net: return operator cleanup
[deliverable/linux.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/if.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_link.h>
32
33 #ifdef __KERNEL__
34 #include <linux/pm_qos_params.h>
35 #include <linux/timer.h>
36 #include <linux/delay.h>
37 #include <linux/mm.h>
38 #include <asm/atomic.h>
39 #include <asm/cache.h>
40 #include <asm/byteorder.h>
41
42 #include <linux/device.h>
43 #include <linux/percpu.h>
44 #include <linux/rculist.h>
45 #include <linux/dmaengine.h>
46 #include <linux/workqueue.h>
47
48 #include <linux/ethtool.h>
49 #include <net/net_namespace.h>
50 #include <net/dsa.h>
51 #ifdef CONFIG_DCB
52 #include <net/dcbnl.h>
53 #endif
54
55 struct vlan_group;
56 struct netpoll_info;
57 struct phy_device;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* source back-compat hooks */
61 #define SET_ETHTOOL_OPS(netdev,ops) \
62 ( (netdev)->ethtool_ops = (ops) )
63
64 #define HAVE_ALLOC_NETDEV /* feature macro: alloc_xxxdev
65 functions are available. */
66 #define HAVE_FREE_NETDEV /* free_netdev() */
67 #define HAVE_NETDEV_PRIV /* netdev_priv() */
68
69 /* hardware address assignment types */
70 #define NET_ADDR_PERM 0 /* address is permanent (default) */
71 #define NET_ADDR_RANDOM 1 /* address is generated randomly */
72 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */
73
74 /* Backlog congestion levels */
75 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
76 #define NET_RX_DROP 1 /* packet dropped */
77
78 /*
79 * Transmit return codes: transmit return codes originate from three different
80 * namespaces:
81 *
82 * - qdisc return codes
83 * - driver transmit return codes
84 * - errno values
85 *
86 * Drivers are allowed to return any one of those in their hard_start_xmit()
87 * function. Real network devices commonly used with qdiscs should only return
88 * the driver transmit return codes though - when qdiscs are used, the actual
89 * transmission happens asynchronously, so the value is not propagated to
90 * higher layers. Virtual network devices transmit synchronously, in this case
91 * the driver transmit return codes are consumed by dev_queue_xmit(), all
92 * others are propagated to higher layers.
93 */
94
95 /* qdisc ->enqueue() return codes. */
96 #define NET_XMIT_SUCCESS 0x00
97 #define NET_XMIT_DROP 0x01 /* skb dropped */
98 #define NET_XMIT_CN 0x02 /* congestion notification */
99 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
100 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
101
102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
103 * indicates that the device will soon be dropping packets, or already drops
104 * some packets of the same priority; prompting us to send less aggressively. */
105 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
106 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
107
108 /* Driver transmit return codes */
109 #define NETDEV_TX_MASK 0xf0
110
111 enum netdev_tx {
112 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
113 NETDEV_TX_OK = 0x00, /* driver took care of packet */
114 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
115 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
116 };
117 typedef enum netdev_tx netdev_tx_t;
118
119 /*
120 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
121 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
122 */
123 static inline bool dev_xmit_complete(int rc)
124 {
125 /*
126 * Positive cases with an skb consumed by a driver:
127 * - successful transmission (rc == NETDEV_TX_OK)
128 * - error while transmitting (rc < 0)
129 * - error while queueing to a different device (rc & NET_XMIT_MASK)
130 */
131 if (likely(rc < NET_XMIT_MASK))
132 return true;
133
134 return false;
135 }
136
137 #endif
138
139 #define MAX_ADDR_LEN 32 /* Largest hardware address length */
140
141 #ifdef __KERNEL__
142 /*
143 * Compute the worst case header length according to the protocols
144 * used.
145 */
146
147 #if defined(CONFIG_WLAN) || defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
148 # if defined(CONFIG_MAC80211_MESH)
149 # define LL_MAX_HEADER 128
150 # else
151 # define LL_MAX_HEADER 96
152 # endif
153 #elif defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
154 # define LL_MAX_HEADER 48
155 #else
156 # define LL_MAX_HEADER 32
157 #endif
158
159 #if !defined(CONFIG_NET_IPIP) && !defined(CONFIG_NET_IPIP_MODULE) && \
160 !defined(CONFIG_NET_IPGRE) && !defined(CONFIG_NET_IPGRE_MODULE) && \
161 !defined(CONFIG_IPV6_SIT) && !defined(CONFIG_IPV6_SIT_MODULE) && \
162 !defined(CONFIG_IPV6_TUNNEL) && !defined(CONFIG_IPV6_TUNNEL_MODULE)
163 #define MAX_HEADER LL_MAX_HEADER
164 #else
165 #define MAX_HEADER (LL_MAX_HEADER + 48)
166 #endif
167
168 /*
169 * Old network device statistics. Fields are native words
170 * (unsigned long) so they can be read and written atomically.
171 */
172
173 struct net_device_stats {
174 unsigned long rx_packets;
175 unsigned long tx_packets;
176 unsigned long rx_bytes;
177 unsigned long tx_bytes;
178 unsigned long rx_errors;
179 unsigned long tx_errors;
180 unsigned long rx_dropped;
181 unsigned long tx_dropped;
182 unsigned long multicast;
183 unsigned long collisions;
184 unsigned long rx_length_errors;
185 unsigned long rx_over_errors;
186 unsigned long rx_crc_errors;
187 unsigned long rx_frame_errors;
188 unsigned long rx_fifo_errors;
189 unsigned long rx_missed_errors;
190 unsigned long tx_aborted_errors;
191 unsigned long tx_carrier_errors;
192 unsigned long tx_fifo_errors;
193 unsigned long tx_heartbeat_errors;
194 unsigned long tx_window_errors;
195 unsigned long rx_compressed;
196 unsigned long tx_compressed;
197 };
198
199 #endif /* __KERNEL__ */
200
201
202 /* Media selection options. */
203 enum {
204 IF_PORT_UNKNOWN = 0,
205 IF_PORT_10BASE2,
206 IF_PORT_10BASET,
207 IF_PORT_AUI,
208 IF_PORT_100BASET,
209 IF_PORT_100BASETX,
210 IF_PORT_100BASEFX
211 };
212
213 #ifdef __KERNEL__
214
215 #include <linux/cache.h>
216 #include <linux/skbuff.h>
217
218 struct neighbour;
219 struct neigh_parms;
220 struct sk_buff;
221
222 struct netdev_hw_addr {
223 struct list_head list;
224 unsigned char addr[MAX_ADDR_LEN];
225 unsigned char type;
226 #define NETDEV_HW_ADDR_T_LAN 1
227 #define NETDEV_HW_ADDR_T_SAN 2
228 #define NETDEV_HW_ADDR_T_SLAVE 3
229 #define NETDEV_HW_ADDR_T_UNICAST 4
230 #define NETDEV_HW_ADDR_T_MULTICAST 5
231 bool synced;
232 bool global_use;
233 int refcount;
234 struct rcu_head rcu_head;
235 };
236
237 struct netdev_hw_addr_list {
238 struct list_head list;
239 int count;
240 };
241
242 #define netdev_hw_addr_list_count(l) ((l)->count)
243 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
244 #define netdev_hw_addr_list_for_each(ha, l) \
245 list_for_each_entry(ha, &(l)->list, list)
246
247 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
248 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
249 #define netdev_for_each_uc_addr(ha, dev) \
250 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
251
252 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
253 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
254 #define netdev_for_each_mc_addr(ha, dev) \
255 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
256
257 struct hh_cache {
258 struct hh_cache *hh_next; /* Next entry */
259 atomic_t hh_refcnt; /* number of users */
260 /*
261 * We want hh_output, hh_len, hh_lock and hh_data be a in a separate
262 * cache line on SMP.
263 * They are mostly read, but hh_refcnt may be changed quite frequently,
264 * incurring cache line ping pongs.
265 */
266 __be16 hh_type ____cacheline_aligned_in_smp;
267 /* protocol identifier, f.e ETH_P_IP
268 * NOTE: For VLANs, this will be the
269 * encapuslated type. --BLG
270 */
271 u16 hh_len; /* length of header */
272 int (*hh_output)(struct sk_buff *skb);
273 seqlock_t hh_lock;
274
275 /* cached hardware header; allow for machine alignment needs. */
276 #define HH_DATA_MOD 16
277 #define HH_DATA_OFF(__len) \
278 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
279 #define HH_DATA_ALIGN(__len) \
280 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
281 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
282 };
283
284 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
285 * Alternative is:
286 * dev->hard_header_len ? (dev->hard_header_len +
287 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
288 *
289 * We could use other alignment values, but we must maintain the
290 * relationship HH alignment <= LL alignment.
291 *
292 * LL_ALLOCATED_SPACE also takes into account the tailroom the device
293 * may need.
294 */
295 #define LL_RESERVED_SPACE(dev) \
296 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
297 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
298 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
299 #define LL_ALLOCATED_SPACE(dev) \
300 ((((dev)->hard_header_len+(dev)->needed_headroom+(dev)->needed_tailroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
301
302 struct header_ops {
303 int (*create) (struct sk_buff *skb, struct net_device *dev,
304 unsigned short type, const void *daddr,
305 const void *saddr, unsigned len);
306 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
307 int (*rebuild)(struct sk_buff *skb);
308 #define HAVE_HEADER_CACHE
309 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh);
310 void (*cache_update)(struct hh_cache *hh,
311 const struct net_device *dev,
312 const unsigned char *haddr);
313 };
314
315 /* These flag bits are private to the generic network queueing
316 * layer, they may not be explicitly referenced by any other
317 * code.
318 */
319
320 enum netdev_state_t {
321 __LINK_STATE_START,
322 __LINK_STATE_PRESENT,
323 __LINK_STATE_NOCARRIER,
324 __LINK_STATE_LINKWATCH_PENDING,
325 __LINK_STATE_DORMANT,
326 };
327
328
329 /*
330 * This structure holds at boot time configured netdevice settings. They
331 * are then used in the device probing.
332 */
333 struct netdev_boot_setup {
334 char name[IFNAMSIZ];
335 struct ifmap map;
336 };
337 #define NETDEV_BOOT_SETUP_MAX 8
338
339 extern int __init netdev_boot_setup(char *str);
340
341 /*
342 * Structure for NAPI scheduling similar to tasklet but with weighting
343 */
344 struct napi_struct {
345 /* The poll_list must only be managed by the entity which
346 * changes the state of the NAPI_STATE_SCHED bit. This means
347 * whoever atomically sets that bit can add this napi_struct
348 * to the per-cpu poll_list, and whoever clears that bit
349 * can remove from the list right before clearing the bit.
350 */
351 struct list_head poll_list;
352
353 unsigned long state;
354 int weight;
355 int (*poll)(struct napi_struct *, int);
356 #ifdef CONFIG_NETPOLL
357 spinlock_t poll_lock;
358 int poll_owner;
359 #endif
360
361 unsigned int gro_count;
362
363 struct net_device *dev;
364 struct list_head dev_list;
365 struct sk_buff *gro_list;
366 struct sk_buff *skb;
367 };
368
369 enum {
370 NAPI_STATE_SCHED, /* Poll is scheduled */
371 NAPI_STATE_DISABLE, /* Disable pending */
372 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
373 };
374
375 enum gro_result {
376 GRO_MERGED,
377 GRO_MERGED_FREE,
378 GRO_HELD,
379 GRO_NORMAL,
380 GRO_DROP,
381 };
382 typedef enum gro_result gro_result_t;
383
384 typedef struct sk_buff *rx_handler_func_t(struct sk_buff *skb);
385
386 extern void __napi_schedule(struct napi_struct *n);
387
388 static inline int napi_disable_pending(struct napi_struct *n)
389 {
390 return test_bit(NAPI_STATE_DISABLE, &n->state);
391 }
392
393 /**
394 * napi_schedule_prep - check if napi can be scheduled
395 * @n: napi context
396 *
397 * Test if NAPI routine is already running, and if not mark
398 * it as running. This is used as a condition variable
399 * insure only one NAPI poll instance runs. We also make
400 * sure there is no pending NAPI disable.
401 */
402 static inline int napi_schedule_prep(struct napi_struct *n)
403 {
404 return !napi_disable_pending(n) &&
405 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
406 }
407
408 /**
409 * napi_schedule - schedule NAPI poll
410 * @n: napi context
411 *
412 * Schedule NAPI poll routine to be called if it is not already
413 * running.
414 */
415 static inline void napi_schedule(struct napi_struct *n)
416 {
417 if (napi_schedule_prep(n))
418 __napi_schedule(n);
419 }
420
421 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
422 static inline int napi_reschedule(struct napi_struct *napi)
423 {
424 if (napi_schedule_prep(napi)) {
425 __napi_schedule(napi);
426 return 1;
427 }
428 return 0;
429 }
430
431 /**
432 * napi_complete - NAPI processing complete
433 * @n: napi context
434 *
435 * Mark NAPI processing as complete.
436 */
437 extern void __napi_complete(struct napi_struct *n);
438 extern void napi_complete(struct napi_struct *n);
439
440 /**
441 * napi_disable - prevent NAPI from scheduling
442 * @n: napi context
443 *
444 * Stop NAPI from being scheduled on this context.
445 * Waits till any outstanding processing completes.
446 */
447 static inline void napi_disable(struct napi_struct *n)
448 {
449 set_bit(NAPI_STATE_DISABLE, &n->state);
450 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
451 msleep(1);
452 clear_bit(NAPI_STATE_DISABLE, &n->state);
453 }
454
455 /**
456 * napi_enable - enable NAPI scheduling
457 * @n: napi context
458 *
459 * Resume NAPI from being scheduled on this context.
460 * Must be paired with napi_disable.
461 */
462 static inline void napi_enable(struct napi_struct *n)
463 {
464 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
465 smp_mb__before_clear_bit();
466 clear_bit(NAPI_STATE_SCHED, &n->state);
467 }
468
469 #ifdef CONFIG_SMP
470 /**
471 * napi_synchronize - wait until NAPI is not running
472 * @n: napi context
473 *
474 * Wait until NAPI is done being scheduled on this context.
475 * Waits till any outstanding processing completes but
476 * does not disable future activations.
477 */
478 static inline void napi_synchronize(const struct napi_struct *n)
479 {
480 while (test_bit(NAPI_STATE_SCHED, &n->state))
481 msleep(1);
482 }
483 #else
484 # define napi_synchronize(n) barrier()
485 #endif
486
487 enum netdev_queue_state_t {
488 __QUEUE_STATE_XOFF,
489 __QUEUE_STATE_FROZEN,
490 };
491
492 struct netdev_queue {
493 /*
494 * read mostly part
495 */
496 struct net_device *dev;
497 struct Qdisc *qdisc;
498 unsigned long state;
499 struct Qdisc *qdisc_sleeping;
500 /*
501 * write mostly part
502 */
503 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
504 int xmit_lock_owner;
505 /*
506 * please use this field instead of dev->trans_start
507 */
508 unsigned long trans_start;
509 u64 tx_bytes;
510 u64 tx_packets;
511 u64 tx_dropped;
512 } ____cacheline_aligned_in_smp;
513
514 #ifdef CONFIG_RPS
515 /*
516 * This structure holds an RPS map which can be of variable length. The
517 * map is an array of CPUs.
518 */
519 struct rps_map {
520 unsigned int len;
521 struct rcu_head rcu;
522 u16 cpus[0];
523 };
524 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + (_num * sizeof(u16)))
525
526 /*
527 * The rps_dev_flow structure contains the mapping of a flow to a CPU and the
528 * tail pointer for that CPU's input queue at the time of last enqueue.
529 */
530 struct rps_dev_flow {
531 u16 cpu;
532 u16 fill;
533 unsigned int last_qtail;
534 };
535
536 /*
537 * The rps_dev_flow_table structure contains a table of flow mappings.
538 */
539 struct rps_dev_flow_table {
540 unsigned int mask;
541 struct rcu_head rcu;
542 struct work_struct free_work;
543 struct rps_dev_flow flows[0];
544 };
545 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
546 (_num * sizeof(struct rps_dev_flow)))
547
548 /*
549 * The rps_sock_flow_table contains mappings of flows to the last CPU
550 * on which they were processed by the application (set in recvmsg).
551 */
552 struct rps_sock_flow_table {
553 unsigned int mask;
554 u16 ents[0];
555 };
556 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
557 (_num * sizeof(u16)))
558
559 #define RPS_NO_CPU 0xffff
560
561 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
562 u32 hash)
563 {
564 if (table && hash) {
565 unsigned int cpu, index = hash & table->mask;
566
567 /* We only give a hint, preemption can change cpu under us */
568 cpu = raw_smp_processor_id();
569
570 if (table->ents[index] != cpu)
571 table->ents[index] = cpu;
572 }
573 }
574
575 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
576 u32 hash)
577 {
578 if (table && hash)
579 table->ents[hash & table->mask] = RPS_NO_CPU;
580 }
581
582 extern struct rps_sock_flow_table *rps_sock_flow_table;
583
584 /* This structure contains an instance of an RX queue. */
585 struct netdev_rx_queue {
586 struct rps_map *rps_map;
587 struct rps_dev_flow_table *rps_flow_table;
588 struct kobject kobj;
589 struct netdev_rx_queue *first;
590 atomic_t count;
591 } ____cacheline_aligned_in_smp;
592 #endif /* CONFIG_RPS */
593
594 /*
595 * This structure defines the management hooks for network devices.
596 * The following hooks can be defined; unless noted otherwise, they are
597 * optional and can be filled with a null pointer.
598 *
599 * int (*ndo_init)(struct net_device *dev);
600 * This function is called once when network device is registered.
601 * The network device can use this to any late stage initializaton
602 * or semantic validattion. It can fail with an error code which will
603 * be propogated back to register_netdev
604 *
605 * void (*ndo_uninit)(struct net_device *dev);
606 * This function is called when device is unregistered or when registration
607 * fails. It is not called if init fails.
608 *
609 * int (*ndo_open)(struct net_device *dev);
610 * This function is called when network device transistions to the up
611 * state.
612 *
613 * int (*ndo_stop)(struct net_device *dev);
614 * This function is called when network device transistions to the down
615 * state.
616 *
617 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
618 * struct net_device *dev);
619 * Called when a packet needs to be transmitted.
620 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
621 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
622 * Required can not be NULL.
623 *
624 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
625 * Called to decide which queue to when device supports multiple
626 * transmit queues.
627 *
628 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
629 * This function is called to allow device receiver to make
630 * changes to configuration when multicast or promiscious is enabled.
631 *
632 * void (*ndo_set_rx_mode)(struct net_device *dev);
633 * This function is called device changes address list filtering.
634 *
635 * void (*ndo_set_multicast_list)(struct net_device *dev);
636 * This function is called when the multicast address list changes.
637 *
638 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
639 * This function is called when the Media Access Control address
640 * needs to be changed. If this interface is not defined, the
641 * mac address can not be changed.
642 *
643 * int (*ndo_validate_addr)(struct net_device *dev);
644 * Test if Media Access Control address is valid for the device.
645 *
646 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
647 * Called when a user request an ioctl which can't be handled by
648 * the generic interface code. If not defined ioctl's return
649 * not supported error code.
650 *
651 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
652 * Used to set network devices bus interface parameters. This interface
653 * is retained for legacy reason, new devices should use the bus
654 * interface (PCI) for low level management.
655 *
656 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
657 * Called when a user wants to change the Maximum Transfer Unit
658 * of a device. If not defined, any request to change MTU will
659 * will return an error.
660 *
661 * void (*ndo_tx_timeout)(struct net_device *dev);
662 * Callback uses when the transmitter has not made any progress
663 * for dev->watchdog ticks.
664 *
665 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
666 * struct rtnl_link_stats64 *storage);
667 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
668 * Called when a user wants to get the network device usage
669 * statistics. Drivers must do one of the following:
670 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
671 * rtnl_link_stats64 structure passed by the caller.
672 * 2. Define @ndo_get_stats to update a net_device_stats structure
673 * (which should normally be dev->stats) and return a pointer to
674 * it. The structure may be changed asynchronously only if each
675 * field is written atomically.
676 * 3. Update dev->stats asynchronously and atomically, and define
677 * neither operation.
678 *
679 * void (*ndo_vlan_rx_register)(struct net_device *dev, struct vlan_group *grp);
680 * If device support VLAN receive accleration
681 * (ie. dev->features & NETIF_F_HW_VLAN_RX), then this function is called
682 * when vlan groups for the device changes. Note: grp is NULL
683 * if no vlan's groups are being used.
684 *
685 * void (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
686 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
687 * this function is called when a VLAN id is registered.
688 *
689 * void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
690 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
691 * this function is called when a VLAN id is unregistered.
692 *
693 * void (*ndo_poll_controller)(struct net_device *dev);
694 *
695 * SR-IOV management functions.
696 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
697 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
698 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
699 * int (*ndo_get_vf_config)(struct net_device *dev,
700 * int vf, struct ifla_vf_info *ivf);
701 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
702 * struct nlattr *port[]);
703 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
704 */
705 #define HAVE_NET_DEVICE_OPS
706 struct net_device_ops {
707 int (*ndo_init)(struct net_device *dev);
708 void (*ndo_uninit)(struct net_device *dev);
709 int (*ndo_open)(struct net_device *dev);
710 int (*ndo_stop)(struct net_device *dev);
711 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
712 struct net_device *dev);
713 u16 (*ndo_select_queue)(struct net_device *dev,
714 struct sk_buff *skb);
715 void (*ndo_change_rx_flags)(struct net_device *dev,
716 int flags);
717 void (*ndo_set_rx_mode)(struct net_device *dev);
718 void (*ndo_set_multicast_list)(struct net_device *dev);
719 int (*ndo_set_mac_address)(struct net_device *dev,
720 void *addr);
721 int (*ndo_validate_addr)(struct net_device *dev);
722 int (*ndo_do_ioctl)(struct net_device *dev,
723 struct ifreq *ifr, int cmd);
724 int (*ndo_set_config)(struct net_device *dev,
725 struct ifmap *map);
726 int (*ndo_change_mtu)(struct net_device *dev,
727 int new_mtu);
728 int (*ndo_neigh_setup)(struct net_device *dev,
729 struct neigh_parms *);
730 void (*ndo_tx_timeout) (struct net_device *dev);
731
732 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
733 struct rtnl_link_stats64 *storage);
734 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
735
736 void (*ndo_vlan_rx_register)(struct net_device *dev,
737 struct vlan_group *grp);
738 void (*ndo_vlan_rx_add_vid)(struct net_device *dev,
739 unsigned short vid);
740 void (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
741 unsigned short vid);
742 #ifdef CONFIG_NET_POLL_CONTROLLER
743 void (*ndo_poll_controller)(struct net_device *dev);
744 int (*ndo_netpoll_setup)(struct net_device *dev,
745 struct netpoll_info *info);
746 void (*ndo_netpoll_cleanup)(struct net_device *dev);
747 #endif
748 int (*ndo_set_vf_mac)(struct net_device *dev,
749 int queue, u8 *mac);
750 int (*ndo_set_vf_vlan)(struct net_device *dev,
751 int queue, u16 vlan, u8 qos);
752 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
753 int vf, int rate);
754 int (*ndo_get_vf_config)(struct net_device *dev,
755 int vf,
756 struct ifla_vf_info *ivf);
757 int (*ndo_set_vf_port)(struct net_device *dev,
758 int vf,
759 struct nlattr *port[]);
760 int (*ndo_get_vf_port)(struct net_device *dev,
761 int vf, struct sk_buff *skb);
762 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
763 int (*ndo_fcoe_enable)(struct net_device *dev);
764 int (*ndo_fcoe_disable)(struct net_device *dev);
765 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
766 u16 xid,
767 struct scatterlist *sgl,
768 unsigned int sgc);
769 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
770 u16 xid);
771 #define NETDEV_FCOE_WWNN 0
772 #define NETDEV_FCOE_WWPN 1
773 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
774 u64 *wwn, int type);
775 #endif
776 };
777
778 /*
779 * The DEVICE structure.
780 * Actually, this whole structure is a big mistake. It mixes I/O
781 * data with strictly "high-level" data, and it has to know about
782 * almost every data structure used in the INET module.
783 *
784 * FIXME: cleanup struct net_device such that network protocol info
785 * moves out.
786 */
787
788 struct net_device {
789
790 /*
791 * This is the first field of the "visible" part of this structure
792 * (i.e. as seen by users in the "Space.c" file). It is the name
793 * of the interface.
794 */
795 char name[IFNAMSIZ];
796
797 struct pm_qos_request_list pm_qos_req;
798
799 /* device name hash chain */
800 struct hlist_node name_hlist;
801 /* snmp alias */
802 char *ifalias;
803
804 /*
805 * I/O specific fields
806 * FIXME: Merge these and struct ifmap into one
807 */
808 unsigned long mem_end; /* shared mem end */
809 unsigned long mem_start; /* shared mem start */
810 unsigned long base_addr; /* device I/O address */
811 unsigned int irq; /* device IRQ number */
812
813 /*
814 * Some hardware also needs these fields, but they are not
815 * part of the usual set specified in Space.c.
816 */
817
818 unsigned char if_port; /* Selectable AUI, TP,..*/
819 unsigned char dma; /* DMA channel */
820
821 unsigned long state;
822
823 struct list_head dev_list;
824 struct list_head napi_list;
825 struct list_head unreg_list;
826
827 /* Net device features */
828 unsigned long features;
829 #define NETIF_F_SG 1 /* Scatter/gather IO. */
830 #define NETIF_F_IP_CSUM 2 /* Can checksum TCP/UDP over IPv4. */
831 #define NETIF_F_NO_CSUM 4 /* Does not require checksum. F.e. loopack. */
832 #define NETIF_F_HW_CSUM 8 /* Can checksum all the packets. */
833 #define NETIF_F_IPV6_CSUM 16 /* Can checksum TCP/UDP over IPV6 */
834 #define NETIF_F_HIGHDMA 32 /* Can DMA to high memory. */
835 #define NETIF_F_FRAGLIST 64 /* Scatter/gather IO. */
836 #define NETIF_F_HW_VLAN_TX 128 /* Transmit VLAN hw acceleration */
837 #define NETIF_F_HW_VLAN_RX 256 /* Receive VLAN hw acceleration */
838 #define NETIF_F_HW_VLAN_FILTER 512 /* Receive filtering on VLAN */
839 #define NETIF_F_VLAN_CHALLENGED 1024 /* Device cannot handle VLAN packets */
840 #define NETIF_F_GSO 2048 /* Enable software GSO. */
841 #define NETIF_F_LLTX 4096 /* LockLess TX - deprecated. Please */
842 /* do not use LLTX in new drivers */
843 #define NETIF_F_NETNS_LOCAL 8192 /* Does not change network namespaces */
844 #define NETIF_F_GRO 16384 /* Generic receive offload */
845 #define NETIF_F_LRO 32768 /* large receive offload */
846
847 /* the GSO_MASK reserves bits 16 through 23 */
848 #define NETIF_F_FCOE_CRC (1 << 24) /* FCoE CRC32 */
849 #define NETIF_F_SCTP_CSUM (1 << 25) /* SCTP checksum offload */
850 #define NETIF_F_FCOE_MTU (1 << 26) /* Supports max FCoE MTU, 2158 bytes*/
851 #define NETIF_F_NTUPLE (1 << 27) /* N-tuple filters supported */
852 #define NETIF_F_RXHASH (1 << 28) /* Receive hashing offload */
853
854 /* Segmentation offload features */
855 #define NETIF_F_GSO_SHIFT 16
856 #define NETIF_F_GSO_MASK 0x00ff0000
857 #define NETIF_F_TSO (SKB_GSO_TCPV4 << NETIF_F_GSO_SHIFT)
858 #define NETIF_F_UFO (SKB_GSO_UDP << NETIF_F_GSO_SHIFT)
859 #define NETIF_F_GSO_ROBUST (SKB_GSO_DODGY << NETIF_F_GSO_SHIFT)
860 #define NETIF_F_TSO_ECN (SKB_GSO_TCP_ECN << NETIF_F_GSO_SHIFT)
861 #define NETIF_F_TSO6 (SKB_GSO_TCPV6 << NETIF_F_GSO_SHIFT)
862 #define NETIF_F_FSO (SKB_GSO_FCOE << NETIF_F_GSO_SHIFT)
863
864 /* List of features with software fallbacks. */
865 #define NETIF_F_GSO_SOFTWARE (NETIF_F_TSO | NETIF_F_TSO_ECN | \
866 NETIF_F_TSO6 | NETIF_F_UFO)
867
868
869 #define NETIF_F_GEN_CSUM (NETIF_F_NO_CSUM | NETIF_F_HW_CSUM)
870 #define NETIF_F_V4_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IP_CSUM)
871 #define NETIF_F_V6_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IPV6_CSUM)
872 #define NETIF_F_ALL_CSUM (NETIF_F_V4_CSUM | NETIF_F_V6_CSUM)
873
874 /*
875 * If one device supports one of these features, then enable them
876 * for all in netdev_increment_features.
877 */
878 #define NETIF_F_ONE_FOR_ALL (NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ROBUST | \
879 NETIF_F_SG | NETIF_F_HIGHDMA | \
880 NETIF_F_FRAGLIST)
881
882 /* Interface index. Unique device identifier */
883 int ifindex;
884 int iflink;
885
886 struct net_device_stats stats;
887
888 #ifdef CONFIG_WIRELESS_EXT
889 /* List of functions to handle Wireless Extensions (instead of ioctl).
890 * See <net/iw_handler.h> for details. Jean II */
891 const struct iw_handler_def * wireless_handlers;
892 /* Instance data managed by the core of Wireless Extensions. */
893 struct iw_public_data * wireless_data;
894 #endif
895 /* Management operations */
896 const struct net_device_ops *netdev_ops;
897 const struct ethtool_ops *ethtool_ops;
898
899 /* Hardware header description */
900 const struct header_ops *header_ops;
901
902 unsigned int flags; /* interface flags (a la BSD) */
903 unsigned short gflags;
904 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. */
905 unsigned short padded; /* How much padding added by alloc_netdev() */
906
907 unsigned char operstate; /* RFC2863 operstate */
908 unsigned char link_mode; /* mapping policy to operstate */
909
910 unsigned int mtu; /* interface MTU value */
911 unsigned short type; /* interface hardware type */
912 unsigned short hard_header_len; /* hardware hdr length */
913
914 /* extra head- and tailroom the hardware may need, but not in all cases
915 * can this be guaranteed, especially tailroom. Some cases also use
916 * LL_MAX_HEADER instead to allocate the skb.
917 */
918 unsigned short needed_headroom;
919 unsigned short needed_tailroom;
920
921 /* Interface address info. */
922 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
923 unsigned char addr_assign_type; /* hw address assignment type */
924 unsigned char addr_len; /* hardware address length */
925 unsigned short dev_id; /* for shared network cards */
926
927 spinlock_t addr_list_lock;
928 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
929 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
930 int uc_promisc;
931 unsigned int promiscuity;
932 unsigned int allmulti;
933
934
935 /* Protocol specific pointers */
936
937 #ifdef CONFIG_NET_DSA
938 void *dsa_ptr; /* dsa specific data */
939 #endif
940 void *atalk_ptr; /* AppleTalk link */
941 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
942 void *dn_ptr; /* DECnet specific data */
943 void *ip6_ptr; /* IPv6 specific data */
944 void *ec_ptr; /* Econet specific data */
945 void *ax25_ptr; /* AX.25 specific data */
946 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
947 assign before registering */
948
949 /*
950 * Cache lines mostly used on receive path (including eth_type_trans())
951 */
952 unsigned long last_rx; /* Time of last Rx
953 * This should not be set in
954 * drivers, unless really needed,
955 * because network stack (bonding)
956 * use it if/when necessary, to
957 * avoid dirtying this cache line.
958 */
959
960 struct net_device *master; /* Pointer to master device of a group,
961 * which this device is member of.
962 */
963
964 /* Interface address info used in eth_type_trans() */
965 unsigned char *dev_addr; /* hw address, (before bcast
966 because most packets are
967 unicast) */
968
969 struct netdev_hw_addr_list dev_addrs; /* list of device
970 hw addresses */
971
972 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
973
974 #ifdef CONFIG_RPS
975 struct kset *queues_kset;
976
977 struct netdev_rx_queue *_rx;
978
979 /* Number of RX queues allocated at alloc_netdev_mq() time */
980 unsigned int num_rx_queues;
981 #endif
982
983 rx_handler_func_t *rx_handler;
984 void *rx_handler_data;
985
986 struct netdev_queue rx_queue; /* use two cache lines */
987
988 /*
989 * Cache lines mostly used on transmit path
990 */
991 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
992
993 /* Number of TX queues allocated at alloc_netdev_mq() time */
994 unsigned int num_tx_queues;
995
996 /* Number of TX queues currently active in device */
997 unsigned int real_num_tx_queues;
998
999 /* root qdisc from userspace point of view */
1000 struct Qdisc *qdisc;
1001
1002 unsigned long tx_queue_len; /* Max frames per queue allowed */
1003 spinlock_t tx_global_lock;
1004
1005 /* These may be needed for future network-power-down code. */
1006
1007 /*
1008 * trans_start here is expensive for high speed devices on SMP,
1009 * please use netdev_queue->trans_start instead.
1010 */
1011 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1012
1013 int watchdog_timeo; /* used by dev_watchdog() */
1014 struct timer_list watchdog_timer;
1015
1016 /* Number of references to this device */
1017 atomic_t refcnt ____cacheline_aligned_in_smp;
1018
1019 /* delayed register/unregister */
1020 struct list_head todo_list;
1021 /* device index hash chain */
1022 struct hlist_node index_hlist;
1023
1024 struct list_head link_watch_list;
1025
1026 /* register/unregister state machine */
1027 enum { NETREG_UNINITIALIZED=0,
1028 NETREG_REGISTERED, /* completed register_netdevice */
1029 NETREG_UNREGISTERING, /* called unregister_netdevice */
1030 NETREG_UNREGISTERED, /* completed unregister todo */
1031 NETREG_RELEASED, /* called free_netdev */
1032 NETREG_DUMMY, /* dummy device for NAPI poll */
1033 } reg_state:16;
1034
1035 enum {
1036 RTNL_LINK_INITIALIZED,
1037 RTNL_LINK_INITIALIZING,
1038 } rtnl_link_state:16;
1039
1040 /* Called from unregister, can be used to call free_netdev */
1041 void (*destructor)(struct net_device *dev);
1042
1043 #ifdef CONFIG_NETPOLL
1044 struct netpoll_info *npinfo;
1045 #endif
1046
1047 #ifdef CONFIG_NET_NS
1048 /* Network namespace this network device is inside */
1049 struct net *nd_net;
1050 #endif
1051
1052 /* mid-layer private */
1053 void *ml_priv;
1054
1055 /* GARP */
1056 struct garp_port *garp_port;
1057
1058 /* class/net/name entry */
1059 struct device dev;
1060 /* space for optional device, statistics, and wireless sysfs groups */
1061 const struct attribute_group *sysfs_groups[4];
1062
1063 /* rtnetlink link ops */
1064 const struct rtnl_link_ops *rtnl_link_ops;
1065
1066 /* VLAN feature mask */
1067 unsigned long vlan_features;
1068
1069 /* for setting kernel sock attribute on TCP connection setup */
1070 #define GSO_MAX_SIZE 65536
1071 unsigned int gso_max_size;
1072
1073 #ifdef CONFIG_DCB
1074 /* Data Center Bridging netlink ops */
1075 const struct dcbnl_rtnl_ops *dcbnl_ops;
1076 #endif
1077
1078 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
1079 /* max exchange id for FCoE LRO by ddp */
1080 unsigned int fcoe_ddp_xid;
1081 #endif
1082 /* n-tuple filter list attached to this device */
1083 struct ethtool_rx_ntuple_list ethtool_ntuple_list;
1084
1085 /* phy device may attach itself for hardware timestamping */
1086 struct phy_device *phydev;
1087 };
1088 #define to_net_dev(d) container_of(d, struct net_device, dev)
1089
1090 #define NETDEV_ALIGN 32
1091
1092 static inline
1093 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1094 unsigned int index)
1095 {
1096 return &dev->_tx[index];
1097 }
1098
1099 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1100 void (*f)(struct net_device *,
1101 struct netdev_queue *,
1102 void *),
1103 void *arg)
1104 {
1105 unsigned int i;
1106
1107 for (i = 0; i < dev->num_tx_queues; i++)
1108 f(dev, &dev->_tx[i], arg);
1109 }
1110
1111 /*
1112 * Net namespace inlines
1113 */
1114 static inline
1115 struct net *dev_net(const struct net_device *dev)
1116 {
1117 return read_pnet(&dev->nd_net);
1118 }
1119
1120 static inline
1121 void dev_net_set(struct net_device *dev, struct net *net)
1122 {
1123 #ifdef CONFIG_NET_NS
1124 release_net(dev->nd_net);
1125 dev->nd_net = hold_net(net);
1126 #endif
1127 }
1128
1129 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1130 {
1131 #ifdef CONFIG_NET_DSA_TAG_DSA
1132 if (dev->dsa_ptr != NULL)
1133 return dsa_uses_dsa_tags(dev->dsa_ptr);
1134 #endif
1135
1136 return 0;
1137 }
1138
1139 #ifndef CONFIG_NET_NS
1140 static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1141 {
1142 skb->dev = dev;
1143 }
1144 #else /* CONFIG_NET_NS */
1145 void skb_set_dev(struct sk_buff *skb, struct net_device *dev);
1146 #endif
1147
1148 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1149 {
1150 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1151 if (dev->dsa_ptr != NULL)
1152 return dsa_uses_trailer_tags(dev->dsa_ptr);
1153 #endif
1154
1155 return 0;
1156 }
1157
1158 /**
1159 * netdev_priv - access network device private data
1160 * @dev: network device
1161 *
1162 * Get network device private data
1163 */
1164 static inline void *netdev_priv(const struct net_device *dev)
1165 {
1166 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1167 }
1168
1169 /* Set the sysfs physical device reference for the network logical device
1170 * if set prior to registration will cause a symlink during initialization.
1171 */
1172 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1173
1174 /* Set the sysfs device type for the network logical device to allow
1175 * fin grained indentification of different network device types. For
1176 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1177 */
1178 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1179
1180 /**
1181 * netif_napi_add - initialize a napi context
1182 * @dev: network device
1183 * @napi: napi context
1184 * @poll: polling function
1185 * @weight: default weight
1186 *
1187 * netif_napi_add() must be used to initialize a napi context prior to calling
1188 * *any* of the other napi related functions.
1189 */
1190 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1191 int (*poll)(struct napi_struct *, int), int weight);
1192
1193 /**
1194 * netif_napi_del - remove a napi context
1195 * @napi: napi context
1196 *
1197 * netif_napi_del() removes a napi context from the network device napi list
1198 */
1199 void netif_napi_del(struct napi_struct *napi);
1200
1201 struct napi_gro_cb {
1202 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1203 void *frag0;
1204
1205 /* Length of frag0. */
1206 unsigned int frag0_len;
1207
1208 /* This indicates where we are processing relative to skb->data. */
1209 int data_offset;
1210
1211 /* This is non-zero if the packet may be of the same flow. */
1212 int same_flow;
1213
1214 /* This is non-zero if the packet cannot be merged with the new skb. */
1215 int flush;
1216
1217 /* Number of segments aggregated. */
1218 int count;
1219
1220 /* Free the skb? */
1221 int free;
1222 };
1223
1224 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1225
1226 struct packet_type {
1227 __be16 type; /* This is really htons(ether_type). */
1228 struct net_device *dev; /* NULL is wildcarded here */
1229 int (*func) (struct sk_buff *,
1230 struct net_device *,
1231 struct packet_type *,
1232 struct net_device *);
1233 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1234 int features);
1235 int (*gso_send_check)(struct sk_buff *skb);
1236 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1237 struct sk_buff *skb);
1238 int (*gro_complete)(struct sk_buff *skb);
1239 void *af_packet_priv;
1240 struct list_head list;
1241 };
1242
1243 #include <linux/interrupt.h>
1244 #include <linux/notifier.h>
1245
1246 extern rwlock_t dev_base_lock; /* Device list lock */
1247
1248
1249 #define for_each_netdev(net, d) \
1250 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1251 #define for_each_netdev_reverse(net, d) \
1252 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1253 #define for_each_netdev_rcu(net, d) \
1254 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1255 #define for_each_netdev_safe(net, d, n) \
1256 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1257 #define for_each_netdev_continue(net, d) \
1258 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1259 #define for_each_netdev_continue_rcu(net, d) \
1260 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1261 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1262
1263 static inline struct net_device *next_net_device(struct net_device *dev)
1264 {
1265 struct list_head *lh;
1266 struct net *net;
1267
1268 net = dev_net(dev);
1269 lh = dev->dev_list.next;
1270 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1271 }
1272
1273 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1274 {
1275 struct list_head *lh;
1276 struct net *net;
1277
1278 net = dev_net(dev);
1279 lh = rcu_dereference(dev->dev_list.next);
1280 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1281 }
1282
1283 static inline struct net_device *first_net_device(struct net *net)
1284 {
1285 return list_empty(&net->dev_base_head) ? NULL :
1286 net_device_entry(net->dev_base_head.next);
1287 }
1288
1289 extern int netdev_boot_setup_check(struct net_device *dev);
1290 extern unsigned long netdev_boot_base(const char *prefix, int unit);
1291 extern struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *hwaddr);
1292 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1293 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1294 extern void dev_add_pack(struct packet_type *pt);
1295 extern void dev_remove_pack(struct packet_type *pt);
1296 extern void __dev_remove_pack(struct packet_type *pt);
1297
1298 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1299 unsigned short mask);
1300 extern struct net_device *dev_get_by_name(struct net *net, const char *name);
1301 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1302 extern struct net_device *__dev_get_by_name(struct net *net, const char *name);
1303 extern int dev_alloc_name(struct net_device *dev, const char *name);
1304 extern int dev_open(struct net_device *dev);
1305 extern int dev_close(struct net_device *dev);
1306 extern void dev_disable_lro(struct net_device *dev);
1307 extern int dev_queue_xmit(struct sk_buff *skb);
1308 extern int register_netdevice(struct net_device *dev);
1309 extern void unregister_netdevice_queue(struct net_device *dev,
1310 struct list_head *head);
1311 extern void unregister_netdevice_many(struct list_head *head);
1312 static inline void unregister_netdevice(struct net_device *dev)
1313 {
1314 unregister_netdevice_queue(dev, NULL);
1315 }
1316
1317 extern void free_netdev(struct net_device *dev);
1318 extern void synchronize_net(void);
1319 extern int register_netdevice_notifier(struct notifier_block *nb);
1320 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1321 extern int init_dummy_netdev(struct net_device *dev);
1322 extern void netdev_resync_ops(struct net_device *dev);
1323
1324 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1325 extern struct net_device *dev_get_by_index(struct net *net, int ifindex);
1326 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1327 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1328 extern int dev_restart(struct net_device *dev);
1329 #ifdef CONFIG_NETPOLL_TRAP
1330 extern int netpoll_trap(void);
1331 #endif
1332 extern int skb_gro_receive(struct sk_buff **head,
1333 struct sk_buff *skb);
1334 extern void skb_gro_reset_offset(struct sk_buff *skb);
1335
1336 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1337 {
1338 return NAPI_GRO_CB(skb)->data_offset;
1339 }
1340
1341 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1342 {
1343 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1344 }
1345
1346 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1347 {
1348 NAPI_GRO_CB(skb)->data_offset += len;
1349 }
1350
1351 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1352 unsigned int offset)
1353 {
1354 return NAPI_GRO_CB(skb)->frag0 + offset;
1355 }
1356
1357 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1358 {
1359 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1360 }
1361
1362 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1363 unsigned int offset)
1364 {
1365 NAPI_GRO_CB(skb)->frag0 = NULL;
1366 NAPI_GRO_CB(skb)->frag0_len = 0;
1367 return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL;
1368 }
1369
1370 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1371 {
1372 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1373 }
1374
1375 static inline void *skb_gro_network_header(struct sk_buff *skb)
1376 {
1377 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1378 skb_network_offset(skb);
1379 }
1380
1381 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1382 unsigned short type,
1383 const void *daddr, const void *saddr,
1384 unsigned len)
1385 {
1386 if (!dev->header_ops || !dev->header_ops->create)
1387 return 0;
1388
1389 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1390 }
1391
1392 static inline int dev_parse_header(const struct sk_buff *skb,
1393 unsigned char *haddr)
1394 {
1395 const struct net_device *dev = skb->dev;
1396
1397 if (!dev->header_ops || !dev->header_ops->parse)
1398 return 0;
1399 return dev->header_ops->parse(skb, haddr);
1400 }
1401
1402 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1403 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1404 static inline int unregister_gifconf(unsigned int family)
1405 {
1406 return register_gifconf(family, NULL);
1407 }
1408
1409 /*
1410 * Incoming packets are placed on per-cpu queues
1411 */
1412 struct softnet_data {
1413 struct Qdisc *output_queue;
1414 struct Qdisc **output_queue_tailp;
1415 struct list_head poll_list;
1416 struct sk_buff *completion_queue;
1417 struct sk_buff_head process_queue;
1418
1419 /* stats */
1420 unsigned int processed;
1421 unsigned int time_squeeze;
1422 unsigned int cpu_collision;
1423 unsigned int received_rps;
1424
1425 #ifdef CONFIG_RPS
1426 struct softnet_data *rps_ipi_list;
1427
1428 /* Elements below can be accessed between CPUs for RPS */
1429 struct call_single_data csd ____cacheline_aligned_in_smp;
1430 struct softnet_data *rps_ipi_next;
1431 unsigned int cpu;
1432 unsigned int input_queue_head;
1433 unsigned int input_queue_tail;
1434 #endif
1435 unsigned dropped;
1436 struct sk_buff_head input_pkt_queue;
1437 struct napi_struct backlog;
1438 };
1439
1440 static inline void input_queue_head_incr(struct softnet_data *sd)
1441 {
1442 #ifdef CONFIG_RPS
1443 sd->input_queue_head++;
1444 #endif
1445 }
1446
1447 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1448 unsigned int *qtail)
1449 {
1450 #ifdef CONFIG_RPS
1451 *qtail = ++sd->input_queue_tail;
1452 #endif
1453 }
1454
1455 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1456
1457 #define HAVE_NETIF_QUEUE
1458
1459 extern void __netif_schedule(struct Qdisc *q);
1460
1461 static inline void netif_schedule_queue(struct netdev_queue *txq)
1462 {
1463 if (!test_bit(__QUEUE_STATE_XOFF, &txq->state))
1464 __netif_schedule(txq->qdisc);
1465 }
1466
1467 static inline void netif_tx_schedule_all(struct net_device *dev)
1468 {
1469 unsigned int i;
1470
1471 for (i = 0; i < dev->num_tx_queues; i++)
1472 netif_schedule_queue(netdev_get_tx_queue(dev, i));
1473 }
1474
1475 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1476 {
1477 clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1478 }
1479
1480 /**
1481 * netif_start_queue - allow transmit
1482 * @dev: network device
1483 *
1484 * Allow upper layers to call the device hard_start_xmit routine.
1485 */
1486 static inline void netif_start_queue(struct net_device *dev)
1487 {
1488 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1489 }
1490
1491 static inline void netif_tx_start_all_queues(struct net_device *dev)
1492 {
1493 unsigned int i;
1494
1495 for (i = 0; i < dev->num_tx_queues; i++) {
1496 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1497 netif_tx_start_queue(txq);
1498 }
1499 }
1500
1501 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1502 {
1503 #ifdef CONFIG_NETPOLL_TRAP
1504 if (netpoll_trap()) {
1505 netif_tx_start_queue(dev_queue);
1506 return;
1507 }
1508 #endif
1509 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state))
1510 __netif_schedule(dev_queue->qdisc);
1511 }
1512
1513 /**
1514 * netif_wake_queue - restart transmit
1515 * @dev: network device
1516 *
1517 * Allow upper layers to call the device hard_start_xmit routine.
1518 * Used for flow control when transmit resources are available.
1519 */
1520 static inline void netif_wake_queue(struct net_device *dev)
1521 {
1522 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1523 }
1524
1525 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1526 {
1527 unsigned int i;
1528
1529 for (i = 0; i < dev->num_tx_queues; i++) {
1530 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1531 netif_tx_wake_queue(txq);
1532 }
1533 }
1534
1535 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1536 {
1537 set_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1538 }
1539
1540 /**
1541 * netif_stop_queue - stop transmitted packets
1542 * @dev: network device
1543 *
1544 * Stop upper layers calling the device hard_start_xmit routine.
1545 * Used for flow control when transmit resources are unavailable.
1546 */
1547 static inline void netif_stop_queue(struct net_device *dev)
1548 {
1549 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1550 }
1551
1552 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1553 {
1554 unsigned int i;
1555
1556 for (i = 0; i < dev->num_tx_queues; i++) {
1557 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1558 netif_tx_stop_queue(txq);
1559 }
1560 }
1561
1562 static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1563 {
1564 return test_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1565 }
1566
1567 /**
1568 * netif_queue_stopped - test if transmit queue is flowblocked
1569 * @dev: network device
1570 *
1571 * Test if transmit queue on device is currently unable to send.
1572 */
1573 static inline int netif_queue_stopped(const struct net_device *dev)
1574 {
1575 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1576 }
1577
1578 static inline int netif_tx_queue_frozen(const struct netdev_queue *dev_queue)
1579 {
1580 return test_bit(__QUEUE_STATE_FROZEN, &dev_queue->state);
1581 }
1582
1583 /**
1584 * netif_running - test if up
1585 * @dev: network device
1586 *
1587 * Test if the device has been brought up.
1588 */
1589 static inline int netif_running(const struct net_device *dev)
1590 {
1591 return test_bit(__LINK_STATE_START, &dev->state);
1592 }
1593
1594 /*
1595 * Routines to manage the subqueues on a device. We only need start
1596 * stop, and a check if it's stopped. All other device management is
1597 * done at the overall netdevice level.
1598 * Also test the device if we're multiqueue.
1599 */
1600
1601 /**
1602 * netif_start_subqueue - allow sending packets on subqueue
1603 * @dev: network device
1604 * @queue_index: sub queue index
1605 *
1606 * Start individual transmit queue of a device with multiple transmit queues.
1607 */
1608 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
1609 {
1610 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1611
1612 netif_tx_start_queue(txq);
1613 }
1614
1615 /**
1616 * netif_stop_subqueue - stop sending packets on subqueue
1617 * @dev: network device
1618 * @queue_index: sub queue index
1619 *
1620 * Stop individual transmit queue of a device with multiple transmit queues.
1621 */
1622 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
1623 {
1624 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1625 #ifdef CONFIG_NETPOLL_TRAP
1626 if (netpoll_trap())
1627 return;
1628 #endif
1629 netif_tx_stop_queue(txq);
1630 }
1631
1632 /**
1633 * netif_subqueue_stopped - test status of subqueue
1634 * @dev: network device
1635 * @queue_index: sub queue index
1636 *
1637 * Check individual transmit queue of a device with multiple transmit queues.
1638 */
1639 static inline int __netif_subqueue_stopped(const struct net_device *dev,
1640 u16 queue_index)
1641 {
1642 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1643
1644 return netif_tx_queue_stopped(txq);
1645 }
1646
1647 static inline int netif_subqueue_stopped(const struct net_device *dev,
1648 struct sk_buff *skb)
1649 {
1650 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
1651 }
1652
1653 /**
1654 * netif_wake_subqueue - allow sending packets on subqueue
1655 * @dev: network device
1656 * @queue_index: sub queue index
1657 *
1658 * Resume individual transmit queue of a device with multiple transmit queues.
1659 */
1660 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
1661 {
1662 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1663 #ifdef CONFIG_NETPOLL_TRAP
1664 if (netpoll_trap())
1665 return;
1666 #endif
1667 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &txq->state))
1668 __netif_schedule(txq->qdisc);
1669 }
1670
1671 /**
1672 * netif_is_multiqueue - test if device has multiple transmit queues
1673 * @dev: network device
1674 *
1675 * Check if device has multiple transmit queues
1676 */
1677 static inline int netif_is_multiqueue(const struct net_device *dev)
1678 {
1679 return dev->num_tx_queues > 1;
1680 }
1681
1682 extern void netif_set_real_num_tx_queues(struct net_device *dev,
1683 unsigned int txq);
1684
1685 /* Use this variant when it is known for sure that it
1686 * is executing from hardware interrupt context or with hardware interrupts
1687 * disabled.
1688 */
1689 extern void dev_kfree_skb_irq(struct sk_buff *skb);
1690
1691 /* Use this variant in places where it could be invoked
1692 * from either hardware interrupt or other context, with hardware interrupts
1693 * either disabled or enabled.
1694 */
1695 extern void dev_kfree_skb_any(struct sk_buff *skb);
1696
1697 #define HAVE_NETIF_RX 1
1698 extern int netif_rx(struct sk_buff *skb);
1699 extern int netif_rx_ni(struct sk_buff *skb);
1700 #define HAVE_NETIF_RECEIVE_SKB 1
1701 extern int netif_receive_skb(struct sk_buff *skb);
1702 extern gro_result_t dev_gro_receive(struct napi_struct *napi,
1703 struct sk_buff *skb);
1704 extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
1705 extern gro_result_t napi_gro_receive(struct napi_struct *napi,
1706 struct sk_buff *skb);
1707 extern void napi_gro_flush(struct napi_struct *napi);
1708 extern void napi_reuse_skb(struct napi_struct *napi,
1709 struct sk_buff *skb);
1710 extern struct sk_buff * napi_get_frags(struct napi_struct *napi);
1711 extern gro_result_t napi_frags_finish(struct napi_struct *napi,
1712 struct sk_buff *skb,
1713 gro_result_t ret);
1714 extern struct sk_buff * napi_frags_skb(struct napi_struct *napi);
1715 extern gro_result_t napi_gro_frags(struct napi_struct *napi);
1716
1717 static inline void napi_free_frags(struct napi_struct *napi)
1718 {
1719 kfree_skb(napi->skb);
1720 napi->skb = NULL;
1721 }
1722
1723 extern int netdev_rx_handler_register(struct net_device *dev,
1724 rx_handler_func_t *rx_handler,
1725 void *rx_handler_data);
1726 extern void netdev_rx_handler_unregister(struct net_device *dev);
1727
1728 extern void netif_nit_deliver(struct sk_buff *skb);
1729 extern int dev_valid_name(const char *name);
1730 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
1731 extern int dev_ethtool(struct net *net, struct ifreq *);
1732 extern unsigned dev_get_flags(const struct net_device *);
1733 extern int __dev_change_flags(struct net_device *, unsigned int flags);
1734 extern int dev_change_flags(struct net_device *, unsigned);
1735 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags);
1736 extern int dev_change_name(struct net_device *, const char *);
1737 extern int dev_set_alias(struct net_device *, const char *, size_t);
1738 extern int dev_change_net_namespace(struct net_device *,
1739 struct net *, const char *);
1740 extern int dev_set_mtu(struct net_device *, int);
1741 extern int dev_set_mac_address(struct net_device *,
1742 struct sockaddr *);
1743 extern int dev_hard_start_xmit(struct sk_buff *skb,
1744 struct net_device *dev,
1745 struct netdev_queue *txq);
1746 extern int dev_forward_skb(struct net_device *dev,
1747 struct sk_buff *skb);
1748
1749 extern int netdev_budget;
1750
1751 /* Called by rtnetlink.c:rtnl_unlock() */
1752 extern void netdev_run_todo(void);
1753
1754 /**
1755 * dev_put - release reference to device
1756 * @dev: network device
1757 *
1758 * Release reference to device to allow it to be freed.
1759 */
1760 static inline void dev_put(struct net_device *dev)
1761 {
1762 atomic_dec(&dev->refcnt);
1763 }
1764
1765 /**
1766 * dev_hold - get reference to device
1767 * @dev: network device
1768 *
1769 * Hold reference to device to keep it from being freed.
1770 */
1771 static inline void dev_hold(struct net_device *dev)
1772 {
1773 atomic_inc(&dev->refcnt);
1774 }
1775
1776 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
1777 * and _off may be called from IRQ context, but it is caller
1778 * who is responsible for serialization of these calls.
1779 *
1780 * The name carrier is inappropriate, these functions should really be
1781 * called netif_lowerlayer_*() because they represent the state of any
1782 * kind of lower layer not just hardware media.
1783 */
1784
1785 extern void linkwatch_fire_event(struct net_device *dev);
1786 extern void linkwatch_forget_dev(struct net_device *dev);
1787
1788 /**
1789 * netif_carrier_ok - test if carrier present
1790 * @dev: network device
1791 *
1792 * Check if carrier is present on device
1793 */
1794 static inline int netif_carrier_ok(const struct net_device *dev)
1795 {
1796 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
1797 }
1798
1799 extern unsigned long dev_trans_start(struct net_device *dev);
1800
1801 extern void __netdev_watchdog_up(struct net_device *dev);
1802
1803 extern void netif_carrier_on(struct net_device *dev);
1804
1805 extern void netif_carrier_off(struct net_device *dev);
1806
1807 extern void netif_notify_peers(struct net_device *dev);
1808
1809 /**
1810 * netif_dormant_on - mark device as dormant.
1811 * @dev: network device
1812 *
1813 * Mark device as dormant (as per RFC2863).
1814 *
1815 * The dormant state indicates that the relevant interface is not
1816 * actually in a condition to pass packets (i.e., it is not 'up') but is
1817 * in a "pending" state, waiting for some external event. For "on-
1818 * demand" interfaces, this new state identifies the situation where the
1819 * interface is waiting for events to place it in the up state.
1820 *
1821 */
1822 static inline void netif_dormant_on(struct net_device *dev)
1823 {
1824 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
1825 linkwatch_fire_event(dev);
1826 }
1827
1828 /**
1829 * netif_dormant_off - set device as not dormant.
1830 * @dev: network device
1831 *
1832 * Device is not in dormant state.
1833 */
1834 static inline void netif_dormant_off(struct net_device *dev)
1835 {
1836 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
1837 linkwatch_fire_event(dev);
1838 }
1839
1840 /**
1841 * netif_dormant - test if carrier present
1842 * @dev: network device
1843 *
1844 * Check if carrier is present on device
1845 */
1846 static inline int netif_dormant(const struct net_device *dev)
1847 {
1848 return test_bit(__LINK_STATE_DORMANT, &dev->state);
1849 }
1850
1851
1852 /**
1853 * netif_oper_up - test if device is operational
1854 * @dev: network device
1855 *
1856 * Check if carrier is operational
1857 */
1858 static inline int netif_oper_up(const struct net_device *dev)
1859 {
1860 return (dev->operstate == IF_OPER_UP ||
1861 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
1862 }
1863
1864 /**
1865 * netif_device_present - is device available or removed
1866 * @dev: network device
1867 *
1868 * Check if device has not been removed from system.
1869 */
1870 static inline int netif_device_present(struct net_device *dev)
1871 {
1872 return test_bit(__LINK_STATE_PRESENT, &dev->state);
1873 }
1874
1875 extern void netif_device_detach(struct net_device *dev);
1876
1877 extern void netif_device_attach(struct net_device *dev);
1878
1879 /*
1880 * Network interface message level settings
1881 */
1882 #define HAVE_NETIF_MSG 1
1883
1884 enum {
1885 NETIF_MSG_DRV = 0x0001,
1886 NETIF_MSG_PROBE = 0x0002,
1887 NETIF_MSG_LINK = 0x0004,
1888 NETIF_MSG_TIMER = 0x0008,
1889 NETIF_MSG_IFDOWN = 0x0010,
1890 NETIF_MSG_IFUP = 0x0020,
1891 NETIF_MSG_RX_ERR = 0x0040,
1892 NETIF_MSG_TX_ERR = 0x0080,
1893 NETIF_MSG_TX_QUEUED = 0x0100,
1894 NETIF_MSG_INTR = 0x0200,
1895 NETIF_MSG_TX_DONE = 0x0400,
1896 NETIF_MSG_RX_STATUS = 0x0800,
1897 NETIF_MSG_PKTDATA = 0x1000,
1898 NETIF_MSG_HW = 0x2000,
1899 NETIF_MSG_WOL = 0x4000,
1900 };
1901
1902 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
1903 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
1904 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
1905 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
1906 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
1907 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
1908 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
1909 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
1910 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
1911 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
1912 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
1913 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
1914 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
1915 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
1916 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
1917
1918 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
1919 {
1920 /* use default */
1921 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
1922 return default_msg_enable_bits;
1923 if (debug_value == 0) /* no output */
1924 return 0;
1925 /* set low N bits */
1926 return (1 << debug_value) - 1;
1927 }
1928
1929 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
1930 {
1931 spin_lock(&txq->_xmit_lock);
1932 txq->xmit_lock_owner = cpu;
1933 }
1934
1935 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
1936 {
1937 spin_lock_bh(&txq->_xmit_lock);
1938 txq->xmit_lock_owner = smp_processor_id();
1939 }
1940
1941 static inline int __netif_tx_trylock(struct netdev_queue *txq)
1942 {
1943 int ok = spin_trylock(&txq->_xmit_lock);
1944 if (likely(ok))
1945 txq->xmit_lock_owner = smp_processor_id();
1946 return ok;
1947 }
1948
1949 static inline void __netif_tx_unlock(struct netdev_queue *txq)
1950 {
1951 txq->xmit_lock_owner = -1;
1952 spin_unlock(&txq->_xmit_lock);
1953 }
1954
1955 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
1956 {
1957 txq->xmit_lock_owner = -1;
1958 spin_unlock_bh(&txq->_xmit_lock);
1959 }
1960
1961 static inline void txq_trans_update(struct netdev_queue *txq)
1962 {
1963 if (txq->xmit_lock_owner != -1)
1964 txq->trans_start = jiffies;
1965 }
1966
1967 /**
1968 * netif_tx_lock - grab network device transmit lock
1969 * @dev: network device
1970 *
1971 * Get network device transmit lock
1972 */
1973 static inline void netif_tx_lock(struct net_device *dev)
1974 {
1975 unsigned int i;
1976 int cpu;
1977
1978 spin_lock(&dev->tx_global_lock);
1979 cpu = smp_processor_id();
1980 for (i = 0; i < dev->num_tx_queues; i++) {
1981 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1982
1983 /* We are the only thread of execution doing a
1984 * freeze, but we have to grab the _xmit_lock in
1985 * order to synchronize with threads which are in
1986 * the ->hard_start_xmit() handler and already
1987 * checked the frozen bit.
1988 */
1989 __netif_tx_lock(txq, cpu);
1990 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
1991 __netif_tx_unlock(txq);
1992 }
1993 }
1994
1995 static inline void netif_tx_lock_bh(struct net_device *dev)
1996 {
1997 local_bh_disable();
1998 netif_tx_lock(dev);
1999 }
2000
2001 static inline void netif_tx_unlock(struct net_device *dev)
2002 {
2003 unsigned int i;
2004
2005 for (i = 0; i < dev->num_tx_queues; i++) {
2006 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2007
2008 /* No need to grab the _xmit_lock here. If the
2009 * queue is not stopped for another reason, we
2010 * force a schedule.
2011 */
2012 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2013 netif_schedule_queue(txq);
2014 }
2015 spin_unlock(&dev->tx_global_lock);
2016 }
2017
2018 static inline void netif_tx_unlock_bh(struct net_device *dev)
2019 {
2020 netif_tx_unlock(dev);
2021 local_bh_enable();
2022 }
2023
2024 #define HARD_TX_LOCK(dev, txq, cpu) { \
2025 if ((dev->features & NETIF_F_LLTX) == 0) { \
2026 __netif_tx_lock(txq, cpu); \
2027 } \
2028 }
2029
2030 #define HARD_TX_UNLOCK(dev, txq) { \
2031 if ((dev->features & NETIF_F_LLTX) == 0) { \
2032 __netif_tx_unlock(txq); \
2033 } \
2034 }
2035
2036 static inline void netif_tx_disable(struct net_device *dev)
2037 {
2038 unsigned int i;
2039 int cpu;
2040
2041 local_bh_disable();
2042 cpu = smp_processor_id();
2043 for (i = 0; i < dev->num_tx_queues; i++) {
2044 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2045
2046 __netif_tx_lock(txq, cpu);
2047 netif_tx_stop_queue(txq);
2048 __netif_tx_unlock(txq);
2049 }
2050 local_bh_enable();
2051 }
2052
2053 static inline void netif_addr_lock(struct net_device *dev)
2054 {
2055 spin_lock(&dev->addr_list_lock);
2056 }
2057
2058 static inline void netif_addr_lock_bh(struct net_device *dev)
2059 {
2060 spin_lock_bh(&dev->addr_list_lock);
2061 }
2062
2063 static inline void netif_addr_unlock(struct net_device *dev)
2064 {
2065 spin_unlock(&dev->addr_list_lock);
2066 }
2067
2068 static inline void netif_addr_unlock_bh(struct net_device *dev)
2069 {
2070 spin_unlock_bh(&dev->addr_list_lock);
2071 }
2072
2073 /*
2074 * dev_addrs walker. Should be used only for read access. Call with
2075 * rcu_read_lock held.
2076 */
2077 #define for_each_dev_addr(dev, ha) \
2078 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2079
2080 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2081
2082 extern void ether_setup(struct net_device *dev);
2083
2084 /* Support for loadable net-drivers */
2085 extern struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
2086 void (*setup)(struct net_device *),
2087 unsigned int queue_count);
2088 #define alloc_netdev(sizeof_priv, name, setup) \
2089 alloc_netdev_mq(sizeof_priv, name, setup, 1)
2090 extern int register_netdev(struct net_device *dev);
2091 extern void unregister_netdev(struct net_device *dev);
2092
2093 /* General hardware address lists handling functions */
2094 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2095 struct netdev_hw_addr_list *from_list,
2096 int addr_len, unsigned char addr_type);
2097 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2098 struct netdev_hw_addr_list *from_list,
2099 int addr_len, unsigned char addr_type);
2100 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2101 struct netdev_hw_addr_list *from_list,
2102 int addr_len);
2103 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2104 struct netdev_hw_addr_list *from_list,
2105 int addr_len);
2106 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2107 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2108
2109 /* Functions used for device addresses handling */
2110 extern int dev_addr_add(struct net_device *dev, unsigned char *addr,
2111 unsigned char addr_type);
2112 extern int dev_addr_del(struct net_device *dev, unsigned char *addr,
2113 unsigned char addr_type);
2114 extern int dev_addr_add_multiple(struct net_device *to_dev,
2115 struct net_device *from_dev,
2116 unsigned char addr_type);
2117 extern int dev_addr_del_multiple(struct net_device *to_dev,
2118 struct net_device *from_dev,
2119 unsigned char addr_type);
2120 extern void dev_addr_flush(struct net_device *dev);
2121 extern int dev_addr_init(struct net_device *dev);
2122
2123 /* Functions used for unicast addresses handling */
2124 extern int dev_uc_add(struct net_device *dev, unsigned char *addr);
2125 extern int dev_uc_del(struct net_device *dev, unsigned char *addr);
2126 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2127 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2128 extern void dev_uc_flush(struct net_device *dev);
2129 extern void dev_uc_init(struct net_device *dev);
2130
2131 /* Functions used for multicast addresses handling */
2132 extern int dev_mc_add(struct net_device *dev, unsigned char *addr);
2133 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr);
2134 extern int dev_mc_del(struct net_device *dev, unsigned char *addr);
2135 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr);
2136 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2137 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2138 extern void dev_mc_flush(struct net_device *dev);
2139 extern void dev_mc_init(struct net_device *dev);
2140
2141 /* Functions used for secondary unicast and multicast support */
2142 extern void dev_set_rx_mode(struct net_device *dev);
2143 extern void __dev_set_rx_mode(struct net_device *dev);
2144 extern int dev_set_promiscuity(struct net_device *dev, int inc);
2145 extern int dev_set_allmulti(struct net_device *dev, int inc);
2146 extern void netdev_state_change(struct net_device *dev);
2147 extern int netdev_bonding_change(struct net_device *dev,
2148 unsigned long event);
2149 extern void netdev_features_change(struct net_device *dev);
2150 /* Load a device via the kmod */
2151 extern void dev_load(struct net *net, const char *name);
2152 extern void dev_mcast_init(void);
2153 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2154 struct rtnl_link_stats64 *storage);
2155 extern void dev_txq_stats_fold(const struct net_device *dev,
2156 struct rtnl_link_stats64 *stats);
2157
2158 extern int netdev_max_backlog;
2159 extern int netdev_tstamp_prequeue;
2160 extern int weight_p;
2161 extern int netdev_set_master(struct net_device *dev, struct net_device *master);
2162 extern int skb_checksum_help(struct sk_buff *skb);
2163 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features);
2164 #ifdef CONFIG_BUG
2165 extern void netdev_rx_csum_fault(struct net_device *dev);
2166 #else
2167 static inline void netdev_rx_csum_fault(struct net_device *dev)
2168 {
2169 }
2170 #endif
2171 /* rx skb timestamps */
2172 extern void net_enable_timestamp(void);
2173 extern void net_disable_timestamp(void);
2174
2175 #ifdef CONFIG_PROC_FS
2176 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2177 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2178 extern void dev_seq_stop(struct seq_file *seq, void *v);
2179 #endif
2180
2181 extern int netdev_class_create_file(struct class_attribute *class_attr);
2182 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2183
2184 extern struct kobj_ns_type_operations net_ns_type_operations;
2185
2186 extern char *netdev_drivername(const struct net_device *dev, char *buffer, int len);
2187
2188 extern void linkwatch_run_queue(void);
2189
2190 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
2191 unsigned long mask);
2192 unsigned long netdev_fix_features(unsigned long features, const char *name);
2193
2194 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2195 struct net_device *dev);
2196
2197 static inline int net_gso_ok(int features, int gso_type)
2198 {
2199 int feature = gso_type << NETIF_F_GSO_SHIFT;
2200 return (features & feature) == feature;
2201 }
2202
2203 static inline int skb_gso_ok(struct sk_buff *skb, int features)
2204 {
2205 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2206 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2207 }
2208
2209 static inline int netif_needs_gso(struct net_device *dev, struct sk_buff *skb)
2210 {
2211 return skb_is_gso(skb) &&
2212 (!skb_gso_ok(skb, dev->features) ||
2213 unlikely(skb->ip_summed != CHECKSUM_PARTIAL));
2214 }
2215
2216 static inline void netif_set_gso_max_size(struct net_device *dev,
2217 unsigned int size)
2218 {
2219 dev->gso_max_size = size;
2220 }
2221
2222 extern int __skb_bond_should_drop(struct sk_buff *skb,
2223 struct net_device *master);
2224
2225 static inline int skb_bond_should_drop(struct sk_buff *skb,
2226 struct net_device *master)
2227 {
2228 if (master)
2229 return __skb_bond_should_drop(skb, master);
2230 return 0;
2231 }
2232
2233 extern struct pernet_operations __net_initdata loopback_net_ops;
2234
2235 static inline int dev_ethtool_get_settings(struct net_device *dev,
2236 struct ethtool_cmd *cmd)
2237 {
2238 if (!dev->ethtool_ops || !dev->ethtool_ops->get_settings)
2239 return -EOPNOTSUPP;
2240 return dev->ethtool_ops->get_settings(dev, cmd);
2241 }
2242
2243 static inline u32 dev_ethtool_get_rx_csum(struct net_device *dev)
2244 {
2245 if (!dev->ethtool_ops || !dev->ethtool_ops->get_rx_csum)
2246 return 0;
2247 return dev->ethtool_ops->get_rx_csum(dev);
2248 }
2249
2250 static inline u32 dev_ethtool_get_flags(struct net_device *dev)
2251 {
2252 if (!dev->ethtool_ops || !dev->ethtool_ops->get_flags)
2253 return 0;
2254 return dev->ethtool_ops->get_flags(dev);
2255 }
2256
2257 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2258
2259 /* netdev_printk helpers, similar to dev_printk */
2260
2261 static inline const char *netdev_name(const struct net_device *dev)
2262 {
2263 if (dev->reg_state != NETREG_REGISTERED)
2264 return "(unregistered net_device)";
2265 return dev->name;
2266 }
2267
2268 extern int netdev_printk(const char *level, const struct net_device *dev,
2269 const char *format, ...)
2270 __attribute__ ((format (printf, 3, 4)));
2271 extern int netdev_emerg(const struct net_device *dev, const char *format, ...)
2272 __attribute__ ((format (printf, 2, 3)));
2273 extern int netdev_alert(const struct net_device *dev, const char *format, ...)
2274 __attribute__ ((format (printf, 2, 3)));
2275 extern int netdev_crit(const struct net_device *dev, const char *format, ...)
2276 __attribute__ ((format (printf, 2, 3)));
2277 extern int netdev_err(const struct net_device *dev, const char *format, ...)
2278 __attribute__ ((format (printf, 2, 3)));
2279 extern int netdev_warn(const struct net_device *dev, const char *format, ...)
2280 __attribute__ ((format (printf, 2, 3)));
2281 extern int netdev_notice(const struct net_device *dev, const char *format, ...)
2282 __attribute__ ((format (printf, 2, 3)));
2283 extern int netdev_info(const struct net_device *dev, const char *format, ...)
2284 __attribute__ ((format (printf, 2, 3)));
2285
2286 #if defined(DEBUG)
2287 #define netdev_dbg(__dev, format, args...) \
2288 netdev_printk(KERN_DEBUG, __dev, format, ##args)
2289 #elif defined(CONFIG_DYNAMIC_DEBUG)
2290 #define netdev_dbg(__dev, format, args...) \
2291 do { \
2292 dynamic_dev_dbg((__dev)->dev.parent, "%s: " format, \
2293 netdev_name(__dev), ##args); \
2294 } while (0)
2295 #else
2296 #define netdev_dbg(__dev, format, args...) \
2297 ({ \
2298 if (0) \
2299 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2300 0; \
2301 })
2302 #endif
2303
2304 #if defined(VERBOSE_DEBUG)
2305 #define netdev_vdbg netdev_dbg
2306 #else
2307
2308 #define netdev_vdbg(dev, format, args...) \
2309 ({ \
2310 if (0) \
2311 netdev_printk(KERN_DEBUG, dev, format, ##args); \
2312 0; \
2313 })
2314 #endif
2315
2316 /*
2317 * netdev_WARN() acts like dev_printk(), but with the key difference
2318 * of using a WARN/WARN_ON to get the message out, including the
2319 * file/line information and a backtrace.
2320 */
2321 #define netdev_WARN(dev, format, args...) \
2322 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2323
2324 /* netif printk helpers, similar to netdev_printk */
2325
2326 #define netif_printk(priv, type, level, dev, fmt, args...) \
2327 do { \
2328 if (netif_msg_##type(priv)) \
2329 netdev_printk(level, (dev), fmt, ##args); \
2330 } while (0)
2331
2332 #define netif_level(level, priv, type, dev, fmt, args...) \
2333 do { \
2334 if (netif_msg_##type(priv)) \
2335 netdev_##level(dev, fmt, ##args); \
2336 } while (0)
2337
2338 #define netif_emerg(priv, type, dev, fmt, args...) \
2339 netif_level(emerg, priv, type, dev, fmt, ##args)
2340 #define netif_alert(priv, type, dev, fmt, args...) \
2341 netif_level(alert, priv, type, dev, fmt, ##args)
2342 #define netif_crit(priv, type, dev, fmt, args...) \
2343 netif_level(crit, priv, type, dev, fmt, ##args)
2344 #define netif_err(priv, type, dev, fmt, args...) \
2345 netif_level(err, priv, type, dev, fmt, ##args)
2346 #define netif_warn(priv, type, dev, fmt, args...) \
2347 netif_level(warn, priv, type, dev, fmt, ##args)
2348 #define netif_notice(priv, type, dev, fmt, args...) \
2349 netif_level(notice, priv, type, dev, fmt, ##args)
2350 #define netif_info(priv, type, dev, fmt, args...) \
2351 netif_level(info, priv, type, dev, fmt, ##args)
2352
2353 #if defined(DEBUG)
2354 #define netif_dbg(priv, type, dev, format, args...) \
2355 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2356 #elif defined(CONFIG_DYNAMIC_DEBUG)
2357 #define netif_dbg(priv, type, netdev, format, args...) \
2358 do { \
2359 if (netif_msg_##type(priv)) \
2360 dynamic_dev_dbg((netdev)->dev.parent, \
2361 "%s: " format, \
2362 netdev_name(netdev), ##args); \
2363 } while (0)
2364 #else
2365 #define netif_dbg(priv, type, dev, format, args...) \
2366 ({ \
2367 if (0) \
2368 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2369 0; \
2370 })
2371 #endif
2372
2373 #if defined(VERBOSE_DEBUG)
2374 #define netif_vdbg netif_dbg
2375 #else
2376 #define netif_vdbg(priv, type, dev, format, args...) \
2377 ({ \
2378 if (0) \
2379 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2380 0; \
2381 })
2382 #endif
2383
2384 #endif /* __KERNEL__ */
2385
2386 #endif /* _LINUX_NETDEVICE_H */
This page took 0.087801 seconds and 5 git commands to generate.