_section must be a power-of-2 in size for the
1105 * calculation and use of SECTION_ROOT_MASK to make sense.
1106 */
1107 };
1108
1109 #ifdef CONFIG_SPARSEMEM_EXTREME
1110 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1111 #else
1112 #define SECTIONS_PER_ROOT 1
1113 #endif
1114
1115 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1116 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1117 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1118
1119 #ifdef CONFIG_SPARSEMEM_EXTREME
1120 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1121 #else
1122 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1123 #endif
1124
1125 static inline struct mem_section *__nr_to_section(unsigned long nr)
1126 {
1127 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1128 return NULL;
1129 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1130 }
1131 extern int __section_nr(struct mem_section* ms);
1132 extern unsigned long usemap_size(void);
1133
1134 /*
1135 * We use the lower bits of the mem_map pointer to store
1136 * a little bit of information. There should be at least
1137 * 3 bits here due to 32-bit alignment.
1138 */
1139 #define SECTION_MARKED_PRESENT (1UL<<0)
1140 #define SECTION_HAS_MEM_MAP (1UL<<1)
1141 #define SECTION_MAP_LAST_BIT (1UL<<2)
1142 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1143 #define SECTION_NID_SHIFT 2
1144
1145 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1146 {
1147 unsigned long map = section->section_mem_map;
1148 map &= SECTION_MAP_MASK;
1149 return (struct page *)map;
1150 }
1151
1152 static inline int present_section(struct mem_section *section)
1153 {
1154 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1155 }
1156
1157 static inline int present_section_nr(unsigned long nr)
1158 {
1159 return present_section(__nr_to_section(nr));
1160 }
1161
1162 static inline int valid_section(struct mem_section *section)
1163 {
1164 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1165 }
1166
1167 static inline int valid_section_nr(unsigned long nr)
1168 {
1169 return valid_section(__nr_to_section(nr));
1170 }
1171
1172 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1173 {
1174 return __nr_to_section(pfn_to_section_nr(pfn));
1175 }
1176
1177 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1178 static inline int pfn_valid(unsigned long pfn)
1179 {
1180 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1181 return 0;
1182 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1183 }
1184 #endif
1185
1186 static inline int pfn_present(unsigned long pfn)
1187 {
1188 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1189 return 0;
1190 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1191 }
1192
1193 /*
1194 * These are _only_ used during initialisation, therefore they
1195 * can use __initdata ... They could have names to indicate
1196 * this restriction.
1197 */
1198 #ifdef CONFIG_NUMA
1199 #define pfn_to_nid(pfn) \
1200 ({ \
1201 unsigned long __pfn_to_nid_pfn = (pfn); \
1202 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1203 })
1204 #else
1205 #define pfn_to_nid(pfn) (0)
1206 #endif
1207
1208 #define early_pfn_valid(pfn) pfn_valid(pfn)
1209 void sparse_init(void);
1210 #else
1211 #define sparse_init() do {} while (0)
1212 #define sparse_index_init(_sec, _nid) do {} while (0)
1213 #endif /* CONFIG_SPARSEMEM */
1214
1215 /*
1216 * During memory init memblocks map pfns to nids. The search is expensive and
1217 * this caches recent lookups. The implementation of __early_pfn_to_nid
1218 * may treat start/end as pfns or sections.
1219 */
1220 struct mminit_pfnnid_cache {
1221 unsigned long last_start;
1222 unsigned long last_end;
1223 int last_nid;
1224 };
1225
1226 #ifndef early_pfn_valid
1227 #define early_pfn_valid(pfn) (1)
1228 #endif
1229
1230 void memory_present(int nid, unsigned long start, unsigned long end);
1231 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1232
1233 /*
1234 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1235 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1236 * pfn_valid_within() should be used in this case; we optimise this away
1237 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1238 */
1239 #ifdef CONFIG_HOLES_IN_ZONE
1240 #define pfn_valid_within(pfn) pfn_valid(pfn)
1241 #else
1242 #define pfn_valid_within(pfn) (1)
1243 #endif
1244
1245 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1246 /*
1247 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1248 * associated with it or not. In FLATMEM, it is expected that holes always
1249 * have valid memmap as long as there is valid PFNs either side of the hole.
1250 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1251 * entire section.
1252 *
1253 * However, an ARM, and maybe other embedded architectures in the future
1254 * free memmap backing holes to save memory on the assumption the memmap is
1255 * never used. The page_zone linkages are then broken even though pfn_valid()
1256 * returns true. A walker of the full memmap must then do this additional
1257 * check to ensure the memmap they are looking at is sane by making sure
1258 * the zone and PFN linkages are still valid. This is expensive, but walkers
1259 * of the full memmap are extremely rare.
1260 */
1261 bool memmap_valid_within(unsigned long pfn,
1262 struct page *page, struct zone *zone);
1263 #else
1264 static inline bool memmap_valid_within(unsigned long pfn,
1265 struct page *page, struct zone *zone)
1266 {
1267 return true;
1268 }
1269 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1270
1271 #endif /* !__GENERATING_BOUNDS.H */
1272 #endif /* !__ASSEMBLY__ */
1273 #endif /* _LINUX_MMZONE_H */
This page took 0.127729 seconds and 6 git commands to generate.