mtd: introduce mtd_write interface
[deliverable/linux.git] / include / linux / mtd / mtd.h
1 /*
2 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 *
18 */
19
20 #ifndef __MTD_MTD_H__
21 #define __MTD_MTD_H__
22
23 #include <linux/types.h>
24 #include <linux/uio.h>
25 #include <linux/notifier.h>
26 #include <linux/device.h>
27
28 #include <mtd/mtd-abi.h>
29
30 #include <asm/div64.h>
31
32 #define MTD_CHAR_MAJOR 90
33 #define MTD_BLOCK_MAJOR 31
34
35 #define MTD_ERASE_PENDING 0x01
36 #define MTD_ERASING 0x02
37 #define MTD_ERASE_SUSPEND 0x04
38 #define MTD_ERASE_DONE 0x08
39 #define MTD_ERASE_FAILED 0x10
40
41 #define MTD_FAIL_ADDR_UNKNOWN -1LL
42
43 /*
44 * If the erase fails, fail_addr might indicate exactly which block failed. If
45 * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level
46 * or was not specific to any particular block.
47 */
48 struct erase_info {
49 struct mtd_info *mtd;
50 uint64_t addr;
51 uint64_t len;
52 uint64_t fail_addr;
53 u_long time;
54 u_long retries;
55 unsigned dev;
56 unsigned cell;
57 void (*callback) (struct erase_info *self);
58 u_long priv;
59 u_char state;
60 struct erase_info *next;
61 };
62
63 struct mtd_erase_region_info {
64 uint64_t offset; /* At which this region starts, from the beginning of the MTD */
65 uint32_t erasesize; /* For this region */
66 uint32_t numblocks; /* Number of blocks of erasesize in this region */
67 unsigned long *lockmap; /* If keeping bitmap of locks */
68 };
69
70 /**
71 * struct mtd_oob_ops - oob operation operands
72 * @mode: operation mode
73 *
74 * @len: number of data bytes to write/read
75 *
76 * @retlen: number of data bytes written/read
77 *
78 * @ooblen: number of oob bytes to write/read
79 * @oobretlen: number of oob bytes written/read
80 * @ooboffs: offset of oob data in the oob area (only relevant when
81 * mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW)
82 * @datbuf: data buffer - if NULL only oob data are read/written
83 * @oobbuf: oob data buffer
84 *
85 * Note, it is allowed to read more than one OOB area at one go, but not write.
86 * The interface assumes that the OOB write requests program only one page's
87 * OOB area.
88 */
89 struct mtd_oob_ops {
90 unsigned int mode;
91 size_t len;
92 size_t retlen;
93 size_t ooblen;
94 size_t oobretlen;
95 uint32_t ooboffs;
96 uint8_t *datbuf;
97 uint8_t *oobbuf;
98 };
99
100 #define MTD_MAX_OOBFREE_ENTRIES_LARGE 32
101 #define MTD_MAX_ECCPOS_ENTRIES_LARGE 448
102 /*
103 * Internal ECC layout control structure. For historical reasons, there is a
104 * similar, smaller struct nand_ecclayout_user (in mtd-abi.h) that is retained
105 * for export to user-space via the ECCGETLAYOUT ioctl.
106 * nand_ecclayout should be expandable in the future simply by the above macros.
107 */
108 struct nand_ecclayout {
109 __u32 eccbytes;
110 __u32 eccpos[MTD_MAX_ECCPOS_ENTRIES_LARGE];
111 __u32 oobavail;
112 struct nand_oobfree oobfree[MTD_MAX_OOBFREE_ENTRIES_LARGE];
113 };
114
115 struct module; /* only needed for owner field in mtd_info */
116
117 struct mtd_info {
118 u_char type;
119 uint32_t flags;
120 uint64_t size; // Total size of the MTD
121
122 /* "Major" erase size for the device. Naïve users may take this
123 * to be the only erase size available, or may use the more detailed
124 * information below if they desire
125 */
126 uint32_t erasesize;
127 /* Minimal writable flash unit size. In case of NOR flash it is 1 (even
128 * though individual bits can be cleared), in case of NAND flash it is
129 * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR
130 * it is of ECC block size, etc. It is illegal to have writesize = 0.
131 * Any driver registering a struct mtd_info must ensure a writesize of
132 * 1 or larger.
133 */
134 uint32_t writesize;
135
136 /*
137 * Size of the write buffer used by the MTD. MTD devices having a write
138 * buffer can write multiple writesize chunks at a time. E.g. while
139 * writing 4 * writesize bytes to a device with 2 * writesize bytes
140 * buffer the MTD driver can (but doesn't have to) do 2 writesize
141 * operations, but not 4. Currently, all NANDs have writebufsize
142 * equivalent to writesize (NAND page size). Some NOR flashes do have
143 * writebufsize greater than writesize.
144 */
145 uint32_t writebufsize;
146
147 uint32_t oobsize; // Amount of OOB data per block (e.g. 16)
148 uint32_t oobavail; // Available OOB bytes per block
149
150 /*
151 * If erasesize is a power of 2 then the shift is stored in
152 * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize.
153 */
154 unsigned int erasesize_shift;
155 unsigned int writesize_shift;
156 /* Masks based on erasesize_shift and writesize_shift */
157 unsigned int erasesize_mask;
158 unsigned int writesize_mask;
159
160 // Kernel-only stuff starts here.
161 const char *name;
162 int index;
163
164 /* ECC layout structure pointer - read only! */
165 struct nand_ecclayout *ecclayout;
166
167 /* Data for variable erase regions. If numeraseregions is zero,
168 * it means that the whole device has erasesize as given above.
169 */
170 int numeraseregions;
171 struct mtd_erase_region_info *eraseregions;
172
173 /*
174 * Do not call via these pointers, use corresponding mtd_*()
175 * wrappers instead.
176 */
177 int (*erase) (struct mtd_info *mtd, struct erase_info *instr);
178 int (*point) (struct mtd_info *mtd, loff_t from, size_t len,
179 size_t *retlen, void **virt, resource_size_t *phys);
180 void (*unpoint) (struct mtd_info *mtd, loff_t from, size_t len);
181 unsigned long (*get_unmapped_area) (struct mtd_info *mtd,
182 unsigned long len,
183 unsigned long offset,
184 unsigned long flags);
185 int (*read) (struct mtd_info *mtd, loff_t from, size_t len,
186 size_t *retlen, u_char *buf);
187 int (*write) (struct mtd_info *mtd, loff_t to, size_t len,
188 size_t *retlen, const u_char *buf);
189
190 /* Backing device capabilities for this device
191 * - provides mmap capabilities
192 */
193 struct backing_dev_info *backing_dev_info;
194
195
196
197 /* In blackbox flight recorder like scenarios we want to make successful
198 writes in interrupt context. panic_write() is only intended to be
199 called when its known the kernel is about to panic and we need the
200 write to succeed. Since the kernel is not going to be running for much
201 longer, this function can break locks and delay to ensure the write
202 succeeds (but not sleep). */
203
204 int (*panic_write) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf);
205
206 int (*read_oob) (struct mtd_info *mtd, loff_t from,
207 struct mtd_oob_ops *ops);
208 int (*write_oob) (struct mtd_info *mtd, loff_t to,
209 struct mtd_oob_ops *ops);
210
211 /*
212 * Methods to access the protection register area, present in some
213 * flash devices. The user data is one time programmable but the
214 * factory data is read only.
215 */
216 int (*get_fact_prot_info) (struct mtd_info *mtd, struct otp_info *buf, size_t len);
217 int (*read_fact_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
218 int (*get_user_prot_info) (struct mtd_info *mtd, struct otp_info *buf, size_t len);
219 int (*read_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
220 int (*write_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
221 int (*lock_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len);
222
223 /* kvec-based read/write methods.
224 NB: The 'count' parameter is the number of _vectors_, each of
225 which contains an (ofs, len) tuple.
226 */
227 int (*writev) (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t *retlen);
228
229 /* Sync */
230 void (*sync) (struct mtd_info *mtd);
231
232 /* Chip-supported device locking */
233 int (*lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
234 int (*unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
235 int (*is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
236
237 /* Power Management functions */
238 int (*suspend) (struct mtd_info *mtd);
239 void (*resume) (struct mtd_info *mtd);
240
241 /* Bad block management functions */
242 int (*block_isbad) (struct mtd_info *mtd, loff_t ofs);
243 int (*block_markbad) (struct mtd_info *mtd, loff_t ofs);
244
245 struct notifier_block reboot_notifier; /* default mode before reboot */
246
247 /* ECC status information */
248 struct mtd_ecc_stats ecc_stats;
249 /* Subpage shift (NAND) */
250 int subpage_sft;
251
252 void *priv;
253
254 struct module *owner;
255 struct device dev;
256 int usecount;
257
258 /* If the driver is something smart, like UBI, it may need to maintain
259 * its own reference counting. The below functions are only for driver.
260 * The driver may register its callbacks. These callbacks are not
261 * supposed to be called by MTD users */
262 int (*get_device) (struct mtd_info *mtd);
263 void (*put_device) (struct mtd_info *mtd);
264 };
265
266 /*
267 * Erase is an asynchronous operation. Device drivers are supposed
268 * to call instr->callback() whenever the operation completes, even
269 * if it completes with a failure.
270 * Callers are supposed to pass a callback function and wait for it
271 * to be called before writing to the block.
272 */
273 static inline int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
274 {
275 return mtd->erase(mtd, instr);
276 }
277
278 /*
279 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
280 */
281 static inline int mtd_point(struct mtd_info *mtd, loff_t from, size_t len,
282 size_t *retlen, void **virt, resource_size_t *phys)
283 {
284 return mtd->point(mtd, from, len, retlen, virt, phys);
285 }
286
287 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
288 static inline void mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
289 {
290 return mtd->unpoint(mtd, from, len);
291 }
292
293 /*
294 * Allow NOMMU mmap() to directly map the device (if not NULL)
295 * - return the address to which the offset maps
296 * - return -ENOSYS to indicate refusal to do the mapping
297 */
298 static inline unsigned long mtd_get_unmapped_area(struct mtd_info *mtd,
299 unsigned long len,
300 unsigned long offset,
301 unsigned long flags)
302 {
303 return mtd->get_unmapped_area(mtd, len, offset, flags);
304 }
305
306 static inline int mtd_read(struct mtd_info *mtd, loff_t from, size_t len,
307 size_t *retlen, u_char *buf)
308 {
309 return mtd->read(mtd, from, len, retlen, buf);
310 }
311
312 static inline int mtd_write(struct mtd_info *mtd, loff_t to, size_t len,
313 size_t *retlen, const u_char *buf)
314 {
315 return mtd->write(mtd, to, len, retlen, buf);
316 }
317
318 static inline struct mtd_info *dev_to_mtd(struct device *dev)
319 {
320 return dev ? dev_get_drvdata(dev) : NULL;
321 }
322
323 static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd)
324 {
325 if (mtd->erasesize_shift)
326 return sz >> mtd->erasesize_shift;
327 do_div(sz, mtd->erasesize);
328 return sz;
329 }
330
331 static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd)
332 {
333 if (mtd->erasesize_shift)
334 return sz & mtd->erasesize_mask;
335 return do_div(sz, mtd->erasesize);
336 }
337
338 static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd)
339 {
340 if (mtd->writesize_shift)
341 return sz >> mtd->writesize_shift;
342 do_div(sz, mtd->writesize);
343 return sz;
344 }
345
346 static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd)
347 {
348 if (mtd->writesize_shift)
349 return sz & mtd->writesize_mask;
350 return do_div(sz, mtd->writesize);
351 }
352
353 /* Kernel-side ioctl definitions */
354
355 struct mtd_partition;
356 struct mtd_part_parser_data;
357
358 extern int mtd_device_parse_register(struct mtd_info *mtd,
359 const char **part_probe_types,
360 struct mtd_part_parser_data *parser_data,
361 const struct mtd_partition *defparts,
362 int defnr_parts);
363 #define mtd_device_register(master, parts, nr_parts) \
364 mtd_device_parse_register(master, NULL, NULL, parts, nr_parts)
365 extern int mtd_device_unregister(struct mtd_info *master);
366 extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num);
367 extern int __get_mtd_device(struct mtd_info *mtd);
368 extern void __put_mtd_device(struct mtd_info *mtd);
369 extern struct mtd_info *get_mtd_device_nm(const char *name);
370 extern void put_mtd_device(struct mtd_info *mtd);
371
372
373 struct mtd_notifier {
374 void (*add)(struct mtd_info *mtd);
375 void (*remove)(struct mtd_info *mtd);
376 struct list_head list;
377 };
378
379
380 extern void register_mtd_user (struct mtd_notifier *new);
381 extern int unregister_mtd_user (struct mtd_notifier *old);
382
383 int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
384 unsigned long count, loff_t to, size_t *retlen);
385
386 int default_mtd_readv(struct mtd_info *mtd, struct kvec *vecs,
387 unsigned long count, loff_t from, size_t *retlen);
388
389 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size);
390
391 void mtd_erase_callback(struct erase_info *instr);
392
393 static inline int mtd_is_bitflip(int err) {
394 return err == -EUCLEAN;
395 }
396
397 static inline int mtd_is_eccerr(int err) {
398 return err == -EBADMSG;
399 }
400
401 static inline int mtd_is_bitflip_or_eccerr(int err) {
402 return mtd_is_bitflip(err) || mtd_is_eccerr(err);
403 }
404
405 #endif /* __MTD_MTD_H__ */
This page took 0.05658 seconds and 5 git commands to generate.