Merge tag 'devicetree-for-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/robh...
[deliverable/linux.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <linux/page-flags-layout.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21
22 /* Free memory management - zoned buddy allocator. */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30 /*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coalesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37
38 enum {
39 MIGRATE_UNMOVABLE,
40 MIGRATE_MOVABLE,
41 MIGRATE_RECLAIMABLE,
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59 #endif
60 #ifdef CONFIG_MEMORY_ISOLATION
61 MIGRATE_ISOLATE, /* can't allocate from here */
62 #endif
63 MIGRATE_TYPES
64 };
65
66 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
67 extern char * const migratetype_names[MIGRATE_TYPES];
68
69 #ifdef CONFIG_CMA
70 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
71 #else
72 # define is_migrate_cma(migratetype) false
73 #endif
74
75 #define for_each_migratetype_order(order, type) \
76 for (order = 0; order < MAX_ORDER; order++) \
77 for (type = 0; type < MIGRATE_TYPES; type++)
78
79 extern int page_group_by_mobility_disabled;
80
81 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
82 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
83
84 #define get_pageblock_migratetype(page) \
85 get_pfnblock_flags_mask(page, page_to_pfn(page), \
86 PB_migrate_end, MIGRATETYPE_MASK)
87
88 struct free_area {
89 struct list_head free_list[MIGRATE_TYPES];
90 unsigned long nr_free;
91 };
92
93 struct pglist_data;
94
95 /*
96 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
97 * So add a wild amount of padding here to ensure that they fall into separate
98 * cachelines. There are very few zone structures in the machine, so space
99 * consumption is not a concern here.
100 */
101 #if defined(CONFIG_SMP)
102 struct zone_padding {
103 char x[0];
104 } ____cacheline_internodealigned_in_smp;
105 #define ZONE_PADDING(name) struct zone_padding name;
106 #else
107 #define ZONE_PADDING(name)
108 #endif
109
110 enum zone_stat_item {
111 /* First 128 byte cacheline (assuming 64 bit words) */
112 NR_FREE_PAGES,
113 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
114 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
115 NR_ZONE_ACTIVE_ANON,
116 NR_ZONE_INACTIVE_FILE,
117 NR_ZONE_ACTIVE_FILE,
118 NR_ZONE_UNEVICTABLE,
119 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
120 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
121 NR_SLAB_RECLAIMABLE,
122 NR_SLAB_UNRECLAIMABLE,
123 NR_PAGETABLE, /* used for pagetables */
124 NR_KERNEL_STACK_KB, /* measured in KiB */
125 /* Second 128 byte cacheline */
126 NR_BOUNCE,
127 #if IS_ENABLED(CONFIG_ZSMALLOC)
128 NR_ZSPAGES, /* allocated in zsmalloc */
129 #endif
130 #ifdef CONFIG_NUMA
131 NUMA_HIT, /* allocated in intended node */
132 NUMA_MISS, /* allocated in non intended node */
133 NUMA_FOREIGN, /* was intended here, hit elsewhere */
134 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
135 NUMA_LOCAL, /* allocation from local node */
136 NUMA_OTHER, /* allocation from other node */
137 #endif
138 NR_FREE_CMA_PAGES,
139 NR_VM_ZONE_STAT_ITEMS };
140
141 enum node_stat_item {
142 NR_LRU_BASE,
143 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
144 NR_ACTIVE_ANON, /* " " " " " */
145 NR_INACTIVE_FILE, /* " " " " " */
146 NR_ACTIVE_FILE, /* " " " " " */
147 NR_UNEVICTABLE, /* " " " " " */
148 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
149 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
150 NR_PAGES_SCANNED, /* pages scanned since last reclaim */
151 WORKINGSET_REFAULT,
152 WORKINGSET_ACTIVATE,
153 WORKINGSET_NODERECLAIM,
154 NR_ANON_MAPPED, /* Mapped anonymous pages */
155 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
156 only modified from process context */
157 NR_FILE_PAGES,
158 NR_FILE_DIRTY,
159 NR_WRITEBACK,
160 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
161 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
162 NR_SHMEM_THPS,
163 NR_SHMEM_PMDMAPPED,
164 NR_ANON_THPS,
165 NR_UNSTABLE_NFS, /* NFS unstable pages */
166 NR_VMSCAN_WRITE,
167 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
168 NR_DIRTIED, /* page dirtyings since bootup */
169 NR_WRITTEN, /* page writings since bootup */
170 NR_VM_NODE_STAT_ITEMS
171 };
172
173 /*
174 * We do arithmetic on the LRU lists in various places in the code,
175 * so it is important to keep the active lists LRU_ACTIVE higher in
176 * the array than the corresponding inactive lists, and to keep
177 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
178 *
179 * This has to be kept in sync with the statistics in zone_stat_item
180 * above and the descriptions in vmstat_text in mm/vmstat.c
181 */
182 #define LRU_BASE 0
183 #define LRU_ACTIVE 1
184 #define LRU_FILE 2
185
186 enum lru_list {
187 LRU_INACTIVE_ANON = LRU_BASE,
188 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
189 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
190 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
191 LRU_UNEVICTABLE,
192 NR_LRU_LISTS
193 };
194
195 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
196
197 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
198
199 static inline int is_file_lru(enum lru_list lru)
200 {
201 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
202 }
203
204 static inline int is_active_lru(enum lru_list lru)
205 {
206 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
207 }
208
209 struct zone_reclaim_stat {
210 /*
211 * The pageout code in vmscan.c keeps track of how many of the
212 * mem/swap backed and file backed pages are referenced.
213 * The higher the rotated/scanned ratio, the more valuable
214 * that cache is.
215 *
216 * The anon LRU stats live in [0], file LRU stats in [1]
217 */
218 unsigned long recent_rotated[2];
219 unsigned long recent_scanned[2];
220 };
221
222 struct lruvec {
223 struct list_head lists[NR_LRU_LISTS];
224 struct zone_reclaim_stat reclaim_stat;
225 /* Evictions & activations on the inactive file list */
226 atomic_long_t inactive_age;
227 #ifdef CONFIG_MEMCG
228 struct pglist_data *pgdat;
229 #endif
230 };
231
232 /* Mask used at gathering information at once (see memcontrol.c) */
233 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
234 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
235 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
236
237 /* Isolate clean file */
238 #define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
239 /* Isolate unmapped file */
240 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
241 /* Isolate for asynchronous migration */
242 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
243 /* Isolate unevictable pages */
244 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
245
246 /* LRU Isolation modes. */
247 typedef unsigned __bitwise__ isolate_mode_t;
248
249 enum zone_watermarks {
250 WMARK_MIN,
251 WMARK_LOW,
252 WMARK_HIGH,
253 NR_WMARK
254 };
255
256 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
257 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
258 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
259
260 struct per_cpu_pages {
261 int count; /* number of pages in the list */
262 int high; /* high watermark, emptying needed */
263 int batch; /* chunk size for buddy add/remove */
264
265 /* Lists of pages, one per migrate type stored on the pcp-lists */
266 struct list_head lists[MIGRATE_PCPTYPES];
267 };
268
269 struct per_cpu_pageset {
270 struct per_cpu_pages pcp;
271 #ifdef CONFIG_NUMA
272 s8 expire;
273 #endif
274 #ifdef CONFIG_SMP
275 s8 stat_threshold;
276 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
277 #endif
278 };
279
280 struct per_cpu_nodestat {
281 s8 stat_threshold;
282 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
283 };
284
285 #endif /* !__GENERATING_BOUNDS.H */
286
287 enum zone_type {
288 #ifdef CONFIG_ZONE_DMA
289 /*
290 * ZONE_DMA is used when there are devices that are not able
291 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
292 * carve out the portion of memory that is needed for these devices.
293 * The range is arch specific.
294 *
295 * Some examples
296 *
297 * Architecture Limit
298 * ---------------------------
299 * parisc, ia64, sparc <4G
300 * s390 <2G
301 * arm Various
302 * alpha Unlimited or 0-16MB.
303 *
304 * i386, x86_64 and multiple other arches
305 * <16M.
306 */
307 ZONE_DMA,
308 #endif
309 #ifdef CONFIG_ZONE_DMA32
310 /*
311 * x86_64 needs two ZONE_DMAs because it supports devices that are
312 * only able to do DMA to the lower 16M but also 32 bit devices that
313 * can only do DMA areas below 4G.
314 */
315 ZONE_DMA32,
316 #endif
317 /*
318 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
319 * performed on pages in ZONE_NORMAL if the DMA devices support
320 * transfers to all addressable memory.
321 */
322 ZONE_NORMAL,
323 #ifdef CONFIG_HIGHMEM
324 /*
325 * A memory area that is only addressable by the kernel through
326 * mapping portions into its own address space. This is for example
327 * used by i386 to allow the kernel to address the memory beyond
328 * 900MB. The kernel will set up special mappings (page
329 * table entries on i386) for each page that the kernel needs to
330 * access.
331 */
332 ZONE_HIGHMEM,
333 #endif
334 ZONE_MOVABLE,
335 #ifdef CONFIG_ZONE_DEVICE
336 ZONE_DEVICE,
337 #endif
338 __MAX_NR_ZONES
339
340 };
341
342 #ifndef __GENERATING_BOUNDS_H
343
344 struct zone {
345 /* Read-mostly fields */
346
347 /* zone watermarks, access with *_wmark_pages(zone) macros */
348 unsigned long watermark[NR_WMARK];
349
350 unsigned long nr_reserved_highatomic;
351
352 /*
353 * We don't know if the memory that we're going to allocate will be
354 * freeable or/and it will be released eventually, so to avoid totally
355 * wasting several GB of ram we must reserve some of the lower zone
356 * memory (otherwise we risk to run OOM on the lower zones despite
357 * there being tons of freeable ram on the higher zones). This array is
358 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
359 * changes.
360 */
361 long lowmem_reserve[MAX_NR_ZONES];
362
363 #ifdef CONFIG_NUMA
364 int node;
365 #endif
366 struct pglist_data *zone_pgdat;
367 struct per_cpu_pageset __percpu *pageset;
368
369 #ifndef CONFIG_SPARSEMEM
370 /*
371 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
372 * In SPARSEMEM, this map is stored in struct mem_section
373 */
374 unsigned long *pageblock_flags;
375 #endif /* CONFIG_SPARSEMEM */
376
377 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
378 unsigned long zone_start_pfn;
379
380 /*
381 * spanned_pages is the total pages spanned by the zone, including
382 * holes, which is calculated as:
383 * spanned_pages = zone_end_pfn - zone_start_pfn;
384 *
385 * present_pages is physical pages existing within the zone, which
386 * is calculated as:
387 * present_pages = spanned_pages - absent_pages(pages in holes);
388 *
389 * managed_pages is present pages managed by the buddy system, which
390 * is calculated as (reserved_pages includes pages allocated by the
391 * bootmem allocator):
392 * managed_pages = present_pages - reserved_pages;
393 *
394 * So present_pages may be used by memory hotplug or memory power
395 * management logic to figure out unmanaged pages by checking
396 * (present_pages - managed_pages). And managed_pages should be used
397 * by page allocator and vm scanner to calculate all kinds of watermarks
398 * and thresholds.
399 *
400 * Locking rules:
401 *
402 * zone_start_pfn and spanned_pages are protected by span_seqlock.
403 * It is a seqlock because it has to be read outside of zone->lock,
404 * and it is done in the main allocator path. But, it is written
405 * quite infrequently.
406 *
407 * The span_seq lock is declared along with zone->lock because it is
408 * frequently read in proximity to zone->lock. It's good to
409 * give them a chance of being in the same cacheline.
410 *
411 * Write access to present_pages at runtime should be protected by
412 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
413 * present_pages should get_online_mems() to get a stable value.
414 *
415 * Read access to managed_pages should be safe because it's unsigned
416 * long. Write access to zone->managed_pages and totalram_pages are
417 * protected by managed_page_count_lock at runtime. Idealy only
418 * adjust_managed_page_count() should be used instead of directly
419 * touching zone->managed_pages and totalram_pages.
420 */
421 unsigned long managed_pages;
422 unsigned long spanned_pages;
423 unsigned long present_pages;
424
425 const char *name;
426
427 #ifdef CONFIG_MEMORY_ISOLATION
428 /*
429 * Number of isolated pageblock. It is used to solve incorrect
430 * freepage counting problem due to racy retrieving migratetype
431 * of pageblock. Protected by zone->lock.
432 */
433 unsigned long nr_isolate_pageblock;
434 #endif
435
436 #ifdef CONFIG_MEMORY_HOTPLUG
437 /* see spanned/present_pages for more description */
438 seqlock_t span_seqlock;
439 #endif
440
441 /*
442 * wait_table -- the array holding the hash table
443 * wait_table_hash_nr_entries -- the size of the hash table array
444 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
445 *
446 * The purpose of all these is to keep track of the people
447 * waiting for a page to become available and make them
448 * runnable again when possible. The trouble is that this
449 * consumes a lot of space, especially when so few things
450 * wait on pages at a given time. So instead of using
451 * per-page waitqueues, we use a waitqueue hash table.
452 *
453 * The bucket discipline is to sleep on the same queue when
454 * colliding and wake all in that wait queue when removing.
455 * When something wakes, it must check to be sure its page is
456 * truly available, a la thundering herd. The cost of a
457 * collision is great, but given the expected load of the
458 * table, they should be so rare as to be outweighed by the
459 * benefits from the saved space.
460 *
461 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
462 * primary users of these fields, and in mm/page_alloc.c
463 * free_area_init_core() performs the initialization of them.
464 */
465 wait_queue_head_t *wait_table;
466 unsigned long wait_table_hash_nr_entries;
467 unsigned long wait_table_bits;
468
469 /* Write-intensive fields used from the page allocator */
470 ZONE_PADDING(_pad1_)
471
472 /* free areas of different sizes */
473 struct free_area free_area[MAX_ORDER];
474
475 /* zone flags, see below */
476 unsigned long flags;
477
478 /* Primarily protects free_area */
479 spinlock_t lock;
480
481 /* Write-intensive fields used by compaction and vmstats. */
482 ZONE_PADDING(_pad2_)
483
484 /*
485 * When free pages are below this point, additional steps are taken
486 * when reading the number of free pages to avoid per-cpu counter
487 * drift allowing watermarks to be breached
488 */
489 unsigned long percpu_drift_mark;
490
491 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
492 /* pfn where compaction free scanner should start */
493 unsigned long compact_cached_free_pfn;
494 /* pfn where async and sync compaction migration scanner should start */
495 unsigned long compact_cached_migrate_pfn[2];
496 #endif
497
498 #ifdef CONFIG_COMPACTION
499 /*
500 * On compaction failure, 1<<compact_defer_shift compactions
501 * are skipped before trying again. The number attempted since
502 * last failure is tracked with compact_considered.
503 */
504 unsigned int compact_considered;
505 unsigned int compact_defer_shift;
506 int compact_order_failed;
507 #endif
508
509 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
510 /* Set to true when the PG_migrate_skip bits should be cleared */
511 bool compact_blockskip_flush;
512 #endif
513
514 bool contiguous;
515
516 ZONE_PADDING(_pad3_)
517 /* Zone statistics */
518 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
519 } ____cacheline_internodealigned_in_smp;
520
521 enum pgdat_flags {
522 PGDAT_CONGESTED, /* pgdat has many dirty pages backed by
523 * a congested BDI
524 */
525 PGDAT_DIRTY, /* reclaim scanning has recently found
526 * many dirty file pages at the tail
527 * of the LRU.
528 */
529 PGDAT_WRITEBACK, /* reclaim scanning has recently found
530 * many pages under writeback
531 */
532 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
533 };
534
535 static inline unsigned long zone_end_pfn(const struct zone *zone)
536 {
537 return zone->zone_start_pfn + zone->spanned_pages;
538 }
539
540 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
541 {
542 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
543 }
544
545 static inline bool zone_is_initialized(struct zone *zone)
546 {
547 return !!zone->wait_table;
548 }
549
550 static inline bool zone_is_empty(struct zone *zone)
551 {
552 return zone->spanned_pages == 0;
553 }
554
555 /*
556 * The "priority" of VM scanning is how much of the queues we will scan in one
557 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
558 * queues ("queue_length >> 12") during an aging round.
559 */
560 #define DEF_PRIORITY 12
561
562 /* Maximum number of zones on a zonelist */
563 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
564
565 enum {
566 ZONELIST_FALLBACK, /* zonelist with fallback */
567 #ifdef CONFIG_NUMA
568 /*
569 * The NUMA zonelists are doubled because we need zonelists that
570 * restrict the allocations to a single node for __GFP_THISNODE.
571 */
572 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
573 #endif
574 MAX_ZONELISTS
575 };
576
577 /*
578 * This struct contains information about a zone in a zonelist. It is stored
579 * here to avoid dereferences into large structures and lookups of tables
580 */
581 struct zoneref {
582 struct zone *zone; /* Pointer to actual zone */
583 int zone_idx; /* zone_idx(zoneref->zone) */
584 };
585
586 /*
587 * One allocation request operates on a zonelist. A zonelist
588 * is a list of zones, the first one is the 'goal' of the
589 * allocation, the other zones are fallback zones, in decreasing
590 * priority.
591 *
592 * To speed the reading of the zonelist, the zonerefs contain the zone index
593 * of the entry being read. Helper functions to access information given
594 * a struct zoneref are
595 *
596 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
597 * zonelist_zone_idx() - Return the index of the zone for an entry
598 * zonelist_node_idx() - Return the index of the node for an entry
599 */
600 struct zonelist {
601 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
602 };
603
604 #ifndef CONFIG_DISCONTIGMEM
605 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
606 extern struct page *mem_map;
607 #endif
608
609 /*
610 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
611 * (mostly NUMA machines?) to denote a higher-level memory zone than the
612 * zone denotes.
613 *
614 * On NUMA machines, each NUMA node would have a pg_data_t to describe
615 * it's memory layout.
616 *
617 * Memory statistics and page replacement data structures are maintained on a
618 * per-zone basis.
619 */
620 struct bootmem_data;
621 typedef struct pglist_data {
622 struct zone node_zones[MAX_NR_ZONES];
623 struct zonelist node_zonelists[MAX_ZONELISTS];
624 int nr_zones;
625 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
626 struct page *node_mem_map;
627 #ifdef CONFIG_PAGE_EXTENSION
628 struct page_ext *node_page_ext;
629 #endif
630 #endif
631 #ifndef CONFIG_NO_BOOTMEM
632 struct bootmem_data *bdata;
633 #endif
634 #ifdef CONFIG_MEMORY_HOTPLUG
635 /*
636 * Must be held any time you expect node_start_pfn, node_present_pages
637 * or node_spanned_pages stay constant. Holding this will also
638 * guarantee that any pfn_valid() stays that way.
639 *
640 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
641 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
642 *
643 * Nests above zone->lock and zone->span_seqlock
644 */
645 spinlock_t node_size_lock;
646 #endif
647 unsigned long node_start_pfn;
648 unsigned long node_present_pages; /* total number of physical pages */
649 unsigned long node_spanned_pages; /* total size of physical page
650 range, including holes */
651 int node_id;
652 wait_queue_head_t kswapd_wait;
653 wait_queue_head_t pfmemalloc_wait;
654 struct task_struct *kswapd; /* Protected by
655 mem_hotplug_begin/end() */
656 int kswapd_order;
657 enum zone_type kswapd_classzone_idx;
658
659 #ifdef CONFIG_COMPACTION
660 int kcompactd_max_order;
661 enum zone_type kcompactd_classzone_idx;
662 wait_queue_head_t kcompactd_wait;
663 struct task_struct *kcompactd;
664 #endif
665 #ifdef CONFIG_NUMA_BALANCING
666 /* Lock serializing the migrate rate limiting window */
667 spinlock_t numabalancing_migrate_lock;
668
669 /* Rate limiting time interval */
670 unsigned long numabalancing_migrate_next_window;
671
672 /* Number of pages migrated during the rate limiting time interval */
673 unsigned long numabalancing_migrate_nr_pages;
674 #endif
675 /*
676 * This is a per-node reserve of pages that are not available
677 * to userspace allocations.
678 */
679 unsigned long totalreserve_pages;
680
681 #ifdef CONFIG_NUMA
682 /*
683 * zone reclaim becomes active if more unmapped pages exist.
684 */
685 unsigned long min_unmapped_pages;
686 unsigned long min_slab_pages;
687 #endif /* CONFIG_NUMA */
688
689 /* Write-intensive fields used by page reclaim */
690 ZONE_PADDING(_pad1_)
691 spinlock_t lru_lock;
692
693 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
694 /*
695 * If memory initialisation on large machines is deferred then this
696 * is the first PFN that needs to be initialised.
697 */
698 unsigned long first_deferred_pfn;
699 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
700
701 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
702 spinlock_t split_queue_lock;
703 struct list_head split_queue;
704 unsigned long split_queue_len;
705 #endif
706
707 /* Fields commonly accessed by the page reclaim scanner */
708 struct lruvec lruvec;
709
710 /*
711 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
712 * this node's LRU. Maintained by the pageout code.
713 */
714 unsigned int inactive_ratio;
715
716 unsigned long flags;
717
718 ZONE_PADDING(_pad2_)
719
720 /* Per-node vmstats */
721 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
722 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
723 } pg_data_t;
724
725 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
726 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
727 #ifdef CONFIG_FLAT_NODE_MEM_MAP
728 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
729 #else
730 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
731 #endif
732 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
733
734 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
735 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
736 static inline spinlock_t *zone_lru_lock(struct zone *zone)
737 {
738 return &zone->zone_pgdat->lru_lock;
739 }
740
741 static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
742 {
743 return &pgdat->lruvec;
744 }
745
746 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
747 {
748 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
749 }
750
751 static inline bool pgdat_is_empty(pg_data_t *pgdat)
752 {
753 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
754 }
755
756 static inline int zone_id(const struct zone *zone)
757 {
758 struct pglist_data *pgdat = zone->zone_pgdat;
759
760 return zone - pgdat->node_zones;
761 }
762
763 #ifdef CONFIG_ZONE_DEVICE
764 static inline bool is_dev_zone(const struct zone *zone)
765 {
766 return zone_id(zone) == ZONE_DEVICE;
767 }
768 #else
769 static inline bool is_dev_zone(const struct zone *zone)
770 {
771 return false;
772 }
773 #endif
774
775 #include <linux/memory_hotplug.h>
776
777 extern struct mutex zonelists_mutex;
778 void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
779 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
780 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
781 int classzone_idx, unsigned int alloc_flags,
782 long free_pages);
783 bool zone_watermark_ok(struct zone *z, unsigned int order,
784 unsigned long mark, int classzone_idx,
785 unsigned int alloc_flags);
786 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
787 unsigned long mark, int classzone_idx);
788 enum memmap_context {
789 MEMMAP_EARLY,
790 MEMMAP_HOTPLUG,
791 };
792 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
793 unsigned long size);
794
795 extern void lruvec_init(struct lruvec *lruvec);
796
797 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
798 {
799 #ifdef CONFIG_MEMCG
800 return lruvec->pgdat;
801 #else
802 return container_of(lruvec, struct pglist_data, lruvec);
803 #endif
804 }
805
806 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru);
807
808 #ifdef CONFIG_HAVE_MEMORY_PRESENT
809 void memory_present(int nid, unsigned long start, unsigned long end);
810 #else
811 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
812 #endif
813
814 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
815 int local_memory_node(int node_id);
816 #else
817 static inline int local_memory_node(int node_id) { return node_id; };
818 #endif
819
820 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
821 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
822 #endif
823
824 /*
825 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
826 */
827 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
828
829 static inline int populated_zone(struct zone *zone)
830 {
831 return (!!zone->present_pages);
832 }
833
834 extern int movable_zone;
835
836 #ifdef CONFIG_HIGHMEM
837 static inline int zone_movable_is_highmem(void)
838 {
839 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
840 return movable_zone == ZONE_HIGHMEM;
841 #else
842 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
843 #endif
844 }
845 #endif
846
847 static inline int is_highmem_idx(enum zone_type idx)
848 {
849 #ifdef CONFIG_HIGHMEM
850 return (idx == ZONE_HIGHMEM ||
851 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
852 #else
853 return 0;
854 #endif
855 }
856
857 /**
858 * is_highmem - helper function to quickly check if a struct zone is a
859 * highmem zone or not. This is an attempt to keep references
860 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
861 * @zone - pointer to struct zone variable
862 */
863 static inline int is_highmem(struct zone *zone)
864 {
865 #ifdef CONFIG_HIGHMEM
866 return is_highmem_idx(zone_idx(zone));
867 #else
868 return 0;
869 #endif
870 }
871
872 /* These two functions are used to setup the per zone pages min values */
873 struct ctl_table;
874 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
875 void __user *, size_t *, loff_t *);
876 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
877 void __user *, size_t *, loff_t *);
878 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
879 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
880 void __user *, size_t *, loff_t *);
881 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
882 void __user *, size_t *, loff_t *);
883 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
884 void __user *, size_t *, loff_t *);
885 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
886 void __user *, size_t *, loff_t *);
887
888 extern int numa_zonelist_order_handler(struct ctl_table *, int,
889 void __user *, size_t *, loff_t *);
890 extern char numa_zonelist_order[];
891 #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
892
893 #ifndef CONFIG_NEED_MULTIPLE_NODES
894
895 extern struct pglist_data contig_page_data;
896 #define NODE_DATA(nid) (&contig_page_data)
897 #define NODE_MEM_MAP(nid) mem_map
898
899 #else /* CONFIG_NEED_MULTIPLE_NODES */
900
901 #include <asm/mmzone.h>
902
903 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
904
905 extern struct pglist_data *first_online_pgdat(void);
906 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
907 extern struct zone *next_zone(struct zone *zone);
908
909 /**
910 * for_each_online_pgdat - helper macro to iterate over all online nodes
911 * @pgdat - pointer to a pg_data_t variable
912 */
913 #define for_each_online_pgdat(pgdat) \
914 for (pgdat = first_online_pgdat(); \
915 pgdat; \
916 pgdat = next_online_pgdat(pgdat))
917 /**
918 * for_each_zone - helper macro to iterate over all memory zones
919 * @zone - pointer to struct zone variable
920 *
921 * The user only needs to declare the zone variable, for_each_zone
922 * fills it in.
923 */
924 #define for_each_zone(zone) \
925 for (zone = (first_online_pgdat())->node_zones; \
926 zone; \
927 zone = next_zone(zone))
928
929 #define for_each_populated_zone(zone) \
930 for (zone = (first_online_pgdat())->node_zones; \
931 zone; \
932 zone = next_zone(zone)) \
933 if (!populated_zone(zone)) \
934 ; /* do nothing */ \
935 else
936
937 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
938 {
939 return zoneref->zone;
940 }
941
942 static inline int zonelist_zone_idx(struct zoneref *zoneref)
943 {
944 return zoneref->zone_idx;
945 }
946
947 static inline int zonelist_node_idx(struct zoneref *zoneref)
948 {
949 #ifdef CONFIG_NUMA
950 /* zone_to_nid not available in this context */
951 return zoneref->zone->node;
952 #else
953 return 0;
954 #endif /* CONFIG_NUMA */
955 }
956
957 struct zoneref *__next_zones_zonelist(struct zoneref *z,
958 enum zone_type highest_zoneidx,
959 nodemask_t *nodes);
960
961 /**
962 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
963 * @z - The cursor used as a starting point for the search
964 * @highest_zoneidx - The zone index of the highest zone to return
965 * @nodes - An optional nodemask to filter the zonelist with
966 *
967 * This function returns the next zone at or below a given zone index that is
968 * within the allowed nodemask using a cursor as the starting point for the
969 * search. The zoneref returned is a cursor that represents the current zone
970 * being examined. It should be advanced by one before calling
971 * next_zones_zonelist again.
972 */
973 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
974 enum zone_type highest_zoneidx,
975 nodemask_t *nodes)
976 {
977 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
978 return z;
979 return __next_zones_zonelist(z, highest_zoneidx, nodes);
980 }
981
982 /**
983 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
984 * @zonelist - The zonelist to search for a suitable zone
985 * @highest_zoneidx - The zone index of the highest zone to return
986 * @nodes - An optional nodemask to filter the zonelist with
987 * @zone - The first suitable zone found is returned via this parameter
988 *
989 * This function returns the first zone at or below a given zone index that is
990 * within the allowed nodemask. The zoneref returned is a cursor that can be
991 * used to iterate the zonelist with next_zones_zonelist by advancing it by
992 * one before calling.
993 */
994 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
995 enum zone_type highest_zoneidx,
996 nodemask_t *nodes)
997 {
998 return next_zones_zonelist(zonelist->_zonerefs,
999 highest_zoneidx, nodes);
1000 }
1001
1002 /**
1003 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1004 * @zone - The current zone in the iterator
1005 * @z - The current pointer within zonelist->zones being iterated
1006 * @zlist - The zonelist being iterated
1007 * @highidx - The zone index of the highest zone to return
1008 * @nodemask - Nodemask allowed by the allocator
1009 *
1010 * This iterator iterates though all zones at or below a given zone index and
1011 * within a given nodemask
1012 */
1013 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1014 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1015 zone; \
1016 z = next_zones_zonelist(++z, highidx, nodemask), \
1017 zone = zonelist_zone(z))
1018
1019 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1020 for (zone = z->zone; \
1021 zone; \
1022 z = next_zones_zonelist(++z, highidx, nodemask), \
1023 zone = zonelist_zone(z))
1024
1025
1026 /**
1027 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1028 * @zone - The current zone in the iterator
1029 * @z - The current pointer within zonelist->zones being iterated
1030 * @zlist - The zonelist being iterated
1031 * @highidx - The zone index of the highest zone to return
1032 *
1033 * This iterator iterates though all zones at or below a given zone index.
1034 */
1035 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1036 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1037
1038 #ifdef CONFIG_SPARSEMEM
1039 #include <asm/sparsemem.h>
1040 #endif
1041
1042 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1043 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1044 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1045 {
1046 return 0;
1047 }
1048 #endif
1049
1050 #ifdef CONFIG_FLATMEM
1051 #define pfn_to_nid(pfn) (0)
1052 #endif
1053
1054 #ifdef CONFIG_SPARSEMEM
1055
1056 /*
1057 * SECTION_SHIFT #bits space required to store a section #
1058 *
1059 * PA_SECTION_SHIFT physical address to/from section number
1060 * PFN_SECTION_SHIFT pfn to/from section number
1061 */
1062 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1063 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1064
1065 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1066
1067 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1068 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1069
1070 #define SECTION_BLOCKFLAGS_BITS \
1071 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1072
1073 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1074 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1075 #endif
1076
1077 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1078 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1079
1080 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1081 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1082
1083 struct page;
1084 struct page_ext;
1085 struct mem_section {
1086 /*
1087 * This is, logically, a pointer to an array of struct
1088 * pages. However, it is stored with some other magic.
1089 * (see sparse.c::sparse_init_one_section())
1090 *
1091 * Additionally during early boot we encode node id of
1092 * the location of the section here to guide allocation.
1093 * (see sparse.c::memory_present())
1094 *
1095 * Making it a UL at least makes someone do a cast
1096 * before using it wrong.
1097 */
1098 unsigned long section_mem_map;
1099
1100 /* See declaration of similar field in struct zone */
1101 unsigned long *pageblock_flags;
1102 #ifdef CONFIG_PAGE_EXTENSION
1103 /*
1104 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1105 * section. (see page_ext.h about this.)
1106 */
1107 struct page_ext *page_ext;
1108 unsigned long pad;
1109 #endif
1110 /*
1111 * WARNING: mem_section must be a power-of-2 in size for the
1112 * calculation and use of SECTION_ROOT_MASK to make sense.
1113 */
1114 };
1115
1116 #ifdef CONFIG_SPARSEMEM_EXTREME
1117 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1118 #else
1119 #define SECTIONS_PER_ROOT 1
1120 #endif
1121
1122 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1123 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1124 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1125
1126 #ifdef CONFIG_SPARSEMEM_EXTREME
1127 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1128 #else
1129 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1130 #endif
1131
1132 static inline struct mem_section *__nr_to_section(unsigned long nr)
1133 {
1134 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1135 return NULL;
1136 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1137 }
1138 extern int __section_nr(struct mem_section* ms);
1139 extern unsigned long usemap_size(void);
1140
1141 /*
1142 * We use the lower bits of the mem_map pointer to store
1143 * a little bit of information. There should be at least
1144 * 3 bits here due to 32-bit alignment.
1145 */
1146 #define SECTION_MARKED_PRESENT (1UL<<0)
1147 #define SECTION_HAS_MEM_MAP (1UL<<1)
1148 #define SECTION_MAP_LAST_BIT (1UL<<2)
1149 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1150 #define SECTION_NID_SHIFT 2
1151
1152 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1153 {
1154 unsigned long map = section->section_mem_map;
1155 map &= SECTION_MAP_MASK;
1156 return (struct page *)map;
1157 }
1158
1159 static inline int present_section(struct mem_section *section)
1160 {
1161 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1162 }
1163
1164 static inline int present_section_nr(unsigned long nr)
1165 {
1166 return present_section(__nr_to_section(nr));
1167 }
1168
1169 static inline int valid_section(struct mem_section *section)
1170 {
1171 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1172 }
1173
1174 static inline int valid_section_nr(unsigned long nr)
1175 {
1176 return valid_section(__nr_to_section(nr));
1177 }
1178
1179 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1180 {
1181 return __nr_to_section(pfn_to_section_nr(pfn));
1182 }
1183
1184 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1185 static inline int pfn_valid(unsigned long pfn)
1186 {
1187 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1188 return 0;
1189 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1190 }
1191 #endif
1192
1193 static inline int pfn_present(unsigned long pfn)
1194 {
1195 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1196 return 0;
1197 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1198 }
1199
1200 /*
1201 * These are _only_ used during initialisation, therefore they
1202 * can use __initdata ... They could have names to indicate
1203 * this restriction.
1204 */
1205 #ifdef CONFIG_NUMA
1206 #define pfn_to_nid(pfn) \
1207 ({ \
1208 unsigned long __pfn_to_nid_pfn = (pfn); \
1209 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1210 })
1211 #else
1212 #define pfn_to_nid(pfn) (0)
1213 #endif
1214
1215 #define early_pfn_valid(pfn) pfn_valid(pfn)
1216 void sparse_init(void);
1217 #else
1218 #define sparse_init() do {} while (0)
1219 #define sparse_index_init(_sec, _nid) do {} while (0)
1220 #endif /* CONFIG_SPARSEMEM */
1221
1222 /*
1223 * During memory init memblocks map pfns to nids. The search is expensive and
1224 * this caches recent lookups. The implementation of __early_pfn_to_nid
1225 * may treat start/end as pfns or sections.
1226 */
1227 struct mminit_pfnnid_cache {
1228 unsigned long last_start;
1229 unsigned long last_end;
1230 int last_nid;
1231 };
1232
1233 #ifndef early_pfn_valid
1234 #define early_pfn_valid(pfn) (1)
1235 #endif
1236
1237 void memory_present(int nid, unsigned long start, unsigned long end);
1238 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1239
1240 /*
1241 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1242 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1243 * pfn_valid_within() should be used in this case; we optimise this away
1244 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1245 */
1246 #ifdef CONFIG_HOLES_IN_ZONE
1247 #define pfn_valid_within(pfn) pfn_valid(pfn)
1248 #else
1249 #define pfn_valid_within(pfn) (1)
1250 #endif
1251
1252 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1253 /*
1254 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1255 * associated with it or not. In FLATMEM, it is expected that holes always
1256 * have valid memmap as long as there is valid PFNs either side of the hole.
1257 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1258 * entire section.
1259 *
1260 * However, an ARM, and maybe other embedded architectures in the future
1261 * free memmap backing holes to save memory on the assumption the memmap is
1262 * never used. The page_zone linkages are then broken even though pfn_valid()
1263 * returns true. A walker of the full memmap must then do this additional
1264 * check to ensure the memmap they are looking at is sane by making sure
1265 * the zone and PFN linkages are still valid. This is expensive, but walkers
1266 * of the full memmap are extremely rare.
1267 */
1268 bool memmap_valid_within(unsigned long pfn,
1269 struct page *page, struct zone *zone);
1270 #else
1271 static inline bool memmap_valid_within(unsigned long pfn,
1272 struct page *page, struct zone *zone)
1273 {
1274 return true;
1275 }
1276 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1277
1278 #endif /* !__GENERATING_BOUNDS.H */
1279 #endif /* !__ASSEMBLY__ */
1280 #endif /* _LINUX_MMZONE_H */
This page took 0.086404 seconds and 6 git commands to generate.