net: unify the pcpu_tstats and br_cpu_netstats as one
[deliverable/linux.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/pm_qos.h>
29 #include <linux/timer.h>
30 #include <linux/bug.h>
31 #include <linux/delay.h>
32 #include <linux/atomic.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53
54 struct netpoll_info;
55 struct device;
56 struct phy_device;
57 /* 802.11 specific */
58 struct wireless_dev;
59 /* source back-compat hooks */
60 #define SET_ETHTOOL_OPS(netdev,ops) \
61 ( (netdev)->ethtool_ops = (ops) )
62
63 void netdev_set_default_ethtool_ops(struct net_device *dev,
64 const struct ethtool_ops *ops);
65
66 /* hardware address assignment types */
67 #define NET_ADDR_PERM 0 /* address is permanent (default) */
68 #define NET_ADDR_RANDOM 1 /* address is generated randomly */
69 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */
70 #define NET_ADDR_SET 3 /* address is set using
71 * dev_set_mac_address() */
72
73 /* Backlog congestion levels */
74 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
75 #define NET_RX_DROP 1 /* packet dropped */
76
77 /*
78 * Transmit return codes: transmit return codes originate from three different
79 * namespaces:
80 *
81 * - qdisc return codes
82 * - driver transmit return codes
83 * - errno values
84 *
85 * Drivers are allowed to return any one of those in their hard_start_xmit()
86 * function. Real network devices commonly used with qdiscs should only return
87 * the driver transmit return codes though - when qdiscs are used, the actual
88 * transmission happens asynchronously, so the value is not propagated to
89 * higher layers. Virtual network devices transmit synchronously, in this case
90 * the driver transmit return codes are consumed by dev_queue_xmit(), all
91 * others are propagated to higher layers.
92 */
93
94 /* qdisc ->enqueue() return codes. */
95 #define NET_XMIT_SUCCESS 0x00
96 #define NET_XMIT_DROP 0x01 /* skb dropped */
97 #define NET_XMIT_CN 0x02 /* congestion notification */
98 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
99 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
100
101 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
102 * indicates that the device will soon be dropping packets, or already drops
103 * some packets of the same priority; prompting us to send less aggressively. */
104 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
105 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
106
107 /* Driver transmit return codes */
108 #define NETDEV_TX_MASK 0xf0
109
110 enum netdev_tx {
111 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
112 NETDEV_TX_OK = 0x00, /* driver took care of packet */
113 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
114 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
115 };
116 typedef enum netdev_tx netdev_tx_t;
117
118 /*
119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121 */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 /*
125 * Positive cases with an skb consumed by a driver:
126 * - successful transmission (rc == NETDEV_TX_OK)
127 * - error while transmitting (rc < 0)
128 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 */
130 if (likely(rc < NET_XMIT_MASK))
131 return true;
132
133 return false;
134 }
135
136 /*
137 * Compute the worst case header length according to the protocols
138 * used.
139 */
140
141 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
142 # if defined(CONFIG_MAC80211_MESH)
143 # define LL_MAX_HEADER 128
144 # else
145 # define LL_MAX_HEADER 96
146 # endif
147 #else
148 # define LL_MAX_HEADER 32
149 #endif
150
151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
152 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
153 #define MAX_HEADER LL_MAX_HEADER
154 #else
155 #define MAX_HEADER (LL_MAX_HEADER + 48)
156 #endif
157
158 /*
159 * Old network device statistics. Fields are native words
160 * (unsigned long) so they can be read and written atomically.
161 */
162
163 struct net_device_stats {
164 unsigned long rx_packets;
165 unsigned long tx_packets;
166 unsigned long rx_bytes;
167 unsigned long tx_bytes;
168 unsigned long rx_errors;
169 unsigned long tx_errors;
170 unsigned long rx_dropped;
171 unsigned long tx_dropped;
172 unsigned long multicast;
173 unsigned long collisions;
174 unsigned long rx_length_errors;
175 unsigned long rx_over_errors;
176 unsigned long rx_crc_errors;
177 unsigned long rx_frame_errors;
178 unsigned long rx_fifo_errors;
179 unsigned long rx_missed_errors;
180 unsigned long tx_aborted_errors;
181 unsigned long tx_carrier_errors;
182 unsigned long tx_fifo_errors;
183 unsigned long tx_heartbeat_errors;
184 unsigned long tx_window_errors;
185 unsigned long rx_compressed;
186 unsigned long tx_compressed;
187 };
188
189
190 #include <linux/cache.h>
191 #include <linux/skbuff.h>
192
193 #ifdef CONFIG_RPS
194 #include <linux/static_key.h>
195 extern struct static_key rps_needed;
196 #endif
197
198 struct neighbour;
199 struct neigh_parms;
200 struct sk_buff;
201
202 struct netdev_hw_addr {
203 struct list_head list;
204 unsigned char addr[MAX_ADDR_LEN];
205 unsigned char type;
206 #define NETDEV_HW_ADDR_T_LAN 1
207 #define NETDEV_HW_ADDR_T_SAN 2
208 #define NETDEV_HW_ADDR_T_SLAVE 3
209 #define NETDEV_HW_ADDR_T_UNICAST 4
210 #define NETDEV_HW_ADDR_T_MULTICAST 5
211 bool global_use;
212 int sync_cnt;
213 int refcount;
214 int synced;
215 struct rcu_head rcu_head;
216 };
217
218 struct netdev_hw_addr_list {
219 struct list_head list;
220 int count;
221 };
222
223 #define netdev_hw_addr_list_count(l) ((l)->count)
224 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
225 #define netdev_hw_addr_list_for_each(ha, l) \
226 list_for_each_entry(ha, &(l)->list, list)
227
228 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
229 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
230 #define netdev_for_each_uc_addr(ha, dev) \
231 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
232
233 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
234 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
235 #define netdev_for_each_mc_addr(ha, dev) \
236 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
237
238 struct hh_cache {
239 u16 hh_len;
240 u16 __pad;
241 seqlock_t hh_lock;
242
243 /* cached hardware header; allow for machine alignment needs. */
244 #define HH_DATA_MOD 16
245 #define HH_DATA_OFF(__len) \
246 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247 #define HH_DATA_ALIGN(__len) \
248 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250 };
251
252 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
253 * Alternative is:
254 * dev->hard_header_len ? (dev->hard_header_len +
255 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256 *
257 * We could use other alignment values, but we must maintain the
258 * relationship HH alignment <= LL alignment.
259 */
260 #define LL_RESERVED_SPACE(dev) \
261 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264
265 struct header_ops {
266 int (*create) (struct sk_buff *skb, struct net_device *dev,
267 unsigned short type, const void *daddr,
268 const void *saddr, unsigned int len);
269 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
270 int (*rebuild)(struct sk_buff *skb);
271 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
272 void (*cache_update)(struct hh_cache *hh,
273 const struct net_device *dev,
274 const unsigned char *haddr);
275 };
276
277 /* These flag bits are private to the generic network queueing
278 * layer, they may not be explicitly referenced by any other
279 * code.
280 */
281
282 enum netdev_state_t {
283 __LINK_STATE_START,
284 __LINK_STATE_PRESENT,
285 __LINK_STATE_NOCARRIER,
286 __LINK_STATE_LINKWATCH_PENDING,
287 __LINK_STATE_DORMANT,
288 };
289
290
291 /*
292 * This structure holds at boot time configured netdevice settings. They
293 * are then used in the device probing.
294 */
295 struct netdev_boot_setup {
296 char name[IFNAMSIZ];
297 struct ifmap map;
298 };
299 #define NETDEV_BOOT_SETUP_MAX 8
300
301 int __init netdev_boot_setup(char *str);
302
303 /*
304 * Structure for NAPI scheduling similar to tasklet but with weighting
305 */
306 struct napi_struct {
307 /* The poll_list must only be managed by the entity which
308 * changes the state of the NAPI_STATE_SCHED bit. This means
309 * whoever atomically sets that bit can add this napi_struct
310 * to the per-cpu poll_list, and whoever clears that bit
311 * can remove from the list right before clearing the bit.
312 */
313 struct list_head poll_list;
314
315 unsigned long state;
316 int weight;
317 unsigned int gro_count;
318 int (*poll)(struct napi_struct *, int);
319 #ifdef CONFIG_NETPOLL
320 spinlock_t poll_lock;
321 int poll_owner;
322 #endif
323 struct net_device *dev;
324 struct sk_buff *gro_list;
325 struct sk_buff *skb;
326 struct list_head dev_list;
327 struct hlist_node napi_hash_node;
328 unsigned int napi_id;
329 };
330
331 enum {
332 NAPI_STATE_SCHED, /* Poll is scheduled */
333 NAPI_STATE_DISABLE, /* Disable pending */
334 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
335 NAPI_STATE_HASHED, /* In NAPI hash */
336 };
337
338 enum gro_result {
339 GRO_MERGED,
340 GRO_MERGED_FREE,
341 GRO_HELD,
342 GRO_NORMAL,
343 GRO_DROP,
344 };
345 typedef enum gro_result gro_result_t;
346
347 /*
348 * enum rx_handler_result - Possible return values for rx_handlers.
349 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
350 * further.
351 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
352 * case skb->dev was changed by rx_handler.
353 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
354 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
355 *
356 * rx_handlers are functions called from inside __netif_receive_skb(), to do
357 * special processing of the skb, prior to delivery to protocol handlers.
358 *
359 * Currently, a net_device can only have a single rx_handler registered. Trying
360 * to register a second rx_handler will return -EBUSY.
361 *
362 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
363 * To unregister a rx_handler on a net_device, use
364 * netdev_rx_handler_unregister().
365 *
366 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
367 * do with the skb.
368 *
369 * If the rx_handler consumed to skb in some way, it should return
370 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
371 * the skb to be delivered in some other ways.
372 *
373 * If the rx_handler changed skb->dev, to divert the skb to another
374 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
375 * new device will be called if it exists.
376 *
377 * If the rx_handler consider the skb should be ignored, it should return
378 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
379 * are registered on exact device (ptype->dev == skb->dev).
380 *
381 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
382 * delivered, it should return RX_HANDLER_PASS.
383 *
384 * A device without a registered rx_handler will behave as if rx_handler
385 * returned RX_HANDLER_PASS.
386 */
387
388 enum rx_handler_result {
389 RX_HANDLER_CONSUMED,
390 RX_HANDLER_ANOTHER,
391 RX_HANDLER_EXACT,
392 RX_HANDLER_PASS,
393 };
394 typedef enum rx_handler_result rx_handler_result_t;
395 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
396
397 void __napi_schedule(struct napi_struct *n);
398
399 static inline bool napi_disable_pending(struct napi_struct *n)
400 {
401 return test_bit(NAPI_STATE_DISABLE, &n->state);
402 }
403
404 /**
405 * napi_schedule_prep - check if napi can be scheduled
406 * @n: napi context
407 *
408 * Test if NAPI routine is already running, and if not mark
409 * it as running. This is used as a condition variable
410 * insure only one NAPI poll instance runs. We also make
411 * sure there is no pending NAPI disable.
412 */
413 static inline bool napi_schedule_prep(struct napi_struct *n)
414 {
415 return !napi_disable_pending(n) &&
416 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
417 }
418
419 /**
420 * napi_schedule - schedule NAPI poll
421 * @n: napi context
422 *
423 * Schedule NAPI poll routine to be called if it is not already
424 * running.
425 */
426 static inline void napi_schedule(struct napi_struct *n)
427 {
428 if (napi_schedule_prep(n))
429 __napi_schedule(n);
430 }
431
432 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
433 static inline bool napi_reschedule(struct napi_struct *napi)
434 {
435 if (napi_schedule_prep(napi)) {
436 __napi_schedule(napi);
437 return true;
438 }
439 return false;
440 }
441
442 /**
443 * napi_complete - NAPI processing complete
444 * @n: napi context
445 *
446 * Mark NAPI processing as complete.
447 */
448 void __napi_complete(struct napi_struct *n);
449 void napi_complete(struct napi_struct *n);
450
451 /**
452 * napi_by_id - lookup a NAPI by napi_id
453 * @napi_id: hashed napi_id
454 *
455 * lookup @napi_id in napi_hash table
456 * must be called under rcu_read_lock()
457 */
458 struct napi_struct *napi_by_id(unsigned int napi_id);
459
460 /**
461 * napi_hash_add - add a NAPI to global hashtable
462 * @napi: napi context
463 *
464 * generate a new napi_id and store a @napi under it in napi_hash
465 */
466 void napi_hash_add(struct napi_struct *napi);
467
468 /**
469 * napi_hash_del - remove a NAPI from global table
470 * @napi: napi context
471 *
472 * Warning: caller must observe rcu grace period
473 * before freeing memory containing @napi
474 */
475 void napi_hash_del(struct napi_struct *napi);
476
477 /**
478 * napi_disable - prevent NAPI from scheduling
479 * @n: napi context
480 *
481 * Stop NAPI from being scheduled on this context.
482 * Waits till any outstanding processing completes.
483 */
484 static inline void napi_disable(struct napi_struct *n)
485 {
486 might_sleep();
487 set_bit(NAPI_STATE_DISABLE, &n->state);
488 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
489 msleep(1);
490 clear_bit(NAPI_STATE_DISABLE, &n->state);
491 }
492
493 /**
494 * napi_enable - enable NAPI scheduling
495 * @n: napi context
496 *
497 * Resume NAPI from being scheduled on this context.
498 * Must be paired with napi_disable.
499 */
500 static inline void napi_enable(struct napi_struct *n)
501 {
502 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
503 smp_mb__before_clear_bit();
504 clear_bit(NAPI_STATE_SCHED, &n->state);
505 }
506
507 #ifdef CONFIG_SMP
508 /**
509 * napi_synchronize - wait until NAPI is not running
510 * @n: napi context
511 *
512 * Wait until NAPI is done being scheduled on this context.
513 * Waits till any outstanding processing completes but
514 * does not disable future activations.
515 */
516 static inline void napi_synchronize(const struct napi_struct *n)
517 {
518 while (test_bit(NAPI_STATE_SCHED, &n->state))
519 msleep(1);
520 }
521 #else
522 # define napi_synchronize(n) barrier()
523 #endif
524
525 enum netdev_queue_state_t {
526 __QUEUE_STATE_DRV_XOFF,
527 __QUEUE_STATE_STACK_XOFF,
528 __QUEUE_STATE_FROZEN,
529 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \
530 (1 << __QUEUE_STATE_STACK_XOFF))
531 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
532 (1 << __QUEUE_STATE_FROZEN))
533 };
534 /*
535 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
536 * netif_tx_* functions below are used to manipulate this flag. The
537 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
538 * queue independently. The netif_xmit_*stopped functions below are called
539 * to check if the queue has been stopped by the driver or stack (either
540 * of the XOFF bits are set in the state). Drivers should not need to call
541 * netif_xmit*stopped functions, they should only be using netif_tx_*.
542 */
543
544 struct netdev_queue {
545 /*
546 * read mostly part
547 */
548 struct net_device *dev;
549 struct Qdisc *qdisc;
550 struct Qdisc *qdisc_sleeping;
551 #ifdef CONFIG_SYSFS
552 struct kobject kobj;
553 #endif
554 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
555 int numa_node;
556 #endif
557 /*
558 * write mostly part
559 */
560 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
561 int xmit_lock_owner;
562 /*
563 * please use this field instead of dev->trans_start
564 */
565 unsigned long trans_start;
566
567 /*
568 * Number of TX timeouts for this queue
569 * (/sys/class/net/DEV/Q/trans_timeout)
570 */
571 unsigned long trans_timeout;
572
573 unsigned long state;
574
575 #ifdef CONFIG_BQL
576 struct dql dql;
577 #endif
578 } ____cacheline_aligned_in_smp;
579
580 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
581 {
582 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
583 return q->numa_node;
584 #else
585 return NUMA_NO_NODE;
586 #endif
587 }
588
589 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
590 {
591 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
592 q->numa_node = node;
593 #endif
594 }
595
596 #ifdef CONFIG_RPS
597 /*
598 * This structure holds an RPS map which can be of variable length. The
599 * map is an array of CPUs.
600 */
601 struct rps_map {
602 unsigned int len;
603 struct rcu_head rcu;
604 u16 cpus[0];
605 };
606 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
607
608 /*
609 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
610 * tail pointer for that CPU's input queue at the time of last enqueue, and
611 * a hardware filter index.
612 */
613 struct rps_dev_flow {
614 u16 cpu;
615 u16 filter;
616 unsigned int last_qtail;
617 };
618 #define RPS_NO_FILTER 0xffff
619
620 /*
621 * The rps_dev_flow_table structure contains a table of flow mappings.
622 */
623 struct rps_dev_flow_table {
624 unsigned int mask;
625 struct rcu_head rcu;
626 struct rps_dev_flow flows[0];
627 };
628 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
629 ((_num) * sizeof(struct rps_dev_flow)))
630
631 /*
632 * The rps_sock_flow_table contains mappings of flows to the last CPU
633 * on which they were processed by the application (set in recvmsg).
634 */
635 struct rps_sock_flow_table {
636 unsigned int mask;
637 u16 ents[0];
638 };
639 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
640 ((_num) * sizeof(u16)))
641
642 #define RPS_NO_CPU 0xffff
643
644 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
645 u32 hash)
646 {
647 if (table && hash) {
648 unsigned int cpu, index = hash & table->mask;
649
650 /* We only give a hint, preemption can change cpu under us */
651 cpu = raw_smp_processor_id();
652
653 if (table->ents[index] != cpu)
654 table->ents[index] = cpu;
655 }
656 }
657
658 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
659 u32 hash)
660 {
661 if (table && hash)
662 table->ents[hash & table->mask] = RPS_NO_CPU;
663 }
664
665 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
666
667 #ifdef CONFIG_RFS_ACCEL
668 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
669 u16 filter_id);
670 #endif
671
672 /* This structure contains an instance of an RX queue. */
673 struct netdev_rx_queue {
674 struct rps_map __rcu *rps_map;
675 struct rps_dev_flow_table __rcu *rps_flow_table;
676 struct kobject kobj;
677 struct net_device *dev;
678 } ____cacheline_aligned_in_smp;
679 #endif /* CONFIG_RPS */
680
681 #ifdef CONFIG_XPS
682 /*
683 * This structure holds an XPS map which can be of variable length. The
684 * map is an array of queues.
685 */
686 struct xps_map {
687 unsigned int len;
688 unsigned int alloc_len;
689 struct rcu_head rcu;
690 u16 queues[0];
691 };
692 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
693 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
694 / sizeof(u16))
695
696 /*
697 * This structure holds all XPS maps for device. Maps are indexed by CPU.
698 */
699 struct xps_dev_maps {
700 struct rcu_head rcu;
701 struct xps_map __rcu *cpu_map[0];
702 };
703 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
704 (nr_cpu_ids * sizeof(struct xps_map *)))
705 #endif /* CONFIG_XPS */
706
707 #define TC_MAX_QUEUE 16
708 #define TC_BITMASK 15
709 /* HW offloaded queuing disciplines txq count and offset maps */
710 struct netdev_tc_txq {
711 u16 count;
712 u16 offset;
713 };
714
715 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
716 /*
717 * This structure is to hold information about the device
718 * configured to run FCoE protocol stack.
719 */
720 struct netdev_fcoe_hbainfo {
721 char manufacturer[64];
722 char serial_number[64];
723 char hardware_version[64];
724 char driver_version[64];
725 char optionrom_version[64];
726 char firmware_version[64];
727 char model[256];
728 char model_description[256];
729 };
730 #endif
731
732 #define MAX_PHYS_PORT_ID_LEN 32
733
734 /* This structure holds a unique identifier to identify the
735 * physical port used by a netdevice.
736 */
737 struct netdev_phys_port_id {
738 unsigned char id[MAX_PHYS_PORT_ID_LEN];
739 unsigned char id_len;
740 };
741
742 /*
743 * This structure defines the management hooks for network devices.
744 * The following hooks can be defined; unless noted otherwise, they are
745 * optional and can be filled with a null pointer.
746 *
747 * int (*ndo_init)(struct net_device *dev);
748 * This function is called once when network device is registered.
749 * The network device can use this to any late stage initializaton
750 * or semantic validattion. It can fail with an error code which will
751 * be propogated back to register_netdev
752 *
753 * void (*ndo_uninit)(struct net_device *dev);
754 * This function is called when device is unregistered or when registration
755 * fails. It is not called if init fails.
756 *
757 * int (*ndo_open)(struct net_device *dev);
758 * This function is called when network device transistions to the up
759 * state.
760 *
761 * int (*ndo_stop)(struct net_device *dev);
762 * This function is called when network device transistions to the down
763 * state.
764 *
765 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
766 * struct net_device *dev);
767 * Called when a packet needs to be transmitted.
768 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
769 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
770 * Required can not be NULL.
771 *
772 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
773 * Called to decide which queue to when device supports multiple
774 * transmit queues.
775 *
776 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
777 * This function is called to allow device receiver to make
778 * changes to configuration when multicast or promiscious is enabled.
779 *
780 * void (*ndo_set_rx_mode)(struct net_device *dev);
781 * This function is called device changes address list filtering.
782 * If driver handles unicast address filtering, it should set
783 * IFF_UNICAST_FLT to its priv_flags.
784 *
785 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
786 * This function is called when the Media Access Control address
787 * needs to be changed. If this interface is not defined, the
788 * mac address can not be changed.
789 *
790 * int (*ndo_validate_addr)(struct net_device *dev);
791 * Test if Media Access Control address is valid for the device.
792 *
793 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
794 * Called when a user request an ioctl which can't be handled by
795 * the generic interface code. If not defined ioctl's return
796 * not supported error code.
797 *
798 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
799 * Used to set network devices bus interface parameters. This interface
800 * is retained for legacy reason, new devices should use the bus
801 * interface (PCI) for low level management.
802 *
803 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
804 * Called when a user wants to change the Maximum Transfer Unit
805 * of a device. If not defined, any request to change MTU will
806 * will return an error.
807 *
808 * void (*ndo_tx_timeout)(struct net_device *dev);
809 * Callback uses when the transmitter has not made any progress
810 * for dev->watchdog ticks.
811 *
812 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
813 * struct rtnl_link_stats64 *storage);
814 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
815 * Called when a user wants to get the network device usage
816 * statistics. Drivers must do one of the following:
817 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
818 * rtnl_link_stats64 structure passed by the caller.
819 * 2. Define @ndo_get_stats to update a net_device_stats structure
820 * (which should normally be dev->stats) and return a pointer to
821 * it. The structure may be changed asynchronously only if each
822 * field is written atomically.
823 * 3. Update dev->stats asynchronously and atomically, and define
824 * neither operation.
825 *
826 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16t vid);
827 * If device support VLAN filtering this function is called when a
828 * VLAN id is registered.
829 *
830 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
831 * If device support VLAN filtering this function is called when a
832 * VLAN id is unregistered.
833 *
834 * void (*ndo_poll_controller)(struct net_device *dev);
835 *
836 * SR-IOV management functions.
837 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
838 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
839 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
840 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
841 * int (*ndo_get_vf_config)(struct net_device *dev,
842 * int vf, struct ifla_vf_info *ivf);
843 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
844 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
845 * struct nlattr *port[]);
846 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
847 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
848 * Called to setup 'tc' number of traffic classes in the net device. This
849 * is always called from the stack with the rtnl lock held and netif tx
850 * queues stopped. This allows the netdevice to perform queue management
851 * safely.
852 *
853 * Fiber Channel over Ethernet (FCoE) offload functions.
854 * int (*ndo_fcoe_enable)(struct net_device *dev);
855 * Called when the FCoE protocol stack wants to start using LLD for FCoE
856 * so the underlying device can perform whatever needed configuration or
857 * initialization to support acceleration of FCoE traffic.
858 *
859 * int (*ndo_fcoe_disable)(struct net_device *dev);
860 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
861 * so the underlying device can perform whatever needed clean-ups to
862 * stop supporting acceleration of FCoE traffic.
863 *
864 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
865 * struct scatterlist *sgl, unsigned int sgc);
866 * Called when the FCoE Initiator wants to initialize an I/O that
867 * is a possible candidate for Direct Data Placement (DDP). The LLD can
868 * perform necessary setup and returns 1 to indicate the device is set up
869 * successfully to perform DDP on this I/O, otherwise this returns 0.
870 *
871 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
872 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
873 * indicated by the FC exchange id 'xid', so the underlying device can
874 * clean up and reuse resources for later DDP requests.
875 *
876 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
877 * struct scatterlist *sgl, unsigned int sgc);
878 * Called when the FCoE Target wants to initialize an I/O that
879 * is a possible candidate for Direct Data Placement (DDP). The LLD can
880 * perform necessary setup and returns 1 to indicate the device is set up
881 * successfully to perform DDP on this I/O, otherwise this returns 0.
882 *
883 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
884 * struct netdev_fcoe_hbainfo *hbainfo);
885 * Called when the FCoE Protocol stack wants information on the underlying
886 * device. This information is utilized by the FCoE protocol stack to
887 * register attributes with Fiber Channel management service as per the
888 * FC-GS Fabric Device Management Information(FDMI) specification.
889 *
890 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
891 * Called when the underlying device wants to override default World Wide
892 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
893 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
894 * protocol stack to use.
895 *
896 * RFS acceleration.
897 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
898 * u16 rxq_index, u32 flow_id);
899 * Set hardware filter for RFS. rxq_index is the target queue index;
900 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
901 * Return the filter ID on success, or a negative error code.
902 *
903 * Slave management functions (for bridge, bonding, etc).
904 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
905 * Called to make another netdev an underling.
906 *
907 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
908 * Called to release previously enslaved netdev.
909 *
910 * Feature/offload setting functions.
911 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
912 * netdev_features_t features);
913 * Adjusts the requested feature flags according to device-specific
914 * constraints, and returns the resulting flags. Must not modify
915 * the device state.
916 *
917 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
918 * Called to update device configuration to new features. Passed
919 * feature set might be less than what was returned by ndo_fix_features()).
920 * Must return >0 or -errno if it changed dev->features itself.
921 *
922 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
923 * struct net_device *dev,
924 * const unsigned char *addr, u16 flags)
925 * Adds an FDB entry to dev for addr.
926 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
927 * struct net_device *dev,
928 * const unsigned char *addr)
929 * Deletes the FDB entry from dev coresponding to addr.
930 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
931 * struct net_device *dev, int idx)
932 * Used to add FDB entries to dump requests. Implementers should add
933 * entries to skb and update idx with the number of entries.
934 *
935 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
936 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
937 * struct net_device *dev, u32 filter_mask)
938 *
939 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
940 * Called to change device carrier. Soft-devices (like dummy, team, etc)
941 * which do not represent real hardware may define this to allow their
942 * userspace components to manage their virtual carrier state. Devices
943 * that determine carrier state from physical hardware properties (eg
944 * network cables) or protocol-dependent mechanisms (eg
945 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
946 *
947 * int (*ndo_get_phys_port_id)(struct net_device *dev,
948 * struct netdev_phys_port_id *ppid);
949 * Called to get ID of physical port of this device. If driver does
950 * not implement this, it is assumed that the hw is not able to have
951 * multiple net devices on single physical port.
952 *
953 * void (*ndo_add_vxlan_port)(struct net_device *dev,
954 * sa_family_t sa_family, __be16 port);
955 * Called by vxlan to notiy a driver about the UDP port and socket
956 * address family that vxlan is listnening to. It is called only when
957 * a new port starts listening. The operation is protected by the
958 * vxlan_net->sock_lock.
959 *
960 * void (*ndo_del_vxlan_port)(struct net_device *dev,
961 * sa_family_t sa_family, __be16 port);
962 * Called by vxlan to notify the driver about a UDP port and socket
963 * address family that vxlan is not listening to anymore. The operation
964 * is protected by the vxlan_net->sock_lock.
965 *
966 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
967 * struct net_device *dev)
968 * Called by upper layer devices to accelerate switching or other
969 * station functionality into hardware. 'pdev is the lowerdev
970 * to use for the offload and 'dev' is the net device that will
971 * back the offload. Returns a pointer to the private structure
972 * the upper layer will maintain.
973 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
974 * Called by upper layer device to delete the station created
975 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
976 * the station and priv is the structure returned by the add
977 * operation.
978 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
979 * struct net_device *dev,
980 * void *priv);
981 * Callback to use for xmit over the accelerated station. This
982 * is used in place of ndo_start_xmit on accelerated net
983 * devices.
984 */
985 struct net_device_ops {
986 int (*ndo_init)(struct net_device *dev);
987 void (*ndo_uninit)(struct net_device *dev);
988 int (*ndo_open)(struct net_device *dev);
989 int (*ndo_stop)(struct net_device *dev);
990 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
991 struct net_device *dev);
992 u16 (*ndo_select_queue)(struct net_device *dev,
993 struct sk_buff *skb);
994 void (*ndo_change_rx_flags)(struct net_device *dev,
995 int flags);
996 void (*ndo_set_rx_mode)(struct net_device *dev);
997 int (*ndo_set_mac_address)(struct net_device *dev,
998 void *addr);
999 int (*ndo_validate_addr)(struct net_device *dev);
1000 int (*ndo_do_ioctl)(struct net_device *dev,
1001 struct ifreq *ifr, int cmd);
1002 int (*ndo_set_config)(struct net_device *dev,
1003 struct ifmap *map);
1004 int (*ndo_change_mtu)(struct net_device *dev,
1005 int new_mtu);
1006 int (*ndo_neigh_setup)(struct net_device *dev,
1007 struct neigh_parms *);
1008 void (*ndo_tx_timeout) (struct net_device *dev);
1009
1010 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1011 struct rtnl_link_stats64 *storage);
1012 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1013
1014 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1015 __be16 proto, u16 vid);
1016 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1017 __be16 proto, u16 vid);
1018 #ifdef CONFIG_NET_POLL_CONTROLLER
1019 void (*ndo_poll_controller)(struct net_device *dev);
1020 int (*ndo_netpoll_setup)(struct net_device *dev,
1021 struct netpoll_info *info,
1022 gfp_t gfp);
1023 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1024 #endif
1025 #ifdef CONFIG_NET_RX_BUSY_POLL
1026 int (*ndo_busy_poll)(struct napi_struct *dev);
1027 #endif
1028 int (*ndo_set_vf_mac)(struct net_device *dev,
1029 int queue, u8 *mac);
1030 int (*ndo_set_vf_vlan)(struct net_device *dev,
1031 int queue, u16 vlan, u8 qos);
1032 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
1033 int vf, int rate);
1034 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1035 int vf, bool setting);
1036 int (*ndo_get_vf_config)(struct net_device *dev,
1037 int vf,
1038 struct ifla_vf_info *ivf);
1039 int (*ndo_set_vf_link_state)(struct net_device *dev,
1040 int vf, int link_state);
1041 int (*ndo_set_vf_port)(struct net_device *dev,
1042 int vf,
1043 struct nlattr *port[]);
1044 int (*ndo_get_vf_port)(struct net_device *dev,
1045 int vf, struct sk_buff *skb);
1046 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1047 #if IS_ENABLED(CONFIG_FCOE)
1048 int (*ndo_fcoe_enable)(struct net_device *dev);
1049 int (*ndo_fcoe_disable)(struct net_device *dev);
1050 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1051 u16 xid,
1052 struct scatterlist *sgl,
1053 unsigned int sgc);
1054 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1055 u16 xid);
1056 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1057 u16 xid,
1058 struct scatterlist *sgl,
1059 unsigned int sgc);
1060 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1061 struct netdev_fcoe_hbainfo *hbainfo);
1062 #endif
1063
1064 #if IS_ENABLED(CONFIG_LIBFCOE)
1065 #define NETDEV_FCOE_WWNN 0
1066 #define NETDEV_FCOE_WWPN 1
1067 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1068 u64 *wwn, int type);
1069 #endif
1070
1071 #ifdef CONFIG_RFS_ACCEL
1072 int (*ndo_rx_flow_steer)(struct net_device *dev,
1073 const struct sk_buff *skb,
1074 u16 rxq_index,
1075 u32 flow_id);
1076 #endif
1077 int (*ndo_add_slave)(struct net_device *dev,
1078 struct net_device *slave_dev);
1079 int (*ndo_del_slave)(struct net_device *dev,
1080 struct net_device *slave_dev);
1081 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1082 netdev_features_t features);
1083 int (*ndo_set_features)(struct net_device *dev,
1084 netdev_features_t features);
1085 int (*ndo_neigh_construct)(struct neighbour *n);
1086 void (*ndo_neigh_destroy)(struct neighbour *n);
1087
1088 int (*ndo_fdb_add)(struct ndmsg *ndm,
1089 struct nlattr *tb[],
1090 struct net_device *dev,
1091 const unsigned char *addr,
1092 u16 flags);
1093 int (*ndo_fdb_del)(struct ndmsg *ndm,
1094 struct nlattr *tb[],
1095 struct net_device *dev,
1096 const unsigned char *addr);
1097 int (*ndo_fdb_dump)(struct sk_buff *skb,
1098 struct netlink_callback *cb,
1099 struct net_device *dev,
1100 int idx);
1101
1102 int (*ndo_bridge_setlink)(struct net_device *dev,
1103 struct nlmsghdr *nlh);
1104 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1105 u32 pid, u32 seq,
1106 struct net_device *dev,
1107 u32 filter_mask);
1108 int (*ndo_bridge_dellink)(struct net_device *dev,
1109 struct nlmsghdr *nlh);
1110 int (*ndo_change_carrier)(struct net_device *dev,
1111 bool new_carrier);
1112 int (*ndo_get_phys_port_id)(struct net_device *dev,
1113 struct netdev_phys_port_id *ppid);
1114 void (*ndo_add_vxlan_port)(struct net_device *dev,
1115 sa_family_t sa_family,
1116 __be16 port);
1117 void (*ndo_del_vxlan_port)(struct net_device *dev,
1118 sa_family_t sa_family,
1119 __be16 port);
1120
1121 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1122 struct net_device *dev);
1123 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1124 void *priv);
1125
1126 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1127 struct net_device *dev,
1128 void *priv);
1129 };
1130
1131 /*
1132 * The DEVICE structure.
1133 * Actually, this whole structure is a big mistake. It mixes I/O
1134 * data with strictly "high-level" data, and it has to know about
1135 * almost every data structure used in the INET module.
1136 *
1137 * FIXME: cleanup struct net_device such that network protocol info
1138 * moves out.
1139 */
1140
1141 struct net_device {
1142
1143 /*
1144 * This is the first field of the "visible" part of this structure
1145 * (i.e. as seen by users in the "Space.c" file). It is the name
1146 * of the interface.
1147 */
1148 char name[IFNAMSIZ];
1149
1150 /* device name hash chain, please keep it close to name[] */
1151 struct hlist_node name_hlist;
1152
1153 /* snmp alias */
1154 char *ifalias;
1155
1156 /*
1157 * I/O specific fields
1158 * FIXME: Merge these and struct ifmap into one
1159 */
1160 unsigned long mem_end; /* shared mem end */
1161 unsigned long mem_start; /* shared mem start */
1162 unsigned long base_addr; /* device I/O address */
1163 int irq; /* device IRQ number */
1164
1165 /*
1166 * Some hardware also needs these fields, but they are not
1167 * part of the usual set specified in Space.c.
1168 */
1169
1170 unsigned long state;
1171
1172 struct list_head dev_list;
1173 struct list_head napi_list;
1174 struct list_head unreg_list;
1175 struct list_head close_list;
1176
1177 /* directly linked devices, like slaves for bonding */
1178 struct {
1179 struct list_head upper;
1180 struct list_head lower;
1181 } adj_list;
1182
1183 /* all linked devices, *including* neighbours */
1184 struct {
1185 struct list_head upper;
1186 struct list_head lower;
1187 } all_adj_list;
1188
1189
1190 /* currently active device features */
1191 netdev_features_t features;
1192 /* user-changeable features */
1193 netdev_features_t hw_features;
1194 /* user-requested features */
1195 netdev_features_t wanted_features;
1196 /* mask of features inheritable by VLAN devices */
1197 netdev_features_t vlan_features;
1198 /* mask of features inherited by encapsulating devices
1199 * This field indicates what encapsulation offloads
1200 * the hardware is capable of doing, and drivers will
1201 * need to set them appropriately.
1202 */
1203 netdev_features_t hw_enc_features;
1204 /* mask of fetures inheritable by MPLS */
1205 netdev_features_t mpls_features;
1206
1207 /* Interface index. Unique device identifier */
1208 int ifindex;
1209 int iflink;
1210
1211 struct net_device_stats stats;
1212 atomic_long_t rx_dropped; /* dropped packets by core network
1213 * Do not use this in drivers.
1214 */
1215
1216 #ifdef CONFIG_WIRELESS_EXT
1217 /* List of functions to handle Wireless Extensions (instead of ioctl).
1218 * See <net/iw_handler.h> for details. Jean II */
1219 const struct iw_handler_def * wireless_handlers;
1220 /* Instance data managed by the core of Wireless Extensions. */
1221 struct iw_public_data * wireless_data;
1222 #endif
1223 /* Management operations */
1224 const struct net_device_ops *netdev_ops;
1225 const struct ethtool_ops *ethtool_ops;
1226 const struct forwarding_accel_ops *fwd_ops;
1227
1228 /* Hardware header description */
1229 const struct header_ops *header_ops;
1230
1231 unsigned int flags; /* interface flags (a la BSD) */
1232 unsigned int priv_flags; /* Like 'flags' but invisible to userspace.
1233 * See if.h for definitions. */
1234 unsigned short gflags;
1235 unsigned short padded; /* How much padding added by alloc_netdev() */
1236
1237 unsigned char operstate; /* RFC2863 operstate */
1238 unsigned char link_mode; /* mapping policy to operstate */
1239
1240 unsigned char if_port; /* Selectable AUI, TP,..*/
1241 unsigned char dma; /* DMA channel */
1242
1243 unsigned int mtu; /* interface MTU value */
1244 unsigned short type; /* interface hardware type */
1245 unsigned short hard_header_len; /* hardware hdr length */
1246
1247 /* extra head- and tailroom the hardware may need, but not in all cases
1248 * can this be guaranteed, especially tailroom. Some cases also use
1249 * LL_MAX_HEADER instead to allocate the skb.
1250 */
1251 unsigned short needed_headroom;
1252 unsigned short needed_tailroom;
1253
1254 /* Interface address info. */
1255 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1256 unsigned char addr_assign_type; /* hw address assignment type */
1257 unsigned char addr_len; /* hardware address length */
1258 unsigned short neigh_priv_len;
1259 unsigned short dev_id; /* Used to differentiate devices
1260 * that share the same link
1261 * layer address
1262 */
1263 spinlock_t addr_list_lock;
1264 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
1265 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
1266 struct netdev_hw_addr_list dev_addrs; /* list of device
1267 * hw addresses
1268 */
1269 #ifdef CONFIG_SYSFS
1270 struct kset *queues_kset;
1271 #endif
1272
1273 bool uc_promisc;
1274 unsigned int promiscuity;
1275 unsigned int allmulti;
1276
1277
1278 /* Protocol specific pointers */
1279
1280 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1281 struct vlan_info __rcu *vlan_info; /* VLAN info */
1282 #endif
1283 #if IS_ENABLED(CONFIG_NET_DSA)
1284 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */
1285 #endif
1286 #if IS_ENABLED(CONFIG_TIPC)
1287 struct tipc_bearer __rcu *tipc_ptr; /* TIPC specific data */
1288 #endif
1289 void *atalk_ptr; /* AppleTalk link */
1290 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1291 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1292 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1293 void *ax25_ptr; /* AX.25 specific data */
1294 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1295 assign before registering */
1296
1297 /*
1298 * Cache lines mostly used on receive path (including eth_type_trans())
1299 */
1300 unsigned long last_rx; /* Time of last Rx
1301 * This should not be set in
1302 * drivers, unless really needed,
1303 * because network stack (bonding)
1304 * use it if/when necessary, to
1305 * avoid dirtying this cache line.
1306 */
1307
1308 /* Interface address info used in eth_type_trans() */
1309 unsigned char *dev_addr; /* hw address, (before bcast
1310 because most packets are
1311 unicast) */
1312
1313
1314 #ifdef CONFIG_RPS
1315 struct netdev_rx_queue *_rx;
1316
1317 /* Number of RX queues allocated at register_netdev() time */
1318 unsigned int num_rx_queues;
1319
1320 /* Number of RX queues currently active in device */
1321 unsigned int real_num_rx_queues;
1322
1323 #endif
1324
1325 rx_handler_func_t __rcu *rx_handler;
1326 void __rcu *rx_handler_data;
1327
1328 struct netdev_queue __rcu *ingress_queue;
1329 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1330
1331
1332 /*
1333 * Cache lines mostly used on transmit path
1334 */
1335 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1336
1337 /* Number of TX queues allocated at alloc_netdev_mq() time */
1338 unsigned int num_tx_queues;
1339
1340 /* Number of TX queues currently active in device */
1341 unsigned int real_num_tx_queues;
1342
1343 /* root qdisc from userspace point of view */
1344 struct Qdisc *qdisc;
1345
1346 unsigned long tx_queue_len; /* Max frames per queue allowed */
1347 spinlock_t tx_global_lock;
1348
1349 #ifdef CONFIG_XPS
1350 struct xps_dev_maps __rcu *xps_maps;
1351 #endif
1352 #ifdef CONFIG_RFS_ACCEL
1353 /* CPU reverse-mapping for RX completion interrupts, indexed
1354 * by RX queue number. Assigned by driver. This must only be
1355 * set if the ndo_rx_flow_steer operation is defined. */
1356 struct cpu_rmap *rx_cpu_rmap;
1357 #endif
1358
1359 /* These may be needed for future network-power-down code. */
1360
1361 /*
1362 * trans_start here is expensive for high speed devices on SMP,
1363 * please use netdev_queue->trans_start instead.
1364 */
1365 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1366
1367 int watchdog_timeo; /* used by dev_watchdog() */
1368 struct timer_list watchdog_timer;
1369
1370 /* Number of references to this device */
1371 int __percpu *pcpu_refcnt;
1372
1373 /* delayed register/unregister */
1374 struct list_head todo_list;
1375 /* device index hash chain */
1376 struct hlist_node index_hlist;
1377
1378 struct list_head link_watch_list;
1379
1380 /* register/unregister state machine */
1381 enum { NETREG_UNINITIALIZED=0,
1382 NETREG_REGISTERED, /* completed register_netdevice */
1383 NETREG_UNREGISTERING, /* called unregister_netdevice */
1384 NETREG_UNREGISTERED, /* completed unregister todo */
1385 NETREG_RELEASED, /* called free_netdev */
1386 NETREG_DUMMY, /* dummy device for NAPI poll */
1387 } reg_state:8;
1388
1389 bool dismantle; /* device is going do be freed */
1390
1391 enum {
1392 RTNL_LINK_INITIALIZED,
1393 RTNL_LINK_INITIALIZING,
1394 } rtnl_link_state:16;
1395
1396 /* Called from unregister, can be used to call free_netdev */
1397 void (*destructor)(struct net_device *dev);
1398
1399 #ifdef CONFIG_NETPOLL
1400 struct netpoll_info __rcu *npinfo;
1401 #endif
1402
1403 #ifdef CONFIG_NET_NS
1404 /* Network namespace this network device is inside */
1405 struct net *nd_net;
1406 #endif
1407
1408 /* mid-layer private */
1409 union {
1410 void *ml_priv;
1411 struct pcpu_lstats __percpu *lstats; /* loopback stats */
1412 struct pcpu_sw_netstats __percpu *tstats;
1413 struct pcpu_dstats __percpu *dstats; /* dummy stats */
1414 struct pcpu_vstats __percpu *vstats; /* veth stats */
1415 };
1416 /* GARP */
1417 struct garp_port __rcu *garp_port;
1418 /* MRP */
1419 struct mrp_port __rcu *mrp_port;
1420
1421 /* class/net/name entry */
1422 struct device dev;
1423 /* space for optional device, statistics, and wireless sysfs groups */
1424 const struct attribute_group *sysfs_groups[4];
1425
1426 /* rtnetlink link ops */
1427 const struct rtnl_link_ops *rtnl_link_ops;
1428
1429 /* for setting kernel sock attribute on TCP connection setup */
1430 #define GSO_MAX_SIZE 65536
1431 unsigned int gso_max_size;
1432 #define GSO_MAX_SEGS 65535
1433 u16 gso_max_segs;
1434
1435 #ifdef CONFIG_DCB
1436 /* Data Center Bridging netlink ops */
1437 const struct dcbnl_rtnl_ops *dcbnl_ops;
1438 #endif
1439 u8 num_tc;
1440 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1441 u8 prio_tc_map[TC_BITMASK + 1];
1442
1443 #if IS_ENABLED(CONFIG_FCOE)
1444 /* max exchange id for FCoE LRO by ddp */
1445 unsigned int fcoe_ddp_xid;
1446 #endif
1447 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1448 struct netprio_map __rcu *priomap;
1449 #endif
1450 /* phy device may attach itself for hardware timestamping */
1451 struct phy_device *phydev;
1452
1453 struct lock_class_key *qdisc_tx_busylock;
1454
1455 /* group the device belongs to */
1456 int group;
1457
1458 struct pm_qos_request pm_qos_req;
1459 };
1460 #define to_net_dev(d) container_of(d, struct net_device, dev)
1461
1462 #define NETDEV_ALIGN 32
1463
1464 static inline
1465 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1466 {
1467 return dev->prio_tc_map[prio & TC_BITMASK];
1468 }
1469
1470 static inline
1471 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1472 {
1473 if (tc >= dev->num_tc)
1474 return -EINVAL;
1475
1476 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1477 return 0;
1478 }
1479
1480 static inline
1481 void netdev_reset_tc(struct net_device *dev)
1482 {
1483 dev->num_tc = 0;
1484 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1485 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1486 }
1487
1488 static inline
1489 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1490 {
1491 if (tc >= dev->num_tc)
1492 return -EINVAL;
1493
1494 dev->tc_to_txq[tc].count = count;
1495 dev->tc_to_txq[tc].offset = offset;
1496 return 0;
1497 }
1498
1499 static inline
1500 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1501 {
1502 if (num_tc > TC_MAX_QUEUE)
1503 return -EINVAL;
1504
1505 dev->num_tc = num_tc;
1506 return 0;
1507 }
1508
1509 static inline
1510 int netdev_get_num_tc(struct net_device *dev)
1511 {
1512 return dev->num_tc;
1513 }
1514
1515 static inline
1516 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1517 unsigned int index)
1518 {
1519 return &dev->_tx[index];
1520 }
1521
1522 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1523 void (*f)(struct net_device *,
1524 struct netdev_queue *,
1525 void *),
1526 void *arg)
1527 {
1528 unsigned int i;
1529
1530 for (i = 0; i < dev->num_tx_queues; i++)
1531 f(dev, &dev->_tx[i], arg);
1532 }
1533
1534 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1535 struct sk_buff *skb);
1536 u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb);
1537
1538 /*
1539 * Net namespace inlines
1540 */
1541 static inline
1542 struct net *dev_net(const struct net_device *dev)
1543 {
1544 return read_pnet(&dev->nd_net);
1545 }
1546
1547 static inline
1548 void dev_net_set(struct net_device *dev, struct net *net)
1549 {
1550 #ifdef CONFIG_NET_NS
1551 release_net(dev->nd_net);
1552 dev->nd_net = hold_net(net);
1553 #endif
1554 }
1555
1556 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1557 {
1558 #ifdef CONFIG_NET_DSA_TAG_DSA
1559 if (dev->dsa_ptr != NULL)
1560 return dsa_uses_dsa_tags(dev->dsa_ptr);
1561 #endif
1562
1563 return 0;
1564 }
1565
1566 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1567 {
1568 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1569 if (dev->dsa_ptr != NULL)
1570 return dsa_uses_trailer_tags(dev->dsa_ptr);
1571 #endif
1572
1573 return 0;
1574 }
1575
1576 /**
1577 * netdev_priv - access network device private data
1578 * @dev: network device
1579 *
1580 * Get network device private data
1581 */
1582 static inline void *netdev_priv(const struct net_device *dev)
1583 {
1584 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1585 }
1586
1587 /* Set the sysfs physical device reference for the network logical device
1588 * if set prior to registration will cause a symlink during initialization.
1589 */
1590 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1591
1592 /* Set the sysfs device type for the network logical device to allow
1593 * fine-grained identification of different network device types. For
1594 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1595 */
1596 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1597
1598 /* Default NAPI poll() weight
1599 * Device drivers are strongly advised to not use bigger value
1600 */
1601 #define NAPI_POLL_WEIGHT 64
1602
1603 /**
1604 * netif_napi_add - initialize a napi context
1605 * @dev: network device
1606 * @napi: napi context
1607 * @poll: polling function
1608 * @weight: default weight
1609 *
1610 * netif_napi_add() must be used to initialize a napi context prior to calling
1611 * *any* of the other napi related functions.
1612 */
1613 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1614 int (*poll)(struct napi_struct *, int), int weight);
1615
1616 /**
1617 * netif_napi_del - remove a napi context
1618 * @napi: napi context
1619 *
1620 * netif_napi_del() removes a napi context from the network device napi list
1621 */
1622 void netif_napi_del(struct napi_struct *napi);
1623
1624 struct napi_gro_cb {
1625 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1626 void *frag0;
1627
1628 /* Length of frag0. */
1629 unsigned int frag0_len;
1630
1631 /* This indicates where we are processing relative to skb->data. */
1632 int data_offset;
1633
1634 /* This is non-zero if the packet cannot be merged with the new skb. */
1635 int flush;
1636
1637 /* Number of segments aggregated. */
1638 u16 count;
1639
1640 /* This is non-zero if the packet may be of the same flow. */
1641 u8 same_flow;
1642
1643 /* Free the skb? */
1644 u8 free;
1645 #define NAPI_GRO_FREE 1
1646 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1647
1648 /* jiffies when first packet was created/queued */
1649 unsigned long age;
1650
1651 /* Used in ipv6_gro_receive() */
1652 int proto;
1653
1654 /* used in skb_gro_receive() slow path */
1655 struct sk_buff *last;
1656 };
1657
1658 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1659
1660 struct packet_type {
1661 __be16 type; /* This is really htons(ether_type). */
1662 struct net_device *dev; /* NULL is wildcarded here */
1663 int (*func) (struct sk_buff *,
1664 struct net_device *,
1665 struct packet_type *,
1666 struct net_device *);
1667 bool (*id_match)(struct packet_type *ptype,
1668 struct sock *sk);
1669 void *af_packet_priv;
1670 struct list_head list;
1671 };
1672
1673 struct offload_callbacks {
1674 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1675 netdev_features_t features);
1676 int (*gso_send_check)(struct sk_buff *skb);
1677 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1678 struct sk_buff *skb);
1679 int (*gro_complete)(struct sk_buff *skb, int nhoff);
1680 };
1681
1682 struct packet_offload {
1683 __be16 type; /* This is really htons(ether_type). */
1684 struct offload_callbacks callbacks;
1685 struct list_head list;
1686 };
1687
1688 /* often modified stats are per cpu, other are shared (netdev->stats) */
1689 struct pcpu_sw_netstats {
1690 u64 rx_packets;
1691 u64 rx_bytes;
1692 u64 tx_packets;
1693 u64 tx_bytes;
1694 struct u64_stats_sync syncp;
1695 };
1696
1697 #include <linux/notifier.h>
1698
1699 /* netdevice notifier chain. Please remember to update the rtnetlink
1700 * notification exclusion list in rtnetlink_event() when adding new
1701 * types.
1702 */
1703 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
1704 #define NETDEV_DOWN 0x0002
1705 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
1706 detected a hardware crash and restarted
1707 - we can use this eg to kick tcp sessions
1708 once done */
1709 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
1710 #define NETDEV_REGISTER 0x0005
1711 #define NETDEV_UNREGISTER 0x0006
1712 #define NETDEV_CHANGEMTU 0x0007
1713 #define NETDEV_CHANGEADDR 0x0008
1714 #define NETDEV_GOING_DOWN 0x0009
1715 #define NETDEV_CHANGENAME 0x000A
1716 #define NETDEV_FEAT_CHANGE 0x000B
1717 #define NETDEV_BONDING_FAILOVER 0x000C
1718 #define NETDEV_PRE_UP 0x000D
1719 #define NETDEV_PRE_TYPE_CHANGE 0x000E
1720 #define NETDEV_POST_TYPE_CHANGE 0x000F
1721 #define NETDEV_POST_INIT 0x0010
1722 #define NETDEV_UNREGISTER_FINAL 0x0011
1723 #define NETDEV_RELEASE 0x0012
1724 #define NETDEV_NOTIFY_PEERS 0x0013
1725 #define NETDEV_JOIN 0x0014
1726 #define NETDEV_CHANGEUPPER 0x0015
1727 #define NETDEV_RESEND_IGMP 0x0016
1728
1729 int register_netdevice_notifier(struct notifier_block *nb);
1730 int unregister_netdevice_notifier(struct notifier_block *nb);
1731
1732 struct netdev_notifier_info {
1733 struct net_device *dev;
1734 };
1735
1736 struct netdev_notifier_change_info {
1737 struct netdev_notifier_info info; /* must be first */
1738 unsigned int flags_changed;
1739 };
1740
1741 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
1742 struct net_device *dev)
1743 {
1744 info->dev = dev;
1745 }
1746
1747 static inline struct net_device *
1748 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
1749 {
1750 return info->dev;
1751 }
1752
1753 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1754
1755
1756 extern rwlock_t dev_base_lock; /* Device list lock */
1757
1758 #define for_each_netdev(net, d) \
1759 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1760 #define for_each_netdev_reverse(net, d) \
1761 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1762 #define for_each_netdev_rcu(net, d) \
1763 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1764 #define for_each_netdev_safe(net, d, n) \
1765 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1766 #define for_each_netdev_continue(net, d) \
1767 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1768 #define for_each_netdev_continue_rcu(net, d) \
1769 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1770 #define for_each_netdev_in_bond_rcu(bond, slave) \
1771 for_each_netdev_rcu(&init_net, slave) \
1772 if (netdev_master_upper_dev_get_rcu(slave) == bond)
1773 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1774
1775 static inline struct net_device *next_net_device(struct net_device *dev)
1776 {
1777 struct list_head *lh;
1778 struct net *net;
1779
1780 net = dev_net(dev);
1781 lh = dev->dev_list.next;
1782 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1783 }
1784
1785 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1786 {
1787 struct list_head *lh;
1788 struct net *net;
1789
1790 net = dev_net(dev);
1791 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1792 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1793 }
1794
1795 static inline struct net_device *first_net_device(struct net *net)
1796 {
1797 return list_empty(&net->dev_base_head) ? NULL :
1798 net_device_entry(net->dev_base_head.next);
1799 }
1800
1801 static inline struct net_device *first_net_device_rcu(struct net *net)
1802 {
1803 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1804
1805 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1806 }
1807
1808 int netdev_boot_setup_check(struct net_device *dev);
1809 unsigned long netdev_boot_base(const char *prefix, int unit);
1810 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1811 const char *hwaddr);
1812 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1813 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1814 void dev_add_pack(struct packet_type *pt);
1815 void dev_remove_pack(struct packet_type *pt);
1816 void __dev_remove_pack(struct packet_type *pt);
1817 void dev_add_offload(struct packet_offload *po);
1818 void dev_remove_offload(struct packet_offload *po);
1819
1820 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1821 unsigned short mask);
1822 struct net_device *dev_get_by_name(struct net *net, const char *name);
1823 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1824 struct net_device *__dev_get_by_name(struct net *net, const char *name);
1825 int dev_alloc_name(struct net_device *dev, const char *name);
1826 int dev_open(struct net_device *dev);
1827 int dev_close(struct net_device *dev);
1828 void dev_disable_lro(struct net_device *dev);
1829 int dev_loopback_xmit(struct sk_buff *newskb);
1830 int dev_queue_xmit(struct sk_buff *skb);
1831 int register_netdevice(struct net_device *dev);
1832 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
1833 void unregister_netdevice_many(struct list_head *head);
1834 static inline void unregister_netdevice(struct net_device *dev)
1835 {
1836 unregister_netdevice_queue(dev, NULL);
1837 }
1838
1839 int netdev_refcnt_read(const struct net_device *dev);
1840 void free_netdev(struct net_device *dev);
1841 void netdev_freemem(struct net_device *dev);
1842 void synchronize_net(void);
1843 int init_dummy_netdev(struct net_device *dev);
1844
1845 struct net_device *dev_get_by_index(struct net *net, int ifindex);
1846 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1847 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1848 int netdev_get_name(struct net *net, char *name, int ifindex);
1849 int dev_restart(struct net_device *dev);
1850 #ifdef CONFIG_NETPOLL_TRAP
1851 int netpoll_trap(void);
1852 #endif
1853 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1854
1855 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1856 {
1857 return NAPI_GRO_CB(skb)->data_offset;
1858 }
1859
1860 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1861 {
1862 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1863 }
1864
1865 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1866 {
1867 NAPI_GRO_CB(skb)->data_offset += len;
1868 }
1869
1870 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1871 unsigned int offset)
1872 {
1873 return NAPI_GRO_CB(skb)->frag0 + offset;
1874 }
1875
1876 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1877 {
1878 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1879 }
1880
1881 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1882 unsigned int offset)
1883 {
1884 if (!pskb_may_pull(skb, hlen))
1885 return NULL;
1886
1887 NAPI_GRO_CB(skb)->frag0 = NULL;
1888 NAPI_GRO_CB(skb)->frag0_len = 0;
1889 return skb->data + offset;
1890 }
1891
1892 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1893 {
1894 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1895 }
1896
1897 static inline void *skb_gro_network_header(struct sk_buff *skb)
1898 {
1899 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1900 skb_network_offset(skb);
1901 }
1902
1903 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1904 unsigned short type,
1905 const void *daddr, const void *saddr,
1906 unsigned int len)
1907 {
1908 if (!dev->header_ops || !dev->header_ops->create)
1909 return 0;
1910
1911 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1912 }
1913
1914 static inline int dev_parse_header(const struct sk_buff *skb,
1915 unsigned char *haddr)
1916 {
1917 const struct net_device *dev = skb->dev;
1918
1919 if (!dev->header_ops || !dev->header_ops->parse)
1920 return 0;
1921 return dev->header_ops->parse(skb, haddr);
1922 }
1923
1924 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1925 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
1926 static inline int unregister_gifconf(unsigned int family)
1927 {
1928 return register_gifconf(family, NULL);
1929 }
1930
1931 #ifdef CONFIG_NET_FLOW_LIMIT
1932 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
1933 struct sd_flow_limit {
1934 u64 count;
1935 unsigned int num_buckets;
1936 unsigned int history_head;
1937 u16 history[FLOW_LIMIT_HISTORY];
1938 u8 buckets[];
1939 };
1940
1941 extern int netdev_flow_limit_table_len;
1942 #endif /* CONFIG_NET_FLOW_LIMIT */
1943
1944 /*
1945 * Incoming packets are placed on per-cpu queues
1946 */
1947 struct softnet_data {
1948 struct Qdisc *output_queue;
1949 struct Qdisc **output_queue_tailp;
1950 struct list_head poll_list;
1951 struct sk_buff *completion_queue;
1952 struct sk_buff_head process_queue;
1953
1954 /* stats */
1955 unsigned int processed;
1956 unsigned int time_squeeze;
1957 unsigned int cpu_collision;
1958 unsigned int received_rps;
1959
1960 #ifdef CONFIG_RPS
1961 struct softnet_data *rps_ipi_list;
1962
1963 /* Elements below can be accessed between CPUs for RPS */
1964 struct call_single_data csd ____cacheline_aligned_in_smp;
1965 struct softnet_data *rps_ipi_next;
1966 unsigned int cpu;
1967 unsigned int input_queue_head;
1968 unsigned int input_queue_tail;
1969 #endif
1970 unsigned int dropped;
1971 struct sk_buff_head input_pkt_queue;
1972 struct napi_struct backlog;
1973
1974 #ifdef CONFIG_NET_FLOW_LIMIT
1975 struct sd_flow_limit __rcu *flow_limit;
1976 #endif
1977 };
1978
1979 static inline void input_queue_head_incr(struct softnet_data *sd)
1980 {
1981 #ifdef CONFIG_RPS
1982 sd->input_queue_head++;
1983 #endif
1984 }
1985
1986 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1987 unsigned int *qtail)
1988 {
1989 #ifdef CONFIG_RPS
1990 *qtail = ++sd->input_queue_tail;
1991 #endif
1992 }
1993
1994 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1995
1996 void __netif_schedule(struct Qdisc *q);
1997
1998 static inline void netif_schedule_queue(struct netdev_queue *txq)
1999 {
2000 if (!(txq->state & QUEUE_STATE_ANY_XOFF))
2001 __netif_schedule(txq->qdisc);
2002 }
2003
2004 static inline void netif_tx_schedule_all(struct net_device *dev)
2005 {
2006 unsigned int i;
2007
2008 for (i = 0; i < dev->num_tx_queues; i++)
2009 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2010 }
2011
2012 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2013 {
2014 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2015 }
2016
2017 /**
2018 * netif_start_queue - allow transmit
2019 * @dev: network device
2020 *
2021 * Allow upper layers to call the device hard_start_xmit routine.
2022 */
2023 static inline void netif_start_queue(struct net_device *dev)
2024 {
2025 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2026 }
2027
2028 static inline void netif_tx_start_all_queues(struct net_device *dev)
2029 {
2030 unsigned int i;
2031
2032 for (i = 0; i < dev->num_tx_queues; i++) {
2033 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2034 netif_tx_start_queue(txq);
2035 }
2036 }
2037
2038 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2039 {
2040 #ifdef CONFIG_NETPOLL_TRAP
2041 if (netpoll_trap()) {
2042 netif_tx_start_queue(dev_queue);
2043 return;
2044 }
2045 #endif
2046 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
2047 __netif_schedule(dev_queue->qdisc);
2048 }
2049
2050 /**
2051 * netif_wake_queue - restart transmit
2052 * @dev: network device
2053 *
2054 * Allow upper layers to call the device hard_start_xmit routine.
2055 * Used for flow control when transmit resources are available.
2056 */
2057 static inline void netif_wake_queue(struct net_device *dev)
2058 {
2059 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2060 }
2061
2062 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2063 {
2064 unsigned int i;
2065
2066 for (i = 0; i < dev->num_tx_queues; i++) {
2067 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2068 netif_tx_wake_queue(txq);
2069 }
2070 }
2071
2072 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2073 {
2074 if (WARN_ON(!dev_queue)) {
2075 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2076 return;
2077 }
2078 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2079 }
2080
2081 /**
2082 * netif_stop_queue - stop transmitted packets
2083 * @dev: network device
2084 *
2085 * Stop upper layers calling the device hard_start_xmit routine.
2086 * Used for flow control when transmit resources are unavailable.
2087 */
2088 static inline void netif_stop_queue(struct net_device *dev)
2089 {
2090 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2091 }
2092
2093 static inline void netif_tx_stop_all_queues(struct net_device *dev)
2094 {
2095 unsigned int i;
2096
2097 for (i = 0; i < dev->num_tx_queues; i++) {
2098 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2099 netif_tx_stop_queue(txq);
2100 }
2101 }
2102
2103 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2104 {
2105 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2106 }
2107
2108 /**
2109 * netif_queue_stopped - test if transmit queue is flowblocked
2110 * @dev: network device
2111 *
2112 * Test if transmit queue on device is currently unable to send.
2113 */
2114 static inline bool netif_queue_stopped(const struct net_device *dev)
2115 {
2116 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2117 }
2118
2119 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2120 {
2121 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2122 }
2123
2124 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2125 {
2126 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2127 }
2128
2129 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2130 unsigned int bytes)
2131 {
2132 #ifdef CONFIG_BQL
2133 dql_queued(&dev_queue->dql, bytes);
2134
2135 if (likely(dql_avail(&dev_queue->dql) >= 0))
2136 return;
2137
2138 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2139
2140 /*
2141 * The XOFF flag must be set before checking the dql_avail below,
2142 * because in netdev_tx_completed_queue we update the dql_completed
2143 * before checking the XOFF flag.
2144 */
2145 smp_mb();
2146
2147 /* check again in case another CPU has just made room avail */
2148 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2149 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2150 #endif
2151 }
2152
2153 /**
2154 * netdev_sent_queue - report the number of bytes queued to hardware
2155 * @dev: network device
2156 * @bytes: number of bytes queued to the hardware device queue
2157 *
2158 * Report the number of bytes queued for sending/completion to the network
2159 * device hardware queue. @bytes should be a good approximation and should
2160 * exactly match netdev_completed_queue() @bytes
2161 */
2162 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2163 {
2164 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2165 }
2166
2167 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2168 unsigned int pkts, unsigned int bytes)
2169 {
2170 #ifdef CONFIG_BQL
2171 if (unlikely(!bytes))
2172 return;
2173
2174 dql_completed(&dev_queue->dql, bytes);
2175
2176 /*
2177 * Without the memory barrier there is a small possiblity that
2178 * netdev_tx_sent_queue will miss the update and cause the queue to
2179 * be stopped forever
2180 */
2181 smp_mb();
2182
2183 if (dql_avail(&dev_queue->dql) < 0)
2184 return;
2185
2186 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2187 netif_schedule_queue(dev_queue);
2188 #endif
2189 }
2190
2191 /**
2192 * netdev_completed_queue - report bytes and packets completed by device
2193 * @dev: network device
2194 * @pkts: actual number of packets sent over the medium
2195 * @bytes: actual number of bytes sent over the medium
2196 *
2197 * Report the number of bytes and packets transmitted by the network device
2198 * hardware queue over the physical medium, @bytes must exactly match the
2199 * @bytes amount passed to netdev_sent_queue()
2200 */
2201 static inline void netdev_completed_queue(struct net_device *dev,
2202 unsigned int pkts, unsigned int bytes)
2203 {
2204 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2205 }
2206
2207 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2208 {
2209 #ifdef CONFIG_BQL
2210 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2211 dql_reset(&q->dql);
2212 #endif
2213 }
2214
2215 /**
2216 * netdev_reset_queue - reset the packets and bytes count of a network device
2217 * @dev_queue: network device
2218 *
2219 * Reset the bytes and packet count of a network device and clear the
2220 * software flow control OFF bit for this network device
2221 */
2222 static inline void netdev_reset_queue(struct net_device *dev_queue)
2223 {
2224 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2225 }
2226
2227 /**
2228 * netif_running - test if up
2229 * @dev: network device
2230 *
2231 * Test if the device has been brought up.
2232 */
2233 static inline bool netif_running(const struct net_device *dev)
2234 {
2235 return test_bit(__LINK_STATE_START, &dev->state);
2236 }
2237
2238 /*
2239 * Routines to manage the subqueues on a device. We only need start
2240 * stop, and a check if it's stopped. All other device management is
2241 * done at the overall netdevice level.
2242 * Also test the device if we're multiqueue.
2243 */
2244
2245 /**
2246 * netif_start_subqueue - allow sending packets on subqueue
2247 * @dev: network device
2248 * @queue_index: sub queue index
2249 *
2250 * Start individual transmit queue of a device with multiple transmit queues.
2251 */
2252 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2253 {
2254 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2255
2256 netif_tx_start_queue(txq);
2257 }
2258
2259 /**
2260 * netif_stop_subqueue - stop sending packets on subqueue
2261 * @dev: network device
2262 * @queue_index: sub queue index
2263 *
2264 * Stop individual transmit queue of a device with multiple transmit queues.
2265 */
2266 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2267 {
2268 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2269 #ifdef CONFIG_NETPOLL_TRAP
2270 if (netpoll_trap())
2271 return;
2272 #endif
2273 netif_tx_stop_queue(txq);
2274 }
2275
2276 /**
2277 * netif_subqueue_stopped - test status of subqueue
2278 * @dev: network device
2279 * @queue_index: sub queue index
2280 *
2281 * Check individual transmit queue of a device with multiple transmit queues.
2282 */
2283 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2284 u16 queue_index)
2285 {
2286 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2287
2288 return netif_tx_queue_stopped(txq);
2289 }
2290
2291 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2292 struct sk_buff *skb)
2293 {
2294 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2295 }
2296
2297 /**
2298 * netif_wake_subqueue - allow sending packets on subqueue
2299 * @dev: network device
2300 * @queue_index: sub queue index
2301 *
2302 * Resume individual transmit queue of a device with multiple transmit queues.
2303 */
2304 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2305 {
2306 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2307 #ifdef CONFIG_NETPOLL_TRAP
2308 if (netpoll_trap())
2309 return;
2310 #endif
2311 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2312 __netif_schedule(txq->qdisc);
2313 }
2314
2315 #ifdef CONFIG_XPS
2316 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2317 u16 index);
2318 #else
2319 static inline int netif_set_xps_queue(struct net_device *dev,
2320 const struct cpumask *mask,
2321 u16 index)
2322 {
2323 return 0;
2324 }
2325 #endif
2326
2327 /*
2328 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2329 * as a distribution range limit for the returned value.
2330 */
2331 static inline u16 skb_tx_hash(const struct net_device *dev,
2332 const struct sk_buff *skb)
2333 {
2334 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2335 }
2336
2337 /**
2338 * netif_is_multiqueue - test if device has multiple transmit queues
2339 * @dev: network device
2340 *
2341 * Check if device has multiple transmit queues
2342 */
2343 static inline bool netif_is_multiqueue(const struct net_device *dev)
2344 {
2345 return dev->num_tx_queues > 1;
2346 }
2347
2348 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2349
2350 #ifdef CONFIG_RPS
2351 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2352 #else
2353 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2354 unsigned int rxq)
2355 {
2356 return 0;
2357 }
2358 #endif
2359
2360 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2361 const struct net_device *from_dev)
2362 {
2363 int err;
2364
2365 err = netif_set_real_num_tx_queues(to_dev,
2366 from_dev->real_num_tx_queues);
2367 if (err)
2368 return err;
2369 #ifdef CONFIG_RPS
2370 return netif_set_real_num_rx_queues(to_dev,
2371 from_dev->real_num_rx_queues);
2372 #else
2373 return 0;
2374 #endif
2375 }
2376
2377 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
2378 int netif_get_num_default_rss_queues(void);
2379
2380 enum skb_free_reason {
2381 SKB_REASON_CONSUMED,
2382 SKB_REASON_DROPPED,
2383 };
2384
2385 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2386 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2387
2388 /*
2389 * It is not allowed to call kfree_skb() or consume_skb() from hardware
2390 * interrupt context or with hardware interrupts being disabled.
2391 * (in_irq() || irqs_disabled())
2392 *
2393 * We provide four helpers that can be used in following contexts :
2394 *
2395 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2396 * replacing kfree_skb(skb)
2397 *
2398 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2399 * Typically used in place of consume_skb(skb) in TX completion path
2400 *
2401 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2402 * replacing kfree_skb(skb)
2403 *
2404 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2405 * and consumed a packet. Used in place of consume_skb(skb)
2406 */
2407 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2408 {
2409 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2410 }
2411
2412 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2413 {
2414 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2415 }
2416
2417 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2418 {
2419 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2420 }
2421
2422 static inline void dev_consume_skb_any(struct sk_buff *skb)
2423 {
2424 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2425 }
2426
2427 int netif_rx(struct sk_buff *skb);
2428 int netif_rx_ni(struct sk_buff *skb);
2429 int netif_receive_skb(struct sk_buff *skb);
2430 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2431 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2432 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2433 gro_result_t napi_gro_frags(struct napi_struct *napi);
2434
2435 static inline void napi_free_frags(struct napi_struct *napi)
2436 {
2437 kfree_skb(napi->skb);
2438 napi->skb = NULL;
2439 }
2440
2441 int netdev_rx_handler_register(struct net_device *dev,
2442 rx_handler_func_t *rx_handler,
2443 void *rx_handler_data);
2444 void netdev_rx_handler_unregister(struct net_device *dev);
2445
2446 bool dev_valid_name(const char *name);
2447 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2448 int dev_ethtool(struct net *net, struct ifreq *);
2449 unsigned int dev_get_flags(const struct net_device *);
2450 int __dev_change_flags(struct net_device *, unsigned int flags);
2451 int dev_change_flags(struct net_device *, unsigned int);
2452 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2453 unsigned int gchanges);
2454 int dev_change_name(struct net_device *, const char *);
2455 int dev_set_alias(struct net_device *, const char *, size_t);
2456 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2457 int dev_set_mtu(struct net_device *, int);
2458 void dev_set_group(struct net_device *, int);
2459 int dev_set_mac_address(struct net_device *, struct sockaddr *);
2460 int dev_change_carrier(struct net_device *, bool new_carrier);
2461 int dev_get_phys_port_id(struct net_device *dev,
2462 struct netdev_phys_port_id *ppid);
2463 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2464 struct netdev_queue *txq, void *accel_priv);
2465 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2466
2467 extern int netdev_budget;
2468
2469 /* Called by rtnetlink.c:rtnl_unlock() */
2470 void netdev_run_todo(void);
2471
2472 /**
2473 * dev_put - release reference to device
2474 * @dev: network device
2475 *
2476 * Release reference to device to allow it to be freed.
2477 */
2478 static inline void dev_put(struct net_device *dev)
2479 {
2480 this_cpu_dec(*dev->pcpu_refcnt);
2481 }
2482
2483 /**
2484 * dev_hold - get reference to device
2485 * @dev: network device
2486 *
2487 * Hold reference to device to keep it from being freed.
2488 */
2489 static inline void dev_hold(struct net_device *dev)
2490 {
2491 this_cpu_inc(*dev->pcpu_refcnt);
2492 }
2493
2494 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2495 * and _off may be called from IRQ context, but it is caller
2496 * who is responsible for serialization of these calls.
2497 *
2498 * The name carrier is inappropriate, these functions should really be
2499 * called netif_lowerlayer_*() because they represent the state of any
2500 * kind of lower layer not just hardware media.
2501 */
2502
2503 void linkwatch_init_dev(struct net_device *dev);
2504 void linkwatch_fire_event(struct net_device *dev);
2505 void linkwatch_forget_dev(struct net_device *dev);
2506
2507 /**
2508 * netif_carrier_ok - test if carrier present
2509 * @dev: network device
2510 *
2511 * Check if carrier is present on device
2512 */
2513 static inline bool netif_carrier_ok(const struct net_device *dev)
2514 {
2515 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2516 }
2517
2518 unsigned long dev_trans_start(struct net_device *dev);
2519
2520 void __netdev_watchdog_up(struct net_device *dev);
2521
2522 void netif_carrier_on(struct net_device *dev);
2523
2524 void netif_carrier_off(struct net_device *dev);
2525
2526 /**
2527 * netif_dormant_on - mark device as dormant.
2528 * @dev: network device
2529 *
2530 * Mark device as dormant (as per RFC2863).
2531 *
2532 * The dormant state indicates that the relevant interface is not
2533 * actually in a condition to pass packets (i.e., it is not 'up') but is
2534 * in a "pending" state, waiting for some external event. For "on-
2535 * demand" interfaces, this new state identifies the situation where the
2536 * interface is waiting for events to place it in the up state.
2537 *
2538 */
2539 static inline void netif_dormant_on(struct net_device *dev)
2540 {
2541 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2542 linkwatch_fire_event(dev);
2543 }
2544
2545 /**
2546 * netif_dormant_off - set device as not dormant.
2547 * @dev: network device
2548 *
2549 * Device is not in dormant state.
2550 */
2551 static inline void netif_dormant_off(struct net_device *dev)
2552 {
2553 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2554 linkwatch_fire_event(dev);
2555 }
2556
2557 /**
2558 * netif_dormant - test if carrier present
2559 * @dev: network device
2560 *
2561 * Check if carrier is present on device
2562 */
2563 static inline bool netif_dormant(const struct net_device *dev)
2564 {
2565 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2566 }
2567
2568
2569 /**
2570 * netif_oper_up - test if device is operational
2571 * @dev: network device
2572 *
2573 * Check if carrier is operational
2574 */
2575 static inline bool netif_oper_up(const struct net_device *dev)
2576 {
2577 return (dev->operstate == IF_OPER_UP ||
2578 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2579 }
2580
2581 /**
2582 * netif_device_present - is device available or removed
2583 * @dev: network device
2584 *
2585 * Check if device has not been removed from system.
2586 */
2587 static inline bool netif_device_present(struct net_device *dev)
2588 {
2589 return test_bit(__LINK_STATE_PRESENT, &dev->state);
2590 }
2591
2592 void netif_device_detach(struct net_device *dev);
2593
2594 void netif_device_attach(struct net_device *dev);
2595
2596 /*
2597 * Network interface message level settings
2598 */
2599
2600 enum {
2601 NETIF_MSG_DRV = 0x0001,
2602 NETIF_MSG_PROBE = 0x0002,
2603 NETIF_MSG_LINK = 0x0004,
2604 NETIF_MSG_TIMER = 0x0008,
2605 NETIF_MSG_IFDOWN = 0x0010,
2606 NETIF_MSG_IFUP = 0x0020,
2607 NETIF_MSG_RX_ERR = 0x0040,
2608 NETIF_MSG_TX_ERR = 0x0080,
2609 NETIF_MSG_TX_QUEUED = 0x0100,
2610 NETIF_MSG_INTR = 0x0200,
2611 NETIF_MSG_TX_DONE = 0x0400,
2612 NETIF_MSG_RX_STATUS = 0x0800,
2613 NETIF_MSG_PKTDATA = 0x1000,
2614 NETIF_MSG_HW = 0x2000,
2615 NETIF_MSG_WOL = 0x4000,
2616 };
2617
2618 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2619 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2620 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2621 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2622 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2623 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2624 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2625 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2626 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2627 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2628 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2629 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2630 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2631 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2632 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2633
2634 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2635 {
2636 /* use default */
2637 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2638 return default_msg_enable_bits;
2639 if (debug_value == 0) /* no output */
2640 return 0;
2641 /* set low N bits */
2642 return (1 << debug_value) - 1;
2643 }
2644
2645 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2646 {
2647 spin_lock(&txq->_xmit_lock);
2648 txq->xmit_lock_owner = cpu;
2649 }
2650
2651 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2652 {
2653 spin_lock_bh(&txq->_xmit_lock);
2654 txq->xmit_lock_owner = smp_processor_id();
2655 }
2656
2657 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2658 {
2659 bool ok = spin_trylock(&txq->_xmit_lock);
2660 if (likely(ok))
2661 txq->xmit_lock_owner = smp_processor_id();
2662 return ok;
2663 }
2664
2665 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2666 {
2667 txq->xmit_lock_owner = -1;
2668 spin_unlock(&txq->_xmit_lock);
2669 }
2670
2671 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2672 {
2673 txq->xmit_lock_owner = -1;
2674 spin_unlock_bh(&txq->_xmit_lock);
2675 }
2676
2677 static inline void txq_trans_update(struct netdev_queue *txq)
2678 {
2679 if (txq->xmit_lock_owner != -1)
2680 txq->trans_start = jiffies;
2681 }
2682
2683 /**
2684 * netif_tx_lock - grab network device transmit lock
2685 * @dev: network device
2686 *
2687 * Get network device transmit lock
2688 */
2689 static inline void netif_tx_lock(struct net_device *dev)
2690 {
2691 unsigned int i;
2692 int cpu;
2693
2694 spin_lock(&dev->tx_global_lock);
2695 cpu = smp_processor_id();
2696 for (i = 0; i < dev->num_tx_queues; i++) {
2697 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2698
2699 /* We are the only thread of execution doing a
2700 * freeze, but we have to grab the _xmit_lock in
2701 * order to synchronize with threads which are in
2702 * the ->hard_start_xmit() handler and already
2703 * checked the frozen bit.
2704 */
2705 __netif_tx_lock(txq, cpu);
2706 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2707 __netif_tx_unlock(txq);
2708 }
2709 }
2710
2711 static inline void netif_tx_lock_bh(struct net_device *dev)
2712 {
2713 local_bh_disable();
2714 netif_tx_lock(dev);
2715 }
2716
2717 static inline void netif_tx_unlock(struct net_device *dev)
2718 {
2719 unsigned int i;
2720
2721 for (i = 0; i < dev->num_tx_queues; i++) {
2722 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2723
2724 /* No need to grab the _xmit_lock here. If the
2725 * queue is not stopped for another reason, we
2726 * force a schedule.
2727 */
2728 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2729 netif_schedule_queue(txq);
2730 }
2731 spin_unlock(&dev->tx_global_lock);
2732 }
2733
2734 static inline void netif_tx_unlock_bh(struct net_device *dev)
2735 {
2736 netif_tx_unlock(dev);
2737 local_bh_enable();
2738 }
2739
2740 #define HARD_TX_LOCK(dev, txq, cpu) { \
2741 if ((dev->features & NETIF_F_LLTX) == 0) { \
2742 __netif_tx_lock(txq, cpu); \
2743 } \
2744 }
2745
2746 #define HARD_TX_UNLOCK(dev, txq) { \
2747 if ((dev->features & NETIF_F_LLTX) == 0) { \
2748 __netif_tx_unlock(txq); \
2749 } \
2750 }
2751
2752 static inline void netif_tx_disable(struct net_device *dev)
2753 {
2754 unsigned int i;
2755 int cpu;
2756
2757 local_bh_disable();
2758 cpu = smp_processor_id();
2759 for (i = 0; i < dev->num_tx_queues; i++) {
2760 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2761
2762 __netif_tx_lock(txq, cpu);
2763 netif_tx_stop_queue(txq);
2764 __netif_tx_unlock(txq);
2765 }
2766 local_bh_enable();
2767 }
2768
2769 static inline void netif_addr_lock(struct net_device *dev)
2770 {
2771 spin_lock(&dev->addr_list_lock);
2772 }
2773
2774 static inline void netif_addr_lock_nested(struct net_device *dev)
2775 {
2776 spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2777 }
2778
2779 static inline void netif_addr_lock_bh(struct net_device *dev)
2780 {
2781 spin_lock_bh(&dev->addr_list_lock);
2782 }
2783
2784 static inline void netif_addr_unlock(struct net_device *dev)
2785 {
2786 spin_unlock(&dev->addr_list_lock);
2787 }
2788
2789 static inline void netif_addr_unlock_bh(struct net_device *dev)
2790 {
2791 spin_unlock_bh(&dev->addr_list_lock);
2792 }
2793
2794 /*
2795 * dev_addrs walker. Should be used only for read access. Call with
2796 * rcu_read_lock held.
2797 */
2798 #define for_each_dev_addr(dev, ha) \
2799 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2800
2801 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2802
2803 void ether_setup(struct net_device *dev);
2804
2805 /* Support for loadable net-drivers */
2806 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2807 void (*setup)(struct net_device *),
2808 unsigned int txqs, unsigned int rxqs);
2809 #define alloc_netdev(sizeof_priv, name, setup) \
2810 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2811
2812 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2813 alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2814
2815 int register_netdev(struct net_device *dev);
2816 void unregister_netdev(struct net_device *dev);
2817
2818 /* General hardware address lists handling functions */
2819 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2820 struct netdev_hw_addr_list *from_list, int addr_len);
2821 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2822 struct netdev_hw_addr_list *from_list, int addr_len);
2823 void __hw_addr_init(struct netdev_hw_addr_list *list);
2824
2825 /* Functions used for device addresses handling */
2826 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
2827 unsigned char addr_type);
2828 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
2829 unsigned char addr_type);
2830 void dev_addr_flush(struct net_device *dev);
2831 int dev_addr_init(struct net_device *dev);
2832
2833 /* Functions used for unicast addresses handling */
2834 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
2835 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
2836 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
2837 int dev_uc_sync(struct net_device *to, struct net_device *from);
2838 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
2839 void dev_uc_unsync(struct net_device *to, struct net_device *from);
2840 void dev_uc_flush(struct net_device *dev);
2841 void dev_uc_init(struct net_device *dev);
2842
2843 /* Functions used for multicast addresses handling */
2844 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
2845 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
2846 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
2847 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
2848 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
2849 int dev_mc_sync(struct net_device *to, struct net_device *from);
2850 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
2851 void dev_mc_unsync(struct net_device *to, struct net_device *from);
2852 void dev_mc_flush(struct net_device *dev);
2853 void dev_mc_init(struct net_device *dev);
2854
2855 /* Functions used for secondary unicast and multicast support */
2856 void dev_set_rx_mode(struct net_device *dev);
2857 void __dev_set_rx_mode(struct net_device *dev);
2858 int dev_set_promiscuity(struct net_device *dev, int inc);
2859 int dev_set_allmulti(struct net_device *dev, int inc);
2860 void netdev_state_change(struct net_device *dev);
2861 void netdev_notify_peers(struct net_device *dev);
2862 void netdev_features_change(struct net_device *dev);
2863 /* Load a device via the kmod */
2864 void dev_load(struct net *net, const char *name);
2865 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2866 struct rtnl_link_stats64 *storage);
2867 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
2868 const struct net_device_stats *netdev_stats);
2869
2870 extern int netdev_max_backlog;
2871 extern int netdev_tstamp_prequeue;
2872 extern int weight_p;
2873 extern int bpf_jit_enable;
2874
2875 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
2876 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
2877 struct list_head **iter);
2878
2879 /* iterate through upper list, must be called under RCU read lock */
2880 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
2881 for (iter = &(dev)->all_adj_list.upper, \
2882 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
2883 updev; \
2884 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
2885
2886 void *netdev_lower_get_next_private(struct net_device *dev,
2887 struct list_head **iter);
2888 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
2889 struct list_head **iter);
2890
2891 #define netdev_for_each_lower_private(dev, priv, iter) \
2892 for (iter = (dev)->adj_list.lower.next, \
2893 priv = netdev_lower_get_next_private(dev, &(iter)); \
2894 priv; \
2895 priv = netdev_lower_get_next_private(dev, &(iter)))
2896
2897 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
2898 for (iter = &(dev)->adj_list.lower, \
2899 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
2900 priv; \
2901 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
2902
2903 void *netdev_adjacent_get_private(struct list_head *adj_list);
2904 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
2905 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
2906 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
2907 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
2908 int netdev_master_upper_dev_link(struct net_device *dev,
2909 struct net_device *upper_dev);
2910 int netdev_master_upper_dev_link_private(struct net_device *dev,
2911 struct net_device *upper_dev,
2912 void *private);
2913 void netdev_upper_dev_unlink(struct net_device *dev,
2914 struct net_device *upper_dev);
2915 void *netdev_lower_dev_get_private(struct net_device *dev,
2916 struct net_device *lower_dev);
2917 int skb_checksum_help(struct sk_buff *skb);
2918 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2919 netdev_features_t features, bool tx_path);
2920 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2921 netdev_features_t features);
2922
2923 static inline
2924 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
2925 {
2926 return __skb_gso_segment(skb, features, true);
2927 }
2928 __be16 skb_network_protocol(struct sk_buff *skb);
2929
2930 static inline bool can_checksum_protocol(netdev_features_t features,
2931 __be16 protocol)
2932 {
2933 return ((features & NETIF_F_GEN_CSUM) ||
2934 ((features & NETIF_F_V4_CSUM) &&
2935 protocol == htons(ETH_P_IP)) ||
2936 ((features & NETIF_F_V6_CSUM) &&
2937 protocol == htons(ETH_P_IPV6)) ||
2938 ((features & NETIF_F_FCOE_CRC) &&
2939 protocol == htons(ETH_P_FCOE)));
2940 }
2941
2942 #ifdef CONFIG_BUG
2943 void netdev_rx_csum_fault(struct net_device *dev);
2944 #else
2945 static inline void netdev_rx_csum_fault(struct net_device *dev)
2946 {
2947 }
2948 #endif
2949 /* rx skb timestamps */
2950 void net_enable_timestamp(void);
2951 void net_disable_timestamp(void);
2952
2953 #ifdef CONFIG_PROC_FS
2954 int __init dev_proc_init(void);
2955 #else
2956 #define dev_proc_init() 0
2957 #endif
2958
2959 int netdev_class_create_file_ns(struct class_attribute *class_attr,
2960 const void *ns);
2961 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
2962 const void *ns);
2963
2964 static inline int netdev_class_create_file(struct class_attribute *class_attr)
2965 {
2966 return netdev_class_create_file_ns(class_attr, NULL);
2967 }
2968
2969 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
2970 {
2971 netdev_class_remove_file_ns(class_attr, NULL);
2972 }
2973
2974 extern struct kobj_ns_type_operations net_ns_type_operations;
2975
2976 const char *netdev_drivername(const struct net_device *dev);
2977
2978 void linkwatch_run_queue(void);
2979
2980 static inline netdev_features_t netdev_get_wanted_features(
2981 struct net_device *dev)
2982 {
2983 return (dev->features & ~dev->hw_features) | dev->wanted_features;
2984 }
2985 netdev_features_t netdev_increment_features(netdev_features_t all,
2986 netdev_features_t one, netdev_features_t mask);
2987
2988 /* Allow TSO being used on stacked device :
2989 * Performing the GSO segmentation before last device
2990 * is a performance improvement.
2991 */
2992 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
2993 netdev_features_t mask)
2994 {
2995 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
2996 }
2997
2998 int __netdev_update_features(struct net_device *dev);
2999 void netdev_update_features(struct net_device *dev);
3000 void netdev_change_features(struct net_device *dev);
3001
3002 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3003 struct net_device *dev);
3004
3005 netdev_features_t netif_skb_features(struct sk_buff *skb);
3006
3007 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3008 {
3009 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3010
3011 /* check flags correspondence */
3012 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3013 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3014 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3015 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3016 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3017 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3018
3019 return (features & feature) == feature;
3020 }
3021
3022 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3023 {
3024 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3025 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3026 }
3027
3028 static inline bool netif_needs_gso(struct sk_buff *skb,
3029 netdev_features_t features)
3030 {
3031 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3032 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3033 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3034 }
3035
3036 static inline void netif_set_gso_max_size(struct net_device *dev,
3037 unsigned int size)
3038 {
3039 dev->gso_max_size = size;
3040 }
3041
3042 static inline bool netif_is_macvlan(struct net_device *dev)
3043 {
3044 return dev->priv_flags & IFF_MACVLAN;
3045 }
3046
3047 static inline bool netif_is_bond_master(struct net_device *dev)
3048 {
3049 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3050 }
3051
3052 static inline bool netif_is_bond_slave(struct net_device *dev)
3053 {
3054 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3055 }
3056
3057 static inline bool netif_supports_nofcs(struct net_device *dev)
3058 {
3059 return dev->priv_flags & IFF_SUPP_NOFCS;
3060 }
3061
3062 extern struct pernet_operations __net_initdata loopback_net_ops;
3063
3064 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3065
3066 /* netdev_printk helpers, similar to dev_printk */
3067
3068 static inline const char *netdev_name(const struct net_device *dev)
3069 {
3070 if (dev->reg_state != NETREG_REGISTERED)
3071 return "(unregistered net_device)";
3072 return dev->name;
3073 }
3074
3075 __printf(3, 4)
3076 int netdev_printk(const char *level, const struct net_device *dev,
3077 const char *format, ...);
3078 __printf(2, 3)
3079 int netdev_emerg(const struct net_device *dev, const char *format, ...);
3080 __printf(2, 3)
3081 int netdev_alert(const struct net_device *dev, const char *format, ...);
3082 __printf(2, 3)
3083 int netdev_crit(const struct net_device *dev, const char *format, ...);
3084 __printf(2, 3)
3085 int netdev_err(const struct net_device *dev, const char *format, ...);
3086 __printf(2, 3)
3087 int netdev_warn(const struct net_device *dev, const char *format, ...);
3088 __printf(2, 3)
3089 int netdev_notice(const struct net_device *dev, const char *format, ...);
3090 __printf(2, 3)
3091 int netdev_info(const struct net_device *dev, const char *format, ...);
3092
3093 #define MODULE_ALIAS_NETDEV(device) \
3094 MODULE_ALIAS("netdev-" device)
3095
3096 #if defined(CONFIG_DYNAMIC_DEBUG)
3097 #define netdev_dbg(__dev, format, args...) \
3098 do { \
3099 dynamic_netdev_dbg(__dev, format, ##args); \
3100 } while (0)
3101 #elif defined(DEBUG)
3102 #define netdev_dbg(__dev, format, args...) \
3103 netdev_printk(KERN_DEBUG, __dev, format, ##args)
3104 #else
3105 #define netdev_dbg(__dev, format, args...) \
3106 ({ \
3107 if (0) \
3108 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3109 0; \
3110 })
3111 #endif
3112
3113 #if defined(VERBOSE_DEBUG)
3114 #define netdev_vdbg netdev_dbg
3115 #else
3116
3117 #define netdev_vdbg(dev, format, args...) \
3118 ({ \
3119 if (0) \
3120 netdev_printk(KERN_DEBUG, dev, format, ##args); \
3121 0; \
3122 })
3123 #endif
3124
3125 /*
3126 * netdev_WARN() acts like dev_printk(), but with the key difference
3127 * of using a WARN/WARN_ON to get the message out, including the
3128 * file/line information and a backtrace.
3129 */
3130 #define netdev_WARN(dev, format, args...) \
3131 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args)
3132
3133 /* netif printk helpers, similar to netdev_printk */
3134
3135 #define netif_printk(priv, type, level, dev, fmt, args...) \
3136 do { \
3137 if (netif_msg_##type(priv)) \
3138 netdev_printk(level, (dev), fmt, ##args); \
3139 } while (0)
3140
3141 #define netif_level(level, priv, type, dev, fmt, args...) \
3142 do { \
3143 if (netif_msg_##type(priv)) \
3144 netdev_##level(dev, fmt, ##args); \
3145 } while (0)
3146
3147 #define netif_emerg(priv, type, dev, fmt, args...) \
3148 netif_level(emerg, priv, type, dev, fmt, ##args)
3149 #define netif_alert(priv, type, dev, fmt, args...) \
3150 netif_level(alert, priv, type, dev, fmt, ##args)
3151 #define netif_crit(priv, type, dev, fmt, args...) \
3152 netif_level(crit, priv, type, dev, fmt, ##args)
3153 #define netif_err(priv, type, dev, fmt, args...) \
3154 netif_level(err, priv, type, dev, fmt, ##args)
3155 #define netif_warn(priv, type, dev, fmt, args...) \
3156 netif_level(warn, priv, type, dev, fmt, ##args)
3157 #define netif_notice(priv, type, dev, fmt, args...) \
3158 netif_level(notice, priv, type, dev, fmt, ##args)
3159 #define netif_info(priv, type, dev, fmt, args...) \
3160 netif_level(info, priv, type, dev, fmt, ##args)
3161
3162 #if defined(CONFIG_DYNAMIC_DEBUG)
3163 #define netif_dbg(priv, type, netdev, format, args...) \
3164 do { \
3165 if (netif_msg_##type(priv)) \
3166 dynamic_netdev_dbg(netdev, format, ##args); \
3167 } while (0)
3168 #elif defined(DEBUG)
3169 #define netif_dbg(priv, type, dev, format, args...) \
3170 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3171 #else
3172 #define netif_dbg(priv, type, dev, format, args...) \
3173 ({ \
3174 if (0) \
3175 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3176 0; \
3177 })
3178 #endif
3179
3180 #if defined(VERBOSE_DEBUG)
3181 #define netif_vdbg netif_dbg
3182 #else
3183 #define netif_vdbg(priv, type, dev, format, args...) \
3184 ({ \
3185 if (0) \
3186 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3187 0; \
3188 })
3189 #endif
3190
3191 /*
3192 * The list of packet types we will receive (as opposed to discard)
3193 * and the routines to invoke.
3194 *
3195 * Why 16. Because with 16 the only overlap we get on a hash of the
3196 * low nibble of the protocol value is RARP/SNAP/X.25.
3197 *
3198 * NOTE: That is no longer true with the addition of VLAN tags. Not
3199 * sure which should go first, but I bet it won't make much
3200 * difference if we are running VLANs. The good news is that
3201 * this protocol won't be in the list unless compiled in, so
3202 * the average user (w/out VLANs) will not be adversely affected.
3203 * --BLG
3204 *
3205 * 0800 IP
3206 * 8100 802.1Q VLAN
3207 * 0001 802.3
3208 * 0002 AX.25
3209 * 0004 802.2
3210 * 8035 RARP
3211 * 0005 SNAP
3212 * 0805 X.25
3213 * 0806 ARP
3214 * 8137 IPX
3215 * 0009 Localtalk
3216 * 86DD IPv6
3217 */
3218 #define PTYPE_HASH_SIZE (16)
3219 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
3220
3221 #endif /* _LINUX_NETDEVICE_H */
This page took 0.097529 seconds and 5 git commands to generate.