mtd: introduce mtd_block_isbad interface
[deliverable/linux.git] / include / linux / mtd / mtd.h
1 /*
2 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 *
18 */
19
20 #ifndef __MTD_MTD_H__
21 #define __MTD_MTD_H__
22
23 #include <linux/types.h>
24 #include <linux/uio.h>
25 #include <linux/notifier.h>
26 #include <linux/device.h>
27
28 #include <mtd/mtd-abi.h>
29
30 #include <asm/div64.h>
31
32 #define MTD_CHAR_MAJOR 90
33 #define MTD_BLOCK_MAJOR 31
34
35 #define MTD_ERASE_PENDING 0x01
36 #define MTD_ERASING 0x02
37 #define MTD_ERASE_SUSPEND 0x04
38 #define MTD_ERASE_DONE 0x08
39 #define MTD_ERASE_FAILED 0x10
40
41 #define MTD_FAIL_ADDR_UNKNOWN -1LL
42
43 /*
44 * If the erase fails, fail_addr might indicate exactly which block failed. If
45 * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level
46 * or was not specific to any particular block.
47 */
48 struct erase_info {
49 struct mtd_info *mtd;
50 uint64_t addr;
51 uint64_t len;
52 uint64_t fail_addr;
53 u_long time;
54 u_long retries;
55 unsigned dev;
56 unsigned cell;
57 void (*callback) (struct erase_info *self);
58 u_long priv;
59 u_char state;
60 struct erase_info *next;
61 };
62
63 struct mtd_erase_region_info {
64 uint64_t offset; /* At which this region starts, from the beginning of the MTD */
65 uint32_t erasesize; /* For this region */
66 uint32_t numblocks; /* Number of blocks of erasesize in this region */
67 unsigned long *lockmap; /* If keeping bitmap of locks */
68 };
69
70 /**
71 * struct mtd_oob_ops - oob operation operands
72 * @mode: operation mode
73 *
74 * @len: number of data bytes to write/read
75 *
76 * @retlen: number of data bytes written/read
77 *
78 * @ooblen: number of oob bytes to write/read
79 * @oobretlen: number of oob bytes written/read
80 * @ooboffs: offset of oob data in the oob area (only relevant when
81 * mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW)
82 * @datbuf: data buffer - if NULL only oob data are read/written
83 * @oobbuf: oob data buffer
84 *
85 * Note, it is allowed to read more than one OOB area at one go, but not write.
86 * The interface assumes that the OOB write requests program only one page's
87 * OOB area.
88 */
89 struct mtd_oob_ops {
90 unsigned int mode;
91 size_t len;
92 size_t retlen;
93 size_t ooblen;
94 size_t oobretlen;
95 uint32_t ooboffs;
96 uint8_t *datbuf;
97 uint8_t *oobbuf;
98 };
99
100 #define MTD_MAX_OOBFREE_ENTRIES_LARGE 32
101 #define MTD_MAX_ECCPOS_ENTRIES_LARGE 448
102 /*
103 * Internal ECC layout control structure. For historical reasons, there is a
104 * similar, smaller struct nand_ecclayout_user (in mtd-abi.h) that is retained
105 * for export to user-space via the ECCGETLAYOUT ioctl.
106 * nand_ecclayout should be expandable in the future simply by the above macros.
107 */
108 struct nand_ecclayout {
109 __u32 eccbytes;
110 __u32 eccpos[MTD_MAX_ECCPOS_ENTRIES_LARGE];
111 __u32 oobavail;
112 struct nand_oobfree oobfree[MTD_MAX_OOBFREE_ENTRIES_LARGE];
113 };
114
115 struct module; /* only needed for owner field in mtd_info */
116
117 struct mtd_info {
118 u_char type;
119 uint32_t flags;
120 uint64_t size; // Total size of the MTD
121
122 /* "Major" erase size for the device. Naïve users may take this
123 * to be the only erase size available, or may use the more detailed
124 * information below if they desire
125 */
126 uint32_t erasesize;
127 /* Minimal writable flash unit size. In case of NOR flash it is 1 (even
128 * though individual bits can be cleared), in case of NAND flash it is
129 * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR
130 * it is of ECC block size, etc. It is illegal to have writesize = 0.
131 * Any driver registering a struct mtd_info must ensure a writesize of
132 * 1 or larger.
133 */
134 uint32_t writesize;
135
136 /*
137 * Size of the write buffer used by the MTD. MTD devices having a write
138 * buffer can write multiple writesize chunks at a time. E.g. while
139 * writing 4 * writesize bytes to a device with 2 * writesize bytes
140 * buffer the MTD driver can (but doesn't have to) do 2 writesize
141 * operations, but not 4. Currently, all NANDs have writebufsize
142 * equivalent to writesize (NAND page size). Some NOR flashes do have
143 * writebufsize greater than writesize.
144 */
145 uint32_t writebufsize;
146
147 uint32_t oobsize; // Amount of OOB data per block (e.g. 16)
148 uint32_t oobavail; // Available OOB bytes per block
149
150 /*
151 * If erasesize is a power of 2 then the shift is stored in
152 * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize.
153 */
154 unsigned int erasesize_shift;
155 unsigned int writesize_shift;
156 /* Masks based on erasesize_shift and writesize_shift */
157 unsigned int erasesize_mask;
158 unsigned int writesize_mask;
159
160 // Kernel-only stuff starts here.
161 const char *name;
162 int index;
163
164 /* ECC layout structure pointer - read only! */
165 struct nand_ecclayout *ecclayout;
166
167 /* Data for variable erase regions. If numeraseregions is zero,
168 * it means that the whole device has erasesize as given above.
169 */
170 int numeraseregions;
171 struct mtd_erase_region_info *eraseregions;
172
173 /*
174 * Do not call via these pointers, use corresponding mtd_*()
175 * wrappers instead.
176 */
177 int (*erase) (struct mtd_info *mtd, struct erase_info *instr);
178 int (*point) (struct mtd_info *mtd, loff_t from, size_t len,
179 size_t *retlen, void **virt, resource_size_t *phys);
180 void (*unpoint) (struct mtd_info *mtd, loff_t from, size_t len);
181 unsigned long (*get_unmapped_area) (struct mtd_info *mtd,
182 unsigned long len,
183 unsigned long offset,
184 unsigned long flags);
185 int (*read) (struct mtd_info *mtd, loff_t from, size_t len,
186 size_t *retlen, u_char *buf);
187 int (*write) (struct mtd_info *mtd, loff_t to, size_t len,
188 size_t *retlen, const u_char *buf);
189 int (*panic_write) (struct mtd_info *mtd, loff_t to, size_t len,
190 size_t *retlen, const u_char *buf);
191 int (*read_oob) (struct mtd_info *mtd, loff_t from,
192 struct mtd_oob_ops *ops);
193 int (*write_oob) (struct mtd_info *mtd, loff_t to,
194 struct mtd_oob_ops *ops);
195 int (*get_fact_prot_info) (struct mtd_info *mtd, struct otp_info *buf,
196 size_t len);
197 int (*read_fact_prot_reg) (struct mtd_info *mtd, loff_t from,
198 size_t len, size_t *retlen, u_char *buf);
199 int (*get_user_prot_info) (struct mtd_info *mtd, struct otp_info *buf,
200 size_t len);
201 int (*read_user_prot_reg) (struct mtd_info *mtd, loff_t from,
202 size_t len, size_t *retlen, u_char *buf);
203 int (*write_user_prot_reg) (struct mtd_info *mtd, loff_t to, size_t len,
204 size_t *retlen, u_char *buf);
205 int (*lock_user_prot_reg) (struct mtd_info *mtd, loff_t from,
206 size_t len);
207 int (*writev) (struct mtd_info *mtd, const struct kvec *vecs,
208 unsigned long count, loff_t to, size_t *retlen);
209 void (*sync) (struct mtd_info *mtd);
210 int (*lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
211 int (*unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
212 int (*is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
213 int (*block_isbad) (struct mtd_info *mtd, loff_t ofs);
214 int (*suspend) (struct mtd_info *mtd);
215 void (*resume) (struct mtd_info *mtd);
216
217 /* Backing device capabilities for this device
218 * - provides mmap capabilities
219 */
220 struct backing_dev_info *backing_dev_info;
221
222 /* Bad block management functions */
223 int (*block_markbad) (struct mtd_info *mtd, loff_t ofs);
224
225 struct notifier_block reboot_notifier; /* default mode before reboot */
226
227 /* ECC status information */
228 struct mtd_ecc_stats ecc_stats;
229 /* Subpage shift (NAND) */
230 int subpage_sft;
231
232 void *priv;
233
234 struct module *owner;
235 struct device dev;
236 int usecount;
237
238 /* If the driver is something smart, like UBI, it may need to maintain
239 * its own reference counting. The below functions are only for driver.
240 * The driver may register its callbacks. These callbacks are not
241 * supposed to be called by MTD users */
242 int (*get_device) (struct mtd_info *mtd);
243 void (*put_device) (struct mtd_info *mtd);
244 };
245
246 /*
247 * Erase is an asynchronous operation. Device drivers are supposed
248 * to call instr->callback() whenever the operation completes, even
249 * if it completes with a failure.
250 * Callers are supposed to pass a callback function and wait for it
251 * to be called before writing to the block.
252 */
253 static inline int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
254 {
255 return mtd->erase(mtd, instr);
256 }
257
258 /*
259 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
260 */
261 static inline int mtd_point(struct mtd_info *mtd, loff_t from, size_t len,
262 size_t *retlen, void **virt, resource_size_t *phys)
263 {
264 return mtd->point(mtd, from, len, retlen, virt, phys);
265 }
266
267 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
268 static inline void mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
269 {
270 return mtd->unpoint(mtd, from, len);
271 }
272
273 /*
274 * Allow NOMMU mmap() to directly map the device (if not NULL)
275 * - return the address to which the offset maps
276 * - return -ENOSYS to indicate refusal to do the mapping
277 */
278 static inline unsigned long mtd_get_unmapped_area(struct mtd_info *mtd,
279 unsigned long len,
280 unsigned long offset,
281 unsigned long flags)
282 {
283 return mtd->get_unmapped_area(mtd, len, offset, flags);
284 }
285
286 static inline int mtd_read(struct mtd_info *mtd, loff_t from, size_t len,
287 size_t *retlen, u_char *buf)
288 {
289 return mtd->read(mtd, from, len, retlen, buf);
290 }
291
292 static inline int mtd_write(struct mtd_info *mtd, loff_t to, size_t len,
293 size_t *retlen, const u_char *buf)
294 {
295 return mtd->write(mtd, to, len, retlen, buf);
296 }
297
298 /*
299 * In blackbox flight recorder like scenarios we want to make successful writes
300 * in interrupt context. panic_write() is only intended to be called when its
301 * known the kernel is about to panic and we need the write to succeed. Since
302 * the kernel is not going to be running for much longer, this function can
303 * break locks and delay to ensure the write succeeds (but not sleep).
304 */
305 static inline int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
306 size_t *retlen, const u_char *buf)
307 {
308 return mtd->panic_write(mtd, to, len, retlen, buf);
309 }
310
311 static inline int mtd_read_oob(struct mtd_info *mtd, loff_t from,
312 struct mtd_oob_ops *ops)
313 {
314 return mtd->read_oob(mtd, from, ops);
315 }
316
317 static inline int mtd_write_oob(struct mtd_info *mtd, loff_t to,
318 struct mtd_oob_ops *ops)
319 {
320 return mtd->write_oob(mtd, to, ops);
321 }
322
323 /*
324 * Method to access the protection register area, present in some flash
325 * devices. The user data is one time programmable but the factory data is read
326 * only.
327 */
328 static inline int mtd_get_fact_prot_info(struct mtd_info *mtd,
329 struct otp_info *buf, size_t len)
330 {
331 return mtd->get_fact_prot_info(mtd, buf, len);
332 }
333
334 static inline int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
335 size_t len, size_t *retlen,
336 u_char *buf)
337 {
338 return mtd->read_fact_prot_reg(mtd, from, len, retlen, buf);
339 }
340
341 static inline int mtd_get_user_prot_info(struct mtd_info *mtd,
342 struct otp_info *buf,
343 size_t len)
344 {
345 return mtd->get_user_prot_info(mtd, buf, len);
346 }
347
348 static inline int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
349 size_t len, size_t *retlen,
350 u_char *buf)
351 {
352 return mtd->read_user_prot_reg(mtd, from, len, retlen, buf);
353 }
354
355 static inline int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to,
356 size_t len, size_t *retlen,
357 u_char *buf)
358 {
359 return mtd->write_user_prot_reg(mtd, to, len, retlen, buf);
360 }
361
362 static inline int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
363 size_t len)
364 {
365 return mtd->lock_user_prot_reg(mtd, from, len);
366 }
367
368 /*
369 * kvec-based read/write method. NB: The 'count' parameter is the number of
370 * _vectors_, each of which contains an (ofs, len) tuple.
371 */
372 static inline int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
373 unsigned long count, loff_t to, size_t *retlen)
374 {
375 return mtd->writev(mtd, vecs, count, to, retlen);
376 }
377
378 static inline void mtd_sync(struct mtd_info *mtd)
379 {
380 mtd->sync(mtd);
381 }
382
383 /* Chip-supported device locking */
384 static inline int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
385 {
386 return mtd->lock(mtd, ofs, len);
387 }
388
389 static inline int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
390 {
391 return mtd->unlock(mtd, ofs, len);
392 }
393
394 static inline int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
395 {
396 return mtd->is_locked(mtd, ofs, len);
397 }
398
399 static inline int mtd_suspend(struct mtd_info *mtd)
400 {
401 return mtd->suspend(mtd);
402 }
403
404 static inline void mtd_resume(struct mtd_info *mtd)
405 {
406 mtd->resume(mtd);
407 }
408
409 static inline int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
410 {
411 return mtd->block_isbad(mtd, ofs);
412 }
413
414 static inline struct mtd_info *dev_to_mtd(struct device *dev)
415 {
416 return dev ? dev_get_drvdata(dev) : NULL;
417 }
418
419 static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd)
420 {
421 if (mtd->erasesize_shift)
422 return sz >> mtd->erasesize_shift;
423 do_div(sz, mtd->erasesize);
424 return sz;
425 }
426
427 static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd)
428 {
429 if (mtd->erasesize_shift)
430 return sz & mtd->erasesize_mask;
431 return do_div(sz, mtd->erasesize);
432 }
433
434 static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd)
435 {
436 if (mtd->writesize_shift)
437 return sz >> mtd->writesize_shift;
438 do_div(sz, mtd->writesize);
439 return sz;
440 }
441
442 static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd)
443 {
444 if (mtd->writesize_shift)
445 return sz & mtd->writesize_mask;
446 return do_div(sz, mtd->writesize);
447 }
448
449 /* Kernel-side ioctl definitions */
450
451 struct mtd_partition;
452 struct mtd_part_parser_data;
453
454 extern int mtd_device_parse_register(struct mtd_info *mtd,
455 const char **part_probe_types,
456 struct mtd_part_parser_data *parser_data,
457 const struct mtd_partition *defparts,
458 int defnr_parts);
459 #define mtd_device_register(master, parts, nr_parts) \
460 mtd_device_parse_register(master, NULL, NULL, parts, nr_parts)
461 extern int mtd_device_unregister(struct mtd_info *master);
462 extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num);
463 extern int __get_mtd_device(struct mtd_info *mtd);
464 extern void __put_mtd_device(struct mtd_info *mtd);
465 extern struct mtd_info *get_mtd_device_nm(const char *name);
466 extern void put_mtd_device(struct mtd_info *mtd);
467
468
469 struct mtd_notifier {
470 void (*add)(struct mtd_info *mtd);
471 void (*remove)(struct mtd_info *mtd);
472 struct list_head list;
473 };
474
475
476 extern void register_mtd_user (struct mtd_notifier *new);
477 extern int unregister_mtd_user (struct mtd_notifier *old);
478
479 int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
480 unsigned long count, loff_t to, size_t *retlen);
481
482 int default_mtd_readv(struct mtd_info *mtd, struct kvec *vecs,
483 unsigned long count, loff_t from, size_t *retlen);
484
485 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size);
486
487 void mtd_erase_callback(struct erase_info *instr);
488
489 static inline int mtd_is_bitflip(int err) {
490 return err == -EUCLEAN;
491 }
492
493 static inline int mtd_is_eccerr(int err) {
494 return err == -EBADMSG;
495 }
496
497 static inline int mtd_is_bitflip_or_eccerr(int err) {
498 return mtd_is_bitflip(err) || mtd_is_eccerr(err);
499 }
500
501 #endif /* __MTD_MTD_H__ */
This page took 0.067668 seconds and 5 git commands to generate.