net core: Add protodown support.
[deliverable/linux.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54
55 struct netpoll_info;
56 struct device;
57 struct phy_device;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* 802.15.4 specific */
61 struct wpan_dev;
62 struct mpls_dev;
63
64 void netdev_set_default_ethtool_ops(struct net_device *dev,
65 const struct ethtool_ops *ops);
66
67 /* Backlog congestion levels */
68 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
69 #define NET_RX_DROP 1 /* packet dropped */
70
71 /*
72 * Transmit return codes: transmit return codes originate from three different
73 * namespaces:
74 *
75 * - qdisc return codes
76 * - driver transmit return codes
77 * - errno values
78 *
79 * Drivers are allowed to return any one of those in their hard_start_xmit()
80 * function. Real network devices commonly used with qdiscs should only return
81 * the driver transmit return codes though - when qdiscs are used, the actual
82 * transmission happens asynchronously, so the value is not propagated to
83 * higher layers. Virtual network devices transmit synchronously, in this case
84 * the driver transmit return codes are consumed by dev_queue_xmit(), all
85 * others are propagated to higher layers.
86 */
87
88 /* qdisc ->enqueue() return codes. */
89 #define NET_XMIT_SUCCESS 0x00
90 #define NET_XMIT_DROP 0x01 /* skb dropped */
91 #define NET_XMIT_CN 0x02 /* congestion notification */
92 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
93 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
94
95 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
96 * indicates that the device will soon be dropping packets, or already drops
97 * some packets of the same priority; prompting us to send less aggressively. */
98 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
99 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
100
101 /* Driver transmit return codes */
102 #define NETDEV_TX_MASK 0xf0
103
104 enum netdev_tx {
105 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
106 NETDEV_TX_OK = 0x00, /* driver took care of packet */
107 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
108 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
109 };
110 typedef enum netdev_tx netdev_tx_t;
111
112 /*
113 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
114 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
115 */
116 static inline bool dev_xmit_complete(int rc)
117 {
118 /*
119 * Positive cases with an skb consumed by a driver:
120 * - successful transmission (rc == NETDEV_TX_OK)
121 * - error while transmitting (rc < 0)
122 * - error while queueing to a different device (rc & NET_XMIT_MASK)
123 */
124 if (likely(rc < NET_XMIT_MASK))
125 return true;
126
127 return false;
128 }
129
130 /*
131 * Compute the worst case header length according to the protocols
132 * used.
133 */
134
135 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
136 # if defined(CONFIG_MAC80211_MESH)
137 # define LL_MAX_HEADER 128
138 # else
139 # define LL_MAX_HEADER 96
140 # endif
141 #else
142 # define LL_MAX_HEADER 32
143 #endif
144
145 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
146 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
147 #define MAX_HEADER LL_MAX_HEADER
148 #else
149 #define MAX_HEADER (LL_MAX_HEADER + 48)
150 #endif
151
152 /*
153 * Old network device statistics. Fields are native words
154 * (unsigned long) so they can be read and written atomically.
155 */
156
157 struct net_device_stats {
158 unsigned long rx_packets;
159 unsigned long tx_packets;
160 unsigned long rx_bytes;
161 unsigned long tx_bytes;
162 unsigned long rx_errors;
163 unsigned long tx_errors;
164 unsigned long rx_dropped;
165 unsigned long tx_dropped;
166 unsigned long multicast;
167 unsigned long collisions;
168 unsigned long rx_length_errors;
169 unsigned long rx_over_errors;
170 unsigned long rx_crc_errors;
171 unsigned long rx_frame_errors;
172 unsigned long rx_fifo_errors;
173 unsigned long rx_missed_errors;
174 unsigned long tx_aborted_errors;
175 unsigned long tx_carrier_errors;
176 unsigned long tx_fifo_errors;
177 unsigned long tx_heartbeat_errors;
178 unsigned long tx_window_errors;
179 unsigned long rx_compressed;
180 unsigned long tx_compressed;
181 };
182
183
184 #include <linux/cache.h>
185 #include <linux/skbuff.h>
186
187 #ifdef CONFIG_RPS
188 #include <linux/static_key.h>
189 extern struct static_key rps_needed;
190 #endif
191
192 struct neighbour;
193 struct neigh_parms;
194 struct sk_buff;
195
196 struct netdev_hw_addr {
197 struct list_head list;
198 unsigned char addr[MAX_ADDR_LEN];
199 unsigned char type;
200 #define NETDEV_HW_ADDR_T_LAN 1
201 #define NETDEV_HW_ADDR_T_SAN 2
202 #define NETDEV_HW_ADDR_T_SLAVE 3
203 #define NETDEV_HW_ADDR_T_UNICAST 4
204 #define NETDEV_HW_ADDR_T_MULTICAST 5
205 bool global_use;
206 int sync_cnt;
207 int refcount;
208 int synced;
209 struct rcu_head rcu_head;
210 };
211
212 struct netdev_hw_addr_list {
213 struct list_head list;
214 int count;
215 };
216
217 #define netdev_hw_addr_list_count(l) ((l)->count)
218 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
219 #define netdev_hw_addr_list_for_each(ha, l) \
220 list_for_each_entry(ha, &(l)->list, list)
221
222 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
223 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
224 #define netdev_for_each_uc_addr(ha, dev) \
225 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
226
227 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
228 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
229 #define netdev_for_each_mc_addr(ha, dev) \
230 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
231
232 struct hh_cache {
233 u16 hh_len;
234 u16 __pad;
235 seqlock_t hh_lock;
236
237 /* cached hardware header; allow for machine alignment needs. */
238 #define HH_DATA_MOD 16
239 #define HH_DATA_OFF(__len) \
240 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
241 #define HH_DATA_ALIGN(__len) \
242 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
243 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
244 };
245
246 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
247 * Alternative is:
248 * dev->hard_header_len ? (dev->hard_header_len +
249 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
250 *
251 * We could use other alignment values, but we must maintain the
252 * relationship HH alignment <= LL alignment.
253 */
254 #define LL_RESERVED_SPACE(dev) \
255 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
256 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
257 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258
259 struct header_ops {
260 int (*create) (struct sk_buff *skb, struct net_device *dev,
261 unsigned short type, const void *daddr,
262 const void *saddr, unsigned int len);
263 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
264 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
265 void (*cache_update)(struct hh_cache *hh,
266 const struct net_device *dev,
267 const unsigned char *haddr);
268 };
269
270 /* These flag bits are private to the generic network queueing
271 * layer, they may not be explicitly referenced by any other
272 * code.
273 */
274
275 enum netdev_state_t {
276 __LINK_STATE_START,
277 __LINK_STATE_PRESENT,
278 __LINK_STATE_NOCARRIER,
279 __LINK_STATE_LINKWATCH_PENDING,
280 __LINK_STATE_DORMANT,
281 };
282
283
284 /*
285 * This structure holds at boot time configured netdevice settings. They
286 * are then used in the device probing.
287 */
288 struct netdev_boot_setup {
289 char name[IFNAMSIZ];
290 struct ifmap map;
291 };
292 #define NETDEV_BOOT_SETUP_MAX 8
293
294 int __init netdev_boot_setup(char *str);
295
296 /*
297 * Structure for NAPI scheduling similar to tasklet but with weighting
298 */
299 struct napi_struct {
300 /* The poll_list must only be managed by the entity which
301 * changes the state of the NAPI_STATE_SCHED bit. This means
302 * whoever atomically sets that bit can add this napi_struct
303 * to the per-cpu poll_list, and whoever clears that bit
304 * can remove from the list right before clearing the bit.
305 */
306 struct list_head poll_list;
307
308 unsigned long state;
309 int weight;
310 unsigned int gro_count;
311 int (*poll)(struct napi_struct *, int);
312 #ifdef CONFIG_NETPOLL
313 spinlock_t poll_lock;
314 int poll_owner;
315 #endif
316 struct net_device *dev;
317 struct sk_buff *gro_list;
318 struct sk_buff *skb;
319 struct hrtimer timer;
320 struct list_head dev_list;
321 struct hlist_node napi_hash_node;
322 unsigned int napi_id;
323 };
324
325 enum {
326 NAPI_STATE_SCHED, /* Poll is scheduled */
327 NAPI_STATE_DISABLE, /* Disable pending */
328 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
329 NAPI_STATE_HASHED, /* In NAPI hash */
330 };
331
332 enum gro_result {
333 GRO_MERGED,
334 GRO_MERGED_FREE,
335 GRO_HELD,
336 GRO_NORMAL,
337 GRO_DROP,
338 };
339 typedef enum gro_result gro_result_t;
340
341 /*
342 * enum rx_handler_result - Possible return values for rx_handlers.
343 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
344 * further.
345 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
346 * case skb->dev was changed by rx_handler.
347 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
348 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
349 *
350 * rx_handlers are functions called from inside __netif_receive_skb(), to do
351 * special processing of the skb, prior to delivery to protocol handlers.
352 *
353 * Currently, a net_device can only have a single rx_handler registered. Trying
354 * to register a second rx_handler will return -EBUSY.
355 *
356 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
357 * To unregister a rx_handler on a net_device, use
358 * netdev_rx_handler_unregister().
359 *
360 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
361 * do with the skb.
362 *
363 * If the rx_handler consumed to skb in some way, it should return
364 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
365 * the skb to be delivered in some other ways.
366 *
367 * If the rx_handler changed skb->dev, to divert the skb to another
368 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
369 * new device will be called if it exists.
370 *
371 * If the rx_handler consider the skb should be ignored, it should return
372 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
373 * are registered on exact device (ptype->dev == skb->dev).
374 *
375 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
376 * delivered, it should return RX_HANDLER_PASS.
377 *
378 * A device without a registered rx_handler will behave as if rx_handler
379 * returned RX_HANDLER_PASS.
380 */
381
382 enum rx_handler_result {
383 RX_HANDLER_CONSUMED,
384 RX_HANDLER_ANOTHER,
385 RX_HANDLER_EXACT,
386 RX_HANDLER_PASS,
387 };
388 typedef enum rx_handler_result rx_handler_result_t;
389 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
390
391 void __napi_schedule(struct napi_struct *n);
392 void __napi_schedule_irqoff(struct napi_struct *n);
393
394 static inline bool napi_disable_pending(struct napi_struct *n)
395 {
396 return test_bit(NAPI_STATE_DISABLE, &n->state);
397 }
398
399 /**
400 * napi_schedule_prep - check if napi can be scheduled
401 * @n: napi context
402 *
403 * Test if NAPI routine is already running, and if not mark
404 * it as running. This is used as a condition variable
405 * insure only one NAPI poll instance runs. We also make
406 * sure there is no pending NAPI disable.
407 */
408 static inline bool napi_schedule_prep(struct napi_struct *n)
409 {
410 return !napi_disable_pending(n) &&
411 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
412 }
413
414 /**
415 * napi_schedule - schedule NAPI poll
416 * @n: napi context
417 *
418 * Schedule NAPI poll routine to be called if it is not already
419 * running.
420 */
421 static inline void napi_schedule(struct napi_struct *n)
422 {
423 if (napi_schedule_prep(n))
424 __napi_schedule(n);
425 }
426
427 /**
428 * napi_schedule_irqoff - schedule NAPI poll
429 * @n: napi context
430 *
431 * Variant of napi_schedule(), assuming hard irqs are masked.
432 */
433 static inline void napi_schedule_irqoff(struct napi_struct *n)
434 {
435 if (napi_schedule_prep(n))
436 __napi_schedule_irqoff(n);
437 }
438
439 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
440 static inline bool napi_reschedule(struct napi_struct *napi)
441 {
442 if (napi_schedule_prep(napi)) {
443 __napi_schedule(napi);
444 return true;
445 }
446 return false;
447 }
448
449 void __napi_complete(struct napi_struct *n);
450 void napi_complete_done(struct napi_struct *n, int work_done);
451 /**
452 * napi_complete - NAPI processing complete
453 * @n: napi context
454 *
455 * Mark NAPI processing as complete.
456 * Consider using napi_complete_done() instead.
457 */
458 static inline void napi_complete(struct napi_struct *n)
459 {
460 return napi_complete_done(n, 0);
461 }
462
463 /**
464 * napi_by_id - lookup a NAPI by napi_id
465 * @napi_id: hashed napi_id
466 *
467 * lookup @napi_id in napi_hash table
468 * must be called under rcu_read_lock()
469 */
470 struct napi_struct *napi_by_id(unsigned int napi_id);
471
472 /**
473 * napi_hash_add - add a NAPI to global hashtable
474 * @napi: napi context
475 *
476 * generate a new napi_id and store a @napi under it in napi_hash
477 */
478 void napi_hash_add(struct napi_struct *napi);
479
480 /**
481 * napi_hash_del - remove a NAPI from global table
482 * @napi: napi context
483 *
484 * Warning: caller must observe rcu grace period
485 * before freeing memory containing @napi
486 */
487 void napi_hash_del(struct napi_struct *napi);
488
489 /**
490 * napi_disable - prevent NAPI from scheduling
491 * @n: napi context
492 *
493 * Stop NAPI from being scheduled on this context.
494 * Waits till any outstanding processing completes.
495 */
496 void napi_disable(struct napi_struct *n);
497
498 /**
499 * napi_enable - enable NAPI scheduling
500 * @n: napi context
501 *
502 * Resume NAPI from being scheduled on this context.
503 * Must be paired with napi_disable.
504 */
505 static inline void napi_enable(struct napi_struct *n)
506 {
507 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
508 smp_mb__before_atomic();
509 clear_bit(NAPI_STATE_SCHED, &n->state);
510 }
511
512 #ifdef CONFIG_SMP
513 /**
514 * napi_synchronize - wait until NAPI is not running
515 * @n: napi context
516 *
517 * Wait until NAPI is done being scheduled on this context.
518 * Waits till any outstanding processing completes but
519 * does not disable future activations.
520 */
521 static inline void napi_synchronize(const struct napi_struct *n)
522 {
523 while (test_bit(NAPI_STATE_SCHED, &n->state))
524 msleep(1);
525 }
526 #else
527 # define napi_synchronize(n) barrier()
528 #endif
529
530 enum netdev_queue_state_t {
531 __QUEUE_STATE_DRV_XOFF,
532 __QUEUE_STATE_STACK_XOFF,
533 __QUEUE_STATE_FROZEN,
534 };
535
536 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
537 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
538 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
539
540 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
541 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
542 QUEUE_STATE_FROZEN)
543 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
544 QUEUE_STATE_FROZEN)
545
546 /*
547 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
548 * netif_tx_* functions below are used to manipulate this flag. The
549 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
550 * queue independently. The netif_xmit_*stopped functions below are called
551 * to check if the queue has been stopped by the driver or stack (either
552 * of the XOFF bits are set in the state). Drivers should not need to call
553 * netif_xmit*stopped functions, they should only be using netif_tx_*.
554 */
555
556 struct netdev_queue {
557 /*
558 * read mostly part
559 */
560 struct net_device *dev;
561 struct Qdisc __rcu *qdisc;
562 struct Qdisc *qdisc_sleeping;
563 #ifdef CONFIG_SYSFS
564 struct kobject kobj;
565 #endif
566 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
567 int numa_node;
568 #endif
569 /*
570 * write mostly part
571 */
572 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
573 int xmit_lock_owner;
574 /*
575 * please use this field instead of dev->trans_start
576 */
577 unsigned long trans_start;
578
579 /*
580 * Number of TX timeouts for this queue
581 * (/sys/class/net/DEV/Q/trans_timeout)
582 */
583 unsigned long trans_timeout;
584
585 unsigned long state;
586
587 #ifdef CONFIG_BQL
588 struct dql dql;
589 #endif
590 unsigned long tx_maxrate;
591 } ____cacheline_aligned_in_smp;
592
593 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
594 {
595 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
596 return q->numa_node;
597 #else
598 return NUMA_NO_NODE;
599 #endif
600 }
601
602 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
603 {
604 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
605 q->numa_node = node;
606 #endif
607 }
608
609 #ifdef CONFIG_RPS
610 /*
611 * This structure holds an RPS map which can be of variable length. The
612 * map is an array of CPUs.
613 */
614 struct rps_map {
615 unsigned int len;
616 struct rcu_head rcu;
617 u16 cpus[0];
618 };
619 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
620
621 /*
622 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
623 * tail pointer for that CPU's input queue at the time of last enqueue, and
624 * a hardware filter index.
625 */
626 struct rps_dev_flow {
627 u16 cpu;
628 u16 filter;
629 unsigned int last_qtail;
630 };
631 #define RPS_NO_FILTER 0xffff
632
633 /*
634 * The rps_dev_flow_table structure contains a table of flow mappings.
635 */
636 struct rps_dev_flow_table {
637 unsigned int mask;
638 struct rcu_head rcu;
639 struct rps_dev_flow flows[0];
640 };
641 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
642 ((_num) * sizeof(struct rps_dev_flow)))
643
644 /*
645 * The rps_sock_flow_table contains mappings of flows to the last CPU
646 * on which they were processed by the application (set in recvmsg).
647 * Each entry is a 32bit value. Upper part is the high order bits
648 * of flow hash, lower part is cpu number.
649 * rps_cpu_mask is used to partition the space, depending on number of
650 * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
651 * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
652 * meaning we use 32-6=26 bits for the hash.
653 */
654 struct rps_sock_flow_table {
655 u32 mask;
656
657 u32 ents[0] ____cacheline_aligned_in_smp;
658 };
659 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
660
661 #define RPS_NO_CPU 0xffff
662
663 extern u32 rps_cpu_mask;
664 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
665
666 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
667 u32 hash)
668 {
669 if (table && hash) {
670 unsigned int index = hash & table->mask;
671 u32 val = hash & ~rps_cpu_mask;
672
673 /* We only give a hint, preemption can change cpu under us */
674 val |= raw_smp_processor_id();
675
676 if (table->ents[index] != val)
677 table->ents[index] = val;
678 }
679 }
680
681 #ifdef CONFIG_RFS_ACCEL
682 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
683 u16 filter_id);
684 #endif
685 #endif /* CONFIG_RPS */
686
687 /* This structure contains an instance of an RX queue. */
688 struct netdev_rx_queue {
689 #ifdef CONFIG_RPS
690 struct rps_map __rcu *rps_map;
691 struct rps_dev_flow_table __rcu *rps_flow_table;
692 #endif
693 struct kobject kobj;
694 struct net_device *dev;
695 } ____cacheline_aligned_in_smp;
696
697 /*
698 * RX queue sysfs structures and functions.
699 */
700 struct rx_queue_attribute {
701 struct attribute attr;
702 ssize_t (*show)(struct netdev_rx_queue *queue,
703 struct rx_queue_attribute *attr, char *buf);
704 ssize_t (*store)(struct netdev_rx_queue *queue,
705 struct rx_queue_attribute *attr, const char *buf, size_t len);
706 };
707
708 #ifdef CONFIG_XPS
709 /*
710 * This structure holds an XPS map which can be of variable length. The
711 * map is an array of queues.
712 */
713 struct xps_map {
714 unsigned int len;
715 unsigned int alloc_len;
716 struct rcu_head rcu;
717 u16 queues[0];
718 };
719 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
720 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
721 / sizeof(u16))
722
723 /*
724 * This structure holds all XPS maps for device. Maps are indexed by CPU.
725 */
726 struct xps_dev_maps {
727 struct rcu_head rcu;
728 struct xps_map __rcu *cpu_map[0];
729 };
730 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
731 (nr_cpu_ids * sizeof(struct xps_map *)))
732 #endif /* CONFIG_XPS */
733
734 #define TC_MAX_QUEUE 16
735 #define TC_BITMASK 15
736 /* HW offloaded queuing disciplines txq count and offset maps */
737 struct netdev_tc_txq {
738 u16 count;
739 u16 offset;
740 };
741
742 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
743 /*
744 * This structure is to hold information about the device
745 * configured to run FCoE protocol stack.
746 */
747 struct netdev_fcoe_hbainfo {
748 char manufacturer[64];
749 char serial_number[64];
750 char hardware_version[64];
751 char driver_version[64];
752 char optionrom_version[64];
753 char firmware_version[64];
754 char model[256];
755 char model_description[256];
756 };
757 #endif
758
759 #define MAX_PHYS_ITEM_ID_LEN 32
760
761 /* This structure holds a unique identifier to identify some
762 * physical item (port for example) used by a netdevice.
763 */
764 struct netdev_phys_item_id {
765 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
766 unsigned char id_len;
767 };
768
769 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
770 struct sk_buff *skb);
771
772 /*
773 * This structure defines the management hooks for network devices.
774 * The following hooks can be defined; unless noted otherwise, they are
775 * optional and can be filled with a null pointer.
776 *
777 * int (*ndo_init)(struct net_device *dev);
778 * This function is called once when network device is registered.
779 * The network device can use this to any late stage initializaton
780 * or semantic validattion. It can fail with an error code which will
781 * be propogated back to register_netdev
782 *
783 * void (*ndo_uninit)(struct net_device *dev);
784 * This function is called when device is unregistered or when registration
785 * fails. It is not called if init fails.
786 *
787 * int (*ndo_open)(struct net_device *dev);
788 * This function is called when network device transistions to the up
789 * state.
790 *
791 * int (*ndo_stop)(struct net_device *dev);
792 * This function is called when network device transistions to the down
793 * state.
794 *
795 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
796 * struct net_device *dev);
797 * Called when a packet needs to be transmitted.
798 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
799 * the queue before that can happen; it's for obsolete devices and weird
800 * corner cases, but the stack really does a non-trivial amount
801 * of useless work if you return NETDEV_TX_BUSY.
802 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
803 * Required can not be NULL.
804 *
805 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
806 * void *accel_priv, select_queue_fallback_t fallback);
807 * Called to decide which queue to when device supports multiple
808 * transmit queues.
809 *
810 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
811 * This function is called to allow device receiver to make
812 * changes to configuration when multicast or promiscious is enabled.
813 *
814 * void (*ndo_set_rx_mode)(struct net_device *dev);
815 * This function is called device changes address list filtering.
816 * If driver handles unicast address filtering, it should set
817 * IFF_UNICAST_FLT to its priv_flags.
818 *
819 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
820 * This function is called when the Media Access Control address
821 * needs to be changed. If this interface is not defined, the
822 * mac address can not be changed.
823 *
824 * int (*ndo_validate_addr)(struct net_device *dev);
825 * Test if Media Access Control address is valid for the device.
826 *
827 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
828 * Called when a user request an ioctl which can't be handled by
829 * the generic interface code. If not defined ioctl's return
830 * not supported error code.
831 *
832 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
833 * Used to set network devices bus interface parameters. This interface
834 * is retained for legacy reason, new devices should use the bus
835 * interface (PCI) for low level management.
836 *
837 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
838 * Called when a user wants to change the Maximum Transfer Unit
839 * of a device. If not defined, any request to change MTU will
840 * will return an error.
841 *
842 * void (*ndo_tx_timeout)(struct net_device *dev);
843 * Callback uses when the transmitter has not made any progress
844 * for dev->watchdog ticks.
845 *
846 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
847 * struct rtnl_link_stats64 *storage);
848 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
849 * Called when a user wants to get the network device usage
850 * statistics. Drivers must do one of the following:
851 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
852 * rtnl_link_stats64 structure passed by the caller.
853 * 2. Define @ndo_get_stats to update a net_device_stats structure
854 * (which should normally be dev->stats) and return a pointer to
855 * it. The structure may be changed asynchronously only if each
856 * field is written atomically.
857 * 3. Update dev->stats asynchronously and atomically, and define
858 * neither operation.
859 *
860 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
861 * If device support VLAN filtering this function is called when a
862 * VLAN id is registered.
863 *
864 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
865 * If device support VLAN filtering this function is called when a
866 * VLAN id is unregistered.
867 *
868 * void (*ndo_poll_controller)(struct net_device *dev);
869 *
870 * SR-IOV management functions.
871 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
872 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
873 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
874 * int max_tx_rate);
875 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
876 * int (*ndo_get_vf_config)(struct net_device *dev,
877 * int vf, struct ifla_vf_info *ivf);
878 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
879 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
880 * struct nlattr *port[]);
881 *
882 * Enable or disable the VF ability to query its RSS Redirection Table and
883 * Hash Key. This is needed since on some devices VF share this information
884 * with PF and querying it may adduce a theoretical security risk.
885 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
886 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
887 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
888 * Called to setup 'tc' number of traffic classes in the net device. This
889 * is always called from the stack with the rtnl lock held and netif tx
890 * queues stopped. This allows the netdevice to perform queue management
891 * safely.
892 *
893 * Fiber Channel over Ethernet (FCoE) offload functions.
894 * int (*ndo_fcoe_enable)(struct net_device *dev);
895 * Called when the FCoE protocol stack wants to start using LLD for FCoE
896 * so the underlying device can perform whatever needed configuration or
897 * initialization to support acceleration of FCoE traffic.
898 *
899 * int (*ndo_fcoe_disable)(struct net_device *dev);
900 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
901 * so the underlying device can perform whatever needed clean-ups to
902 * stop supporting acceleration of FCoE traffic.
903 *
904 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
905 * struct scatterlist *sgl, unsigned int sgc);
906 * Called when the FCoE Initiator wants to initialize an I/O that
907 * is a possible candidate for Direct Data Placement (DDP). The LLD can
908 * perform necessary setup and returns 1 to indicate the device is set up
909 * successfully to perform DDP on this I/O, otherwise this returns 0.
910 *
911 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
912 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
913 * indicated by the FC exchange id 'xid', so the underlying device can
914 * clean up and reuse resources for later DDP requests.
915 *
916 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
917 * struct scatterlist *sgl, unsigned int sgc);
918 * Called when the FCoE Target wants to initialize an I/O that
919 * is a possible candidate for Direct Data Placement (DDP). The LLD can
920 * perform necessary setup and returns 1 to indicate the device is set up
921 * successfully to perform DDP on this I/O, otherwise this returns 0.
922 *
923 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
924 * struct netdev_fcoe_hbainfo *hbainfo);
925 * Called when the FCoE Protocol stack wants information on the underlying
926 * device. This information is utilized by the FCoE protocol stack to
927 * register attributes with Fiber Channel management service as per the
928 * FC-GS Fabric Device Management Information(FDMI) specification.
929 *
930 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
931 * Called when the underlying device wants to override default World Wide
932 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
933 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
934 * protocol stack to use.
935 *
936 * RFS acceleration.
937 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
938 * u16 rxq_index, u32 flow_id);
939 * Set hardware filter for RFS. rxq_index is the target queue index;
940 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
941 * Return the filter ID on success, or a negative error code.
942 *
943 * Slave management functions (for bridge, bonding, etc).
944 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
945 * Called to make another netdev an underling.
946 *
947 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
948 * Called to release previously enslaved netdev.
949 *
950 * Feature/offload setting functions.
951 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
952 * netdev_features_t features);
953 * Adjusts the requested feature flags according to device-specific
954 * constraints, and returns the resulting flags. Must not modify
955 * the device state.
956 *
957 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
958 * Called to update device configuration to new features. Passed
959 * feature set might be less than what was returned by ndo_fix_features()).
960 * Must return >0 or -errno if it changed dev->features itself.
961 *
962 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
963 * struct net_device *dev,
964 * const unsigned char *addr, u16 vid, u16 flags)
965 * Adds an FDB entry to dev for addr.
966 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
967 * struct net_device *dev,
968 * const unsigned char *addr, u16 vid)
969 * Deletes the FDB entry from dev coresponding to addr.
970 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
971 * struct net_device *dev, struct net_device *filter_dev,
972 * int idx)
973 * Used to add FDB entries to dump requests. Implementers should add
974 * entries to skb and update idx with the number of entries.
975 *
976 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
977 * u16 flags)
978 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
979 * struct net_device *dev, u32 filter_mask,
980 * int nlflags)
981 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
982 * u16 flags);
983 *
984 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
985 * Called to change device carrier. Soft-devices (like dummy, team, etc)
986 * which do not represent real hardware may define this to allow their
987 * userspace components to manage their virtual carrier state. Devices
988 * that determine carrier state from physical hardware properties (eg
989 * network cables) or protocol-dependent mechanisms (eg
990 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
991 *
992 * int (*ndo_get_phys_port_id)(struct net_device *dev,
993 * struct netdev_phys_item_id *ppid);
994 * Called to get ID of physical port of this device. If driver does
995 * not implement this, it is assumed that the hw is not able to have
996 * multiple net devices on single physical port.
997 *
998 * void (*ndo_add_vxlan_port)(struct net_device *dev,
999 * sa_family_t sa_family, __be16 port);
1000 * Called by vxlan to notiy a driver about the UDP port and socket
1001 * address family that vxlan is listnening to. It is called only when
1002 * a new port starts listening. The operation is protected by the
1003 * vxlan_net->sock_lock.
1004 *
1005 * void (*ndo_del_vxlan_port)(struct net_device *dev,
1006 * sa_family_t sa_family, __be16 port);
1007 * Called by vxlan to notify the driver about a UDP port and socket
1008 * address family that vxlan is not listening to anymore. The operation
1009 * is protected by the vxlan_net->sock_lock.
1010 *
1011 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1012 * struct net_device *dev)
1013 * Called by upper layer devices to accelerate switching or other
1014 * station functionality into hardware. 'pdev is the lowerdev
1015 * to use for the offload and 'dev' is the net device that will
1016 * back the offload. Returns a pointer to the private structure
1017 * the upper layer will maintain.
1018 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1019 * Called by upper layer device to delete the station created
1020 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1021 * the station and priv is the structure returned by the add
1022 * operation.
1023 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1024 * struct net_device *dev,
1025 * void *priv);
1026 * Callback to use for xmit over the accelerated station. This
1027 * is used in place of ndo_start_xmit on accelerated net
1028 * devices.
1029 * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1030 * struct net_device *dev
1031 * netdev_features_t features);
1032 * Called by core transmit path to determine if device is capable of
1033 * performing offload operations on a given packet. This is to give
1034 * the device an opportunity to implement any restrictions that cannot
1035 * be otherwise expressed by feature flags. The check is called with
1036 * the set of features that the stack has calculated and it returns
1037 * those the driver believes to be appropriate.
1038 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1039 * int queue_index, u32 maxrate);
1040 * Called when a user wants to set a max-rate limitation of specific
1041 * TX queue.
1042 * int (*ndo_get_iflink)(const struct net_device *dev);
1043 * Called to get the iflink value of this device.
1044 * void (*ndo_change_proto_down)(struct net_device *dev,
1045 * bool proto_down);
1046 * This function is used to pass protocol port error state information
1047 * to the switch driver. The switch driver can react to the proto_down
1048 * by doing a phys down on the associated switch port.
1049 *
1050 */
1051 struct net_device_ops {
1052 int (*ndo_init)(struct net_device *dev);
1053 void (*ndo_uninit)(struct net_device *dev);
1054 int (*ndo_open)(struct net_device *dev);
1055 int (*ndo_stop)(struct net_device *dev);
1056 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
1057 struct net_device *dev);
1058 u16 (*ndo_select_queue)(struct net_device *dev,
1059 struct sk_buff *skb,
1060 void *accel_priv,
1061 select_queue_fallback_t fallback);
1062 void (*ndo_change_rx_flags)(struct net_device *dev,
1063 int flags);
1064 void (*ndo_set_rx_mode)(struct net_device *dev);
1065 int (*ndo_set_mac_address)(struct net_device *dev,
1066 void *addr);
1067 int (*ndo_validate_addr)(struct net_device *dev);
1068 int (*ndo_do_ioctl)(struct net_device *dev,
1069 struct ifreq *ifr, int cmd);
1070 int (*ndo_set_config)(struct net_device *dev,
1071 struct ifmap *map);
1072 int (*ndo_change_mtu)(struct net_device *dev,
1073 int new_mtu);
1074 int (*ndo_neigh_setup)(struct net_device *dev,
1075 struct neigh_parms *);
1076 void (*ndo_tx_timeout) (struct net_device *dev);
1077
1078 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1079 struct rtnl_link_stats64 *storage);
1080 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1081
1082 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1083 __be16 proto, u16 vid);
1084 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1085 __be16 proto, u16 vid);
1086 #ifdef CONFIG_NET_POLL_CONTROLLER
1087 void (*ndo_poll_controller)(struct net_device *dev);
1088 int (*ndo_netpoll_setup)(struct net_device *dev,
1089 struct netpoll_info *info);
1090 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1091 #endif
1092 #ifdef CONFIG_NET_RX_BUSY_POLL
1093 int (*ndo_busy_poll)(struct napi_struct *dev);
1094 #endif
1095 int (*ndo_set_vf_mac)(struct net_device *dev,
1096 int queue, u8 *mac);
1097 int (*ndo_set_vf_vlan)(struct net_device *dev,
1098 int queue, u16 vlan, u8 qos);
1099 int (*ndo_set_vf_rate)(struct net_device *dev,
1100 int vf, int min_tx_rate,
1101 int max_tx_rate);
1102 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1103 int vf, bool setting);
1104 int (*ndo_get_vf_config)(struct net_device *dev,
1105 int vf,
1106 struct ifla_vf_info *ivf);
1107 int (*ndo_set_vf_link_state)(struct net_device *dev,
1108 int vf, int link_state);
1109 int (*ndo_get_vf_stats)(struct net_device *dev,
1110 int vf,
1111 struct ifla_vf_stats
1112 *vf_stats);
1113 int (*ndo_set_vf_port)(struct net_device *dev,
1114 int vf,
1115 struct nlattr *port[]);
1116 int (*ndo_get_vf_port)(struct net_device *dev,
1117 int vf, struct sk_buff *skb);
1118 int (*ndo_set_vf_rss_query_en)(
1119 struct net_device *dev,
1120 int vf, bool setting);
1121 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1122 #if IS_ENABLED(CONFIG_FCOE)
1123 int (*ndo_fcoe_enable)(struct net_device *dev);
1124 int (*ndo_fcoe_disable)(struct net_device *dev);
1125 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1126 u16 xid,
1127 struct scatterlist *sgl,
1128 unsigned int sgc);
1129 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1130 u16 xid);
1131 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1132 u16 xid,
1133 struct scatterlist *sgl,
1134 unsigned int sgc);
1135 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1136 struct netdev_fcoe_hbainfo *hbainfo);
1137 #endif
1138
1139 #if IS_ENABLED(CONFIG_LIBFCOE)
1140 #define NETDEV_FCOE_WWNN 0
1141 #define NETDEV_FCOE_WWPN 1
1142 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1143 u64 *wwn, int type);
1144 #endif
1145
1146 #ifdef CONFIG_RFS_ACCEL
1147 int (*ndo_rx_flow_steer)(struct net_device *dev,
1148 const struct sk_buff *skb,
1149 u16 rxq_index,
1150 u32 flow_id);
1151 #endif
1152 int (*ndo_add_slave)(struct net_device *dev,
1153 struct net_device *slave_dev);
1154 int (*ndo_del_slave)(struct net_device *dev,
1155 struct net_device *slave_dev);
1156 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1157 netdev_features_t features);
1158 int (*ndo_set_features)(struct net_device *dev,
1159 netdev_features_t features);
1160 int (*ndo_neigh_construct)(struct neighbour *n);
1161 void (*ndo_neigh_destroy)(struct neighbour *n);
1162
1163 int (*ndo_fdb_add)(struct ndmsg *ndm,
1164 struct nlattr *tb[],
1165 struct net_device *dev,
1166 const unsigned char *addr,
1167 u16 vid,
1168 u16 flags);
1169 int (*ndo_fdb_del)(struct ndmsg *ndm,
1170 struct nlattr *tb[],
1171 struct net_device *dev,
1172 const unsigned char *addr,
1173 u16 vid);
1174 int (*ndo_fdb_dump)(struct sk_buff *skb,
1175 struct netlink_callback *cb,
1176 struct net_device *dev,
1177 struct net_device *filter_dev,
1178 int idx);
1179
1180 int (*ndo_bridge_setlink)(struct net_device *dev,
1181 struct nlmsghdr *nlh,
1182 u16 flags);
1183 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1184 u32 pid, u32 seq,
1185 struct net_device *dev,
1186 u32 filter_mask,
1187 int nlflags);
1188 int (*ndo_bridge_dellink)(struct net_device *dev,
1189 struct nlmsghdr *nlh,
1190 u16 flags);
1191 int (*ndo_change_carrier)(struct net_device *dev,
1192 bool new_carrier);
1193 int (*ndo_get_phys_port_id)(struct net_device *dev,
1194 struct netdev_phys_item_id *ppid);
1195 int (*ndo_get_phys_port_name)(struct net_device *dev,
1196 char *name, size_t len);
1197 void (*ndo_add_vxlan_port)(struct net_device *dev,
1198 sa_family_t sa_family,
1199 __be16 port);
1200 void (*ndo_del_vxlan_port)(struct net_device *dev,
1201 sa_family_t sa_family,
1202 __be16 port);
1203
1204 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1205 struct net_device *dev);
1206 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1207 void *priv);
1208
1209 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1210 struct net_device *dev,
1211 void *priv);
1212 int (*ndo_get_lock_subclass)(struct net_device *dev);
1213 netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1214 struct net_device *dev,
1215 netdev_features_t features);
1216 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1217 int queue_index,
1218 u32 maxrate);
1219 int (*ndo_get_iflink)(const struct net_device *dev);
1220 int (*ndo_change_proto_down)(struct net_device *dev,
1221 bool proto_down);
1222 };
1223
1224 /**
1225 * enum net_device_priv_flags - &struct net_device priv_flags
1226 *
1227 * These are the &struct net_device, they are only set internally
1228 * by drivers and used in the kernel. These flags are invisible to
1229 * userspace, this means that the order of these flags can change
1230 * during any kernel release.
1231 *
1232 * You should have a pretty good reason to be extending these flags.
1233 *
1234 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1235 * @IFF_EBRIDGE: Ethernet bridging device
1236 * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active
1237 * @IFF_MASTER_8023AD: bonding master, 802.3ad
1238 * @IFF_MASTER_ALB: bonding master, balance-alb
1239 * @IFF_BONDING: bonding master or slave
1240 * @IFF_SLAVE_NEEDARP: need ARPs for validation
1241 * @IFF_ISATAP: ISATAP interface (RFC4214)
1242 * @IFF_MASTER_ARPMON: bonding master, ARP mon in use
1243 * @IFF_WAN_HDLC: WAN HDLC device
1244 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1245 * release skb->dst
1246 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1247 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1248 * @IFF_MACVLAN_PORT: device used as macvlan port
1249 * @IFF_BRIDGE_PORT: device used as bridge port
1250 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1251 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1252 * @IFF_UNICAST_FLT: Supports unicast filtering
1253 * @IFF_TEAM_PORT: device used as team port
1254 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1255 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1256 * change when it's running
1257 * @IFF_MACVLAN: Macvlan device
1258 */
1259 enum netdev_priv_flags {
1260 IFF_802_1Q_VLAN = 1<<0,
1261 IFF_EBRIDGE = 1<<1,
1262 IFF_SLAVE_INACTIVE = 1<<2,
1263 IFF_MASTER_8023AD = 1<<3,
1264 IFF_MASTER_ALB = 1<<4,
1265 IFF_BONDING = 1<<5,
1266 IFF_SLAVE_NEEDARP = 1<<6,
1267 IFF_ISATAP = 1<<7,
1268 IFF_MASTER_ARPMON = 1<<8,
1269 IFF_WAN_HDLC = 1<<9,
1270 IFF_XMIT_DST_RELEASE = 1<<10,
1271 IFF_DONT_BRIDGE = 1<<11,
1272 IFF_DISABLE_NETPOLL = 1<<12,
1273 IFF_MACVLAN_PORT = 1<<13,
1274 IFF_BRIDGE_PORT = 1<<14,
1275 IFF_OVS_DATAPATH = 1<<15,
1276 IFF_TX_SKB_SHARING = 1<<16,
1277 IFF_UNICAST_FLT = 1<<17,
1278 IFF_TEAM_PORT = 1<<18,
1279 IFF_SUPP_NOFCS = 1<<19,
1280 IFF_LIVE_ADDR_CHANGE = 1<<20,
1281 IFF_MACVLAN = 1<<21,
1282 IFF_XMIT_DST_RELEASE_PERM = 1<<22,
1283 IFF_IPVLAN_MASTER = 1<<23,
1284 IFF_IPVLAN_SLAVE = 1<<24,
1285 };
1286
1287 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1288 #define IFF_EBRIDGE IFF_EBRIDGE
1289 #define IFF_SLAVE_INACTIVE IFF_SLAVE_INACTIVE
1290 #define IFF_MASTER_8023AD IFF_MASTER_8023AD
1291 #define IFF_MASTER_ALB IFF_MASTER_ALB
1292 #define IFF_BONDING IFF_BONDING
1293 #define IFF_SLAVE_NEEDARP IFF_SLAVE_NEEDARP
1294 #define IFF_ISATAP IFF_ISATAP
1295 #define IFF_MASTER_ARPMON IFF_MASTER_ARPMON
1296 #define IFF_WAN_HDLC IFF_WAN_HDLC
1297 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1298 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1299 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1300 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1301 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1302 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1303 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1304 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1305 #define IFF_TEAM_PORT IFF_TEAM_PORT
1306 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1307 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1308 #define IFF_MACVLAN IFF_MACVLAN
1309 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1310 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER
1311 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE
1312
1313 /**
1314 * struct net_device - The DEVICE structure.
1315 * Actually, this whole structure is a big mistake. It mixes I/O
1316 * data with strictly "high-level" data, and it has to know about
1317 * almost every data structure used in the INET module.
1318 *
1319 * @name: This is the first field of the "visible" part of this structure
1320 * (i.e. as seen by users in the "Space.c" file). It is the name
1321 * of the interface.
1322 *
1323 * @name_hlist: Device name hash chain, please keep it close to name[]
1324 * @ifalias: SNMP alias
1325 * @mem_end: Shared memory end
1326 * @mem_start: Shared memory start
1327 * @base_addr: Device I/O address
1328 * @irq: Device IRQ number
1329 *
1330 * @carrier_changes: Stats to monitor carrier on<->off transitions
1331 *
1332 * @state: Generic network queuing layer state, see netdev_state_t
1333 * @dev_list: The global list of network devices
1334 * @napi_list: List entry, that is used for polling napi devices
1335 * @unreg_list: List entry, that is used, when we are unregistering the
1336 * device, see the function unregister_netdev
1337 * @close_list: List entry, that is used, when we are closing the device
1338 *
1339 * @adj_list: Directly linked devices, like slaves for bonding
1340 * @all_adj_list: All linked devices, *including* neighbours
1341 * @features: Currently active device features
1342 * @hw_features: User-changeable features
1343 *
1344 * @wanted_features: User-requested features
1345 * @vlan_features: Mask of features inheritable by VLAN devices
1346 *
1347 * @hw_enc_features: Mask of features inherited by encapsulating devices
1348 * This field indicates what encapsulation
1349 * offloads the hardware is capable of doing,
1350 * and drivers will need to set them appropriately.
1351 *
1352 * @mpls_features: Mask of features inheritable by MPLS
1353 *
1354 * @ifindex: interface index
1355 * @group: The group, that the device belongs to
1356 *
1357 * @stats: Statistics struct, which was left as a legacy, use
1358 * rtnl_link_stats64 instead
1359 *
1360 * @rx_dropped: Dropped packets by core network,
1361 * do not use this in drivers
1362 * @tx_dropped: Dropped packets by core network,
1363 * do not use this in drivers
1364 *
1365 * @wireless_handlers: List of functions to handle Wireless Extensions,
1366 * instead of ioctl,
1367 * see <net/iw_handler.h> for details.
1368 * @wireless_data: Instance data managed by the core of wireless extensions
1369 *
1370 * @netdev_ops: Includes several pointers to callbacks,
1371 * if one wants to override the ndo_*() functions
1372 * @ethtool_ops: Management operations
1373 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1374 * of Layer 2 headers.
1375 *
1376 * @flags: Interface flags (a la BSD)
1377 * @priv_flags: Like 'flags' but invisible to userspace,
1378 * see if.h for the definitions
1379 * @gflags: Global flags ( kept as legacy )
1380 * @padded: How much padding added by alloc_netdev()
1381 * @operstate: RFC2863 operstate
1382 * @link_mode: Mapping policy to operstate
1383 * @if_port: Selectable AUI, TP, ...
1384 * @dma: DMA channel
1385 * @mtu: Interface MTU value
1386 * @type: Interface hardware type
1387 * @hard_header_len: Hardware header length
1388 *
1389 * @needed_headroom: Extra headroom the hardware may need, but not in all
1390 * cases can this be guaranteed
1391 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1392 * cases can this be guaranteed. Some cases also use
1393 * LL_MAX_HEADER instead to allocate the skb
1394 *
1395 * interface address info:
1396 *
1397 * @perm_addr: Permanent hw address
1398 * @addr_assign_type: Hw address assignment type
1399 * @addr_len: Hardware address length
1400 * @neigh_priv_len; Used in neigh_alloc(),
1401 * initialized only in atm/clip.c
1402 * @dev_id: Used to differentiate devices that share
1403 * the same link layer address
1404 * @dev_port: Used to differentiate devices that share
1405 * the same function
1406 * @addr_list_lock: XXX: need comments on this one
1407 * @uc_promisc: Counter, that indicates, that promiscuous mode
1408 * has been enabled due to the need to listen to
1409 * additional unicast addresses in a device that
1410 * does not implement ndo_set_rx_mode()
1411 * @uc: unicast mac addresses
1412 * @mc: multicast mac addresses
1413 * @dev_addrs: list of device hw addresses
1414 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1415 * @promiscuity: Number of times, the NIC is told to work in
1416 * Promiscuous mode, if it becomes 0 the NIC will
1417 * exit from working in Promiscuous mode
1418 * @allmulti: Counter, enables or disables allmulticast mode
1419 *
1420 * @vlan_info: VLAN info
1421 * @dsa_ptr: dsa specific data
1422 * @tipc_ptr: TIPC specific data
1423 * @atalk_ptr: AppleTalk link
1424 * @ip_ptr: IPv4 specific data
1425 * @dn_ptr: DECnet specific data
1426 * @ip6_ptr: IPv6 specific data
1427 * @ax25_ptr: AX.25 specific data
1428 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1429 *
1430 * @last_rx: Time of last Rx
1431 * @dev_addr: Hw address (before bcast,
1432 * because most packets are unicast)
1433 *
1434 * @_rx: Array of RX queues
1435 * @num_rx_queues: Number of RX queues
1436 * allocated at register_netdev() time
1437 * @real_num_rx_queues: Number of RX queues currently active in device
1438 *
1439 * @rx_handler: handler for received packets
1440 * @rx_handler_data: XXX: need comments on this one
1441 * @ingress_queue: XXX: need comments on this one
1442 * @broadcast: hw bcast address
1443 *
1444 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1445 * indexed by RX queue number. Assigned by driver.
1446 * This must only be set if the ndo_rx_flow_steer
1447 * operation is defined
1448 * @index_hlist: Device index hash chain
1449 *
1450 * @_tx: Array of TX queues
1451 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1452 * @real_num_tx_queues: Number of TX queues currently active in device
1453 * @qdisc: Root qdisc from userspace point of view
1454 * @tx_queue_len: Max frames per queue allowed
1455 * @tx_global_lock: XXX: need comments on this one
1456 *
1457 * @xps_maps: XXX: need comments on this one
1458 *
1459 * @trans_start: Time (in jiffies) of last Tx
1460 * @watchdog_timeo: Represents the timeout that is used by
1461 * the watchdog ( see dev_watchdog() )
1462 * @watchdog_timer: List of timers
1463 *
1464 * @pcpu_refcnt: Number of references to this device
1465 * @todo_list: Delayed register/unregister
1466 * @link_watch_list: XXX: need comments on this one
1467 *
1468 * @reg_state: Register/unregister state machine
1469 * @dismantle: Device is going to be freed
1470 * @rtnl_link_state: This enum represents the phases of creating
1471 * a new link
1472 *
1473 * @destructor: Called from unregister,
1474 * can be used to call free_netdev
1475 * @npinfo: XXX: need comments on this one
1476 * @nd_net: Network namespace this network device is inside
1477 *
1478 * @ml_priv: Mid-layer private
1479 * @lstats: Loopback statistics
1480 * @tstats: Tunnel statistics
1481 * @dstats: Dummy statistics
1482 * @vstats: Virtual ethernet statistics
1483 *
1484 * @garp_port: GARP
1485 * @mrp_port: MRP
1486 *
1487 * @dev: Class/net/name entry
1488 * @sysfs_groups: Space for optional device, statistics and wireless
1489 * sysfs groups
1490 *
1491 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1492 * @rtnl_link_ops: Rtnl_link_ops
1493 *
1494 * @gso_max_size: Maximum size of generic segmentation offload
1495 * @gso_max_segs: Maximum number of segments that can be passed to the
1496 * NIC for GSO
1497 * @gso_min_segs: Minimum number of segments that can be passed to the
1498 * NIC for GSO
1499 *
1500 * @dcbnl_ops: Data Center Bridging netlink ops
1501 * @num_tc: Number of traffic classes in the net device
1502 * @tc_to_txq: XXX: need comments on this one
1503 * @prio_tc_map XXX: need comments on this one
1504 *
1505 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1506 *
1507 * @priomap: XXX: need comments on this one
1508 * @phydev: Physical device may attach itself
1509 * for hardware timestamping
1510 *
1511 * @qdisc_tx_busylock: XXX: need comments on this one
1512 *
1513 * @proto_down: protocol port state information can be sent to the
1514 * switch driver and used to set the phys state of the
1515 * switch port.
1516 *
1517 * FIXME: cleanup struct net_device such that network protocol info
1518 * moves out.
1519 */
1520
1521 struct net_device {
1522 char name[IFNAMSIZ];
1523 struct hlist_node name_hlist;
1524 char *ifalias;
1525 /*
1526 * I/O specific fields
1527 * FIXME: Merge these and struct ifmap into one
1528 */
1529 unsigned long mem_end;
1530 unsigned long mem_start;
1531 unsigned long base_addr;
1532 int irq;
1533
1534 atomic_t carrier_changes;
1535
1536 /*
1537 * Some hardware also needs these fields (state,dev_list,
1538 * napi_list,unreg_list,close_list) but they are not
1539 * part of the usual set specified in Space.c.
1540 */
1541
1542 unsigned long state;
1543
1544 struct list_head dev_list;
1545 struct list_head napi_list;
1546 struct list_head unreg_list;
1547 struct list_head close_list;
1548 struct list_head ptype_all;
1549 struct list_head ptype_specific;
1550
1551 struct {
1552 struct list_head upper;
1553 struct list_head lower;
1554 } adj_list;
1555
1556 struct {
1557 struct list_head upper;
1558 struct list_head lower;
1559 } all_adj_list;
1560
1561 netdev_features_t features;
1562 netdev_features_t hw_features;
1563 netdev_features_t wanted_features;
1564 netdev_features_t vlan_features;
1565 netdev_features_t hw_enc_features;
1566 netdev_features_t mpls_features;
1567
1568 int ifindex;
1569 int group;
1570
1571 struct net_device_stats stats;
1572
1573 atomic_long_t rx_dropped;
1574 atomic_long_t tx_dropped;
1575
1576 #ifdef CONFIG_WIRELESS_EXT
1577 const struct iw_handler_def * wireless_handlers;
1578 struct iw_public_data * wireless_data;
1579 #endif
1580 const struct net_device_ops *netdev_ops;
1581 const struct ethtool_ops *ethtool_ops;
1582 #ifdef CONFIG_NET_SWITCHDEV
1583 const struct switchdev_ops *switchdev_ops;
1584 #endif
1585
1586 const struct header_ops *header_ops;
1587
1588 unsigned int flags;
1589 unsigned int priv_flags;
1590
1591 unsigned short gflags;
1592 unsigned short padded;
1593
1594 unsigned char operstate;
1595 unsigned char link_mode;
1596
1597 unsigned char if_port;
1598 unsigned char dma;
1599
1600 unsigned int mtu;
1601 unsigned short type;
1602 unsigned short hard_header_len;
1603
1604 unsigned short needed_headroom;
1605 unsigned short needed_tailroom;
1606
1607 /* Interface address info. */
1608 unsigned char perm_addr[MAX_ADDR_LEN];
1609 unsigned char addr_assign_type;
1610 unsigned char addr_len;
1611 unsigned short neigh_priv_len;
1612 unsigned short dev_id;
1613 unsigned short dev_port;
1614 spinlock_t addr_list_lock;
1615 unsigned char name_assign_type;
1616 bool uc_promisc;
1617 struct netdev_hw_addr_list uc;
1618 struct netdev_hw_addr_list mc;
1619 struct netdev_hw_addr_list dev_addrs;
1620
1621 #ifdef CONFIG_SYSFS
1622 struct kset *queues_kset;
1623 #endif
1624 unsigned int promiscuity;
1625 unsigned int allmulti;
1626
1627
1628 /* Protocol specific pointers */
1629
1630 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1631 struct vlan_info __rcu *vlan_info;
1632 #endif
1633 #if IS_ENABLED(CONFIG_NET_DSA)
1634 struct dsa_switch_tree *dsa_ptr;
1635 #endif
1636 #if IS_ENABLED(CONFIG_TIPC)
1637 struct tipc_bearer __rcu *tipc_ptr;
1638 #endif
1639 void *atalk_ptr;
1640 struct in_device __rcu *ip_ptr;
1641 struct dn_dev __rcu *dn_ptr;
1642 struct inet6_dev __rcu *ip6_ptr;
1643 void *ax25_ptr;
1644 struct wireless_dev *ieee80211_ptr;
1645 struct wpan_dev *ieee802154_ptr;
1646 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1647 struct mpls_dev __rcu *mpls_ptr;
1648 #endif
1649
1650 /*
1651 * Cache lines mostly used on receive path (including eth_type_trans())
1652 */
1653 unsigned long last_rx;
1654
1655 /* Interface address info used in eth_type_trans() */
1656 unsigned char *dev_addr;
1657
1658
1659 #ifdef CONFIG_SYSFS
1660 struct netdev_rx_queue *_rx;
1661
1662 unsigned int num_rx_queues;
1663 unsigned int real_num_rx_queues;
1664
1665 #endif
1666
1667 unsigned long gro_flush_timeout;
1668 rx_handler_func_t __rcu *rx_handler;
1669 void __rcu *rx_handler_data;
1670
1671 #ifdef CONFIG_NET_CLS_ACT
1672 struct tcf_proto __rcu *ingress_cl_list;
1673 #endif
1674 struct netdev_queue __rcu *ingress_queue;
1675 #ifdef CONFIG_NETFILTER_INGRESS
1676 struct list_head nf_hooks_ingress;
1677 #endif
1678
1679 unsigned char broadcast[MAX_ADDR_LEN];
1680 #ifdef CONFIG_RFS_ACCEL
1681 struct cpu_rmap *rx_cpu_rmap;
1682 #endif
1683 struct hlist_node index_hlist;
1684
1685 /*
1686 * Cache lines mostly used on transmit path
1687 */
1688 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1689 unsigned int num_tx_queues;
1690 unsigned int real_num_tx_queues;
1691 struct Qdisc *qdisc;
1692 unsigned long tx_queue_len;
1693 spinlock_t tx_global_lock;
1694 int watchdog_timeo;
1695
1696 #ifdef CONFIG_XPS
1697 struct xps_dev_maps __rcu *xps_maps;
1698 #endif
1699
1700 /* These may be needed for future network-power-down code. */
1701
1702 /*
1703 * trans_start here is expensive for high speed devices on SMP,
1704 * please use netdev_queue->trans_start instead.
1705 */
1706 unsigned long trans_start;
1707
1708 struct timer_list watchdog_timer;
1709
1710 int __percpu *pcpu_refcnt;
1711 struct list_head todo_list;
1712
1713 struct list_head link_watch_list;
1714
1715 enum { NETREG_UNINITIALIZED=0,
1716 NETREG_REGISTERED, /* completed register_netdevice */
1717 NETREG_UNREGISTERING, /* called unregister_netdevice */
1718 NETREG_UNREGISTERED, /* completed unregister todo */
1719 NETREG_RELEASED, /* called free_netdev */
1720 NETREG_DUMMY, /* dummy device for NAPI poll */
1721 } reg_state:8;
1722
1723 bool dismantle;
1724
1725 enum {
1726 RTNL_LINK_INITIALIZED,
1727 RTNL_LINK_INITIALIZING,
1728 } rtnl_link_state:16;
1729
1730 void (*destructor)(struct net_device *dev);
1731
1732 #ifdef CONFIG_NETPOLL
1733 struct netpoll_info __rcu *npinfo;
1734 #endif
1735
1736 possible_net_t nd_net;
1737
1738 /* mid-layer private */
1739 union {
1740 void *ml_priv;
1741 struct pcpu_lstats __percpu *lstats;
1742 struct pcpu_sw_netstats __percpu *tstats;
1743 struct pcpu_dstats __percpu *dstats;
1744 struct pcpu_vstats __percpu *vstats;
1745 };
1746
1747 struct garp_port __rcu *garp_port;
1748 struct mrp_port __rcu *mrp_port;
1749
1750 struct device dev;
1751 const struct attribute_group *sysfs_groups[4];
1752 const struct attribute_group *sysfs_rx_queue_group;
1753
1754 const struct rtnl_link_ops *rtnl_link_ops;
1755
1756 /* for setting kernel sock attribute on TCP connection setup */
1757 #define GSO_MAX_SIZE 65536
1758 unsigned int gso_max_size;
1759 #define GSO_MAX_SEGS 65535
1760 u16 gso_max_segs;
1761 u16 gso_min_segs;
1762 #ifdef CONFIG_DCB
1763 const struct dcbnl_rtnl_ops *dcbnl_ops;
1764 #endif
1765 u8 num_tc;
1766 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1767 u8 prio_tc_map[TC_BITMASK + 1];
1768
1769 #if IS_ENABLED(CONFIG_FCOE)
1770 unsigned int fcoe_ddp_xid;
1771 #endif
1772 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1773 struct netprio_map __rcu *priomap;
1774 #endif
1775 struct phy_device *phydev;
1776 struct lock_class_key *qdisc_tx_busylock;
1777 bool proto_down;
1778 };
1779 #define to_net_dev(d) container_of(d, struct net_device, dev)
1780
1781 #define NETDEV_ALIGN 32
1782
1783 static inline
1784 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1785 {
1786 return dev->prio_tc_map[prio & TC_BITMASK];
1787 }
1788
1789 static inline
1790 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1791 {
1792 if (tc >= dev->num_tc)
1793 return -EINVAL;
1794
1795 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1796 return 0;
1797 }
1798
1799 static inline
1800 void netdev_reset_tc(struct net_device *dev)
1801 {
1802 dev->num_tc = 0;
1803 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1804 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1805 }
1806
1807 static inline
1808 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1809 {
1810 if (tc >= dev->num_tc)
1811 return -EINVAL;
1812
1813 dev->tc_to_txq[tc].count = count;
1814 dev->tc_to_txq[tc].offset = offset;
1815 return 0;
1816 }
1817
1818 static inline
1819 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1820 {
1821 if (num_tc > TC_MAX_QUEUE)
1822 return -EINVAL;
1823
1824 dev->num_tc = num_tc;
1825 return 0;
1826 }
1827
1828 static inline
1829 int netdev_get_num_tc(struct net_device *dev)
1830 {
1831 return dev->num_tc;
1832 }
1833
1834 static inline
1835 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1836 unsigned int index)
1837 {
1838 return &dev->_tx[index];
1839 }
1840
1841 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1842 const struct sk_buff *skb)
1843 {
1844 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1845 }
1846
1847 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1848 void (*f)(struct net_device *,
1849 struct netdev_queue *,
1850 void *),
1851 void *arg)
1852 {
1853 unsigned int i;
1854
1855 for (i = 0; i < dev->num_tx_queues; i++)
1856 f(dev, &dev->_tx[i], arg);
1857 }
1858
1859 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1860 struct sk_buff *skb,
1861 void *accel_priv);
1862
1863 /*
1864 * Net namespace inlines
1865 */
1866 static inline
1867 struct net *dev_net(const struct net_device *dev)
1868 {
1869 return read_pnet(&dev->nd_net);
1870 }
1871
1872 static inline
1873 void dev_net_set(struct net_device *dev, struct net *net)
1874 {
1875 write_pnet(&dev->nd_net, net);
1876 }
1877
1878 static inline bool netdev_uses_dsa(struct net_device *dev)
1879 {
1880 #if IS_ENABLED(CONFIG_NET_DSA)
1881 if (dev->dsa_ptr != NULL)
1882 return dsa_uses_tagged_protocol(dev->dsa_ptr);
1883 #endif
1884 return false;
1885 }
1886
1887 /**
1888 * netdev_priv - access network device private data
1889 * @dev: network device
1890 *
1891 * Get network device private data
1892 */
1893 static inline void *netdev_priv(const struct net_device *dev)
1894 {
1895 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1896 }
1897
1898 /* Set the sysfs physical device reference for the network logical device
1899 * if set prior to registration will cause a symlink during initialization.
1900 */
1901 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1902
1903 /* Set the sysfs device type for the network logical device to allow
1904 * fine-grained identification of different network device types. For
1905 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1906 */
1907 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1908
1909 /* Default NAPI poll() weight
1910 * Device drivers are strongly advised to not use bigger value
1911 */
1912 #define NAPI_POLL_WEIGHT 64
1913
1914 /**
1915 * netif_napi_add - initialize a napi context
1916 * @dev: network device
1917 * @napi: napi context
1918 * @poll: polling function
1919 * @weight: default weight
1920 *
1921 * netif_napi_add() must be used to initialize a napi context prior to calling
1922 * *any* of the other napi related functions.
1923 */
1924 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1925 int (*poll)(struct napi_struct *, int), int weight);
1926
1927 /**
1928 * netif_napi_del - remove a napi context
1929 * @napi: napi context
1930 *
1931 * netif_napi_del() removes a napi context from the network device napi list
1932 */
1933 void netif_napi_del(struct napi_struct *napi);
1934
1935 struct napi_gro_cb {
1936 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1937 void *frag0;
1938
1939 /* Length of frag0. */
1940 unsigned int frag0_len;
1941
1942 /* This indicates where we are processing relative to skb->data. */
1943 int data_offset;
1944
1945 /* This is non-zero if the packet cannot be merged with the new skb. */
1946 u16 flush;
1947
1948 /* Save the IP ID here and check when we get to the transport layer */
1949 u16 flush_id;
1950
1951 /* Number of segments aggregated. */
1952 u16 count;
1953
1954 /* Start offset for remote checksum offload */
1955 u16 gro_remcsum_start;
1956
1957 /* jiffies when first packet was created/queued */
1958 unsigned long age;
1959
1960 /* Used in ipv6_gro_receive() and foo-over-udp */
1961 u16 proto;
1962
1963 /* This is non-zero if the packet may be of the same flow. */
1964 u8 same_flow:1;
1965
1966 /* Used in udp_gro_receive */
1967 u8 udp_mark:1;
1968
1969 /* GRO checksum is valid */
1970 u8 csum_valid:1;
1971
1972 /* Number of checksums via CHECKSUM_UNNECESSARY */
1973 u8 csum_cnt:3;
1974
1975 /* Free the skb? */
1976 u8 free:2;
1977 #define NAPI_GRO_FREE 1
1978 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1979
1980 /* Used in foo-over-udp, set in udp[46]_gro_receive */
1981 u8 is_ipv6:1;
1982
1983 /* 7 bit hole */
1984
1985 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
1986 __wsum csum;
1987
1988 /* used in skb_gro_receive() slow path */
1989 struct sk_buff *last;
1990 };
1991
1992 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1993
1994 struct packet_type {
1995 __be16 type; /* This is really htons(ether_type). */
1996 struct net_device *dev; /* NULL is wildcarded here */
1997 int (*func) (struct sk_buff *,
1998 struct net_device *,
1999 struct packet_type *,
2000 struct net_device *);
2001 bool (*id_match)(struct packet_type *ptype,
2002 struct sock *sk);
2003 void *af_packet_priv;
2004 struct list_head list;
2005 };
2006
2007 struct offload_callbacks {
2008 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2009 netdev_features_t features);
2010 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2011 struct sk_buff *skb);
2012 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2013 };
2014
2015 struct packet_offload {
2016 __be16 type; /* This is really htons(ether_type). */
2017 u16 priority;
2018 struct offload_callbacks callbacks;
2019 struct list_head list;
2020 };
2021
2022 struct udp_offload;
2023
2024 struct udp_offload_callbacks {
2025 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2026 struct sk_buff *skb,
2027 struct udp_offload *uoff);
2028 int (*gro_complete)(struct sk_buff *skb,
2029 int nhoff,
2030 struct udp_offload *uoff);
2031 };
2032
2033 struct udp_offload {
2034 __be16 port;
2035 u8 ipproto;
2036 struct udp_offload_callbacks callbacks;
2037 };
2038
2039 /* often modified stats are per cpu, other are shared (netdev->stats) */
2040 struct pcpu_sw_netstats {
2041 u64 rx_packets;
2042 u64 rx_bytes;
2043 u64 tx_packets;
2044 u64 tx_bytes;
2045 struct u64_stats_sync syncp;
2046 };
2047
2048 #define netdev_alloc_pcpu_stats(type) \
2049 ({ \
2050 typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
2051 if (pcpu_stats) { \
2052 int __cpu; \
2053 for_each_possible_cpu(__cpu) { \
2054 typeof(type) *stat; \
2055 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2056 u64_stats_init(&stat->syncp); \
2057 } \
2058 } \
2059 pcpu_stats; \
2060 })
2061
2062 #include <linux/notifier.h>
2063
2064 /* netdevice notifier chain. Please remember to update the rtnetlink
2065 * notification exclusion list in rtnetlink_event() when adding new
2066 * types.
2067 */
2068 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
2069 #define NETDEV_DOWN 0x0002
2070 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
2071 detected a hardware crash and restarted
2072 - we can use this eg to kick tcp sessions
2073 once done */
2074 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
2075 #define NETDEV_REGISTER 0x0005
2076 #define NETDEV_UNREGISTER 0x0006
2077 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
2078 #define NETDEV_CHANGEADDR 0x0008
2079 #define NETDEV_GOING_DOWN 0x0009
2080 #define NETDEV_CHANGENAME 0x000A
2081 #define NETDEV_FEAT_CHANGE 0x000B
2082 #define NETDEV_BONDING_FAILOVER 0x000C
2083 #define NETDEV_PRE_UP 0x000D
2084 #define NETDEV_PRE_TYPE_CHANGE 0x000E
2085 #define NETDEV_POST_TYPE_CHANGE 0x000F
2086 #define NETDEV_POST_INIT 0x0010
2087 #define NETDEV_UNREGISTER_FINAL 0x0011
2088 #define NETDEV_RELEASE 0x0012
2089 #define NETDEV_NOTIFY_PEERS 0x0013
2090 #define NETDEV_JOIN 0x0014
2091 #define NETDEV_CHANGEUPPER 0x0015
2092 #define NETDEV_RESEND_IGMP 0x0016
2093 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
2094 #define NETDEV_CHANGEINFODATA 0x0018
2095 #define NETDEV_BONDING_INFO 0x0019
2096
2097 int register_netdevice_notifier(struct notifier_block *nb);
2098 int unregister_netdevice_notifier(struct notifier_block *nb);
2099
2100 struct netdev_notifier_info {
2101 struct net_device *dev;
2102 };
2103
2104 struct netdev_notifier_change_info {
2105 struct netdev_notifier_info info; /* must be first */
2106 unsigned int flags_changed;
2107 };
2108
2109 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2110 struct net_device *dev)
2111 {
2112 info->dev = dev;
2113 }
2114
2115 static inline struct net_device *
2116 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2117 {
2118 return info->dev;
2119 }
2120
2121 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2122
2123
2124 extern rwlock_t dev_base_lock; /* Device list lock */
2125
2126 #define for_each_netdev(net, d) \
2127 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2128 #define for_each_netdev_reverse(net, d) \
2129 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2130 #define for_each_netdev_rcu(net, d) \
2131 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2132 #define for_each_netdev_safe(net, d, n) \
2133 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2134 #define for_each_netdev_continue(net, d) \
2135 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2136 #define for_each_netdev_continue_rcu(net, d) \
2137 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2138 #define for_each_netdev_in_bond_rcu(bond, slave) \
2139 for_each_netdev_rcu(&init_net, slave) \
2140 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2141 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2142
2143 static inline struct net_device *next_net_device(struct net_device *dev)
2144 {
2145 struct list_head *lh;
2146 struct net *net;
2147
2148 net = dev_net(dev);
2149 lh = dev->dev_list.next;
2150 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2151 }
2152
2153 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2154 {
2155 struct list_head *lh;
2156 struct net *net;
2157
2158 net = dev_net(dev);
2159 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2160 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2161 }
2162
2163 static inline struct net_device *first_net_device(struct net *net)
2164 {
2165 return list_empty(&net->dev_base_head) ? NULL :
2166 net_device_entry(net->dev_base_head.next);
2167 }
2168
2169 static inline struct net_device *first_net_device_rcu(struct net *net)
2170 {
2171 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2172
2173 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2174 }
2175
2176 int netdev_boot_setup_check(struct net_device *dev);
2177 unsigned long netdev_boot_base(const char *prefix, int unit);
2178 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2179 const char *hwaddr);
2180 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2181 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2182 void dev_add_pack(struct packet_type *pt);
2183 void dev_remove_pack(struct packet_type *pt);
2184 void __dev_remove_pack(struct packet_type *pt);
2185 void dev_add_offload(struct packet_offload *po);
2186 void dev_remove_offload(struct packet_offload *po);
2187
2188 int dev_get_iflink(const struct net_device *dev);
2189 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2190 unsigned short mask);
2191 struct net_device *dev_get_by_name(struct net *net, const char *name);
2192 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2193 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2194 int dev_alloc_name(struct net_device *dev, const char *name);
2195 int dev_open(struct net_device *dev);
2196 int dev_close(struct net_device *dev);
2197 int dev_close_many(struct list_head *head, bool unlink);
2198 void dev_disable_lro(struct net_device *dev);
2199 int dev_loopback_xmit(struct sock *sk, struct sk_buff *newskb);
2200 int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb);
2201 static inline int dev_queue_xmit(struct sk_buff *skb)
2202 {
2203 return dev_queue_xmit_sk(skb->sk, skb);
2204 }
2205 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2206 int register_netdevice(struct net_device *dev);
2207 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2208 void unregister_netdevice_many(struct list_head *head);
2209 static inline void unregister_netdevice(struct net_device *dev)
2210 {
2211 unregister_netdevice_queue(dev, NULL);
2212 }
2213
2214 int netdev_refcnt_read(const struct net_device *dev);
2215 void free_netdev(struct net_device *dev);
2216 void netdev_freemem(struct net_device *dev);
2217 void synchronize_net(void);
2218 int init_dummy_netdev(struct net_device *dev);
2219
2220 DECLARE_PER_CPU(int, xmit_recursion);
2221 static inline int dev_recursion_level(void)
2222 {
2223 return this_cpu_read(xmit_recursion);
2224 }
2225
2226 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2227 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2228 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2229 int netdev_get_name(struct net *net, char *name, int ifindex);
2230 int dev_restart(struct net_device *dev);
2231 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2232
2233 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2234 {
2235 return NAPI_GRO_CB(skb)->data_offset;
2236 }
2237
2238 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2239 {
2240 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2241 }
2242
2243 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2244 {
2245 NAPI_GRO_CB(skb)->data_offset += len;
2246 }
2247
2248 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2249 unsigned int offset)
2250 {
2251 return NAPI_GRO_CB(skb)->frag0 + offset;
2252 }
2253
2254 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2255 {
2256 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2257 }
2258
2259 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2260 unsigned int offset)
2261 {
2262 if (!pskb_may_pull(skb, hlen))
2263 return NULL;
2264
2265 NAPI_GRO_CB(skb)->frag0 = NULL;
2266 NAPI_GRO_CB(skb)->frag0_len = 0;
2267 return skb->data + offset;
2268 }
2269
2270 static inline void *skb_gro_network_header(struct sk_buff *skb)
2271 {
2272 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2273 skb_network_offset(skb);
2274 }
2275
2276 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2277 const void *start, unsigned int len)
2278 {
2279 if (NAPI_GRO_CB(skb)->csum_valid)
2280 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2281 csum_partial(start, len, 0));
2282 }
2283
2284 /* GRO checksum functions. These are logical equivalents of the normal
2285 * checksum functions (in skbuff.h) except that they operate on the GRO
2286 * offsets and fields in sk_buff.
2287 */
2288
2289 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2290
2291 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2292 {
2293 return (NAPI_GRO_CB(skb)->gro_remcsum_start - skb_headroom(skb) ==
2294 skb_gro_offset(skb));
2295 }
2296
2297 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2298 bool zero_okay,
2299 __sum16 check)
2300 {
2301 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2302 skb_checksum_start_offset(skb) <
2303 skb_gro_offset(skb)) &&
2304 !skb_at_gro_remcsum_start(skb) &&
2305 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2306 (!zero_okay || check));
2307 }
2308
2309 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2310 __wsum psum)
2311 {
2312 if (NAPI_GRO_CB(skb)->csum_valid &&
2313 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2314 return 0;
2315
2316 NAPI_GRO_CB(skb)->csum = psum;
2317
2318 return __skb_gro_checksum_complete(skb);
2319 }
2320
2321 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2322 {
2323 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2324 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2325 NAPI_GRO_CB(skb)->csum_cnt--;
2326 } else {
2327 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2328 * verified a new top level checksum or an encapsulated one
2329 * during GRO. This saves work if we fallback to normal path.
2330 */
2331 __skb_incr_checksum_unnecessary(skb);
2332 }
2333 }
2334
2335 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2336 compute_pseudo) \
2337 ({ \
2338 __sum16 __ret = 0; \
2339 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2340 __ret = __skb_gro_checksum_validate_complete(skb, \
2341 compute_pseudo(skb, proto)); \
2342 if (__ret) \
2343 __skb_mark_checksum_bad(skb); \
2344 else \
2345 skb_gro_incr_csum_unnecessary(skb); \
2346 __ret; \
2347 })
2348
2349 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2350 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2351
2352 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2353 compute_pseudo) \
2354 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2355
2356 #define skb_gro_checksum_simple_validate(skb) \
2357 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2358
2359 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2360 {
2361 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2362 !NAPI_GRO_CB(skb)->csum_valid);
2363 }
2364
2365 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2366 __sum16 check, __wsum pseudo)
2367 {
2368 NAPI_GRO_CB(skb)->csum = ~pseudo;
2369 NAPI_GRO_CB(skb)->csum_valid = 1;
2370 }
2371
2372 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2373 do { \
2374 if (__skb_gro_checksum_convert_check(skb)) \
2375 __skb_gro_checksum_convert(skb, check, \
2376 compute_pseudo(skb, proto)); \
2377 } while (0)
2378
2379 struct gro_remcsum {
2380 int offset;
2381 __wsum delta;
2382 };
2383
2384 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2385 {
2386 grc->offset = 0;
2387 grc->delta = 0;
2388 }
2389
2390 static inline void skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2391 int start, int offset,
2392 struct gro_remcsum *grc,
2393 bool nopartial)
2394 {
2395 __wsum delta;
2396
2397 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2398
2399 if (!nopartial) {
2400 NAPI_GRO_CB(skb)->gro_remcsum_start =
2401 ((unsigned char *)ptr + start) - skb->head;
2402 return;
2403 }
2404
2405 delta = remcsum_adjust(ptr, NAPI_GRO_CB(skb)->csum, start, offset);
2406
2407 /* Adjust skb->csum since we changed the packet */
2408 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2409
2410 grc->offset = (ptr + offset) - (void *)skb->head;
2411 grc->delta = delta;
2412 }
2413
2414 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2415 struct gro_remcsum *grc)
2416 {
2417 if (!grc->delta)
2418 return;
2419
2420 remcsum_unadjust((__sum16 *)(skb->head + grc->offset), grc->delta);
2421 }
2422
2423 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2424 unsigned short type,
2425 const void *daddr, const void *saddr,
2426 unsigned int len)
2427 {
2428 if (!dev->header_ops || !dev->header_ops->create)
2429 return 0;
2430
2431 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2432 }
2433
2434 static inline int dev_parse_header(const struct sk_buff *skb,
2435 unsigned char *haddr)
2436 {
2437 const struct net_device *dev = skb->dev;
2438
2439 if (!dev->header_ops || !dev->header_ops->parse)
2440 return 0;
2441 return dev->header_ops->parse(skb, haddr);
2442 }
2443
2444 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2445 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2446 static inline int unregister_gifconf(unsigned int family)
2447 {
2448 return register_gifconf(family, NULL);
2449 }
2450
2451 #ifdef CONFIG_NET_FLOW_LIMIT
2452 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2453 struct sd_flow_limit {
2454 u64 count;
2455 unsigned int num_buckets;
2456 unsigned int history_head;
2457 u16 history[FLOW_LIMIT_HISTORY];
2458 u8 buckets[];
2459 };
2460
2461 extern int netdev_flow_limit_table_len;
2462 #endif /* CONFIG_NET_FLOW_LIMIT */
2463
2464 /*
2465 * Incoming packets are placed on per-cpu queues
2466 */
2467 struct softnet_data {
2468 struct list_head poll_list;
2469 struct sk_buff_head process_queue;
2470
2471 /* stats */
2472 unsigned int processed;
2473 unsigned int time_squeeze;
2474 unsigned int cpu_collision;
2475 unsigned int received_rps;
2476 #ifdef CONFIG_RPS
2477 struct softnet_data *rps_ipi_list;
2478 #endif
2479 #ifdef CONFIG_NET_FLOW_LIMIT
2480 struct sd_flow_limit __rcu *flow_limit;
2481 #endif
2482 struct Qdisc *output_queue;
2483 struct Qdisc **output_queue_tailp;
2484 struct sk_buff *completion_queue;
2485
2486 #ifdef CONFIG_RPS
2487 /* Elements below can be accessed between CPUs for RPS */
2488 struct call_single_data csd ____cacheline_aligned_in_smp;
2489 struct softnet_data *rps_ipi_next;
2490 unsigned int cpu;
2491 unsigned int input_queue_head;
2492 unsigned int input_queue_tail;
2493 #endif
2494 unsigned int dropped;
2495 struct sk_buff_head input_pkt_queue;
2496 struct napi_struct backlog;
2497
2498 };
2499
2500 static inline void input_queue_head_incr(struct softnet_data *sd)
2501 {
2502 #ifdef CONFIG_RPS
2503 sd->input_queue_head++;
2504 #endif
2505 }
2506
2507 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2508 unsigned int *qtail)
2509 {
2510 #ifdef CONFIG_RPS
2511 *qtail = ++sd->input_queue_tail;
2512 #endif
2513 }
2514
2515 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2516
2517 void __netif_schedule(struct Qdisc *q);
2518 void netif_schedule_queue(struct netdev_queue *txq);
2519
2520 static inline void netif_tx_schedule_all(struct net_device *dev)
2521 {
2522 unsigned int i;
2523
2524 for (i = 0; i < dev->num_tx_queues; i++)
2525 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2526 }
2527
2528 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2529 {
2530 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2531 }
2532
2533 /**
2534 * netif_start_queue - allow transmit
2535 * @dev: network device
2536 *
2537 * Allow upper layers to call the device hard_start_xmit routine.
2538 */
2539 static inline void netif_start_queue(struct net_device *dev)
2540 {
2541 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2542 }
2543
2544 static inline void netif_tx_start_all_queues(struct net_device *dev)
2545 {
2546 unsigned int i;
2547
2548 for (i = 0; i < dev->num_tx_queues; i++) {
2549 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2550 netif_tx_start_queue(txq);
2551 }
2552 }
2553
2554 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2555
2556 /**
2557 * netif_wake_queue - restart transmit
2558 * @dev: network device
2559 *
2560 * Allow upper layers to call the device hard_start_xmit routine.
2561 * Used for flow control when transmit resources are available.
2562 */
2563 static inline void netif_wake_queue(struct net_device *dev)
2564 {
2565 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2566 }
2567
2568 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2569 {
2570 unsigned int i;
2571
2572 for (i = 0; i < dev->num_tx_queues; i++) {
2573 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2574 netif_tx_wake_queue(txq);
2575 }
2576 }
2577
2578 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2579 {
2580 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2581 }
2582
2583 /**
2584 * netif_stop_queue - stop transmitted packets
2585 * @dev: network device
2586 *
2587 * Stop upper layers calling the device hard_start_xmit routine.
2588 * Used for flow control when transmit resources are unavailable.
2589 */
2590 static inline void netif_stop_queue(struct net_device *dev)
2591 {
2592 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2593 }
2594
2595 void netif_tx_stop_all_queues(struct net_device *dev);
2596
2597 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2598 {
2599 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2600 }
2601
2602 /**
2603 * netif_queue_stopped - test if transmit queue is flowblocked
2604 * @dev: network device
2605 *
2606 * Test if transmit queue on device is currently unable to send.
2607 */
2608 static inline bool netif_queue_stopped(const struct net_device *dev)
2609 {
2610 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2611 }
2612
2613 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2614 {
2615 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2616 }
2617
2618 static inline bool
2619 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2620 {
2621 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2622 }
2623
2624 static inline bool
2625 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2626 {
2627 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2628 }
2629
2630 /**
2631 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2632 * @dev_queue: pointer to transmit queue
2633 *
2634 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2635 * to give appropriate hint to the cpu.
2636 */
2637 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2638 {
2639 #ifdef CONFIG_BQL
2640 prefetchw(&dev_queue->dql.num_queued);
2641 #endif
2642 }
2643
2644 /**
2645 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2646 * @dev_queue: pointer to transmit queue
2647 *
2648 * BQL enabled drivers might use this helper in their TX completion path,
2649 * to give appropriate hint to the cpu.
2650 */
2651 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2652 {
2653 #ifdef CONFIG_BQL
2654 prefetchw(&dev_queue->dql.limit);
2655 #endif
2656 }
2657
2658 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2659 unsigned int bytes)
2660 {
2661 #ifdef CONFIG_BQL
2662 dql_queued(&dev_queue->dql, bytes);
2663
2664 if (likely(dql_avail(&dev_queue->dql) >= 0))
2665 return;
2666
2667 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2668
2669 /*
2670 * The XOFF flag must be set before checking the dql_avail below,
2671 * because in netdev_tx_completed_queue we update the dql_completed
2672 * before checking the XOFF flag.
2673 */
2674 smp_mb();
2675
2676 /* check again in case another CPU has just made room avail */
2677 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2678 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2679 #endif
2680 }
2681
2682 /**
2683 * netdev_sent_queue - report the number of bytes queued to hardware
2684 * @dev: network device
2685 * @bytes: number of bytes queued to the hardware device queue
2686 *
2687 * Report the number of bytes queued for sending/completion to the network
2688 * device hardware queue. @bytes should be a good approximation and should
2689 * exactly match netdev_completed_queue() @bytes
2690 */
2691 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2692 {
2693 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2694 }
2695
2696 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2697 unsigned int pkts, unsigned int bytes)
2698 {
2699 #ifdef CONFIG_BQL
2700 if (unlikely(!bytes))
2701 return;
2702
2703 dql_completed(&dev_queue->dql, bytes);
2704
2705 /*
2706 * Without the memory barrier there is a small possiblity that
2707 * netdev_tx_sent_queue will miss the update and cause the queue to
2708 * be stopped forever
2709 */
2710 smp_mb();
2711
2712 if (dql_avail(&dev_queue->dql) < 0)
2713 return;
2714
2715 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2716 netif_schedule_queue(dev_queue);
2717 #endif
2718 }
2719
2720 /**
2721 * netdev_completed_queue - report bytes and packets completed by device
2722 * @dev: network device
2723 * @pkts: actual number of packets sent over the medium
2724 * @bytes: actual number of bytes sent over the medium
2725 *
2726 * Report the number of bytes and packets transmitted by the network device
2727 * hardware queue over the physical medium, @bytes must exactly match the
2728 * @bytes amount passed to netdev_sent_queue()
2729 */
2730 static inline void netdev_completed_queue(struct net_device *dev,
2731 unsigned int pkts, unsigned int bytes)
2732 {
2733 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2734 }
2735
2736 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2737 {
2738 #ifdef CONFIG_BQL
2739 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2740 dql_reset(&q->dql);
2741 #endif
2742 }
2743
2744 /**
2745 * netdev_reset_queue - reset the packets and bytes count of a network device
2746 * @dev_queue: network device
2747 *
2748 * Reset the bytes and packet count of a network device and clear the
2749 * software flow control OFF bit for this network device
2750 */
2751 static inline void netdev_reset_queue(struct net_device *dev_queue)
2752 {
2753 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2754 }
2755
2756 /**
2757 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
2758 * @dev: network device
2759 * @queue_index: given tx queue index
2760 *
2761 * Returns 0 if given tx queue index >= number of device tx queues,
2762 * otherwise returns the originally passed tx queue index.
2763 */
2764 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2765 {
2766 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2767 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2768 dev->name, queue_index,
2769 dev->real_num_tx_queues);
2770 return 0;
2771 }
2772
2773 return queue_index;
2774 }
2775
2776 /**
2777 * netif_running - test if up
2778 * @dev: network device
2779 *
2780 * Test if the device has been brought up.
2781 */
2782 static inline bool netif_running(const struct net_device *dev)
2783 {
2784 return test_bit(__LINK_STATE_START, &dev->state);
2785 }
2786
2787 /*
2788 * Routines to manage the subqueues on a device. We only need start
2789 * stop, and a check if it's stopped. All other device management is
2790 * done at the overall netdevice level.
2791 * Also test the device if we're multiqueue.
2792 */
2793
2794 /**
2795 * netif_start_subqueue - allow sending packets on subqueue
2796 * @dev: network device
2797 * @queue_index: sub queue index
2798 *
2799 * Start individual transmit queue of a device with multiple transmit queues.
2800 */
2801 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2802 {
2803 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2804
2805 netif_tx_start_queue(txq);
2806 }
2807
2808 /**
2809 * netif_stop_subqueue - stop sending packets on subqueue
2810 * @dev: network device
2811 * @queue_index: sub queue index
2812 *
2813 * Stop individual transmit queue of a device with multiple transmit queues.
2814 */
2815 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2816 {
2817 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2818 netif_tx_stop_queue(txq);
2819 }
2820
2821 /**
2822 * netif_subqueue_stopped - test status of subqueue
2823 * @dev: network device
2824 * @queue_index: sub queue index
2825 *
2826 * Check individual transmit queue of a device with multiple transmit queues.
2827 */
2828 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2829 u16 queue_index)
2830 {
2831 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2832
2833 return netif_tx_queue_stopped(txq);
2834 }
2835
2836 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2837 struct sk_buff *skb)
2838 {
2839 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2840 }
2841
2842 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2843
2844 #ifdef CONFIG_XPS
2845 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2846 u16 index);
2847 #else
2848 static inline int netif_set_xps_queue(struct net_device *dev,
2849 const struct cpumask *mask,
2850 u16 index)
2851 {
2852 return 0;
2853 }
2854 #endif
2855
2856 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2857 unsigned int num_tx_queues);
2858
2859 /*
2860 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2861 * as a distribution range limit for the returned value.
2862 */
2863 static inline u16 skb_tx_hash(const struct net_device *dev,
2864 struct sk_buff *skb)
2865 {
2866 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2867 }
2868
2869 /**
2870 * netif_is_multiqueue - test if device has multiple transmit queues
2871 * @dev: network device
2872 *
2873 * Check if device has multiple transmit queues
2874 */
2875 static inline bool netif_is_multiqueue(const struct net_device *dev)
2876 {
2877 return dev->num_tx_queues > 1;
2878 }
2879
2880 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2881
2882 #ifdef CONFIG_SYSFS
2883 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2884 #else
2885 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2886 unsigned int rxq)
2887 {
2888 return 0;
2889 }
2890 #endif
2891
2892 #ifdef CONFIG_SYSFS
2893 static inline unsigned int get_netdev_rx_queue_index(
2894 struct netdev_rx_queue *queue)
2895 {
2896 struct net_device *dev = queue->dev;
2897 int index = queue - dev->_rx;
2898
2899 BUG_ON(index >= dev->num_rx_queues);
2900 return index;
2901 }
2902 #endif
2903
2904 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
2905 int netif_get_num_default_rss_queues(void);
2906
2907 enum skb_free_reason {
2908 SKB_REASON_CONSUMED,
2909 SKB_REASON_DROPPED,
2910 };
2911
2912 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2913 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2914
2915 /*
2916 * It is not allowed to call kfree_skb() or consume_skb() from hardware
2917 * interrupt context or with hardware interrupts being disabled.
2918 * (in_irq() || irqs_disabled())
2919 *
2920 * We provide four helpers that can be used in following contexts :
2921 *
2922 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2923 * replacing kfree_skb(skb)
2924 *
2925 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2926 * Typically used in place of consume_skb(skb) in TX completion path
2927 *
2928 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2929 * replacing kfree_skb(skb)
2930 *
2931 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2932 * and consumed a packet. Used in place of consume_skb(skb)
2933 */
2934 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2935 {
2936 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2937 }
2938
2939 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2940 {
2941 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2942 }
2943
2944 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2945 {
2946 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2947 }
2948
2949 static inline void dev_consume_skb_any(struct sk_buff *skb)
2950 {
2951 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2952 }
2953
2954 int netif_rx(struct sk_buff *skb);
2955 int netif_rx_ni(struct sk_buff *skb);
2956 int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb);
2957 static inline int netif_receive_skb(struct sk_buff *skb)
2958 {
2959 return netif_receive_skb_sk(skb->sk, skb);
2960 }
2961 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2962 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2963 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2964 gro_result_t napi_gro_frags(struct napi_struct *napi);
2965 struct packet_offload *gro_find_receive_by_type(__be16 type);
2966 struct packet_offload *gro_find_complete_by_type(__be16 type);
2967
2968 static inline void napi_free_frags(struct napi_struct *napi)
2969 {
2970 kfree_skb(napi->skb);
2971 napi->skb = NULL;
2972 }
2973
2974 int netdev_rx_handler_register(struct net_device *dev,
2975 rx_handler_func_t *rx_handler,
2976 void *rx_handler_data);
2977 void netdev_rx_handler_unregister(struct net_device *dev);
2978
2979 bool dev_valid_name(const char *name);
2980 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2981 int dev_ethtool(struct net *net, struct ifreq *);
2982 unsigned int dev_get_flags(const struct net_device *);
2983 int __dev_change_flags(struct net_device *, unsigned int flags);
2984 int dev_change_flags(struct net_device *, unsigned int);
2985 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2986 unsigned int gchanges);
2987 int dev_change_name(struct net_device *, const char *);
2988 int dev_set_alias(struct net_device *, const char *, size_t);
2989 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2990 int dev_set_mtu(struct net_device *, int);
2991 void dev_set_group(struct net_device *, int);
2992 int dev_set_mac_address(struct net_device *, struct sockaddr *);
2993 int dev_change_carrier(struct net_device *, bool new_carrier);
2994 int dev_get_phys_port_id(struct net_device *dev,
2995 struct netdev_phys_item_id *ppid);
2996 int dev_get_phys_port_name(struct net_device *dev,
2997 char *name, size_t len);
2998 int dev_change_proto_down(struct net_device *dev, bool proto_down);
2999 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3000 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3001 struct netdev_queue *txq, int *ret);
3002 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3003 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3004 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
3005
3006 extern int netdev_budget;
3007
3008 /* Called by rtnetlink.c:rtnl_unlock() */
3009 void netdev_run_todo(void);
3010
3011 /**
3012 * dev_put - release reference to device
3013 * @dev: network device
3014 *
3015 * Release reference to device to allow it to be freed.
3016 */
3017 static inline void dev_put(struct net_device *dev)
3018 {
3019 this_cpu_dec(*dev->pcpu_refcnt);
3020 }
3021
3022 /**
3023 * dev_hold - get reference to device
3024 * @dev: network device
3025 *
3026 * Hold reference to device to keep it from being freed.
3027 */
3028 static inline void dev_hold(struct net_device *dev)
3029 {
3030 this_cpu_inc(*dev->pcpu_refcnt);
3031 }
3032
3033 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3034 * and _off may be called from IRQ context, but it is caller
3035 * who is responsible for serialization of these calls.
3036 *
3037 * The name carrier is inappropriate, these functions should really be
3038 * called netif_lowerlayer_*() because they represent the state of any
3039 * kind of lower layer not just hardware media.
3040 */
3041
3042 void linkwatch_init_dev(struct net_device *dev);
3043 void linkwatch_fire_event(struct net_device *dev);
3044 void linkwatch_forget_dev(struct net_device *dev);
3045
3046 /**
3047 * netif_carrier_ok - test if carrier present
3048 * @dev: network device
3049 *
3050 * Check if carrier is present on device
3051 */
3052 static inline bool netif_carrier_ok(const struct net_device *dev)
3053 {
3054 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3055 }
3056
3057 unsigned long dev_trans_start(struct net_device *dev);
3058
3059 void __netdev_watchdog_up(struct net_device *dev);
3060
3061 void netif_carrier_on(struct net_device *dev);
3062
3063 void netif_carrier_off(struct net_device *dev);
3064
3065 /**
3066 * netif_dormant_on - mark device as dormant.
3067 * @dev: network device
3068 *
3069 * Mark device as dormant (as per RFC2863).
3070 *
3071 * The dormant state indicates that the relevant interface is not
3072 * actually in a condition to pass packets (i.e., it is not 'up') but is
3073 * in a "pending" state, waiting for some external event. For "on-
3074 * demand" interfaces, this new state identifies the situation where the
3075 * interface is waiting for events to place it in the up state.
3076 *
3077 */
3078 static inline void netif_dormant_on(struct net_device *dev)
3079 {
3080 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3081 linkwatch_fire_event(dev);
3082 }
3083
3084 /**
3085 * netif_dormant_off - set device as not dormant.
3086 * @dev: network device
3087 *
3088 * Device is not in dormant state.
3089 */
3090 static inline void netif_dormant_off(struct net_device *dev)
3091 {
3092 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3093 linkwatch_fire_event(dev);
3094 }
3095
3096 /**
3097 * netif_dormant - test if carrier present
3098 * @dev: network device
3099 *
3100 * Check if carrier is present on device
3101 */
3102 static inline bool netif_dormant(const struct net_device *dev)
3103 {
3104 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3105 }
3106
3107
3108 /**
3109 * netif_oper_up - test if device is operational
3110 * @dev: network device
3111 *
3112 * Check if carrier is operational
3113 */
3114 static inline bool netif_oper_up(const struct net_device *dev)
3115 {
3116 return (dev->operstate == IF_OPER_UP ||
3117 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3118 }
3119
3120 /**
3121 * netif_device_present - is device available or removed
3122 * @dev: network device
3123 *
3124 * Check if device has not been removed from system.
3125 */
3126 static inline bool netif_device_present(struct net_device *dev)
3127 {
3128 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3129 }
3130
3131 void netif_device_detach(struct net_device *dev);
3132
3133 void netif_device_attach(struct net_device *dev);
3134
3135 /*
3136 * Network interface message level settings
3137 */
3138
3139 enum {
3140 NETIF_MSG_DRV = 0x0001,
3141 NETIF_MSG_PROBE = 0x0002,
3142 NETIF_MSG_LINK = 0x0004,
3143 NETIF_MSG_TIMER = 0x0008,
3144 NETIF_MSG_IFDOWN = 0x0010,
3145 NETIF_MSG_IFUP = 0x0020,
3146 NETIF_MSG_RX_ERR = 0x0040,
3147 NETIF_MSG_TX_ERR = 0x0080,
3148 NETIF_MSG_TX_QUEUED = 0x0100,
3149 NETIF_MSG_INTR = 0x0200,
3150 NETIF_MSG_TX_DONE = 0x0400,
3151 NETIF_MSG_RX_STATUS = 0x0800,
3152 NETIF_MSG_PKTDATA = 0x1000,
3153 NETIF_MSG_HW = 0x2000,
3154 NETIF_MSG_WOL = 0x4000,
3155 };
3156
3157 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3158 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3159 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3160 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3161 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3162 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3163 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3164 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3165 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3166 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3167 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3168 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3169 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3170 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3171 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3172
3173 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3174 {
3175 /* use default */
3176 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3177 return default_msg_enable_bits;
3178 if (debug_value == 0) /* no output */
3179 return 0;
3180 /* set low N bits */
3181 return (1 << debug_value) - 1;
3182 }
3183
3184 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3185 {
3186 spin_lock(&txq->_xmit_lock);
3187 txq->xmit_lock_owner = cpu;
3188 }
3189
3190 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3191 {
3192 spin_lock_bh(&txq->_xmit_lock);
3193 txq->xmit_lock_owner = smp_processor_id();
3194 }
3195
3196 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3197 {
3198 bool ok = spin_trylock(&txq->_xmit_lock);
3199 if (likely(ok))
3200 txq->xmit_lock_owner = smp_processor_id();
3201 return ok;
3202 }
3203
3204 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3205 {
3206 txq->xmit_lock_owner = -1;
3207 spin_unlock(&txq->_xmit_lock);
3208 }
3209
3210 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3211 {
3212 txq->xmit_lock_owner = -1;
3213 spin_unlock_bh(&txq->_xmit_lock);
3214 }
3215
3216 static inline void txq_trans_update(struct netdev_queue *txq)
3217 {
3218 if (txq->xmit_lock_owner != -1)
3219 txq->trans_start = jiffies;
3220 }
3221
3222 /**
3223 * netif_tx_lock - grab network device transmit lock
3224 * @dev: network device
3225 *
3226 * Get network device transmit lock
3227 */
3228 static inline void netif_tx_lock(struct net_device *dev)
3229 {
3230 unsigned int i;
3231 int cpu;
3232
3233 spin_lock(&dev->tx_global_lock);
3234 cpu = smp_processor_id();
3235 for (i = 0; i < dev->num_tx_queues; i++) {
3236 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3237
3238 /* We are the only thread of execution doing a
3239 * freeze, but we have to grab the _xmit_lock in
3240 * order to synchronize with threads which are in
3241 * the ->hard_start_xmit() handler and already
3242 * checked the frozen bit.
3243 */
3244 __netif_tx_lock(txq, cpu);
3245 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3246 __netif_tx_unlock(txq);
3247 }
3248 }
3249
3250 static inline void netif_tx_lock_bh(struct net_device *dev)
3251 {
3252 local_bh_disable();
3253 netif_tx_lock(dev);
3254 }
3255
3256 static inline void netif_tx_unlock(struct net_device *dev)
3257 {
3258 unsigned int i;
3259
3260 for (i = 0; i < dev->num_tx_queues; i++) {
3261 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3262
3263 /* No need to grab the _xmit_lock here. If the
3264 * queue is not stopped for another reason, we
3265 * force a schedule.
3266 */
3267 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3268 netif_schedule_queue(txq);
3269 }
3270 spin_unlock(&dev->tx_global_lock);
3271 }
3272
3273 static inline void netif_tx_unlock_bh(struct net_device *dev)
3274 {
3275 netif_tx_unlock(dev);
3276 local_bh_enable();
3277 }
3278
3279 #define HARD_TX_LOCK(dev, txq, cpu) { \
3280 if ((dev->features & NETIF_F_LLTX) == 0) { \
3281 __netif_tx_lock(txq, cpu); \
3282 } \
3283 }
3284
3285 #define HARD_TX_TRYLOCK(dev, txq) \
3286 (((dev->features & NETIF_F_LLTX) == 0) ? \
3287 __netif_tx_trylock(txq) : \
3288 true )
3289
3290 #define HARD_TX_UNLOCK(dev, txq) { \
3291 if ((dev->features & NETIF_F_LLTX) == 0) { \
3292 __netif_tx_unlock(txq); \
3293 } \
3294 }
3295
3296 static inline void netif_tx_disable(struct net_device *dev)
3297 {
3298 unsigned int i;
3299 int cpu;
3300
3301 local_bh_disable();
3302 cpu = smp_processor_id();
3303 for (i = 0; i < dev->num_tx_queues; i++) {
3304 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3305
3306 __netif_tx_lock(txq, cpu);
3307 netif_tx_stop_queue(txq);
3308 __netif_tx_unlock(txq);
3309 }
3310 local_bh_enable();
3311 }
3312
3313 static inline void netif_addr_lock(struct net_device *dev)
3314 {
3315 spin_lock(&dev->addr_list_lock);
3316 }
3317
3318 static inline void netif_addr_lock_nested(struct net_device *dev)
3319 {
3320 int subclass = SINGLE_DEPTH_NESTING;
3321
3322 if (dev->netdev_ops->ndo_get_lock_subclass)
3323 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3324
3325 spin_lock_nested(&dev->addr_list_lock, subclass);
3326 }
3327
3328 static inline void netif_addr_lock_bh(struct net_device *dev)
3329 {
3330 spin_lock_bh(&dev->addr_list_lock);
3331 }
3332
3333 static inline void netif_addr_unlock(struct net_device *dev)
3334 {
3335 spin_unlock(&dev->addr_list_lock);
3336 }
3337
3338 static inline void netif_addr_unlock_bh(struct net_device *dev)
3339 {
3340 spin_unlock_bh(&dev->addr_list_lock);
3341 }
3342
3343 /*
3344 * dev_addrs walker. Should be used only for read access. Call with
3345 * rcu_read_lock held.
3346 */
3347 #define for_each_dev_addr(dev, ha) \
3348 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3349
3350 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3351
3352 void ether_setup(struct net_device *dev);
3353
3354 /* Support for loadable net-drivers */
3355 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3356 unsigned char name_assign_type,
3357 void (*setup)(struct net_device *),
3358 unsigned int txqs, unsigned int rxqs);
3359 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3360 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3361
3362 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3363 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3364 count)
3365
3366 int register_netdev(struct net_device *dev);
3367 void unregister_netdev(struct net_device *dev);
3368
3369 /* General hardware address lists handling functions */
3370 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3371 struct netdev_hw_addr_list *from_list, int addr_len);
3372 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3373 struct netdev_hw_addr_list *from_list, int addr_len);
3374 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3375 struct net_device *dev,
3376 int (*sync)(struct net_device *, const unsigned char *),
3377 int (*unsync)(struct net_device *,
3378 const unsigned char *));
3379 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3380 struct net_device *dev,
3381 int (*unsync)(struct net_device *,
3382 const unsigned char *));
3383 void __hw_addr_init(struct netdev_hw_addr_list *list);
3384
3385 /* Functions used for device addresses handling */
3386 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3387 unsigned char addr_type);
3388 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3389 unsigned char addr_type);
3390 void dev_addr_flush(struct net_device *dev);
3391 int dev_addr_init(struct net_device *dev);
3392
3393 /* Functions used for unicast addresses handling */
3394 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3395 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3396 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3397 int dev_uc_sync(struct net_device *to, struct net_device *from);
3398 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3399 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3400 void dev_uc_flush(struct net_device *dev);
3401 void dev_uc_init(struct net_device *dev);
3402
3403 /**
3404 * __dev_uc_sync - Synchonize device's unicast list
3405 * @dev: device to sync
3406 * @sync: function to call if address should be added
3407 * @unsync: function to call if address should be removed
3408 *
3409 * Add newly added addresses to the interface, and release
3410 * addresses that have been deleted.
3411 **/
3412 static inline int __dev_uc_sync(struct net_device *dev,
3413 int (*sync)(struct net_device *,
3414 const unsigned char *),
3415 int (*unsync)(struct net_device *,
3416 const unsigned char *))
3417 {
3418 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3419 }
3420
3421 /**
3422 * __dev_uc_unsync - Remove synchronized addresses from device
3423 * @dev: device to sync
3424 * @unsync: function to call if address should be removed
3425 *
3426 * Remove all addresses that were added to the device by dev_uc_sync().
3427 **/
3428 static inline void __dev_uc_unsync(struct net_device *dev,
3429 int (*unsync)(struct net_device *,
3430 const unsigned char *))
3431 {
3432 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3433 }
3434
3435 /* Functions used for multicast addresses handling */
3436 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3437 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3438 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3439 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3440 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3441 int dev_mc_sync(struct net_device *to, struct net_device *from);
3442 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3443 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3444 void dev_mc_flush(struct net_device *dev);
3445 void dev_mc_init(struct net_device *dev);
3446
3447 /**
3448 * __dev_mc_sync - Synchonize device's multicast list
3449 * @dev: device to sync
3450 * @sync: function to call if address should be added
3451 * @unsync: function to call if address should be removed
3452 *
3453 * Add newly added addresses to the interface, and release
3454 * addresses that have been deleted.
3455 **/
3456 static inline int __dev_mc_sync(struct net_device *dev,
3457 int (*sync)(struct net_device *,
3458 const unsigned char *),
3459 int (*unsync)(struct net_device *,
3460 const unsigned char *))
3461 {
3462 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3463 }
3464
3465 /**
3466 * __dev_mc_unsync - Remove synchronized addresses from device
3467 * @dev: device to sync
3468 * @unsync: function to call if address should be removed
3469 *
3470 * Remove all addresses that were added to the device by dev_mc_sync().
3471 **/
3472 static inline void __dev_mc_unsync(struct net_device *dev,
3473 int (*unsync)(struct net_device *,
3474 const unsigned char *))
3475 {
3476 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3477 }
3478
3479 /* Functions used for secondary unicast and multicast support */
3480 void dev_set_rx_mode(struct net_device *dev);
3481 void __dev_set_rx_mode(struct net_device *dev);
3482 int dev_set_promiscuity(struct net_device *dev, int inc);
3483 int dev_set_allmulti(struct net_device *dev, int inc);
3484 void netdev_state_change(struct net_device *dev);
3485 void netdev_notify_peers(struct net_device *dev);
3486 void netdev_features_change(struct net_device *dev);
3487 /* Load a device via the kmod */
3488 void dev_load(struct net *net, const char *name);
3489 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3490 struct rtnl_link_stats64 *storage);
3491 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3492 const struct net_device_stats *netdev_stats);
3493
3494 extern int netdev_max_backlog;
3495 extern int netdev_tstamp_prequeue;
3496 extern int weight_p;
3497 extern int bpf_jit_enable;
3498
3499 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3500 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3501 struct list_head **iter);
3502 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3503 struct list_head **iter);
3504
3505 /* iterate through upper list, must be called under RCU read lock */
3506 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3507 for (iter = &(dev)->adj_list.upper, \
3508 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3509 updev; \
3510 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3511
3512 /* iterate through upper list, must be called under RCU read lock */
3513 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3514 for (iter = &(dev)->all_adj_list.upper, \
3515 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3516 updev; \
3517 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3518
3519 void *netdev_lower_get_next_private(struct net_device *dev,
3520 struct list_head **iter);
3521 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3522 struct list_head **iter);
3523
3524 #define netdev_for_each_lower_private(dev, priv, iter) \
3525 for (iter = (dev)->adj_list.lower.next, \
3526 priv = netdev_lower_get_next_private(dev, &(iter)); \
3527 priv; \
3528 priv = netdev_lower_get_next_private(dev, &(iter)))
3529
3530 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3531 for (iter = &(dev)->adj_list.lower, \
3532 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3533 priv; \
3534 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3535
3536 void *netdev_lower_get_next(struct net_device *dev,
3537 struct list_head **iter);
3538 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3539 for (iter = &(dev)->adj_list.lower, \
3540 ldev = netdev_lower_get_next(dev, &(iter)); \
3541 ldev; \
3542 ldev = netdev_lower_get_next(dev, &(iter)))
3543
3544 void *netdev_adjacent_get_private(struct list_head *adj_list);
3545 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3546 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3547 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3548 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3549 int netdev_master_upper_dev_link(struct net_device *dev,
3550 struct net_device *upper_dev);
3551 int netdev_master_upper_dev_link_private(struct net_device *dev,
3552 struct net_device *upper_dev,
3553 void *private);
3554 void netdev_upper_dev_unlink(struct net_device *dev,
3555 struct net_device *upper_dev);
3556 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3557 void *netdev_lower_dev_get_private(struct net_device *dev,
3558 struct net_device *lower_dev);
3559
3560 /* RSS keys are 40 or 52 bytes long */
3561 #define NETDEV_RSS_KEY_LEN 52
3562 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3563 void netdev_rss_key_fill(void *buffer, size_t len);
3564
3565 int dev_get_nest_level(struct net_device *dev,
3566 bool (*type_check)(struct net_device *dev));
3567 int skb_checksum_help(struct sk_buff *skb);
3568 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3569 netdev_features_t features, bool tx_path);
3570 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3571 netdev_features_t features);
3572
3573 struct netdev_bonding_info {
3574 ifslave slave;
3575 ifbond master;
3576 };
3577
3578 struct netdev_notifier_bonding_info {
3579 struct netdev_notifier_info info; /* must be first */
3580 struct netdev_bonding_info bonding_info;
3581 };
3582
3583 void netdev_bonding_info_change(struct net_device *dev,
3584 struct netdev_bonding_info *bonding_info);
3585
3586 static inline
3587 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3588 {
3589 return __skb_gso_segment(skb, features, true);
3590 }
3591 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3592
3593 static inline bool can_checksum_protocol(netdev_features_t features,
3594 __be16 protocol)
3595 {
3596 return ((features & NETIF_F_GEN_CSUM) ||
3597 ((features & NETIF_F_V4_CSUM) &&
3598 protocol == htons(ETH_P_IP)) ||
3599 ((features & NETIF_F_V6_CSUM) &&
3600 protocol == htons(ETH_P_IPV6)) ||
3601 ((features & NETIF_F_FCOE_CRC) &&
3602 protocol == htons(ETH_P_FCOE)));
3603 }
3604
3605 #ifdef CONFIG_BUG
3606 void netdev_rx_csum_fault(struct net_device *dev);
3607 #else
3608 static inline void netdev_rx_csum_fault(struct net_device *dev)
3609 {
3610 }
3611 #endif
3612 /* rx skb timestamps */
3613 void net_enable_timestamp(void);
3614 void net_disable_timestamp(void);
3615
3616 #ifdef CONFIG_PROC_FS
3617 int __init dev_proc_init(void);
3618 #else
3619 #define dev_proc_init() 0
3620 #endif
3621
3622 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3623 struct sk_buff *skb, struct net_device *dev,
3624 bool more)
3625 {
3626 skb->xmit_more = more ? 1 : 0;
3627 return ops->ndo_start_xmit(skb, dev);
3628 }
3629
3630 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3631 struct netdev_queue *txq, bool more)
3632 {
3633 const struct net_device_ops *ops = dev->netdev_ops;
3634 int rc;
3635
3636 rc = __netdev_start_xmit(ops, skb, dev, more);
3637 if (rc == NETDEV_TX_OK)
3638 txq_trans_update(txq);
3639
3640 return rc;
3641 }
3642
3643 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3644 const void *ns);
3645 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3646 const void *ns);
3647
3648 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3649 {
3650 return netdev_class_create_file_ns(class_attr, NULL);
3651 }
3652
3653 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3654 {
3655 netdev_class_remove_file_ns(class_attr, NULL);
3656 }
3657
3658 extern struct kobj_ns_type_operations net_ns_type_operations;
3659
3660 const char *netdev_drivername(const struct net_device *dev);
3661
3662 void linkwatch_run_queue(void);
3663
3664 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3665 netdev_features_t f2)
3666 {
3667 if (f1 & NETIF_F_GEN_CSUM)
3668 f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3669 if (f2 & NETIF_F_GEN_CSUM)
3670 f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3671 f1 &= f2;
3672 if (f1 & NETIF_F_GEN_CSUM)
3673 f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3674
3675 return f1;
3676 }
3677
3678 static inline netdev_features_t netdev_get_wanted_features(
3679 struct net_device *dev)
3680 {
3681 return (dev->features & ~dev->hw_features) | dev->wanted_features;
3682 }
3683 netdev_features_t netdev_increment_features(netdev_features_t all,
3684 netdev_features_t one, netdev_features_t mask);
3685
3686 /* Allow TSO being used on stacked device :
3687 * Performing the GSO segmentation before last device
3688 * is a performance improvement.
3689 */
3690 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3691 netdev_features_t mask)
3692 {
3693 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3694 }
3695
3696 int __netdev_update_features(struct net_device *dev);
3697 void netdev_update_features(struct net_device *dev);
3698 void netdev_change_features(struct net_device *dev);
3699
3700 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3701 struct net_device *dev);
3702
3703 netdev_features_t passthru_features_check(struct sk_buff *skb,
3704 struct net_device *dev,
3705 netdev_features_t features);
3706 netdev_features_t netif_skb_features(struct sk_buff *skb);
3707
3708 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3709 {
3710 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3711
3712 /* check flags correspondence */
3713 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3714 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3715 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3716 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3717 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3718 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3719 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3720 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3721 BUILD_BUG_ON(SKB_GSO_IPIP != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3722 BUILD_BUG_ON(SKB_GSO_SIT != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3723 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3724 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3725 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3726
3727 return (features & feature) == feature;
3728 }
3729
3730 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3731 {
3732 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3733 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3734 }
3735
3736 static inline bool netif_needs_gso(struct sk_buff *skb,
3737 netdev_features_t features)
3738 {
3739 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3740 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3741 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3742 }
3743
3744 static inline void netif_set_gso_max_size(struct net_device *dev,
3745 unsigned int size)
3746 {
3747 dev->gso_max_size = size;
3748 }
3749
3750 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3751 int pulled_hlen, u16 mac_offset,
3752 int mac_len)
3753 {
3754 skb->protocol = protocol;
3755 skb->encapsulation = 1;
3756 skb_push(skb, pulled_hlen);
3757 skb_reset_transport_header(skb);
3758 skb->mac_header = mac_offset;
3759 skb->network_header = skb->mac_header + mac_len;
3760 skb->mac_len = mac_len;
3761 }
3762
3763 static inline bool netif_is_macvlan(struct net_device *dev)
3764 {
3765 return dev->priv_flags & IFF_MACVLAN;
3766 }
3767
3768 static inline bool netif_is_macvlan_port(struct net_device *dev)
3769 {
3770 return dev->priv_flags & IFF_MACVLAN_PORT;
3771 }
3772
3773 static inline bool netif_is_ipvlan(struct net_device *dev)
3774 {
3775 return dev->priv_flags & IFF_IPVLAN_SLAVE;
3776 }
3777
3778 static inline bool netif_is_ipvlan_port(struct net_device *dev)
3779 {
3780 return dev->priv_flags & IFF_IPVLAN_MASTER;
3781 }
3782
3783 static inline bool netif_is_bond_master(struct net_device *dev)
3784 {
3785 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3786 }
3787
3788 static inline bool netif_is_bond_slave(struct net_device *dev)
3789 {
3790 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3791 }
3792
3793 static inline bool netif_supports_nofcs(struct net_device *dev)
3794 {
3795 return dev->priv_flags & IFF_SUPP_NOFCS;
3796 }
3797
3798 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3799 static inline void netif_keep_dst(struct net_device *dev)
3800 {
3801 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3802 }
3803
3804 extern struct pernet_operations __net_initdata loopback_net_ops;
3805
3806 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3807
3808 /* netdev_printk helpers, similar to dev_printk */
3809
3810 static inline const char *netdev_name(const struct net_device *dev)
3811 {
3812 if (!dev->name[0] || strchr(dev->name, '%'))
3813 return "(unnamed net_device)";
3814 return dev->name;
3815 }
3816
3817 static inline const char *netdev_reg_state(const struct net_device *dev)
3818 {
3819 switch (dev->reg_state) {
3820 case NETREG_UNINITIALIZED: return " (uninitialized)";
3821 case NETREG_REGISTERED: return "";
3822 case NETREG_UNREGISTERING: return " (unregistering)";
3823 case NETREG_UNREGISTERED: return " (unregistered)";
3824 case NETREG_RELEASED: return " (released)";
3825 case NETREG_DUMMY: return " (dummy)";
3826 }
3827
3828 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3829 return " (unknown)";
3830 }
3831
3832 __printf(3, 4)
3833 void netdev_printk(const char *level, const struct net_device *dev,
3834 const char *format, ...);
3835 __printf(2, 3)
3836 void netdev_emerg(const struct net_device *dev, const char *format, ...);
3837 __printf(2, 3)
3838 void netdev_alert(const struct net_device *dev, const char *format, ...);
3839 __printf(2, 3)
3840 void netdev_crit(const struct net_device *dev, const char *format, ...);
3841 __printf(2, 3)
3842 void netdev_err(const struct net_device *dev, const char *format, ...);
3843 __printf(2, 3)
3844 void netdev_warn(const struct net_device *dev, const char *format, ...);
3845 __printf(2, 3)
3846 void netdev_notice(const struct net_device *dev, const char *format, ...);
3847 __printf(2, 3)
3848 void netdev_info(const struct net_device *dev, const char *format, ...);
3849
3850 #define MODULE_ALIAS_NETDEV(device) \
3851 MODULE_ALIAS("netdev-" device)
3852
3853 #if defined(CONFIG_DYNAMIC_DEBUG)
3854 #define netdev_dbg(__dev, format, args...) \
3855 do { \
3856 dynamic_netdev_dbg(__dev, format, ##args); \
3857 } while (0)
3858 #elif defined(DEBUG)
3859 #define netdev_dbg(__dev, format, args...) \
3860 netdev_printk(KERN_DEBUG, __dev, format, ##args)
3861 #else
3862 #define netdev_dbg(__dev, format, args...) \
3863 ({ \
3864 if (0) \
3865 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3866 })
3867 #endif
3868
3869 #if defined(VERBOSE_DEBUG)
3870 #define netdev_vdbg netdev_dbg
3871 #else
3872
3873 #define netdev_vdbg(dev, format, args...) \
3874 ({ \
3875 if (0) \
3876 netdev_printk(KERN_DEBUG, dev, format, ##args); \
3877 0; \
3878 })
3879 #endif
3880
3881 /*
3882 * netdev_WARN() acts like dev_printk(), but with the key difference
3883 * of using a WARN/WARN_ON to get the message out, including the
3884 * file/line information and a backtrace.
3885 */
3886 #define netdev_WARN(dev, format, args...) \
3887 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \
3888 netdev_reg_state(dev), ##args)
3889
3890 /* netif printk helpers, similar to netdev_printk */
3891
3892 #define netif_printk(priv, type, level, dev, fmt, args...) \
3893 do { \
3894 if (netif_msg_##type(priv)) \
3895 netdev_printk(level, (dev), fmt, ##args); \
3896 } while (0)
3897
3898 #define netif_level(level, priv, type, dev, fmt, args...) \
3899 do { \
3900 if (netif_msg_##type(priv)) \
3901 netdev_##level(dev, fmt, ##args); \
3902 } while (0)
3903
3904 #define netif_emerg(priv, type, dev, fmt, args...) \
3905 netif_level(emerg, priv, type, dev, fmt, ##args)
3906 #define netif_alert(priv, type, dev, fmt, args...) \
3907 netif_level(alert, priv, type, dev, fmt, ##args)
3908 #define netif_crit(priv, type, dev, fmt, args...) \
3909 netif_level(crit, priv, type, dev, fmt, ##args)
3910 #define netif_err(priv, type, dev, fmt, args...) \
3911 netif_level(err, priv, type, dev, fmt, ##args)
3912 #define netif_warn(priv, type, dev, fmt, args...) \
3913 netif_level(warn, priv, type, dev, fmt, ##args)
3914 #define netif_notice(priv, type, dev, fmt, args...) \
3915 netif_level(notice, priv, type, dev, fmt, ##args)
3916 #define netif_info(priv, type, dev, fmt, args...) \
3917 netif_level(info, priv, type, dev, fmt, ##args)
3918
3919 #if defined(CONFIG_DYNAMIC_DEBUG)
3920 #define netif_dbg(priv, type, netdev, format, args...) \
3921 do { \
3922 if (netif_msg_##type(priv)) \
3923 dynamic_netdev_dbg(netdev, format, ##args); \
3924 } while (0)
3925 #elif defined(DEBUG)
3926 #define netif_dbg(priv, type, dev, format, args...) \
3927 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3928 #else
3929 #define netif_dbg(priv, type, dev, format, args...) \
3930 ({ \
3931 if (0) \
3932 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3933 0; \
3934 })
3935 #endif
3936
3937 #if defined(VERBOSE_DEBUG)
3938 #define netif_vdbg netif_dbg
3939 #else
3940 #define netif_vdbg(priv, type, dev, format, args...) \
3941 ({ \
3942 if (0) \
3943 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3944 0; \
3945 })
3946 #endif
3947
3948 /*
3949 * The list of packet types we will receive (as opposed to discard)
3950 * and the routines to invoke.
3951 *
3952 * Why 16. Because with 16 the only overlap we get on a hash of the
3953 * low nibble of the protocol value is RARP/SNAP/X.25.
3954 *
3955 * NOTE: That is no longer true with the addition of VLAN tags. Not
3956 * sure which should go first, but I bet it won't make much
3957 * difference if we are running VLANs. The good news is that
3958 * this protocol won't be in the list unless compiled in, so
3959 * the average user (w/out VLANs) will not be adversely affected.
3960 * --BLG
3961 *
3962 * 0800 IP
3963 * 8100 802.1Q VLAN
3964 * 0001 802.3
3965 * 0002 AX.25
3966 * 0004 802.2
3967 * 8035 RARP
3968 * 0005 SNAP
3969 * 0805 X.25
3970 * 0806 ARP
3971 * 8137 IPX
3972 * 0009 Localtalk
3973 * 86DD IPv6
3974 */
3975 #define PTYPE_HASH_SIZE (16)
3976 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
3977
3978 #endif /* _LINUX_NETDEVICE_H */
This page took 0.138113 seconds and 5 git commands to generate.