364bcf212f715aeb2a16c2e8bd08df59377fd3c3
[deliverable/linux.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/if.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_link.h>
32
33 #ifdef __KERNEL__
34 #include <linux/pm_qos_params.h>
35 #include <linux/timer.h>
36 #include <linux/delay.h>
37 #include <linux/mm.h>
38 #include <asm/atomic.h>
39 #include <asm/cache.h>
40 #include <asm/byteorder.h>
41
42 #include <linux/device.h>
43 #include <linux/percpu.h>
44 #include <linux/rculist.h>
45 #include <linux/dmaengine.h>
46 #include <linux/workqueue.h>
47
48 #include <linux/ethtool.h>
49 #include <net/net_namespace.h>
50 #include <net/dsa.h>
51 #ifdef CONFIG_DCB
52 #include <net/dcbnl.h>
53 #endif
54
55 struct vlan_group;
56 struct netpoll_info;
57 struct phy_device;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* source back-compat hooks */
61 #define SET_ETHTOOL_OPS(netdev,ops) \
62 ( (netdev)->ethtool_ops = (ops) )
63
64 #define HAVE_ALLOC_NETDEV /* feature macro: alloc_xxxdev
65 functions are available. */
66 #define HAVE_FREE_NETDEV /* free_netdev() */
67 #define HAVE_NETDEV_PRIV /* netdev_priv() */
68
69 /* hardware address assignment types */
70 #define NET_ADDR_PERM 0 /* address is permanent (default) */
71 #define NET_ADDR_RANDOM 1 /* address is generated randomly */
72 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */
73
74 /* Backlog congestion levels */
75 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
76 #define NET_RX_DROP 1 /* packet dropped */
77
78 /*
79 * Transmit return codes: transmit return codes originate from three different
80 * namespaces:
81 *
82 * - qdisc return codes
83 * - driver transmit return codes
84 * - errno values
85 *
86 * Drivers are allowed to return any one of those in their hard_start_xmit()
87 * function. Real network devices commonly used with qdiscs should only return
88 * the driver transmit return codes though - when qdiscs are used, the actual
89 * transmission happens asynchronously, so the value is not propagated to
90 * higher layers. Virtual network devices transmit synchronously, in this case
91 * the driver transmit return codes are consumed by dev_queue_xmit(), all
92 * others are propagated to higher layers.
93 */
94
95 /* qdisc ->enqueue() return codes. */
96 #define NET_XMIT_SUCCESS 0x00
97 #define NET_XMIT_DROP 0x01 /* skb dropped */
98 #define NET_XMIT_CN 0x02 /* congestion notification */
99 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
100 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
101
102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
103 * indicates that the device will soon be dropping packets, or already drops
104 * some packets of the same priority; prompting us to send less aggressively. */
105 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
106 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
107
108 /* Driver transmit return codes */
109 #define NETDEV_TX_MASK 0xf0
110
111 enum netdev_tx {
112 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
113 NETDEV_TX_OK = 0x00, /* driver took care of packet */
114 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
115 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
116 };
117 typedef enum netdev_tx netdev_tx_t;
118
119 /*
120 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
121 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
122 */
123 static inline bool dev_xmit_complete(int rc)
124 {
125 /*
126 * Positive cases with an skb consumed by a driver:
127 * - successful transmission (rc == NETDEV_TX_OK)
128 * - error while transmitting (rc < 0)
129 * - error while queueing to a different device (rc & NET_XMIT_MASK)
130 */
131 if (likely(rc < NET_XMIT_MASK))
132 return true;
133
134 return false;
135 }
136
137 #endif
138
139 #define MAX_ADDR_LEN 32 /* Largest hardware address length */
140
141 /* Initial net device group. All devices belong to group 0 by default. */
142 #define INIT_NETDEV_GROUP 0
143
144 #ifdef __KERNEL__
145 /*
146 * Compute the worst case header length according to the protocols
147 * used.
148 */
149
150 #if defined(CONFIG_WLAN) || defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
151 # if defined(CONFIG_MAC80211_MESH)
152 # define LL_MAX_HEADER 128
153 # else
154 # define LL_MAX_HEADER 96
155 # endif
156 #elif defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
157 # define LL_MAX_HEADER 48
158 #else
159 # define LL_MAX_HEADER 32
160 #endif
161
162 #if !defined(CONFIG_NET_IPIP) && !defined(CONFIG_NET_IPIP_MODULE) && \
163 !defined(CONFIG_NET_IPGRE) && !defined(CONFIG_NET_IPGRE_MODULE) && \
164 !defined(CONFIG_IPV6_SIT) && !defined(CONFIG_IPV6_SIT_MODULE) && \
165 !defined(CONFIG_IPV6_TUNNEL) && !defined(CONFIG_IPV6_TUNNEL_MODULE)
166 #define MAX_HEADER LL_MAX_HEADER
167 #else
168 #define MAX_HEADER (LL_MAX_HEADER + 48)
169 #endif
170
171 /*
172 * Old network device statistics. Fields are native words
173 * (unsigned long) so they can be read and written atomically.
174 */
175
176 struct net_device_stats {
177 unsigned long rx_packets;
178 unsigned long tx_packets;
179 unsigned long rx_bytes;
180 unsigned long tx_bytes;
181 unsigned long rx_errors;
182 unsigned long tx_errors;
183 unsigned long rx_dropped;
184 unsigned long tx_dropped;
185 unsigned long multicast;
186 unsigned long collisions;
187 unsigned long rx_length_errors;
188 unsigned long rx_over_errors;
189 unsigned long rx_crc_errors;
190 unsigned long rx_frame_errors;
191 unsigned long rx_fifo_errors;
192 unsigned long rx_missed_errors;
193 unsigned long tx_aborted_errors;
194 unsigned long tx_carrier_errors;
195 unsigned long tx_fifo_errors;
196 unsigned long tx_heartbeat_errors;
197 unsigned long tx_window_errors;
198 unsigned long rx_compressed;
199 unsigned long tx_compressed;
200 };
201
202 #endif /* __KERNEL__ */
203
204
205 /* Media selection options. */
206 enum {
207 IF_PORT_UNKNOWN = 0,
208 IF_PORT_10BASE2,
209 IF_PORT_10BASET,
210 IF_PORT_AUI,
211 IF_PORT_100BASET,
212 IF_PORT_100BASETX,
213 IF_PORT_100BASEFX
214 };
215
216 #ifdef __KERNEL__
217
218 #include <linux/cache.h>
219 #include <linux/skbuff.h>
220
221 struct neighbour;
222 struct neigh_parms;
223 struct sk_buff;
224
225 struct netdev_hw_addr {
226 struct list_head list;
227 unsigned char addr[MAX_ADDR_LEN];
228 unsigned char type;
229 #define NETDEV_HW_ADDR_T_LAN 1
230 #define NETDEV_HW_ADDR_T_SAN 2
231 #define NETDEV_HW_ADDR_T_SLAVE 3
232 #define NETDEV_HW_ADDR_T_UNICAST 4
233 #define NETDEV_HW_ADDR_T_MULTICAST 5
234 bool synced;
235 bool global_use;
236 int refcount;
237 struct rcu_head rcu_head;
238 };
239
240 struct netdev_hw_addr_list {
241 struct list_head list;
242 int count;
243 };
244
245 #define netdev_hw_addr_list_count(l) ((l)->count)
246 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
247 #define netdev_hw_addr_list_for_each(ha, l) \
248 list_for_each_entry(ha, &(l)->list, list)
249
250 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
251 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
252 #define netdev_for_each_uc_addr(ha, dev) \
253 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
254
255 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
256 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
257 #define netdev_for_each_mc_addr(ha, dev) \
258 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
259
260 struct hh_cache {
261 struct hh_cache *hh_next; /* Next entry */
262 atomic_t hh_refcnt; /* number of users */
263 /*
264 * We want hh_output, hh_len, hh_lock and hh_data be a in a separate
265 * cache line on SMP.
266 * They are mostly read, but hh_refcnt may be changed quite frequently,
267 * incurring cache line ping pongs.
268 */
269 __be16 hh_type ____cacheline_aligned_in_smp;
270 /* protocol identifier, f.e ETH_P_IP
271 * NOTE: For VLANs, this will be the
272 * encapuslated type. --BLG
273 */
274 u16 hh_len; /* length of header */
275 int (*hh_output)(struct sk_buff *skb);
276 seqlock_t hh_lock;
277
278 /* cached hardware header; allow for machine alignment needs. */
279 #define HH_DATA_MOD 16
280 #define HH_DATA_OFF(__len) \
281 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
282 #define HH_DATA_ALIGN(__len) \
283 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
284 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
285 };
286
287 static inline void hh_cache_put(struct hh_cache *hh)
288 {
289 if (atomic_dec_and_test(&hh->hh_refcnt))
290 kfree(hh);
291 }
292
293 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
294 * Alternative is:
295 * dev->hard_header_len ? (dev->hard_header_len +
296 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
297 *
298 * We could use other alignment values, but we must maintain the
299 * relationship HH alignment <= LL alignment.
300 *
301 * LL_ALLOCATED_SPACE also takes into account the tailroom the device
302 * may need.
303 */
304 #define LL_RESERVED_SPACE(dev) \
305 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
306 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
307 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
308 #define LL_ALLOCATED_SPACE(dev) \
309 ((((dev)->hard_header_len+(dev)->needed_headroom+(dev)->needed_tailroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
310
311 struct header_ops {
312 int (*create) (struct sk_buff *skb, struct net_device *dev,
313 unsigned short type, const void *daddr,
314 const void *saddr, unsigned len);
315 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
316 int (*rebuild)(struct sk_buff *skb);
317 #define HAVE_HEADER_CACHE
318 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh);
319 void (*cache_update)(struct hh_cache *hh,
320 const struct net_device *dev,
321 const unsigned char *haddr);
322 };
323
324 /* These flag bits are private to the generic network queueing
325 * layer, they may not be explicitly referenced by any other
326 * code.
327 */
328
329 enum netdev_state_t {
330 __LINK_STATE_START,
331 __LINK_STATE_PRESENT,
332 __LINK_STATE_NOCARRIER,
333 __LINK_STATE_LINKWATCH_PENDING,
334 __LINK_STATE_DORMANT,
335 };
336
337
338 /*
339 * This structure holds at boot time configured netdevice settings. They
340 * are then used in the device probing.
341 */
342 struct netdev_boot_setup {
343 char name[IFNAMSIZ];
344 struct ifmap map;
345 };
346 #define NETDEV_BOOT_SETUP_MAX 8
347
348 extern int __init netdev_boot_setup(char *str);
349
350 /*
351 * Structure for NAPI scheduling similar to tasklet but with weighting
352 */
353 struct napi_struct {
354 /* The poll_list must only be managed by the entity which
355 * changes the state of the NAPI_STATE_SCHED bit. This means
356 * whoever atomically sets that bit can add this napi_struct
357 * to the per-cpu poll_list, and whoever clears that bit
358 * can remove from the list right before clearing the bit.
359 */
360 struct list_head poll_list;
361
362 unsigned long state;
363 int weight;
364 int (*poll)(struct napi_struct *, int);
365 #ifdef CONFIG_NETPOLL
366 spinlock_t poll_lock;
367 int poll_owner;
368 #endif
369
370 unsigned int gro_count;
371
372 struct net_device *dev;
373 struct list_head dev_list;
374 struct sk_buff *gro_list;
375 struct sk_buff *skb;
376 };
377
378 enum {
379 NAPI_STATE_SCHED, /* Poll is scheduled */
380 NAPI_STATE_DISABLE, /* Disable pending */
381 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
382 };
383
384 enum gro_result {
385 GRO_MERGED,
386 GRO_MERGED_FREE,
387 GRO_HELD,
388 GRO_NORMAL,
389 GRO_DROP,
390 };
391 typedef enum gro_result gro_result_t;
392
393 /*
394 * enum rx_handler_result - Possible return values for rx_handlers.
395 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
396 * further.
397 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
398 * case skb->dev was changed by rx_handler.
399 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
400 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
401 *
402 * rx_handlers are functions called from inside __netif_receive_skb(), to do
403 * special processing of the skb, prior to delivery to protocol handlers.
404 *
405 * Currently, a net_device can only have a single rx_handler registered. Trying
406 * to register a second rx_handler will return -EBUSY.
407 *
408 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
409 * To unregister a rx_handler on a net_device, use
410 * netdev_rx_handler_unregister().
411 *
412 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
413 * do with the skb.
414 *
415 * If the rx_handler consumed to skb in some way, it should return
416 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
417 * the skb to be delivered in some other ways.
418 *
419 * If the rx_handler changed skb->dev, to divert the skb to another
420 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
421 * new device will be called if it exists.
422 *
423 * If the rx_handler consider the skb should be ignored, it should return
424 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
425 * are registred on exact device (ptype->dev == skb->dev).
426 *
427 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
428 * delivered, it should return RX_HANDLER_PASS.
429 *
430 * A device without a registered rx_handler will behave as if rx_handler
431 * returned RX_HANDLER_PASS.
432 */
433
434 enum rx_handler_result {
435 RX_HANDLER_CONSUMED,
436 RX_HANDLER_ANOTHER,
437 RX_HANDLER_EXACT,
438 RX_HANDLER_PASS,
439 };
440 typedef enum rx_handler_result rx_handler_result_t;
441 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
442
443 extern void __napi_schedule(struct napi_struct *n);
444
445 static inline int napi_disable_pending(struct napi_struct *n)
446 {
447 return test_bit(NAPI_STATE_DISABLE, &n->state);
448 }
449
450 /**
451 * napi_schedule_prep - check if napi can be scheduled
452 * @n: napi context
453 *
454 * Test if NAPI routine is already running, and if not mark
455 * it as running. This is used as a condition variable
456 * insure only one NAPI poll instance runs. We also make
457 * sure there is no pending NAPI disable.
458 */
459 static inline int napi_schedule_prep(struct napi_struct *n)
460 {
461 return !napi_disable_pending(n) &&
462 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
463 }
464
465 /**
466 * napi_schedule - schedule NAPI poll
467 * @n: napi context
468 *
469 * Schedule NAPI poll routine to be called if it is not already
470 * running.
471 */
472 static inline void napi_schedule(struct napi_struct *n)
473 {
474 if (napi_schedule_prep(n))
475 __napi_schedule(n);
476 }
477
478 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
479 static inline int napi_reschedule(struct napi_struct *napi)
480 {
481 if (napi_schedule_prep(napi)) {
482 __napi_schedule(napi);
483 return 1;
484 }
485 return 0;
486 }
487
488 /**
489 * napi_complete - NAPI processing complete
490 * @n: napi context
491 *
492 * Mark NAPI processing as complete.
493 */
494 extern void __napi_complete(struct napi_struct *n);
495 extern void napi_complete(struct napi_struct *n);
496
497 /**
498 * napi_disable - prevent NAPI from scheduling
499 * @n: napi context
500 *
501 * Stop NAPI from being scheduled on this context.
502 * Waits till any outstanding processing completes.
503 */
504 static inline void napi_disable(struct napi_struct *n)
505 {
506 set_bit(NAPI_STATE_DISABLE, &n->state);
507 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
508 msleep(1);
509 clear_bit(NAPI_STATE_DISABLE, &n->state);
510 }
511
512 /**
513 * napi_enable - enable NAPI scheduling
514 * @n: napi context
515 *
516 * Resume NAPI from being scheduled on this context.
517 * Must be paired with napi_disable.
518 */
519 static inline void napi_enable(struct napi_struct *n)
520 {
521 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
522 smp_mb__before_clear_bit();
523 clear_bit(NAPI_STATE_SCHED, &n->state);
524 }
525
526 #ifdef CONFIG_SMP
527 /**
528 * napi_synchronize - wait until NAPI is not running
529 * @n: napi context
530 *
531 * Wait until NAPI is done being scheduled on this context.
532 * Waits till any outstanding processing completes but
533 * does not disable future activations.
534 */
535 static inline void napi_synchronize(const struct napi_struct *n)
536 {
537 while (test_bit(NAPI_STATE_SCHED, &n->state))
538 msleep(1);
539 }
540 #else
541 # define napi_synchronize(n) barrier()
542 #endif
543
544 enum netdev_queue_state_t {
545 __QUEUE_STATE_XOFF,
546 __QUEUE_STATE_FROZEN,
547 #define QUEUE_STATE_XOFF_OR_FROZEN ((1 << __QUEUE_STATE_XOFF) | \
548 (1 << __QUEUE_STATE_FROZEN))
549 };
550
551 struct netdev_queue {
552 /*
553 * read mostly part
554 */
555 struct net_device *dev;
556 struct Qdisc *qdisc;
557 unsigned long state;
558 struct Qdisc *qdisc_sleeping;
559 #ifdef CONFIG_RPS
560 struct kobject kobj;
561 #endif
562 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
563 int numa_node;
564 #endif
565 /*
566 * write mostly part
567 */
568 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
569 int xmit_lock_owner;
570 /*
571 * please use this field instead of dev->trans_start
572 */
573 unsigned long trans_start;
574 } ____cacheline_aligned_in_smp;
575
576 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
577 {
578 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
579 return q->numa_node;
580 #else
581 return NUMA_NO_NODE;
582 #endif
583 }
584
585 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
586 {
587 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
588 q->numa_node = node;
589 #endif
590 }
591
592 #ifdef CONFIG_RPS
593 /*
594 * This structure holds an RPS map which can be of variable length. The
595 * map is an array of CPUs.
596 */
597 struct rps_map {
598 unsigned int len;
599 struct rcu_head rcu;
600 u16 cpus[0];
601 };
602 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + (_num * sizeof(u16)))
603
604 /*
605 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
606 * tail pointer for that CPU's input queue at the time of last enqueue, and
607 * a hardware filter index.
608 */
609 struct rps_dev_flow {
610 u16 cpu;
611 u16 filter;
612 unsigned int last_qtail;
613 };
614 #define RPS_NO_FILTER 0xffff
615
616 /*
617 * The rps_dev_flow_table structure contains a table of flow mappings.
618 */
619 struct rps_dev_flow_table {
620 unsigned int mask;
621 struct rcu_head rcu;
622 struct work_struct free_work;
623 struct rps_dev_flow flows[0];
624 };
625 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
626 (_num * sizeof(struct rps_dev_flow)))
627
628 /*
629 * The rps_sock_flow_table contains mappings of flows to the last CPU
630 * on which they were processed by the application (set in recvmsg).
631 */
632 struct rps_sock_flow_table {
633 unsigned int mask;
634 u16 ents[0];
635 };
636 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
637 (_num * sizeof(u16)))
638
639 #define RPS_NO_CPU 0xffff
640
641 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
642 u32 hash)
643 {
644 if (table && hash) {
645 unsigned int cpu, index = hash & table->mask;
646
647 /* We only give a hint, preemption can change cpu under us */
648 cpu = raw_smp_processor_id();
649
650 if (table->ents[index] != cpu)
651 table->ents[index] = cpu;
652 }
653 }
654
655 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
656 u32 hash)
657 {
658 if (table && hash)
659 table->ents[hash & table->mask] = RPS_NO_CPU;
660 }
661
662 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
663
664 #ifdef CONFIG_RFS_ACCEL
665 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
666 u32 flow_id, u16 filter_id);
667 #endif
668
669 /* This structure contains an instance of an RX queue. */
670 struct netdev_rx_queue {
671 struct rps_map __rcu *rps_map;
672 struct rps_dev_flow_table __rcu *rps_flow_table;
673 struct kobject kobj;
674 struct net_device *dev;
675 } ____cacheline_aligned_in_smp;
676 #endif /* CONFIG_RPS */
677
678 #ifdef CONFIG_XPS
679 /*
680 * This structure holds an XPS map which can be of variable length. The
681 * map is an array of queues.
682 */
683 struct xps_map {
684 unsigned int len;
685 unsigned int alloc_len;
686 struct rcu_head rcu;
687 u16 queues[0];
688 };
689 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + (_num * sizeof(u16)))
690 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
691 / sizeof(u16))
692
693 /*
694 * This structure holds all XPS maps for device. Maps are indexed by CPU.
695 */
696 struct xps_dev_maps {
697 struct rcu_head rcu;
698 struct xps_map __rcu *cpu_map[0];
699 };
700 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
701 (nr_cpu_ids * sizeof(struct xps_map *)))
702 #endif /* CONFIG_XPS */
703
704 #define TC_MAX_QUEUE 16
705 #define TC_BITMASK 15
706 /* HW offloaded queuing disciplines txq count and offset maps */
707 struct netdev_tc_txq {
708 u16 count;
709 u16 offset;
710 };
711
712 /*
713 * This structure defines the management hooks for network devices.
714 * The following hooks can be defined; unless noted otherwise, they are
715 * optional and can be filled with a null pointer.
716 *
717 * int (*ndo_init)(struct net_device *dev);
718 * This function is called once when network device is registered.
719 * The network device can use this to any late stage initializaton
720 * or semantic validattion. It can fail with an error code which will
721 * be propogated back to register_netdev
722 *
723 * void (*ndo_uninit)(struct net_device *dev);
724 * This function is called when device is unregistered or when registration
725 * fails. It is not called if init fails.
726 *
727 * int (*ndo_open)(struct net_device *dev);
728 * This function is called when network device transistions to the up
729 * state.
730 *
731 * int (*ndo_stop)(struct net_device *dev);
732 * This function is called when network device transistions to the down
733 * state.
734 *
735 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
736 * struct net_device *dev);
737 * Called when a packet needs to be transmitted.
738 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
739 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
740 * Required can not be NULL.
741 *
742 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
743 * Called to decide which queue to when device supports multiple
744 * transmit queues.
745 *
746 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
747 * This function is called to allow device receiver to make
748 * changes to configuration when multicast or promiscious is enabled.
749 *
750 * void (*ndo_set_rx_mode)(struct net_device *dev);
751 * This function is called device changes address list filtering.
752 *
753 * void (*ndo_set_multicast_list)(struct net_device *dev);
754 * This function is called when the multicast address list changes.
755 *
756 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
757 * This function is called when the Media Access Control address
758 * needs to be changed. If this interface is not defined, the
759 * mac address can not be changed.
760 *
761 * int (*ndo_validate_addr)(struct net_device *dev);
762 * Test if Media Access Control address is valid for the device.
763 *
764 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
765 * Called when a user request an ioctl which can't be handled by
766 * the generic interface code. If not defined ioctl's return
767 * not supported error code.
768 *
769 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
770 * Used to set network devices bus interface parameters. This interface
771 * is retained for legacy reason, new devices should use the bus
772 * interface (PCI) for low level management.
773 *
774 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
775 * Called when a user wants to change the Maximum Transfer Unit
776 * of a device. If not defined, any request to change MTU will
777 * will return an error.
778 *
779 * void (*ndo_tx_timeout)(struct net_device *dev);
780 * Callback uses when the transmitter has not made any progress
781 * for dev->watchdog ticks.
782 *
783 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
784 * struct rtnl_link_stats64 *storage);
785 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
786 * Called when a user wants to get the network device usage
787 * statistics. Drivers must do one of the following:
788 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
789 * rtnl_link_stats64 structure passed by the caller.
790 * 2. Define @ndo_get_stats to update a net_device_stats structure
791 * (which should normally be dev->stats) and return a pointer to
792 * it. The structure may be changed asynchronously only if each
793 * field is written atomically.
794 * 3. Update dev->stats asynchronously and atomically, and define
795 * neither operation.
796 *
797 * void (*ndo_vlan_rx_register)(struct net_device *dev, struct vlan_group *grp);
798 * If device support VLAN receive acceleration
799 * (ie. dev->features & NETIF_F_HW_VLAN_RX), then this function is called
800 * when vlan groups for the device changes. Note: grp is NULL
801 * if no vlan's groups are being used.
802 *
803 * void (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
804 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
805 * this function is called when a VLAN id is registered.
806 *
807 * void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
808 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
809 * this function is called when a VLAN id is unregistered.
810 *
811 * void (*ndo_poll_controller)(struct net_device *dev);
812 *
813 * SR-IOV management functions.
814 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
815 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
816 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
817 * int (*ndo_get_vf_config)(struct net_device *dev,
818 * int vf, struct ifla_vf_info *ivf);
819 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
820 * struct nlattr *port[]);
821 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
822 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
823 * Called to setup 'tc' number of traffic classes in the net device. This
824 * is always called from the stack with the rtnl lock held and netif tx
825 * queues stopped. This allows the netdevice to perform queue management
826 * safely.
827 *
828 * Fiber Channel over Ethernet (FCoE) offload functions.
829 * int (*ndo_fcoe_enable)(struct net_device *dev);
830 * Called when the FCoE protocol stack wants to start using LLD for FCoE
831 * so the underlying device can perform whatever needed configuration or
832 * initialization to support acceleration of FCoE traffic.
833 *
834 * int (*ndo_fcoe_disable)(struct net_device *dev);
835 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
836 * so the underlying device can perform whatever needed clean-ups to
837 * stop supporting acceleration of FCoE traffic.
838 *
839 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
840 * struct scatterlist *sgl, unsigned int sgc);
841 * Called when the FCoE Initiator wants to initialize an I/O that
842 * is a possible candidate for Direct Data Placement (DDP). The LLD can
843 * perform necessary setup and returns 1 to indicate the device is set up
844 * successfully to perform DDP on this I/O, otherwise this returns 0.
845 *
846 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
847 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
848 * indicated by the FC exchange id 'xid', so the underlying device can
849 * clean up and reuse resources for later DDP requests.
850 *
851 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
852 * struct scatterlist *sgl, unsigned int sgc);
853 * Called when the FCoE Target wants to initialize an I/O that
854 * is a possible candidate for Direct Data Placement (DDP). The LLD can
855 * perform necessary setup and returns 1 to indicate the device is set up
856 * successfully to perform DDP on this I/O, otherwise this returns 0.
857 *
858 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
859 * Called when the underlying device wants to override default World Wide
860 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
861 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
862 * protocol stack to use.
863 *
864 * RFS acceleration.
865 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
866 * u16 rxq_index, u32 flow_id);
867 * Set hardware filter for RFS. rxq_index is the target queue index;
868 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
869 * Return the filter ID on success, or a negative error code.
870 *
871 * Slave management functions (for bridge, bonding, etc). User should
872 * call netdev_set_master() to set dev->master properly.
873 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
874 * Called to make another netdev an underling.
875 *
876 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
877 * Called to release previously enslaved netdev.
878 *
879 * Feature/offload setting functions.
880 * u32 (*ndo_fix_features)(struct net_device *dev, u32 features);
881 * Adjusts the requested feature flags according to device-specific
882 * constraints, and returns the resulting flags. Must not modify
883 * the device state.
884 *
885 * int (*ndo_set_features)(struct net_device *dev, u32 features);
886 * Called to update device configuration to new features. Passed
887 * feature set might be less than what was returned by ndo_fix_features()).
888 * Must return >0 or -errno if it changed dev->features itself.
889 *
890 */
891 #define HAVE_NET_DEVICE_OPS
892 struct net_device_ops {
893 int (*ndo_init)(struct net_device *dev);
894 void (*ndo_uninit)(struct net_device *dev);
895 int (*ndo_open)(struct net_device *dev);
896 int (*ndo_stop)(struct net_device *dev);
897 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
898 struct net_device *dev);
899 u16 (*ndo_select_queue)(struct net_device *dev,
900 struct sk_buff *skb);
901 void (*ndo_change_rx_flags)(struct net_device *dev,
902 int flags);
903 void (*ndo_set_rx_mode)(struct net_device *dev);
904 void (*ndo_set_multicast_list)(struct net_device *dev);
905 int (*ndo_set_mac_address)(struct net_device *dev,
906 void *addr);
907 int (*ndo_validate_addr)(struct net_device *dev);
908 int (*ndo_do_ioctl)(struct net_device *dev,
909 struct ifreq *ifr, int cmd);
910 int (*ndo_set_config)(struct net_device *dev,
911 struct ifmap *map);
912 int (*ndo_change_mtu)(struct net_device *dev,
913 int new_mtu);
914 int (*ndo_neigh_setup)(struct net_device *dev,
915 struct neigh_parms *);
916 void (*ndo_tx_timeout) (struct net_device *dev);
917
918 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
919 struct rtnl_link_stats64 *storage);
920 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
921
922 void (*ndo_vlan_rx_register)(struct net_device *dev,
923 struct vlan_group *grp);
924 void (*ndo_vlan_rx_add_vid)(struct net_device *dev,
925 unsigned short vid);
926 void (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
927 unsigned short vid);
928 #ifdef CONFIG_NET_POLL_CONTROLLER
929 void (*ndo_poll_controller)(struct net_device *dev);
930 int (*ndo_netpoll_setup)(struct net_device *dev,
931 struct netpoll_info *info);
932 void (*ndo_netpoll_cleanup)(struct net_device *dev);
933 #endif
934 int (*ndo_set_vf_mac)(struct net_device *dev,
935 int queue, u8 *mac);
936 int (*ndo_set_vf_vlan)(struct net_device *dev,
937 int queue, u16 vlan, u8 qos);
938 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
939 int vf, int rate);
940 int (*ndo_get_vf_config)(struct net_device *dev,
941 int vf,
942 struct ifla_vf_info *ivf);
943 int (*ndo_set_vf_port)(struct net_device *dev,
944 int vf,
945 struct nlattr *port[]);
946 int (*ndo_get_vf_port)(struct net_device *dev,
947 int vf, struct sk_buff *skb);
948 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
949 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
950 int (*ndo_fcoe_enable)(struct net_device *dev);
951 int (*ndo_fcoe_disable)(struct net_device *dev);
952 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
953 u16 xid,
954 struct scatterlist *sgl,
955 unsigned int sgc);
956 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
957 u16 xid);
958 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
959 u16 xid,
960 struct scatterlist *sgl,
961 unsigned int sgc);
962 #define NETDEV_FCOE_WWNN 0
963 #define NETDEV_FCOE_WWPN 1
964 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
965 u64 *wwn, int type);
966 #endif
967 #ifdef CONFIG_RFS_ACCEL
968 int (*ndo_rx_flow_steer)(struct net_device *dev,
969 const struct sk_buff *skb,
970 u16 rxq_index,
971 u32 flow_id);
972 #endif
973 int (*ndo_add_slave)(struct net_device *dev,
974 struct net_device *slave_dev);
975 int (*ndo_del_slave)(struct net_device *dev,
976 struct net_device *slave_dev);
977 u32 (*ndo_fix_features)(struct net_device *dev,
978 u32 features);
979 int (*ndo_set_features)(struct net_device *dev,
980 u32 features);
981 };
982
983 /*
984 * The DEVICE structure.
985 * Actually, this whole structure is a big mistake. It mixes I/O
986 * data with strictly "high-level" data, and it has to know about
987 * almost every data structure used in the INET module.
988 *
989 * FIXME: cleanup struct net_device such that network protocol info
990 * moves out.
991 */
992
993 struct net_device {
994
995 /*
996 * This is the first field of the "visible" part of this structure
997 * (i.e. as seen by users in the "Space.c" file). It is the name
998 * of the interface.
999 */
1000 char name[IFNAMSIZ];
1001
1002 struct pm_qos_request_list pm_qos_req;
1003
1004 /* device name hash chain */
1005 struct hlist_node name_hlist;
1006 /* snmp alias */
1007 char *ifalias;
1008
1009 /*
1010 * I/O specific fields
1011 * FIXME: Merge these and struct ifmap into one
1012 */
1013 unsigned long mem_end; /* shared mem end */
1014 unsigned long mem_start; /* shared mem start */
1015 unsigned long base_addr; /* device I/O address */
1016 unsigned int irq; /* device IRQ number */
1017
1018 /*
1019 * Some hardware also needs these fields, but they are not
1020 * part of the usual set specified in Space.c.
1021 */
1022
1023 unsigned char if_port; /* Selectable AUI, TP,..*/
1024 unsigned char dma; /* DMA channel */
1025
1026 unsigned long state;
1027
1028 struct list_head dev_list;
1029 struct list_head napi_list;
1030 struct list_head unreg_list;
1031
1032 /* currently active device features */
1033 u32 features;
1034 /* user-changeable features */
1035 u32 hw_features;
1036 /* user-requested features */
1037 u32 wanted_features;
1038 /* mask of features inheritable by VLAN devices */
1039 u32 vlan_features;
1040
1041 /* Net device feature bits; if you change something,
1042 * also update netdev_features_strings[] in ethtool.c */
1043
1044 #define NETIF_F_SG 1 /* Scatter/gather IO. */
1045 #define NETIF_F_IP_CSUM 2 /* Can checksum TCP/UDP over IPv4. */
1046 #define NETIF_F_NO_CSUM 4 /* Does not require checksum. F.e. loopack. */
1047 #define NETIF_F_HW_CSUM 8 /* Can checksum all the packets. */
1048 #define NETIF_F_IPV6_CSUM 16 /* Can checksum TCP/UDP over IPV6 */
1049 #define NETIF_F_HIGHDMA 32 /* Can DMA to high memory. */
1050 #define NETIF_F_FRAGLIST 64 /* Scatter/gather IO. */
1051 #define NETIF_F_HW_VLAN_TX 128 /* Transmit VLAN hw acceleration */
1052 #define NETIF_F_HW_VLAN_RX 256 /* Receive VLAN hw acceleration */
1053 #define NETIF_F_HW_VLAN_FILTER 512 /* Receive filtering on VLAN */
1054 #define NETIF_F_VLAN_CHALLENGED 1024 /* Device cannot handle VLAN packets */
1055 #define NETIF_F_GSO 2048 /* Enable software GSO. */
1056 #define NETIF_F_LLTX 4096 /* LockLess TX - deprecated. Please */
1057 /* do not use LLTX in new drivers */
1058 #define NETIF_F_NETNS_LOCAL 8192 /* Does not change network namespaces */
1059 #define NETIF_F_GRO 16384 /* Generic receive offload */
1060 #define NETIF_F_LRO 32768 /* large receive offload */
1061
1062 /* the GSO_MASK reserves bits 16 through 23 */
1063 #define NETIF_F_FCOE_CRC (1 << 24) /* FCoE CRC32 */
1064 #define NETIF_F_SCTP_CSUM (1 << 25) /* SCTP checksum offload */
1065 #define NETIF_F_FCOE_MTU (1 << 26) /* Supports max FCoE MTU, 2158 bytes*/
1066 #define NETIF_F_NTUPLE (1 << 27) /* N-tuple filters supported */
1067 #define NETIF_F_RXHASH (1 << 28) /* Receive hashing offload */
1068 #define NETIF_F_RXCSUM (1 << 29) /* Receive checksumming offload */
1069 #define NETIF_F_NOCACHE_COPY (1 << 30) /* Use no-cache copyfromuser */
1070
1071 /* Segmentation offload features */
1072 #define NETIF_F_GSO_SHIFT 16
1073 #define NETIF_F_GSO_MASK 0x00ff0000
1074 #define NETIF_F_TSO (SKB_GSO_TCPV4 << NETIF_F_GSO_SHIFT)
1075 #define NETIF_F_UFO (SKB_GSO_UDP << NETIF_F_GSO_SHIFT)
1076 #define NETIF_F_GSO_ROBUST (SKB_GSO_DODGY << NETIF_F_GSO_SHIFT)
1077 #define NETIF_F_TSO_ECN (SKB_GSO_TCP_ECN << NETIF_F_GSO_SHIFT)
1078 #define NETIF_F_TSO6 (SKB_GSO_TCPV6 << NETIF_F_GSO_SHIFT)
1079 #define NETIF_F_FSO (SKB_GSO_FCOE << NETIF_F_GSO_SHIFT)
1080
1081 /* Features valid for ethtool to change */
1082 /* = all defined minus driver/device-class-related */
1083 #define NETIF_F_NEVER_CHANGE (NETIF_F_HIGHDMA | NETIF_F_VLAN_CHALLENGED | \
1084 NETIF_F_LLTX | NETIF_F_NETNS_LOCAL)
1085 #define NETIF_F_ETHTOOL_BITS (0x7f3fffff & ~NETIF_F_NEVER_CHANGE)
1086
1087 /* List of features with software fallbacks. */
1088 #define NETIF_F_GSO_SOFTWARE (NETIF_F_TSO | NETIF_F_TSO_ECN | \
1089 NETIF_F_TSO6 | NETIF_F_UFO)
1090
1091
1092 #define NETIF_F_GEN_CSUM (NETIF_F_NO_CSUM | NETIF_F_HW_CSUM)
1093 #define NETIF_F_V4_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IP_CSUM)
1094 #define NETIF_F_V6_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IPV6_CSUM)
1095 #define NETIF_F_ALL_CSUM (NETIF_F_V4_CSUM | NETIF_F_V6_CSUM)
1096
1097 #define NETIF_F_ALL_TSO (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1098
1099 #define NETIF_F_ALL_TX_OFFLOADS (NETIF_F_ALL_CSUM | NETIF_F_SG | \
1100 NETIF_F_FRAGLIST | NETIF_F_ALL_TSO | \
1101 NETIF_F_SCTP_CSUM | NETIF_F_FCOE_CRC)
1102
1103 /*
1104 * If one device supports one of these features, then enable them
1105 * for all in netdev_increment_features.
1106 */
1107 #define NETIF_F_ONE_FOR_ALL (NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ROBUST | \
1108 NETIF_F_SG | NETIF_F_HIGHDMA | \
1109 NETIF_F_FRAGLIST)
1110
1111 /* changeable features with no special hardware requirements */
1112 #define NETIF_F_SOFT_FEATURES (NETIF_F_GSO | NETIF_F_GRO)
1113
1114 /* Interface index. Unique device identifier */
1115 int ifindex;
1116 int iflink;
1117
1118 struct net_device_stats stats;
1119 atomic_long_t rx_dropped; /* dropped packets by core network
1120 * Do not use this in drivers.
1121 */
1122
1123 #ifdef CONFIG_WIRELESS_EXT
1124 /* List of functions to handle Wireless Extensions (instead of ioctl).
1125 * See <net/iw_handler.h> for details. Jean II */
1126 const struct iw_handler_def * wireless_handlers;
1127 /* Instance data managed by the core of Wireless Extensions. */
1128 struct iw_public_data * wireless_data;
1129 #endif
1130 /* Management operations */
1131 const struct net_device_ops *netdev_ops;
1132 const struct ethtool_ops *ethtool_ops;
1133
1134 /* Hardware header description */
1135 const struct header_ops *header_ops;
1136
1137 unsigned int flags; /* interface flags (a la BSD) */
1138 unsigned short gflags;
1139 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. */
1140 unsigned short padded; /* How much padding added by alloc_netdev() */
1141
1142 unsigned char operstate; /* RFC2863 operstate */
1143 unsigned char link_mode; /* mapping policy to operstate */
1144
1145 unsigned int mtu; /* interface MTU value */
1146 unsigned short type; /* interface hardware type */
1147 unsigned short hard_header_len; /* hardware hdr length */
1148
1149 /* extra head- and tailroom the hardware may need, but not in all cases
1150 * can this be guaranteed, especially tailroom. Some cases also use
1151 * LL_MAX_HEADER instead to allocate the skb.
1152 */
1153 unsigned short needed_headroom;
1154 unsigned short needed_tailroom;
1155
1156 /* Interface address info. */
1157 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1158 unsigned char addr_assign_type; /* hw address assignment type */
1159 unsigned char addr_len; /* hardware address length */
1160 unsigned short dev_id; /* for shared network cards */
1161
1162 spinlock_t addr_list_lock;
1163 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
1164 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
1165 int uc_promisc;
1166 unsigned int promiscuity;
1167 unsigned int allmulti;
1168
1169
1170 /* Protocol specific pointers */
1171
1172 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1173 struct vlan_group __rcu *vlgrp; /* VLAN group */
1174 #endif
1175 #ifdef CONFIG_NET_DSA
1176 void *dsa_ptr; /* dsa specific data */
1177 #endif
1178 void *atalk_ptr; /* AppleTalk link */
1179 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1180 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1181 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1182 void *ec_ptr; /* Econet specific data */
1183 void *ax25_ptr; /* AX.25 specific data */
1184 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1185 assign before registering */
1186
1187 /*
1188 * Cache lines mostly used on receive path (including eth_type_trans())
1189 */
1190 unsigned long last_rx; /* Time of last Rx
1191 * This should not be set in
1192 * drivers, unless really needed,
1193 * because network stack (bonding)
1194 * use it if/when necessary, to
1195 * avoid dirtying this cache line.
1196 */
1197
1198 struct net_device *master; /* Pointer to master device of a group,
1199 * which this device is member of.
1200 */
1201
1202 /* Interface address info used in eth_type_trans() */
1203 unsigned char *dev_addr; /* hw address, (before bcast
1204 because most packets are
1205 unicast) */
1206
1207 struct netdev_hw_addr_list dev_addrs; /* list of device
1208 hw addresses */
1209
1210 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1211
1212 #ifdef CONFIG_RPS
1213 struct kset *queues_kset;
1214
1215 struct netdev_rx_queue *_rx;
1216
1217 /* Number of RX queues allocated at register_netdev() time */
1218 unsigned int num_rx_queues;
1219
1220 /* Number of RX queues currently active in device */
1221 unsigned int real_num_rx_queues;
1222
1223 #ifdef CONFIG_RFS_ACCEL
1224 /* CPU reverse-mapping for RX completion interrupts, indexed
1225 * by RX queue number. Assigned by driver. This must only be
1226 * set if the ndo_rx_flow_steer operation is defined. */
1227 struct cpu_rmap *rx_cpu_rmap;
1228 #endif
1229 #endif
1230
1231 rx_handler_func_t __rcu *rx_handler;
1232 void __rcu *rx_handler_data;
1233
1234 struct netdev_queue __rcu *ingress_queue;
1235
1236 /*
1237 * Cache lines mostly used on transmit path
1238 */
1239 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1240
1241 /* Number of TX queues allocated at alloc_netdev_mq() time */
1242 unsigned int num_tx_queues;
1243
1244 /* Number of TX queues currently active in device */
1245 unsigned int real_num_tx_queues;
1246
1247 /* root qdisc from userspace point of view */
1248 struct Qdisc *qdisc;
1249
1250 unsigned long tx_queue_len; /* Max frames per queue allowed */
1251 spinlock_t tx_global_lock;
1252
1253 #ifdef CONFIG_XPS
1254 struct xps_dev_maps __rcu *xps_maps;
1255 #endif
1256
1257 /* These may be needed for future network-power-down code. */
1258
1259 /*
1260 * trans_start here is expensive for high speed devices on SMP,
1261 * please use netdev_queue->trans_start instead.
1262 */
1263 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1264
1265 int watchdog_timeo; /* used by dev_watchdog() */
1266 struct timer_list watchdog_timer;
1267
1268 /* Number of references to this device */
1269 int __percpu *pcpu_refcnt;
1270
1271 /* delayed register/unregister */
1272 struct list_head todo_list;
1273 /* device index hash chain */
1274 struct hlist_node index_hlist;
1275
1276 struct list_head link_watch_list;
1277
1278 /* register/unregister state machine */
1279 enum { NETREG_UNINITIALIZED=0,
1280 NETREG_REGISTERED, /* completed register_netdevice */
1281 NETREG_UNREGISTERING, /* called unregister_netdevice */
1282 NETREG_UNREGISTERED, /* completed unregister todo */
1283 NETREG_RELEASED, /* called free_netdev */
1284 NETREG_DUMMY, /* dummy device for NAPI poll */
1285 } reg_state:16;
1286
1287 enum {
1288 RTNL_LINK_INITIALIZED,
1289 RTNL_LINK_INITIALIZING,
1290 } rtnl_link_state:16;
1291
1292 /* Called from unregister, can be used to call free_netdev */
1293 void (*destructor)(struct net_device *dev);
1294
1295 #ifdef CONFIG_NETPOLL
1296 struct netpoll_info *npinfo;
1297 #endif
1298
1299 #ifdef CONFIG_NET_NS
1300 /* Network namespace this network device is inside */
1301 struct net *nd_net;
1302 #endif
1303
1304 /* mid-layer private */
1305 union {
1306 void *ml_priv;
1307 struct pcpu_lstats __percpu *lstats; /* loopback stats */
1308 struct pcpu_tstats __percpu *tstats; /* tunnel stats */
1309 struct pcpu_dstats __percpu *dstats; /* dummy stats */
1310 };
1311 /* GARP */
1312 struct garp_port __rcu *garp_port;
1313
1314 /* class/net/name entry */
1315 struct device dev;
1316 /* space for optional device, statistics, and wireless sysfs groups */
1317 const struct attribute_group *sysfs_groups[4];
1318
1319 /* rtnetlink link ops */
1320 const struct rtnl_link_ops *rtnl_link_ops;
1321
1322 /* for setting kernel sock attribute on TCP connection setup */
1323 #define GSO_MAX_SIZE 65536
1324 unsigned int gso_max_size;
1325
1326 #ifdef CONFIG_DCB
1327 /* Data Center Bridging netlink ops */
1328 const struct dcbnl_rtnl_ops *dcbnl_ops;
1329 #endif
1330 u8 num_tc;
1331 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1332 u8 prio_tc_map[TC_BITMASK + 1];
1333
1334 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
1335 /* max exchange id for FCoE LRO by ddp */
1336 unsigned int fcoe_ddp_xid;
1337 #endif
1338 /* n-tuple filter list attached to this device */
1339 struct ethtool_rx_ntuple_list ethtool_ntuple_list;
1340
1341 /* phy device may attach itself for hardware timestamping */
1342 struct phy_device *phydev;
1343
1344 /* group the device belongs to */
1345 int group;
1346 };
1347 #define to_net_dev(d) container_of(d, struct net_device, dev)
1348
1349 #define NETDEV_ALIGN 32
1350
1351 static inline
1352 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1353 {
1354 return dev->prio_tc_map[prio & TC_BITMASK];
1355 }
1356
1357 static inline
1358 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1359 {
1360 if (tc >= dev->num_tc)
1361 return -EINVAL;
1362
1363 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1364 return 0;
1365 }
1366
1367 static inline
1368 void netdev_reset_tc(struct net_device *dev)
1369 {
1370 dev->num_tc = 0;
1371 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1372 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1373 }
1374
1375 static inline
1376 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1377 {
1378 if (tc >= dev->num_tc)
1379 return -EINVAL;
1380
1381 dev->tc_to_txq[tc].count = count;
1382 dev->tc_to_txq[tc].offset = offset;
1383 return 0;
1384 }
1385
1386 static inline
1387 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1388 {
1389 if (num_tc > TC_MAX_QUEUE)
1390 return -EINVAL;
1391
1392 dev->num_tc = num_tc;
1393 return 0;
1394 }
1395
1396 static inline
1397 int netdev_get_num_tc(struct net_device *dev)
1398 {
1399 return dev->num_tc;
1400 }
1401
1402 static inline
1403 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1404 unsigned int index)
1405 {
1406 return &dev->_tx[index];
1407 }
1408
1409 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1410 void (*f)(struct net_device *,
1411 struct netdev_queue *,
1412 void *),
1413 void *arg)
1414 {
1415 unsigned int i;
1416
1417 for (i = 0; i < dev->num_tx_queues; i++)
1418 f(dev, &dev->_tx[i], arg);
1419 }
1420
1421 /*
1422 * Net namespace inlines
1423 */
1424 static inline
1425 struct net *dev_net(const struct net_device *dev)
1426 {
1427 return read_pnet(&dev->nd_net);
1428 }
1429
1430 static inline
1431 void dev_net_set(struct net_device *dev, struct net *net)
1432 {
1433 #ifdef CONFIG_NET_NS
1434 release_net(dev->nd_net);
1435 dev->nd_net = hold_net(net);
1436 #endif
1437 }
1438
1439 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1440 {
1441 #ifdef CONFIG_NET_DSA_TAG_DSA
1442 if (dev->dsa_ptr != NULL)
1443 return dsa_uses_dsa_tags(dev->dsa_ptr);
1444 #endif
1445
1446 return 0;
1447 }
1448
1449 #ifndef CONFIG_NET_NS
1450 static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1451 {
1452 skb->dev = dev;
1453 }
1454 #else /* CONFIG_NET_NS */
1455 void skb_set_dev(struct sk_buff *skb, struct net_device *dev);
1456 #endif
1457
1458 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1459 {
1460 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1461 if (dev->dsa_ptr != NULL)
1462 return dsa_uses_trailer_tags(dev->dsa_ptr);
1463 #endif
1464
1465 return 0;
1466 }
1467
1468 /**
1469 * netdev_priv - access network device private data
1470 * @dev: network device
1471 *
1472 * Get network device private data
1473 */
1474 static inline void *netdev_priv(const struct net_device *dev)
1475 {
1476 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1477 }
1478
1479 /* Set the sysfs physical device reference for the network logical device
1480 * if set prior to registration will cause a symlink during initialization.
1481 */
1482 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1483
1484 /* Set the sysfs device type for the network logical device to allow
1485 * fin grained indentification of different network device types. For
1486 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1487 */
1488 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1489
1490 /**
1491 * netif_napi_add - initialize a napi context
1492 * @dev: network device
1493 * @napi: napi context
1494 * @poll: polling function
1495 * @weight: default weight
1496 *
1497 * netif_napi_add() must be used to initialize a napi context prior to calling
1498 * *any* of the other napi related functions.
1499 */
1500 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1501 int (*poll)(struct napi_struct *, int), int weight);
1502
1503 /**
1504 * netif_napi_del - remove a napi context
1505 * @napi: napi context
1506 *
1507 * netif_napi_del() removes a napi context from the network device napi list
1508 */
1509 void netif_napi_del(struct napi_struct *napi);
1510
1511 struct napi_gro_cb {
1512 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1513 void *frag0;
1514
1515 /* Length of frag0. */
1516 unsigned int frag0_len;
1517
1518 /* This indicates where we are processing relative to skb->data. */
1519 int data_offset;
1520
1521 /* This is non-zero if the packet may be of the same flow. */
1522 int same_flow;
1523
1524 /* This is non-zero if the packet cannot be merged with the new skb. */
1525 int flush;
1526
1527 /* Number of segments aggregated. */
1528 int count;
1529
1530 /* Free the skb? */
1531 int free;
1532 };
1533
1534 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1535
1536 struct packet_type {
1537 __be16 type; /* This is really htons(ether_type). */
1538 struct net_device *dev; /* NULL is wildcarded here */
1539 int (*func) (struct sk_buff *,
1540 struct net_device *,
1541 struct packet_type *,
1542 struct net_device *);
1543 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1544 u32 features);
1545 int (*gso_send_check)(struct sk_buff *skb);
1546 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1547 struct sk_buff *skb);
1548 int (*gro_complete)(struct sk_buff *skb);
1549 void *af_packet_priv;
1550 struct list_head list;
1551 };
1552
1553 #include <linux/interrupt.h>
1554 #include <linux/notifier.h>
1555
1556 extern rwlock_t dev_base_lock; /* Device list lock */
1557
1558
1559 #define for_each_netdev(net, d) \
1560 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1561 #define for_each_netdev_reverse(net, d) \
1562 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1563 #define for_each_netdev_rcu(net, d) \
1564 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1565 #define for_each_netdev_safe(net, d, n) \
1566 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1567 #define for_each_netdev_continue(net, d) \
1568 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1569 #define for_each_netdev_continue_rcu(net, d) \
1570 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1571 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1572
1573 static inline struct net_device *next_net_device(struct net_device *dev)
1574 {
1575 struct list_head *lh;
1576 struct net *net;
1577
1578 net = dev_net(dev);
1579 lh = dev->dev_list.next;
1580 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1581 }
1582
1583 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1584 {
1585 struct list_head *lh;
1586 struct net *net;
1587
1588 net = dev_net(dev);
1589 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1590 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1591 }
1592
1593 static inline struct net_device *first_net_device(struct net *net)
1594 {
1595 return list_empty(&net->dev_base_head) ? NULL :
1596 net_device_entry(net->dev_base_head.next);
1597 }
1598
1599 static inline struct net_device *first_net_device_rcu(struct net *net)
1600 {
1601 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1602
1603 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1604 }
1605
1606 extern int netdev_boot_setup_check(struct net_device *dev);
1607 extern unsigned long netdev_boot_base(const char *prefix, int unit);
1608 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1609 const char *hwaddr);
1610 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1611 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1612 extern void dev_add_pack(struct packet_type *pt);
1613 extern void dev_remove_pack(struct packet_type *pt);
1614 extern void __dev_remove_pack(struct packet_type *pt);
1615
1616 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1617 unsigned short mask);
1618 extern struct net_device *dev_get_by_name(struct net *net, const char *name);
1619 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1620 extern struct net_device *__dev_get_by_name(struct net *net, const char *name);
1621 extern int dev_alloc_name(struct net_device *dev, const char *name);
1622 extern int dev_open(struct net_device *dev);
1623 extern int dev_close(struct net_device *dev);
1624 extern void dev_disable_lro(struct net_device *dev);
1625 extern int dev_queue_xmit(struct sk_buff *skb);
1626 extern int register_netdevice(struct net_device *dev);
1627 extern void unregister_netdevice_queue(struct net_device *dev,
1628 struct list_head *head);
1629 extern void unregister_netdevice_many(struct list_head *head);
1630 static inline void unregister_netdevice(struct net_device *dev)
1631 {
1632 unregister_netdevice_queue(dev, NULL);
1633 }
1634
1635 extern int netdev_refcnt_read(const struct net_device *dev);
1636 extern void free_netdev(struct net_device *dev);
1637 extern void synchronize_net(void);
1638 extern int register_netdevice_notifier(struct notifier_block *nb);
1639 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1640 extern int init_dummy_netdev(struct net_device *dev);
1641 extern void netdev_resync_ops(struct net_device *dev);
1642
1643 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1644 extern struct net_device *dev_get_by_index(struct net *net, int ifindex);
1645 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1646 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1647 extern int dev_restart(struct net_device *dev);
1648 #ifdef CONFIG_NETPOLL_TRAP
1649 extern int netpoll_trap(void);
1650 #endif
1651 extern int skb_gro_receive(struct sk_buff **head,
1652 struct sk_buff *skb);
1653 extern void skb_gro_reset_offset(struct sk_buff *skb);
1654
1655 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1656 {
1657 return NAPI_GRO_CB(skb)->data_offset;
1658 }
1659
1660 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1661 {
1662 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1663 }
1664
1665 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1666 {
1667 NAPI_GRO_CB(skb)->data_offset += len;
1668 }
1669
1670 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1671 unsigned int offset)
1672 {
1673 return NAPI_GRO_CB(skb)->frag0 + offset;
1674 }
1675
1676 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1677 {
1678 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1679 }
1680
1681 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1682 unsigned int offset)
1683 {
1684 NAPI_GRO_CB(skb)->frag0 = NULL;
1685 NAPI_GRO_CB(skb)->frag0_len = 0;
1686 return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL;
1687 }
1688
1689 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1690 {
1691 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1692 }
1693
1694 static inline void *skb_gro_network_header(struct sk_buff *skb)
1695 {
1696 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1697 skb_network_offset(skb);
1698 }
1699
1700 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1701 unsigned short type,
1702 const void *daddr, const void *saddr,
1703 unsigned len)
1704 {
1705 if (!dev->header_ops || !dev->header_ops->create)
1706 return 0;
1707
1708 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1709 }
1710
1711 static inline int dev_parse_header(const struct sk_buff *skb,
1712 unsigned char *haddr)
1713 {
1714 const struct net_device *dev = skb->dev;
1715
1716 if (!dev->header_ops || !dev->header_ops->parse)
1717 return 0;
1718 return dev->header_ops->parse(skb, haddr);
1719 }
1720
1721 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1722 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1723 static inline int unregister_gifconf(unsigned int family)
1724 {
1725 return register_gifconf(family, NULL);
1726 }
1727
1728 /*
1729 * Incoming packets are placed on per-cpu queues
1730 */
1731 struct softnet_data {
1732 struct Qdisc *output_queue;
1733 struct Qdisc **output_queue_tailp;
1734 struct list_head poll_list;
1735 struct sk_buff *completion_queue;
1736 struct sk_buff_head process_queue;
1737
1738 /* stats */
1739 unsigned int processed;
1740 unsigned int time_squeeze;
1741 unsigned int cpu_collision;
1742 unsigned int received_rps;
1743
1744 #ifdef CONFIG_RPS
1745 struct softnet_data *rps_ipi_list;
1746
1747 /* Elements below can be accessed between CPUs for RPS */
1748 struct call_single_data csd ____cacheline_aligned_in_smp;
1749 struct softnet_data *rps_ipi_next;
1750 unsigned int cpu;
1751 unsigned int input_queue_head;
1752 unsigned int input_queue_tail;
1753 #endif
1754 unsigned dropped;
1755 struct sk_buff_head input_pkt_queue;
1756 struct napi_struct backlog;
1757 };
1758
1759 static inline void input_queue_head_incr(struct softnet_data *sd)
1760 {
1761 #ifdef CONFIG_RPS
1762 sd->input_queue_head++;
1763 #endif
1764 }
1765
1766 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1767 unsigned int *qtail)
1768 {
1769 #ifdef CONFIG_RPS
1770 *qtail = ++sd->input_queue_tail;
1771 #endif
1772 }
1773
1774 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1775
1776 #define HAVE_NETIF_QUEUE
1777
1778 extern void __netif_schedule(struct Qdisc *q);
1779
1780 static inline void netif_schedule_queue(struct netdev_queue *txq)
1781 {
1782 if (!test_bit(__QUEUE_STATE_XOFF, &txq->state))
1783 __netif_schedule(txq->qdisc);
1784 }
1785
1786 static inline void netif_tx_schedule_all(struct net_device *dev)
1787 {
1788 unsigned int i;
1789
1790 for (i = 0; i < dev->num_tx_queues; i++)
1791 netif_schedule_queue(netdev_get_tx_queue(dev, i));
1792 }
1793
1794 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1795 {
1796 clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1797 }
1798
1799 /**
1800 * netif_start_queue - allow transmit
1801 * @dev: network device
1802 *
1803 * Allow upper layers to call the device hard_start_xmit routine.
1804 */
1805 static inline void netif_start_queue(struct net_device *dev)
1806 {
1807 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1808 }
1809
1810 static inline void netif_tx_start_all_queues(struct net_device *dev)
1811 {
1812 unsigned int i;
1813
1814 for (i = 0; i < dev->num_tx_queues; i++) {
1815 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1816 netif_tx_start_queue(txq);
1817 }
1818 }
1819
1820 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1821 {
1822 #ifdef CONFIG_NETPOLL_TRAP
1823 if (netpoll_trap()) {
1824 netif_tx_start_queue(dev_queue);
1825 return;
1826 }
1827 #endif
1828 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state))
1829 __netif_schedule(dev_queue->qdisc);
1830 }
1831
1832 /**
1833 * netif_wake_queue - restart transmit
1834 * @dev: network device
1835 *
1836 * Allow upper layers to call the device hard_start_xmit routine.
1837 * Used for flow control when transmit resources are available.
1838 */
1839 static inline void netif_wake_queue(struct net_device *dev)
1840 {
1841 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1842 }
1843
1844 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1845 {
1846 unsigned int i;
1847
1848 for (i = 0; i < dev->num_tx_queues; i++) {
1849 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1850 netif_tx_wake_queue(txq);
1851 }
1852 }
1853
1854 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1855 {
1856 if (WARN_ON(!dev_queue)) {
1857 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1858 return;
1859 }
1860 set_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1861 }
1862
1863 /**
1864 * netif_stop_queue - stop transmitted packets
1865 * @dev: network device
1866 *
1867 * Stop upper layers calling the device hard_start_xmit routine.
1868 * Used for flow control when transmit resources are unavailable.
1869 */
1870 static inline void netif_stop_queue(struct net_device *dev)
1871 {
1872 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1873 }
1874
1875 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1876 {
1877 unsigned int i;
1878
1879 for (i = 0; i < dev->num_tx_queues; i++) {
1880 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1881 netif_tx_stop_queue(txq);
1882 }
1883 }
1884
1885 static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1886 {
1887 return test_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1888 }
1889
1890 /**
1891 * netif_queue_stopped - test if transmit queue is flowblocked
1892 * @dev: network device
1893 *
1894 * Test if transmit queue on device is currently unable to send.
1895 */
1896 static inline int netif_queue_stopped(const struct net_device *dev)
1897 {
1898 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1899 }
1900
1901 static inline int netif_tx_queue_frozen_or_stopped(const struct netdev_queue *dev_queue)
1902 {
1903 return dev_queue->state & QUEUE_STATE_XOFF_OR_FROZEN;
1904 }
1905
1906 /**
1907 * netif_running - test if up
1908 * @dev: network device
1909 *
1910 * Test if the device has been brought up.
1911 */
1912 static inline int netif_running(const struct net_device *dev)
1913 {
1914 return test_bit(__LINK_STATE_START, &dev->state);
1915 }
1916
1917 /*
1918 * Routines to manage the subqueues on a device. We only need start
1919 * stop, and a check if it's stopped. All other device management is
1920 * done at the overall netdevice level.
1921 * Also test the device if we're multiqueue.
1922 */
1923
1924 /**
1925 * netif_start_subqueue - allow sending packets on subqueue
1926 * @dev: network device
1927 * @queue_index: sub queue index
1928 *
1929 * Start individual transmit queue of a device with multiple transmit queues.
1930 */
1931 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
1932 {
1933 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1934
1935 netif_tx_start_queue(txq);
1936 }
1937
1938 /**
1939 * netif_stop_subqueue - stop sending packets on subqueue
1940 * @dev: network device
1941 * @queue_index: sub queue index
1942 *
1943 * Stop individual transmit queue of a device with multiple transmit queues.
1944 */
1945 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
1946 {
1947 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1948 #ifdef CONFIG_NETPOLL_TRAP
1949 if (netpoll_trap())
1950 return;
1951 #endif
1952 netif_tx_stop_queue(txq);
1953 }
1954
1955 /**
1956 * netif_subqueue_stopped - test status of subqueue
1957 * @dev: network device
1958 * @queue_index: sub queue index
1959 *
1960 * Check individual transmit queue of a device with multiple transmit queues.
1961 */
1962 static inline int __netif_subqueue_stopped(const struct net_device *dev,
1963 u16 queue_index)
1964 {
1965 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1966
1967 return netif_tx_queue_stopped(txq);
1968 }
1969
1970 static inline int netif_subqueue_stopped(const struct net_device *dev,
1971 struct sk_buff *skb)
1972 {
1973 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
1974 }
1975
1976 /**
1977 * netif_wake_subqueue - allow sending packets on subqueue
1978 * @dev: network device
1979 * @queue_index: sub queue index
1980 *
1981 * Resume individual transmit queue of a device with multiple transmit queues.
1982 */
1983 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
1984 {
1985 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1986 #ifdef CONFIG_NETPOLL_TRAP
1987 if (netpoll_trap())
1988 return;
1989 #endif
1990 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &txq->state))
1991 __netif_schedule(txq->qdisc);
1992 }
1993
1994 /*
1995 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
1996 * as a distribution range limit for the returned value.
1997 */
1998 static inline u16 skb_tx_hash(const struct net_device *dev,
1999 const struct sk_buff *skb)
2000 {
2001 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2002 }
2003
2004 /**
2005 * netif_is_multiqueue - test if device has multiple transmit queues
2006 * @dev: network device
2007 *
2008 * Check if device has multiple transmit queues
2009 */
2010 static inline int netif_is_multiqueue(const struct net_device *dev)
2011 {
2012 return dev->num_tx_queues > 1;
2013 }
2014
2015 extern int netif_set_real_num_tx_queues(struct net_device *dev,
2016 unsigned int txq);
2017
2018 #ifdef CONFIG_RPS
2019 extern int netif_set_real_num_rx_queues(struct net_device *dev,
2020 unsigned int rxq);
2021 #else
2022 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2023 unsigned int rxq)
2024 {
2025 return 0;
2026 }
2027 #endif
2028
2029 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2030 const struct net_device *from_dev)
2031 {
2032 netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues);
2033 #ifdef CONFIG_RPS
2034 return netif_set_real_num_rx_queues(to_dev,
2035 from_dev->real_num_rx_queues);
2036 #else
2037 return 0;
2038 #endif
2039 }
2040
2041 /* Use this variant when it is known for sure that it
2042 * is executing from hardware interrupt context or with hardware interrupts
2043 * disabled.
2044 */
2045 extern void dev_kfree_skb_irq(struct sk_buff *skb);
2046
2047 /* Use this variant in places where it could be invoked
2048 * from either hardware interrupt or other context, with hardware interrupts
2049 * either disabled or enabled.
2050 */
2051 extern void dev_kfree_skb_any(struct sk_buff *skb);
2052
2053 #define HAVE_NETIF_RX 1
2054 extern int netif_rx(struct sk_buff *skb);
2055 extern int netif_rx_ni(struct sk_buff *skb);
2056 #define HAVE_NETIF_RECEIVE_SKB 1
2057 extern int netif_receive_skb(struct sk_buff *skb);
2058 extern gro_result_t dev_gro_receive(struct napi_struct *napi,
2059 struct sk_buff *skb);
2060 extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
2061 extern gro_result_t napi_gro_receive(struct napi_struct *napi,
2062 struct sk_buff *skb);
2063 extern void napi_gro_flush(struct napi_struct *napi);
2064 extern struct sk_buff * napi_get_frags(struct napi_struct *napi);
2065 extern gro_result_t napi_frags_finish(struct napi_struct *napi,
2066 struct sk_buff *skb,
2067 gro_result_t ret);
2068 extern struct sk_buff * napi_frags_skb(struct napi_struct *napi);
2069 extern gro_result_t napi_gro_frags(struct napi_struct *napi);
2070
2071 static inline void napi_free_frags(struct napi_struct *napi)
2072 {
2073 kfree_skb(napi->skb);
2074 napi->skb = NULL;
2075 }
2076
2077 extern int netdev_rx_handler_register(struct net_device *dev,
2078 rx_handler_func_t *rx_handler,
2079 void *rx_handler_data);
2080 extern void netdev_rx_handler_unregister(struct net_device *dev);
2081
2082 extern int dev_valid_name(const char *name);
2083 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2084 extern int dev_ethtool(struct net *net, struct ifreq *);
2085 extern unsigned dev_get_flags(const struct net_device *);
2086 extern int __dev_change_flags(struct net_device *, unsigned int flags);
2087 extern int dev_change_flags(struct net_device *, unsigned);
2088 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags);
2089 extern int dev_change_name(struct net_device *, const char *);
2090 extern int dev_set_alias(struct net_device *, const char *, size_t);
2091 extern int dev_change_net_namespace(struct net_device *,
2092 struct net *, const char *);
2093 extern int dev_set_mtu(struct net_device *, int);
2094 extern void dev_set_group(struct net_device *, int);
2095 extern int dev_set_mac_address(struct net_device *,
2096 struct sockaddr *);
2097 extern int dev_hard_start_xmit(struct sk_buff *skb,
2098 struct net_device *dev,
2099 struct netdev_queue *txq);
2100 extern int dev_forward_skb(struct net_device *dev,
2101 struct sk_buff *skb);
2102
2103 extern int netdev_budget;
2104
2105 /* Called by rtnetlink.c:rtnl_unlock() */
2106 extern void netdev_run_todo(void);
2107
2108 /**
2109 * dev_put - release reference to device
2110 * @dev: network device
2111 *
2112 * Release reference to device to allow it to be freed.
2113 */
2114 static inline void dev_put(struct net_device *dev)
2115 {
2116 irqsafe_cpu_dec(*dev->pcpu_refcnt);
2117 }
2118
2119 /**
2120 * dev_hold - get reference to device
2121 * @dev: network device
2122 *
2123 * Hold reference to device to keep it from being freed.
2124 */
2125 static inline void dev_hold(struct net_device *dev)
2126 {
2127 irqsafe_cpu_inc(*dev->pcpu_refcnt);
2128 }
2129
2130 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2131 * and _off may be called from IRQ context, but it is caller
2132 * who is responsible for serialization of these calls.
2133 *
2134 * The name carrier is inappropriate, these functions should really be
2135 * called netif_lowerlayer_*() because they represent the state of any
2136 * kind of lower layer not just hardware media.
2137 */
2138
2139 extern void linkwatch_fire_event(struct net_device *dev);
2140 extern void linkwatch_forget_dev(struct net_device *dev);
2141
2142 /**
2143 * netif_carrier_ok - test if carrier present
2144 * @dev: network device
2145 *
2146 * Check if carrier is present on device
2147 */
2148 static inline int netif_carrier_ok(const struct net_device *dev)
2149 {
2150 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2151 }
2152
2153 extern unsigned long dev_trans_start(struct net_device *dev);
2154
2155 extern void __netdev_watchdog_up(struct net_device *dev);
2156
2157 extern void netif_carrier_on(struct net_device *dev);
2158
2159 extern void netif_carrier_off(struct net_device *dev);
2160
2161 extern void netif_notify_peers(struct net_device *dev);
2162
2163 /**
2164 * netif_dormant_on - mark device as dormant.
2165 * @dev: network device
2166 *
2167 * Mark device as dormant (as per RFC2863).
2168 *
2169 * The dormant state indicates that the relevant interface is not
2170 * actually in a condition to pass packets (i.e., it is not 'up') but is
2171 * in a "pending" state, waiting for some external event. For "on-
2172 * demand" interfaces, this new state identifies the situation where the
2173 * interface is waiting for events to place it in the up state.
2174 *
2175 */
2176 static inline void netif_dormant_on(struct net_device *dev)
2177 {
2178 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2179 linkwatch_fire_event(dev);
2180 }
2181
2182 /**
2183 * netif_dormant_off - set device as not dormant.
2184 * @dev: network device
2185 *
2186 * Device is not in dormant state.
2187 */
2188 static inline void netif_dormant_off(struct net_device *dev)
2189 {
2190 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2191 linkwatch_fire_event(dev);
2192 }
2193
2194 /**
2195 * netif_dormant - test if carrier present
2196 * @dev: network device
2197 *
2198 * Check if carrier is present on device
2199 */
2200 static inline int netif_dormant(const struct net_device *dev)
2201 {
2202 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2203 }
2204
2205
2206 /**
2207 * netif_oper_up - test if device is operational
2208 * @dev: network device
2209 *
2210 * Check if carrier is operational
2211 */
2212 static inline int netif_oper_up(const struct net_device *dev)
2213 {
2214 return (dev->operstate == IF_OPER_UP ||
2215 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2216 }
2217
2218 /**
2219 * netif_device_present - is device available or removed
2220 * @dev: network device
2221 *
2222 * Check if device has not been removed from system.
2223 */
2224 static inline int netif_device_present(struct net_device *dev)
2225 {
2226 return test_bit(__LINK_STATE_PRESENT, &dev->state);
2227 }
2228
2229 extern void netif_device_detach(struct net_device *dev);
2230
2231 extern void netif_device_attach(struct net_device *dev);
2232
2233 /*
2234 * Network interface message level settings
2235 */
2236 #define HAVE_NETIF_MSG 1
2237
2238 enum {
2239 NETIF_MSG_DRV = 0x0001,
2240 NETIF_MSG_PROBE = 0x0002,
2241 NETIF_MSG_LINK = 0x0004,
2242 NETIF_MSG_TIMER = 0x0008,
2243 NETIF_MSG_IFDOWN = 0x0010,
2244 NETIF_MSG_IFUP = 0x0020,
2245 NETIF_MSG_RX_ERR = 0x0040,
2246 NETIF_MSG_TX_ERR = 0x0080,
2247 NETIF_MSG_TX_QUEUED = 0x0100,
2248 NETIF_MSG_INTR = 0x0200,
2249 NETIF_MSG_TX_DONE = 0x0400,
2250 NETIF_MSG_RX_STATUS = 0x0800,
2251 NETIF_MSG_PKTDATA = 0x1000,
2252 NETIF_MSG_HW = 0x2000,
2253 NETIF_MSG_WOL = 0x4000,
2254 };
2255
2256 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2257 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2258 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2259 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2260 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2261 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2262 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2263 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2264 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2265 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2266 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2267 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2268 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2269 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2270 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2271
2272 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2273 {
2274 /* use default */
2275 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2276 return default_msg_enable_bits;
2277 if (debug_value == 0) /* no output */
2278 return 0;
2279 /* set low N bits */
2280 return (1 << debug_value) - 1;
2281 }
2282
2283 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2284 {
2285 spin_lock(&txq->_xmit_lock);
2286 txq->xmit_lock_owner = cpu;
2287 }
2288
2289 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2290 {
2291 spin_lock_bh(&txq->_xmit_lock);
2292 txq->xmit_lock_owner = smp_processor_id();
2293 }
2294
2295 static inline int __netif_tx_trylock(struct netdev_queue *txq)
2296 {
2297 int ok = spin_trylock(&txq->_xmit_lock);
2298 if (likely(ok))
2299 txq->xmit_lock_owner = smp_processor_id();
2300 return ok;
2301 }
2302
2303 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2304 {
2305 txq->xmit_lock_owner = -1;
2306 spin_unlock(&txq->_xmit_lock);
2307 }
2308
2309 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2310 {
2311 txq->xmit_lock_owner = -1;
2312 spin_unlock_bh(&txq->_xmit_lock);
2313 }
2314
2315 static inline void txq_trans_update(struct netdev_queue *txq)
2316 {
2317 if (txq->xmit_lock_owner != -1)
2318 txq->trans_start = jiffies;
2319 }
2320
2321 /**
2322 * netif_tx_lock - grab network device transmit lock
2323 * @dev: network device
2324 *
2325 * Get network device transmit lock
2326 */
2327 static inline void netif_tx_lock(struct net_device *dev)
2328 {
2329 unsigned int i;
2330 int cpu;
2331
2332 spin_lock(&dev->tx_global_lock);
2333 cpu = smp_processor_id();
2334 for (i = 0; i < dev->num_tx_queues; i++) {
2335 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2336
2337 /* We are the only thread of execution doing a
2338 * freeze, but we have to grab the _xmit_lock in
2339 * order to synchronize with threads which are in
2340 * the ->hard_start_xmit() handler and already
2341 * checked the frozen bit.
2342 */
2343 __netif_tx_lock(txq, cpu);
2344 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2345 __netif_tx_unlock(txq);
2346 }
2347 }
2348
2349 static inline void netif_tx_lock_bh(struct net_device *dev)
2350 {
2351 local_bh_disable();
2352 netif_tx_lock(dev);
2353 }
2354
2355 static inline void netif_tx_unlock(struct net_device *dev)
2356 {
2357 unsigned int i;
2358
2359 for (i = 0; i < dev->num_tx_queues; i++) {
2360 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2361
2362 /* No need to grab the _xmit_lock here. If the
2363 * queue is not stopped for another reason, we
2364 * force a schedule.
2365 */
2366 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2367 netif_schedule_queue(txq);
2368 }
2369 spin_unlock(&dev->tx_global_lock);
2370 }
2371
2372 static inline void netif_tx_unlock_bh(struct net_device *dev)
2373 {
2374 netif_tx_unlock(dev);
2375 local_bh_enable();
2376 }
2377
2378 #define HARD_TX_LOCK(dev, txq, cpu) { \
2379 if ((dev->features & NETIF_F_LLTX) == 0) { \
2380 __netif_tx_lock(txq, cpu); \
2381 } \
2382 }
2383
2384 #define HARD_TX_UNLOCK(dev, txq) { \
2385 if ((dev->features & NETIF_F_LLTX) == 0) { \
2386 __netif_tx_unlock(txq); \
2387 } \
2388 }
2389
2390 static inline void netif_tx_disable(struct net_device *dev)
2391 {
2392 unsigned int i;
2393 int cpu;
2394
2395 local_bh_disable();
2396 cpu = smp_processor_id();
2397 for (i = 0; i < dev->num_tx_queues; i++) {
2398 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2399
2400 __netif_tx_lock(txq, cpu);
2401 netif_tx_stop_queue(txq);
2402 __netif_tx_unlock(txq);
2403 }
2404 local_bh_enable();
2405 }
2406
2407 static inline void netif_addr_lock(struct net_device *dev)
2408 {
2409 spin_lock(&dev->addr_list_lock);
2410 }
2411
2412 static inline void netif_addr_lock_bh(struct net_device *dev)
2413 {
2414 spin_lock_bh(&dev->addr_list_lock);
2415 }
2416
2417 static inline void netif_addr_unlock(struct net_device *dev)
2418 {
2419 spin_unlock(&dev->addr_list_lock);
2420 }
2421
2422 static inline void netif_addr_unlock_bh(struct net_device *dev)
2423 {
2424 spin_unlock_bh(&dev->addr_list_lock);
2425 }
2426
2427 /*
2428 * dev_addrs walker. Should be used only for read access. Call with
2429 * rcu_read_lock held.
2430 */
2431 #define for_each_dev_addr(dev, ha) \
2432 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2433
2434 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2435
2436 extern void ether_setup(struct net_device *dev);
2437
2438 /* Support for loadable net-drivers */
2439 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2440 void (*setup)(struct net_device *),
2441 unsigned int txqs, unsigned int rxqs);
2442 #define alloc_netdev(sizeof_priv, name, setup) \
2443 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2444
2445 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2446 alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2447
2448 extern int register_netdev(struct net_device *dev);
2449 extern void unregister_netdev(struct net_device *dev);
2450
2451 /* General hardware address lists handling functions */
2452 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2453 struct netdev_hw_addr_list *from_list,
2454 int addr_len, unsigned char addr_type);
2455 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2456 struct netdev_hw_addr_list *from_list,
2457 int addr_len, unsigned char addr_type);
2458 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2459 struct netdev_hw_addr_list *from_list,
2460 int addr_len);
2461 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2462 struct netdev_hw_addr_list *from_list,
2463 int addr_len);
2464 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2465 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2466
2467 /* Functions used for device addresses handling */
2468 extern int dev_addr_add(struct net_device *dev, unsigned char *addr,
2469 unsigned char addr_type);
2470 extern int dev_addr_del(struct net_device *dev, unsigned char *addr,
2471 unsigned char addr_type);
2472 extern int dev_addr_add_multiple(struct net_device *to_dev,
2473 struct net_device *from_dev,
2474 unsigned char addr_type);
2475 extern int dev_addr_del_multiple(struct net_device *to_dev,
2476 struct net_device *from_dev,
2477 unsigned char addr_type);
2478 extern void dev_addr_flush(struct net_device *dev);
2479 extern int dev_addr_init(struct net_device *dev);
2480
2481 /* Functions used for unicast addresses handling */
2482 extern int dev_uc_add(struct net_device *dev, unsigned char *addr);
2483 extern int dev_uc_del(struct net_device *dev, unsigned char *addr);
2484 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2485 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2486 extern void dev_uc_flush(struct net_device *dev);
2487 extern void dev_uc_init(struct net_device *dev);
2488
2489 /* Functions used for multicast addresses handling */
2490 extern int dev_mc_add(struct net_device *dev, unsigned char *addr);
2491 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr);
2492 extern int dev_mc_del(struct net_device *dev, unsigned char *addr);
2493 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr);
2494 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2495 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2496 extern void dev_mc_flush(struct net_device *dev);
2497 extern void dev_mc_init(struct net_device *dev);
2498
2499 /* Functions used for secondary unicast and multicast support */
2500 extern void dev_set_rx_mode(struct net_device *dev);
2501 extern void __dev_set_rx_mode(struct net_device *dev);
2502 extern int dev_set_promiscuity(struct net_device *dev, int inc);
2503 extern int dev_set_allmulti(struct net_device *dev, int inc);
2504 extern void netdev_state_change(struct net_device *dev);
2505 extern int netdev_bonding_change(struct net_device *dev,
2506 unsigned long event);
2507 extern void netdev_features_change(struct net_device *dev);
2508 /* Load a device via the kmod */
2509 extern void dev_load(struct net *net, const char *name);
2510 extern void dev_mcast_init(void);
2511 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2512 struct rtnl_link_stats64 *storage);
2513
2514 extern int netdev_max_backlog;
2515 extern int netdev_tstamp_prequeue;
2516 extern int weight_p;
2517 extern int bpf_jit_enable;
2518 extern int netdev_set_master(struct net_device *dev, struct net_device *master);
2519 extern int netdev_set_bond_master(struct net_device *dev,
2520 struct net_device *master);
2521 extern int skb_checksum_help(struct sk_buff *skb);
2522 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features);
2523 #ifdef CONFIG_BUG
2524 extern void netdev_rx_csum_fault(struct net_device *dev);
2525 #else
2526 static inline void netdev_rx_csum_fault(struct net_device *dev)
2527 {
2528 }
2529 #endif
2530 /* rx skb timestamps */
2531 extern void net_enable_timestamp(void);
2532 extern void net_disable_timestamp(void);
2533
2534 #ifdef CONFIG_PROC_FS
2535 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2536 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2537 extern void dev_seq_stop(struct seq_file *seq, void *v);
2538 #endif
2539
2540 extern int netdev_class_create_file(struct class_attribute *class_attr);
2541 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2542
2543 extern struct kobj_ns_type_operations net_ns_type_operations;
2544
2545 extern char *netdev_drivername(const struct net_device *dev, char *buffer, int len);
2546
2547 extern void linkwatch_run_queue(void);
2548
2549 static inline u32 netdev_get_wanted_features(struct net_device *dev)
2550 {
2551 return (dev->features & ~dev->hw_features) | dev->wanted_features;
2552 }
2553 u32 netdev_increment_features(u32 all, u32 one, u32 mask);
2554 u32 netdev_fix_features(struct net_device *dev, u32 features);
2555 int __netdev_update_features(struct net_device *dev);
2556 void netdev_update_features(struct net_device *dev);
2557
2558 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2559 struct net_device *dev);
2560
2561 u32 netif_skb_features(struct sk_buff *skb);
2562
2563 static inline int net_gso_ok(u32 features, int gso_type)
2564 {
2565 int feature = gso_type << NETIF_F_GSO_SHIFT;
2566 return (features & feature) == feature;
2567 }
2568
2569 static inline int skb_gso_ok(struct sk_buff *skb, u32 features)
2570 {
2571 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2572 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2573 }
2574
2575 static inline int netif_needs_gso(struct sk_buff *skb, int features)
2576 {
2577 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2578 unlikely(skb->ip_summed != CHECKSUM_PARTIAL));
2579 }
2580
2581 static inline void netif_set_gso_max_size(struct net_device *dev,
2582 unsigned int size)
2583 {
2584 dev->gso_max_size = size;
2585 }
2586
2587 static inline int netif_is_bond_slave(struct net_device *dev)
2588 {
2589 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2590 }
2591
2592 extern struct pernet_operations __net_initdata loopback_net_ops;
2593
2594 static inline int dev_ethtool_get_settings(struct net_device *dev,
2595 struct ethtool_cmd *cmd)
2596 {
2597 if (!dev->ethtool_ops || !dev->ethtool_ops->get_settings)
2598 return -EOPNOTSUPP;
2599 return dev->ethtool_ops->get_settings(dev, cmd);
2600 }
2601
2602 static inline u32 dev_ethtool_get_rx_csum(struct net_device *dev)
2603 {
2604 if (dev->features & NETIF_F_RXCSUM)
2605 return 1;
2606 if (!dev->ethtool_ops || !dev->ethtool_ops->get_rx_csum)
2607 return 0;
2608 return dev->ethtool_ops->get_rx_csum(dev);
2609 }
2610
2611 static inline u32 dev_ethtool_get_flags(struct net_device *dev)
2612 {
2613 if (!dev->ethtool_ops || !dev->ethtool_ops->get_flags)
2614 return 0;
2615 return dev->ethtool_ops->get_flags(dev);
2616 }
2617
2618 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2619
2620 /* netdev_printk helpers, similar to dev_printk */
2621
2622 static inline const char *netdev_name(const struct net_device *dev)
2623 {
2624 if (dev->reg_state != NETREG_REGISTERED)
2625 return "(unregistered net_device)";
2626 return dev->name;
2627 }
2628
2629 extern int netdev_printk(const char *level, const struct net_device *dev,
2630 const char *format, ...)
2631 __attribute__ ((format (printf, 3, 4)));
2632 extern int netdev_emerg(const struct net_device *dev, const char *format, ...)
2633 __attribute__ ((format (printf, 2, 3)));
2634 extern int netdev_alert(const struct net_device *dev, const char *format, ...)
2635 __attribute__ ((format (printf, 2, 3)));
2636 extern int netdev_crit(const struct net_device *dev, const char *format, ...)
2637 __attribute__ ((format (printf, 2, 3)));
2638 extern int netdev_err(const struct net_device *dev, const char *format, ...)
2639 __attribute__ ((format (printf, 2, 3)));
2640 extern int netdev_warn(const struct net_device *dev, const char *format, ...)
2641 __attribute__ ((format (printf, 2, 3)));
2642 extern int netdev_notice(const struct net_device *dev, const char *format, ...)
2643 __attribute__ ((format (printf, 2, 3)));
2644 extern int netdev_info(const struct net_device *dev, const char *format, ...)
2645 __attribute__ ((format (printf, 2, 3)));
2646
2647 #define MODULE_ALIAS_NETDEV(device) \
2648 MODULE_ALIAS("netdev-" device)
2649
2650 #if defined(DEBUG)
2651 #define netdev_dbg(__dev, format, args...) \
2652 netdev_printk(KERN_DEBUG, __dev, format, ##args)
2653 #elif defined(CONFIG_DYNAMIC_DEBUG)
2654 #define netdev_dbg(__dev, format, args...) \
2655 do { \
2656 dynamic_dev_dbg((__dev)->dev.parent, "%s: " format, \
2657 netdev_name(__dev), ##args); \
2658 } while (0)
2659 #else
2660 #define netdev_dbg(__dev, format, args...) \
2661 ({ \
2662 if (0) \
2663 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2664 0; \
2665 })
2666 #endif
2667
2668 #if defined(VERBOSE_DEBUG)
2669 #define netdev_vdbg netdev_dbg
2670 #else
2671
2672 #define netdev_vdbg(dev, format, args...) \
2673 ({ \
2674 if (0) \
2675 netdev_printk(KERN_DEBUG, dev, format, ##args); \
2676 0; \
2677 })
2678 #endif
2679
2680 /*
2681 * netdev_WARN() acts like dev_printk(), but with the key difference
2682 * of using a WARN/WARN_ON to get the message out, including the
2683 * file/line information and a backtrace.
2684 */
2685 #define netdev_WARN(dev, format, args...) \
2686 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2687
2688 /* netif printk helpers, similar to netdev_printk */
2689
2690 #define netif_printk(priv, type, level, dev, fmt, args...) \
2691 do { \
2692 if (netif_msg_##type(priv)) \
2693 netdev_printk(level, (dev), fmt, ##args); \
2694 } while (0)
2695
2696 #define netif_level(level, priv, type, dev, fmt, args...) \
2697 do { \
2698 if (netif_msg_##type(priv)) \
2699 netdev_##level(dev, fmt, ##args); \
2700 } while (0)
2701
2702 #define netif_emerg(priv, type, dev, fmt, args...) \
2703 netif_level(emerg, priv, type, dev, fmt, ##args)
2704 #define netif_alert(priv, type, dev, fmt, args...) \
2705 netif_level(alert, priv, type, dev, fmt, ##args)
2706 #define netif_crit(priv, type, dev, fmt, args...) \
2707 netif_level(crit, priv, type, dev, fmt, ##args)
2708 #define netif_err(priv, type, dev, fmt, args...) \
2709 netif_level(err, priv, type, dev, fmt, ##args)
2710 #define netif_warn(priv, type, dev, fmt, args...) \
2711 netif_level(warn, priv, type, dev, fmt, ##args)
2712 #define netif_notice(priv, type, dev, fmt, args...) \
2713 netif_level(notice, priv, type, dev, fmt, ##args)
2714 #define netif_info(priv, type, dev, fmt, args...) \
2715 netif_level(info, priv, type, dev, fmt, ##args)
2716
2717 #if defined(DEBUG)
2718 #define netif_dbg(priv, type, dev, format, args...) \
2719 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2720 #elif defined(CONFIG_DYNAMIC_DEBUG)
2721 #define netif_dbg(priv, type, netdev, format, args...) \
2722 do { \
2723 if (netif_msg_##type(priv)) \
2724 dynamic_dev_dbg((netdev)->dev.parent, \
2725 "%s: " format, \
2726 netdev_name(netdev), ##args); \
2727 } while (0)
2728 #else
2729 #define netif_dbg(priv, type, dev, format, args...) \
2730 ({ \
2731 if (0) \
2732 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2733 0; \
2734 })
2735 #endif
2736
2737 #if defined(VERBOSE_DEBUG)
2738 #define netif_vdbg netif_dbg
2739 #else
2740 #define netif_vdbg(priv, type, dev, format, args...) \
2741 ({ \
2742 if (0) \
2743 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2744 0; \
2745 })
2746 #endif
2747
2748 #endif /* __KERNEL__ */
2749
2750 #endif /* _LINUX_NETDEVICE_H */
This page took 0.136884 seconds and 5 git commands to generate.