regmap: merge regmap_update_bits_check() into macro
[deliverable/linux.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54
55 struct netpoll_info;
56 struct device;
57 struct phy_device;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* 802.15.4 specific */
61 struct wpan_dev;
62 struct mpls_dev;
63
64 void netdev_set_default_ethtool_ops(struct net_device *dev,
65 const struct ethtool_ops *ops);
66
67 /* Backlog congestion levels */
68 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
69 #define NET_RX_DROP 1 /* packet dropped */
70
71 /*
72 * Transmit return codes: transmit return codes originate from three different
73 * namespaces:
74 *
75 * - qdisc return codes
76 * - driver transmit return codes
77 * - errno values
78 *
79 * Drivers are allowed to return any one of those in their hard_start_xmit()
80 * function. Real network devices commonly used with qdiscs should only return
81 * the driver transmit return codes though - when qdiscs are used, the actual
82 * transmission happens asynchronously, so the value is not propagated to
83 * higher layers. Virtual network devices transmit synchronously, in this case
84 * the driver transmit return codes are consumed by dev_queue_xmit(), all
85 * others are propagated to higher layers.
86 */
87
88 /* qdisc ->enqueue() return codes. */
89 #define NET_XMIT_SUCCESS 0x00
90 #define NET_XMIT_DROP 0x01 /* skb dropped */
91 #define NET_XMIT_CN 0x02 /* congestion notification */
92 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
93 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
94
95 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
96 * indicates that the device will soon be dropping packets, or already drops
97 * some packets of the same priority; prompting us to send less aggressively. */
98 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
99 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
100
101 /* Driver transmit return codes */
102 #define NETDEV_TX_MASK 0xf0
103
104 enum netdev_tx {
105 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
106 NETDEV_TX_OK = 0x00, /* driver took care of packet */
107 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
108 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
109 };
110 typedef enum netdev_tx netdev_tx_t;
111
112 /*
113 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
114 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
115 */
116 static inline bool dev_xmit_complete(int rc)
117 {
118 /*
119 * Positive cases with an skb consumed by a driver:
120 * - successful transmission (rc == NETDEV_TX_OK)
121 * - error while transmitting (rc < 0)
122 * - error while queueing to a different device (rc & NET_XMIT_MASK)
123 */
124 if (likely(rc < NET_XMIT_MASK))
125 return true;
126
127 return false;
128 }
129
130 /*
131 * Compute the worst case header length according to the protocols
132 * used.
133 */
134
135 #if defined(CONFIG_HYPERV_NET)
136 # define LL_MAX_HEADER 128
137 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
138 # if defined(CONFIG_MAC80211_MESH)
139 # define LL_MAX_HEADER 128
140 # else
141 # define LL_MAX_HEADER 96
142 # endif
143 #else
144 # define LL_MAX_HEADER 32
145 #endif
146
147 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
148 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
149 #define MAX_HEADER LL_MAX_HEADER
150 #else
151 #define MAX_HEADER (LL_MAX_HEADER + 48)
152 #endif
153
154 /*
155 * Old network device statistics. Fields are native words
156 * (unsigned long) so they can be read and written atomically.
157 */
158
159 struct net_device_stats {
160 unsigned long rx_packets;
161 unsigned long tx_packets;
162 unsigned long rx_bytes;
163 unsigned long tx_bytes;
164 unsigned long rx_errors;
165 unsigned long tx_errors;
166 unsigned long rx_dropped;
167 unsigned long tx_dropped;
168 unsigned long multicast;
169 unsigned long collisions;
170 unsigned long rx_length_errors;
171 unsigned long rx_over_errors;
172 unsigned long rx_crc_errors;
173 unsigned long rx_frame_errors;
174 unsigned long rx_fifo_errors;
175 unsigned long rx_missed_errors;
176 unsigned long tx_aborted_errors;
177 unsigned long tx_carrier_errors;
178 unsigned long tx_fifo_errors;
179 unsigned long tx_heartbeat_errors;
180 unsigned long tx_window_errors;
181 unsigned long rx_compressed;
182 unsigned long tx_compressed;
183 };
184
185
186 #include <linux/cache.h>
187 #include <linux/skbuff.h>
188
189 #ifdef CONFIG_RPS
190 #include <linux/static_key.h>
191 extern struct static_key rps_needed;
192 #endif
193
194 struct neighbour;
195 struct neigh_parms;
196 struct sk_buff;
197
198 struct netdev_hw_addr {
199 struct list_head list;
200 unsigned char addr[MAX_ADDR_LEN];
201 unsigned char type;
202 #define NETDEV_HW_ADDR_T_LAN 1
203 #define NETDEV_HW_ADDR_T_SAN 2
204 #define NETDEV_HW_ADDR_T_SLAVE 3
205 #define NETDEV_HW_ADDR_T_UNICAST 4
206 #define NETDEV_HW_ADDR_T_MULTICAST 5
207 bool global_use;
208 int sync_cnt;
209 int refcount;
210 int synced;
211 struct rcu_head rcu_head;
212 };
213
214 struct netdev_hw_addr_list {
215 struct list_head list;
216 int count;
217 };
218
219 #define netdev_hw_addr_list_count(l) ((l)->count)
220 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
221 #define netdev_hw_addr_list_for_each(ha, l) \
222 list_for_each_entry(ha, &(l)->list, list)
223
224 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
225 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
226 #define netdev_for_each_uc_addr(ha, dev) \
227 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
228
229 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
230 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
231 #define netdev_for_each_mc_addr(ha, dev) \
232 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
233
234 struct hh_cache {
235 u16 hh_len;
236 u16 __pad;
237 seqlock_t hh_lock;
238
239 /* cached hardware header; allow for machine alignment needs. */
240 #define HH_DATA_MOD 16
241 #define HH_DATA_OFF(__len) \
242 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
243 #define HH_DATA_ALIGN(__len) \
244 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
245 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
246 };
247
248 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
249 * Alternative is:
250 * dev->hard_header_len ? (dev->hard_header_len +
251 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
252 *
253 * We could use other alignment values, but we must maintain the
254 * relationship HH alignment <= LL alignment.
255 */
256 #define LL_RESERVED_SPACE(dev) \
257 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
259 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
260
261 struct header_ops {
262 int (*create) (struct sk_buff *skb, struct net_device *dev,
263 unsigned short type, const void *daddr,
264 const void *saddr, unsigned int len);
265 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
266 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
267 void (*cache_update)(struct hh_cache *hh,
268 const struct net_device *dev,
269 const unsigned char *haddr);
270 };
271
272 /* These flag bits are private to the generic network queueing
273 * layer, they may not be explicitly referenced by any other
274 * code.
275 */
276
277 enum netdev_state_t {
278 __LINK_STATE_START,
279 __LINK_STATE_PRESENT,
280 __LINK_STATE_NOCARRIER,
281 __LINK_STATE_LINKWATCH_PENDING,
282 __LINK_STATE_DORMANT,
283 };
284
285
286 /*
287 * This structure holds at boot time configured netdevice settings. They
288 * are then used in the device probing.
289 */
290 struct netdev_boot_setup {
291 char name[IFNAMSIZ];
292 struct ifmap map;
293 };
294 #define NETDEV_BOOT_SETUP_MAX 8
295
296 int __init netdev_boot_setup(char *str);
297
298 /*
299 * Structure for NAPI scheduling similar to tasklet but with weighting
300 */
301 struct napi_struct {
302 /* The poll_list must only be managed by the entity which
303 * changes the state of the NAPI_STATE_SCHED bit. This means
304 * whoever atomically sets that bit can add this napi_struct
305 * to the per-cpu poll_list, and whoever clears that bit
306 * can remove from the list right before clearing the bit.
307 */
308 struct list_head poll_list;
309
310 unsigned long state;
311 int weight;
312 unsigned int gro_count;
313 int (*poll)(struct napi_struct *, int);
314 #ifdef CONFIG_NETPOLL
315 spinlock_t poll_lock;
316 int poll_owner;
317 #endif
318 struct net_device *dev;
319 struct sk_buff *gro_list;
320 struct sk_buff *skb;
321 struct hrtimer timer;
322 struct list_head dev_list;
323 struct hlist_node napi_hash_node;
324 unsigned int napi_id;
325 };
326
327 enum {
328 NAPI_STATE_SCHED, /* Poll is scheduled */
329 NAPI_STATE_DISABLE, /* Disable pending */
330 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
331 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */
332 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
333 };
334
335 enum gro_result {
336 GRO_MERGED,
337 GRO_MERGED_FREE,
338 GRO_HELD,
339 GRO_NORMAL,
340 GRO_DROP,
341 };
342 typedef enum gro_result gro_result_t;
343
344 /*
345 * enum rx_handler_result - Possible return values for rx_handlers.
346 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
347 * further.
348 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
349 * case skb->dev was changed by rx_handler.
350 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
351 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
352 *
353 * rx_handlers are functions called from inside __netif_receive_skb(), to do
354 * special processing of the skb, prior to delivery to protocol handlers.
355 *
356 * Currently, a net_device can only have a single rx_handler registered. Trying
357 * to register a second rx_handler will return -EBUSY.
358 *
359 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
360 * To unregister a rx_handler on a net_device, use
361 * netdev_rx_handler_unregister().
362 *
363 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
364 * do with the skb.
365 *
366 * If the rx_handler consumed to skb in some way, it should return
367 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
368 * the skb to be delivered in some other ways.
369 *
370 * If the rx_handler changed skb->dev, to divert the skb to another
371 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
372 * new device will be called if it exists.
373 *
374 * If the rx_handler consider the skb should be ignored, it should return
375 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
376 * are registered on exact device (ptype->dev == skb->dev).
377 *
378 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
379 * delivered, it should return RX_HANDLER_PASS.
380 *
381 * A device without a registered rx_handler will behave as if rx_handler
382 * returned RX_HANDLER_PASS.
383 */
384
385 enum rx_handler_result {
386 RX_HANDLER_CONSUMED,
387 RX_HANDLER_ANOTHER,
388 RX_HANDLER_EXACT,
389 RX_HANDLER_PASS,
390 };
391 typedef enum rx_handler_result rx_handler_result_t;
392 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
393
394 void __napi_schedule(struct napi_struct *n);
395 void __napi_schedule_irqoff(struct napi_struct *n);
396
397 static inline bool napi_disable_pending(struct napi_struct *n)
398 {
399 return test_bit(NAPI_STATE_DISABLE, &n->state);
400 }
401
402 /**
403 * napi_schedule_prep - check if napi can be scheduled
404 * @n: napi context
405 *
406 * Test if NAPI routine is already running, and if not mark
407 * it as running. This is used as a condition variable
408 * insure only one NAPI poll instance runs. We also make
409 * sure there is no pending NAPI disable.
410 */
411 static inline bool napi_schedule_prep(struct napi_struct *n)
412 {
413 return !napi_disable_pending(n) &&
414 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
415 }
416
417 /**
418 * napi_schedule - schedule NAPI poll
419 * @n: napi context
420 *
421 * Schedule NAPI poll routine to be called if it is not already
422 * running.
423 */
424 static inline void napi_schedule(struct napi_struct *n)
425 {
426 if (napi_schedule_prep(n))
427 __napi_schedule(n);
428 }
429
430 /**
431 * napi_schedule_irqoff - schedule NAPI poll
432 * @n: napi context
433 *
434 * Variant of napi_schedule(), assuming hard irqs are masked.
435 */
436 static inline void napi_schedule_irqoff(struct napi_struct *n)
437 {
438 if (napi_schedule_prep(n))
439 __napi_schedule_irqoff(n);
440 }
441
442 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
443 static inline bool napi_reschedule(struct napi_struct *napi)
444 {
445 if (napi_schedule_prep(napi)) {
446 __napi_schedule(napi);
447 return true;
448 }
449 return false;
450 }
451
452 void __napi_complete(struct napi_struct *n);
453 void napi_complete_done(struct napi_struct *n, int work_done);
454 /**
455 * napi_complete - NAPI processing complete
456 * @n: napi context
457 *
458 * Mark NAPI processing as complete.
459 * Consider using napi_complete_done() instead.
460 */
461 static inline void napi_complete(struct napi_struct *n)
462 {
463 return napi_complete_done(n, 0);
464 }
465
466 /**
467 * napi_hash_add - add a NAPI to global hashtable
468 * @napi: napi context
469 *
470 * generate a new napi_id and store a @napi under it in napi_hash
471 * Used for busy polling (CONFIG_NET_RX_BUSY_POLL)
472 * Note: This is normally automatically done from netif_napi_add(),
473 * so might disappear in a future linux version.
474 */
475 void napi_hash_add(struct napi_struct *napi);
476
477 /**
478 * napi_hash_del - remove a NAPI from global table
479 * @napi: napi context
480 *
481 * Warning: caller must observe rcu grace period
482 * before freeing memory containing @napi, if
483 * this function returns true.
484 * Note: core networking stack automatically calls it
485 * from netif_napi_del()
486 * Drivers might want to call this helper to combine all
487 * the needed rcu grace periods into a single one.
488 */
489 bool napi_hash_del(struct napi_struct *napi);
490
491 /**
492 * napi_disable - prevent NAPI from scheduling
493 * @n: napi context
494 *
495 * Stop NAPI from being scheduled on this context.
496 * Waits till any outstanding processing completes.
497 */
498 void napi_disable(struct napi_struct *n);
499
500 /**
501 * napi_enable - enable NAPI scheduling
502 * @n: napi context
503 *
504 * Resume NAPI from being scheduled on this context.
505 * Must be paired with napi_disable.
506 */
507 static inline void napi_enable(struct napi_struct *n)
508 {
509 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
510 smp_mb__before_atomic();
511 clear_bit(NAPI_STATE_SCHED, &n->state);
512 clear_bit(NAPI_STATE_NPSVC, &n->state);
513 }
514
515 #ifdef CONFIG_SMP
516 /**
517 * napi_synchronize - wait until NAPI is not running
518 * @n: napi context
519 *
520 * Wait until NAPI is done being scheduled on this context.
521 * Waits till any outstanding processing completes but
522 * does not disable future activations.
523 */
524 static inline void napi_synchronize(const struct napi_struct *n)
525 {
526 while (test_bit(NAPI_STATE_SCHED, &n->state))
527 msleep(1);
528 }
529 #else
530 # define napi_synchronize(n) barrier()
531 #endif
532
533 enum netdev_queue_state_t {
534 __QUEUE_STATE_DRV_XOFF,
535 __QUEUE_STATE_STACK_XOFF,
536 __QUEUE_STATE_FROZEN,
537 };
538
539 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
540 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
541 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
542
543 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
544 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
545 QUEUE_STATE_FROZEN)
546 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
547 QUEUE_STATE_FROZEN)
548
549 /*
550 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
551 * netif_tx_* functions below are used to manipulate this flag. The
552 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
553 * queue independently. The netif_xmit_*stopped functions below are called
554 * to check if the queue has been stopped by the driver or stack (either
555 * of the XOFF bits are set in the state). Drivers should not need to call
556 * netif_xmit*stopped functions, they should only be using netif_tx_*.
557 */
558
559 struct netdev_queue {
560 /*
561 * read mostly part
562 */
563 struct net_device *dev;
564 struct Qdisc __rcu *qdisc;
565 struct Qdisc *qdisc_sleeping;
566 #ifdef CONFIG_SYSFS
567 struct kobject kobj;
568 #endif
569 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
570 int numa_node;
571 #endif
572 /*
573 * write mostly part
574 */
575 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
576 int xmit_lock_owner;
577 /*
578 * please use this field instead of dev->trans_start
579 */
580 unsigned long trans_start;
581
582 /*
583 * Number of TX timeouts for this queue
584 * (/sys/class/net/DEV/Q/trans_timeout)
585 */
586 unsigned long trans_timeout;
587
588 unsigned long state;
589
590 #ifdef CONFIG_BQL
591 struct dql dql;
592 #endif
593 unsigned long tx_maxrate;
594 } ____cacheline_aligned_in_smp;
595
596 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
597 {
598 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
599 return q->numa_node;
600 #else
601 return NUMA_NO_NODE;
602 #endif
603 }
604
605 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
606 {
607 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
608 q->numa_node = node;
609 #endif
610 }
611
612 #ifdef CONFIG_RPS
613 /*
614 * This structure holds an RPS map which can be of variable length. The
615 * map is an array of CPUs.
616 */
617 struct rps_map {
618 unsigned int len;
619 struct rcu_head rcu;
620 u16 cpus[0];
621 };
622 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
623
624 /*
625 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
626 * tail pointer for that CPU's input queue at the time of last enqueue, and
627 * a hardware filter index.
628 */
629 struct rps_dev_flow {
630 u16 cpu;
631 u16 filter;
632 unsigned int last_qtail;
633 };
634 #define RPS_NO_FILTER 0xffff
635
636 /*
637 * The rps_dev_flow_table structure contains a table of flow mappings.
638 */
639 struct rps_dev_flow_table {
640 unsigned int mask;
641 struct rcu_head rcu;
642 struct rps_dev_flow flows[0];
643 };
644 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
645 ((_num) * sizeof(struct rps_dev_flow)))
646
647 /*
648 * The rps_sock_flow_table contains mappings of flows to the last CPU
649 * on which they were processed by the application (set in recvmsg).
650 * Each entry is a 32bit value. Upper part is the high order bits
651 * of flow hash, lower part is cpu number.
652 * rps_cpu_mask is used to partition the space, depending on number of
653 * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
654 * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
655 * meaning we use 32-6=26 bits for the hash.
656 */
657 struct rps_sock_flow_table {
658 u32 mask;
659
660 u32 ents[0] ____cacheline_aligned_in_smp;
661 };
662 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
663
664 #define RPS_NO_CPU 0xffff
665
666 extern u32 rps_cpu_mask;
667 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
668
669 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
670 u32 hash)
671 {
672 if (table && hash) {
673 unsigned int index = hash & table->mask;
674 u32 val = hash & ~rps_cpu_mask;
675
676 /* We only give a hint, preemption can change cpu under us */
677 val |= raw_smp_processor_id();
678
679 if (table->ents[index] != val)
680 table->ents[index] = val;
681 }
682 }
683
684 #ifdef CONFIG_RFS_ACCEL
685 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
686 u16 filter_id);
687 #endif
688 #endif /* CONFIG_RPS */
689
690 /* This structure contains an instance of an RX queue. */
691 struct netdev_rx_queue {
692 #ifdef CONFIG_RPS
693 struct rps_map __rcu *rps_map;
694 struct rps_dev_flow_table __rcu *rps_flow_table;
695 #endif
696 struct kobject kobj;
697 struct net_device *dev;
698 } ____cacheline_aligned_in_smp;
699
700 /*
701 * RX queue sysfs structures and functions.
702 */
703 struct rx_queue_attribute {
704 struct attribute attr;
705 ssize_t (*show)(struct netdev_rx_queue *queue,
706 struct rx_queue_attribute *attr, char *buf);
707 ssize_t (*store)(struct netdev_rx_queue *queue,
708 struct rx_queue_attribute *attr, const char *buf, size_t len);
709 };
710
711 #ifdef CONFIG_XPS
712 /*
713 * This structure holds an XPS map which can be of variable length. The
714 * map is an array of queues.
715 */
716 struct xps_map {
717 unsigned int len;
718 unsigned int alloc_len;
719 struct rcu_head rcu;
720 u16 queues[0];
721 };
722 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
723 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
724 - sizeof(struct xps_map)) / sizeof(u16))
725
726 /*
727 * This structure holds all XPS maps for device. Maps are indexed by CPU.
728 */
729 struct xps_dev_maps {
730 struct rcu_head rcu;
731 struct xps_map __rcu *cpu_map[0];
732 };
733 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
734 (nr_cpu_ids * sizeof(struct xps_map *)))
735 #endif /* CONFIG_XPS */
736
737 #define TC_MAX_QUEUE 16
738 #define TC_BITMASK 15
739 /* HW offloaded queuing disciplines txq count and offset maps */
740 struct netdev_tc_txq {
741 u16 count;
742 u16 offset;
743 };
744
745 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
746 /*
747 * This structure is to hold information about the device
748 * configured to run FCoE protocol stack.
749 */
750 struct netdev_fcoe_hbainfo {
751 char manufacturer[64];
752 char serial_number[64];
753 char hardware_version[64];
754 char driver_version[64];
755 char optionrom_version[64];
756 char firmware_version[64];
757 char model[256];
758 char model_description[256];
759 };
760 #endif
761
762 #define MAX_PHYS_ITEM_ID_LEN 32
763
764 /* This structure holds a unique identifier to identify some
765 * physical item (port for example) used by a netdevice.
766 */
767 struct netdev_phys_item_id {
768 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
769 unsigned char id_len;
770 };
771
772 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
773 struct netdev_phys_item_id *b)
774 {
775 return a->id_len == b->id_len &&
776 memcmp(a->id, b->id, a->id_len) == 0;
777 }
778
779 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
780 struct sk_buff *skb);
781
782 /*
783 * This structure defines the management hooks for network devices.
784 * The following hooks can be defined; unless noted otherwise, they are
785 * optional and can be filled with a null pointer.
786 *
787 * int (*ndo_init)(struct net_device *dev);
788 * This function is called once when network device is registered.
789 * The network device can use this to any late stage initializaton
790 * or semantic validattion. It can fail with an error code which will
791 * be propogated back to register_netdev
792 *
793 * void (*ndo_uninit)(struct net_device *dev);
794 * This function is called when device is unregistered or when registration
795 * fails. It is not called if init fails.
796 *
797 * int (*ndo_open)(struct net_device *dev);
798 * This function is called when network device transistions to the up
799 * state.
800 *
801 * int (*ndo_stop)(struct net_device *dev);
802 * This function is called when network device transistions to the down
803 * state.
804 *
805 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
806 * struct net_device *dev);
807 * Called when a packet needs to be transmitted.
808 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
809 * the queue before that can happen; it's for obsolete devices and weird
810 * corner cases, but the stack really does a non-trivial amount
811 * of useless work if you return NETDEV_TX_BUSY.
812 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
813 * Required can not be NULL.
814 *
815 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
816 * netdev_features_t features);
817 * Adjusts the requested feature flags according to device-specific
818 * constraints, and returns the resulting flags. Must not modify
819 * the device state.
820 *
821 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
822 * void *accel_priv, select_queue_fallback_t fallback);
823 * Called to decide which queue to when device supports multiple
824 * transmit queues.
825 *
826 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
827 * This function is called to allow device receiver to make
828 * changes to configuration when multicast or promiscious is enabled.
829 *
830 * void (*ndo_set_rx_mode)(struct net_device *dev);
831 * This function is called device changes address list filtering.
832 * If driver handles unicast address filtering, it should set
833 * IFF_UNICAST_FLT to its priv_flags.
834 *
835 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
836 * This function is called when the Media Access Control address
837 * needs to be changed. If this interface is not defined, the
838 * mac address can not be changed.
839 *
840 * int (*ndo_validate_addr)(struct net_device *dev);
841 * Test if Media Access Control address is valid for the device.
842 *
843 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
844 * Called when a user request an ioctl which can't be handled by
845 * the generic interface code. If not defined ioctl's return
846 * not supported error code.
847 *
848 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
849 * Used to set network devices bus interface parameters. This interface
850 * is retained for legacy reason, new devices should use the bus
851 * interface (PCI) for low level management.
852 *
853 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
854 * Called when a user wants to change the Maximum Transfer Unit
855 * of a device. If not defined, any request to change MTU will
856 * will return an error.
857 *
858 * void (*ndo_tx_timeout)(struct net_device *dev);
859 * Callback uses when the transmitter has not made any progress
860 * for dev->watchdog ticks.
861 *
862 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
863 * struct rtnl_link_stats64 *storage);
864 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
865 * Called when a user wants to get the network device usage
866 * statistics. Drivers must do one of the following:
867 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
868 * rtnl_link_stats64 structure passed by the caller.
869 * 2. Define @ndo_get_stats to update a net_device_stats structure
870 * (which should normally be dev->stats) and return a pointer to
871 * it. The structure may be changed asynchronously only if each
872 * field is written atomically.
873 * 3. Update dev->stats asynchronously and atomically, and define
874 * neither operation.
875 *
876 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
877 * If device support VLAN filtering this function is called when a
878 * VLAN id is registered.
879 *
880 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
881 * If device support VLAN filtering this function is called when a
882 * VLAN id is unregistered.
883 *
884 * void (*ndo_poll_controller)(struct net_device *dev);
885 *
886 * SR-IOV management functions.
887 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
888 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
889 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
890 * int max_tx_rate);
891 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
892 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
893 * int (*ndo_get_vf_config)(struct net_device *dev,
894 * int vf, struct ifla_vf_info *ivf);
895 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
896 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
897 * struct nlattr *port[]);
898 *
899 * Enable or disable the VF ability to query its RSS Redirection Table and
900 * Hash Key. This is needed since on some devices VF share this information
901 * with PF and querying it may adduce a theoretical security risk.
902 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
903 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
904 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
905 * Called to setup 'tc' number of traffic classes in the net device. This
906 * is always called from the stack with the rtnl lock held and netif tx
907 * queues stopped. This allows the netdevice to perform queue management
908 * safely.
909 *
910 * Fiber Channel over Ethernet (FCoE) offload functions.
911 * int (*ndo_fcoe_enable)(struct net_device *dev);
912 * Called when the FCoE protocol stack wants to start using LLD for FCoE
913 * so the underlying device can perform whatever needed configuration or
914 * initialization to support acceleration of FCoE traffic.
915 *
916 * int (*ndo_fcoe_disable)(struct net_device *dev);
917 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
918 * so the underlying device can perform whatever needed clean-ups to
919 * stop supporting acceleration of FCoE traffic.
920 *
921 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
922 * struct scatterlist *sgl, unsigned int sgc);
923 * Called when the FCoE Initiator wants to initialize an I/O that
924 * is a possible candidate for Direct Data Placement (DDP). The LLD can
925 * perform necessary setup and returns 1 to indicate the device is set up
926 * successfully to perform DDP on this I/O, otherwise this returns 0.
927 *
928 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
929 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
930 * indicated by the FC exchange id 'xid', so the underlying device can
931 * clean up and reuse resources for later DDP requests.
932 *
933 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
934 * struct scatterlist *sgl, unsigned int sgc);
935 * Called when the FCoE Target wants to initialize an I/O that
936 * is a possible candidate for Direct Data Placement (DDP). The LLD can
937 * perform necessary setup and returns 1 to indicate the device is set up
938 * successfully to perform DDP on this I/O, otherwise this returns 0.
939 *
940 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
941 * struct netdev_fcoe_hbainfo *hbainfo);
942 * Called when the FCoE Protocol stack wants information on the underlying
943 * device. This information is utilized by the FCoE protocol stack to
944 * register attributes with Fiber Channel management service as per the
945 * FC-GS Fabric Device Management Information(FDMI) specification.
946 *
947 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
948 * Called when the underlying device wants to override default World Wide
949 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
950 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
951 * protocol stack to use.
952 *
953 * RFS acceleration.
954 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
955 * u16 rxq_index, u32 flow_id);
956 * Set hardware filter for RFS. rxq_index is the target queue index;
957 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
958 * Return the filter ID on success, or a negative error code.
959 *
960 * Slave management functions (for bridge, bonding, etc).
961 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
962 * Called to make another netdev an underling.
963 *
964 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
965 * Called to release previously enslaved netdev.
966 *
967 * Feature/offload setting functions.
968 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
969 * Called to update device configuration to new features. Passed
970 * feature set might be less than what was returned by ndo_fix_features()).
971 * Must return >0 or -errno if it changed dev->features itself.
972 *
973 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
974 * struct net_device *dev,
975 * const unsigned char *addr, u16 vid, u16 flags)
976 * Adds an FDB entry to dev for addr.
977 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
978 * struct net_device *dev,
979 * const unsigned char *addr, u16 vid)
980 * Deletes the FDB entry from dev coresponding to addr.
981 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
982 * struct net_device *dev, struct net_device *filter_dev,
983 * int idx)
984 * Used to add FDB entries to dump requests. Implementers should add
985 * entries to skb and update idx with the number of entries.
986 *
987 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
988 * u16 flags)
989 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
990 * struct net_device *dev, u32 filter_mask,
991 * int nlflags)
992 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
993 * u16 flags);
994 *
995 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
996 * Called to change device carrier. Soft-devices (like dummy, team, etc)
997 * which do not represent real hardware may define this to allow their
998 * userspace components to manage their virtual carrier state. Devices
999 * that determine carrier state from physical hardware properties (eg
1000 * network cables) or protocol-dependent mechanisms (eg
1001 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1002 *
1003 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1004 * struct netdev_phys_item_id *ppid);
1005 * Called to get ID of physical port of this device. If driver does
1006 * not implement this, it is assumed that the hw is not able to have
1007 * multiple net devices on single physical port.
1008 *
1009 * void (*ndo_add_vxlan_port)(struct net_device *dev,
1010 * sa_family_t sa_family, __be16 port);
1011 * Called by vxlan to notiy a driver about the UDP port and socket
1012 * address family that vxlan is listnening to. It is called only when
1013 * a new port starts listening. The operation is protected by the
1014 * vxlan_net->sock_lock.
1015 *
1016 * void (*ndo_add_geneve_port)(struct net_device *dev,
1017 * sa_family_t sa_family, __be16 port);
1018 * Called by geneve to notify a driver about the UDP port and socket
1019 * address family that geneve is listnening to. It is called only when
1020 * a new port starts listening. The operation is protected by the
1021 * geneve_net->sock_lock.
1022 *
1023 * void (*ndo_del_geneve_port)(struct net_device *dev,
1024 * sa_family_t sa_family, __be16 port);
1025 * Called by geneve to notify the driver about a UDP port and socket
1026 * address family that geneve is not listening to anymore. The operation
1027 * is protected by the geneve_net->sock_lock.
1028 *
1029 * void (*ndo_del_vxlan_port)(struct net_device *dev,
1030 * sa_family_t sa_family, __be16 port);
1031 * Called by vxlan to notify the driver about a UDP port and socket
1032 * address family that vxlan is not listening to anymore. The operation
1033 * is protected by the vxlan_net->sock_lock.
1034 *
1035 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1036 * struct net_device *dev)
1037 * Called by upper layer devices to accelerate switching or other
1038 * station functionality into hardware. 'pdev is the lowerdev
1039 * to use for the offload and 'dev' is the net device that will
1040 * back the offload. Returns a pointer to the private structure
1041 * the upper layer will maintain.
1042 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1043 * Called by upper layer device to delete the station created
1044 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1045 * the station and priv is the structure returned by the add
1046 * operation.
1047 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1048 * struct net_device *dev,
1049 * void *priv);
1050 * Callback to use for xmit over the accelerated station. This
1051 * is used in place of ndo_start_xmit on accelerated net
1052 * devices.
1053 * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1054 * struct net_device *dev
1055 * netdev_features_t features);
1056 * Called by core transmit path to determine if device is capable of
1057 * performing offload operations on a given packet. This is to give
1058 * the device an opportunity to implement any restrictions that cannot
1059 * be otherwise expressed by feature flags. The check is called with
1060 * the set of features that the stack has calculated and it returns
1061 * those the driver believes to be appropriate.
1062 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1063 * int queue_index, u32 maxrate);
1064 * Called when a user wants to set a max-rate limitation of specific
1065 * TX queue.
1066 * int (*ndo_get_iflink)(const struct net_device *dev);
1067 * Called to get the iflink value of this device.
1068 * void (*ndo_change_proto_down)(struct net_device *dev,
1069 * bool proto_down);
1070 * This function is used to pass protocol port error state information
1071 * to the switch driver. The switch driver can react to the proto_down
1072 * by doing a phys down on the associated switch port.
1073 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1074 * This function is used to get egress tunnel information for given skb.
1075 * This is useful for retrieving outer tunnel header parameters while
1076 * sampling packet.
1077 *
1078 */
1079 struct net_device_ops {
1080 int (*ndo_init)(struct net_device *dev);
1081 void (*ndo_uninit)(struct net_device *dev);
1082 int (*ndo_open)(struct net_device *dev);
1083 int (*ndo_stop)(struct net_device *dev);
1084 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1085 struct net_device *dev);
1086 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1087 struct net_device *dev,
1088 netdev_features_t features);
1089 u16 (*ndo_select_queue)(struct net_device *dev,
1090 struct sk_buff *skb,
1091 void *accel_priv,
1092 select_queue_fallback_t fallback);
1093 void (*ndo_change_rx_flags)(struct net_device *dev,
1094 int flags);
1095 void (*ndo_set_rx_mode)(struct net_device *dev);
1096 int (*ndo_set_mac_address)(struct net_device *dev,
1097 void *addr);
1098 int (*ndo_validate_addr)(struct net_device *dev);
1099 int (*ndo_do_ioctl)(struct net_device *dev,
1100 struct ifreq *ifr, int cmd);
1101 int (*ndo_set_config)(struct net_device *dev,
1102 struct ifmap *map);
1103 int (*ndo_change_mtu)(struct net_device *dev,
1104 int new_mtu);
1105 int (*ndo_neigh_setup)(struct net_device *dev,
1106 struct neigh_parms *);
1107 void (*ndo_tx_timeout) (struct net_device *dev);
1108
1109 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1110 struct rtnl_link_stats64 *storage);
1111 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1112
1113 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1114 __be16 proto, u16 vid);
1115 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1116 __be16 proto, u16 vid);
1117 #ifdef CONFIG_NET_POLL_CONTROLLER
1118 void (*ndo_poll_controller)(struct net_device *dev);
1119 int (*ndo_netpoll_setup)(struct net_device *dev,
1120 struct netpoll_info *info);
1121 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1122 #endif
1123 #ifdef CONFIG_NET_RX_BUSY_POLL
1124 int (*ndo_busy_poll)(struct napi_struct *dev);
1125 #endif
1126 int (*ndo_set_vf_mac)(struct net_device *dev,
1127 int queue, u8 *mac);
1128 int (*ndo_set_vf_vlan)(struct net_device *dev,
1129 int queue, u16 vlan, u8 qos);
1130 int (*ndo_set_vf_rate)(struct net_device *dev,
1131 int vf, int min_tx_rate,
1132 int max_tx_rate);
1133 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1134 int vf, bool setting);
1135 int (*ndo_set_vf_trust)(struct net_device *dev,
1136 int vf, bool setting);
1137 int (*ndo_get_vf_config)(struct net_device *dev,
1138 int vf,
1139 struct ifla_vf_info *ivf);
1140 int (*ndo_set_vf_link_state)(struct net_device *dev,
1141 int vf, int link_state);
1142 int (*ndo_get_vf_stats)(struct net_device *dev,
1143 int vf,
1144 struct ifla_vf_stats
1145 *vf_stats);
1146 int (*ndo_set_vf_port)(struct net_device *dev,
1147 int vf,
1148 struct nlattr *port[]);
1149 int (*ndo_get_vf_port)(struct net_device *dev,
1150 int vf, struct sk_buff *skb);
1151 int (*ndo_set_vf_rss_query_en)(
1152 struct net_device *dev,
1153 int vf, bool setting);
1154 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1155 #if IS_ENABLED(CONFIG_FCOE)
1156 int (*ndo_fcoe_enable)(struct net_device *dev);
1157 int (*ndo_fcoe_disable)(struct net_device *dev);
1158 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1159 u16 xid,
1160 struct scatterlist *sgl,
1161 unsigned int sgc);
1162 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1163 u16 xid);
1164 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1165 u16 xid,
1166 struct scatterlist *sgl,
1167 unsigned int sgc);
1168 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1169 struct netdev_fcoe_hbainfo *hbainfo);
1170 #endif
1171
1172 #if IS_ENABLED(CONFIG_LIBFCOE)
1173 #define NETDEV_FCOE_WWNN 0
1174 #define NETDEV_FCOE_WWPN 1
1175 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1176 u64 *wwn, int type);
1177 #endif
1178
1179 #ifdef CONFIG_RFS_ACCEL
1180 int (*ndo_rx_flow_steer)(struct net_device *dev,
1181 const struct sk_buff *skb,
1182 u16 rxq_index,
1183 u32 flow_id);
1184 #endif
1185 int (*ndo_add_slave)(struct net_device *dev,
1186 struct net_device *slave_dev);
1187 int (*ndo_del_slave)(struct net_device *dev,
1188 struct net_device *slave_dev);
1189 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1190 netdev_features_t features);
1191 int (*ndo_set_features)(struct net_device *dev,
1192 netdev_features_t features);
1193 int (*ndo_neigh_construct)(struct neighbour *n);
1194 void (*ndo_neigh_destroy)(struct neighbour *n);
1195
1196 int (*ndo_fdb_add)(struct ndmsg *ndm,
1197 struct nlattr *tb[],
1198 struct net_device *dev,
1199 const unsigned char *addr,
1200 u16 vid,
1201 u16 flags);
1202 int (*ndo_fdb_del)(struct ndmsg *ndm,
1203 struct nlattr *tb[],
1204 struct net_device *dev,
1205 const unsigned char *addr,
1206 u16 vid);
1207 int (*ndo_fdb_dump)(struct sk_buff *skb,
1208 struct netlink_callback *cb,
1209 struct net_device *dev,
1210 struct net_device *filter_dev,
1211 int idx);
1212
1213 int (*ndo_bridge_setlink)(struct net_device *dev,
1214 struct nlmsghdr *nlh,
1215 u16 flags);
1216 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1217 u32 pid, u32 seq,
1218 struct net_device *dev,
1219 u32 filter_mask,
1220 int nlflags);
1221 int (*ndo_bridge_dellink)(struct net_device *dev,
1222 struct nlmsghdr *nlh,
1223 u16 flags);
1224 int (*ndo_change_carrier)(struct net_device *dev,
1225 bool new_carrier);
1226 int (*ndo_get_phys_port_id)(struct net_device *dev,
1227 struct netdev_phys_item_id *ppid);
1228 int (*ndo_get_phys_port_name)(struct net_device *dev,
1229 char *name, size_t len);
1230 void (*ndo_add_vxlan_port)(struct net_device *dev,
1231 sa_family_t sa_family,
1232 __be16 port);
1233 void (*ndo_del_vxlan_port)(struct net_device *dev,
1234 sa_family_t sa_family,
1235 __be16 port);
1236 void (*ndo_add_geneve_port)(struct net_device *dev,
1237 sa_family_t sa_family,
1238 __be16 port);
1239 void (*ndo_del_geneve_port)(struct net_device *dev,
1240 sa_family_t sa_family,
1241 __be16 port);
1242 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1243 struct net_device *dev);
1244 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1245 void *priv);
1246
1247 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1248 struct net_device *dev,
1249 void *priv);
1250 int (*ndo_get_lock_subclass)(struct net_device *dev);
1251 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1252 int queue_index,
1253 u32 maxrate);
1254 int (*ndo_get_iflink)(const struct net_device *dev);
1255 int (*ndo_change_proto_down)(struct net_device *dev,
1256 bool proto_down);
1257 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1258 struct sk_buff *skb);
1259 };
1260
1261 /**
1262 * enum net_device_priv_flags - &struct net_device priv_flags
1263 *
1264 * These are the &struct net_device, they are only set internally
1265 * by drivers and used in the kernel. These flags are invisible to
1266 * userspace, this means that the order of these flags can change
1267 * during any kernel release.
1268 *
1269 * You should have a pretty good reason to be extending these flags.
1270 *
1271 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1272 * @IFF_EBRIDGE: Ethernet bridging device
1273 * @IFF_BONDING: bonding master or slave
1274 * @IFF_ISATAP: ISATAP interface (RFC4214)
1275 * @IFF_WAN_HDLC: WAN HDLC device
1276 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1277 * release skb->dst
1278 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1279 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1280 * @IFF_MACVLAN_PORT: device used as macvlan port
1281 * @IFF_BRIDGE_PORT: device used as bridge port
1282 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1283 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1284 * @IFF_UNICAST_FLT: Supports unicast filtering
1285 * @IFF_TEAM_PORT: device used as team port
1286 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1287 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1288 * change when it's running
1289 * @IFF_MACVLAN: Macvlan device
1290 * @IFF_L3MDEV_MASTER: device is an L3 master device
1291 * @IFF_NO_QUEUE: device can run without qdisc attached
1292 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1293 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1294 * @IFF_TEAM: device is a team device
1295 */
1296 enum netdev_priv_flags {
1297 IFF_802_1Q_VLAN = 1<<0,
1298 IFF_EBRIDGE = 1<<1,
1299 IFF_BONDING = 1<<2,
1300 IFF_ISATAP = 1<<3,
1301 IFF_WAN_HDLC = 1<<4,
1302 IFF_XMIT_DST_RELEASE = 1<<5,
1303 IFF_DONT_BRIDGE = 1<<6,
1304 IFF_DISABLE_NETPOLL = 1<<7,
1305 IFF_MACVLAN_PORT = 1<<8,
1306 IFF_BRIDGE_PORT = 1<<9,
1307 IFF_OVS_DATAPATH = 1<<10,
1308 IFF_TX_SKB_SHARING = 1<<11,
1309 IFF_UNICAST_FLT = 1<<12,
1310 IFF_TEAM_PORT = 1<<13,
1311 IFF_SUPP_NOFCS = 1<<14,
1312 IFF_LIVE_ADDR_CHANGE = 1<<15,
1313 IFF_MACVLAN = 1<<16,
1314 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1315 IFF_IPVLAN_MASTER = 1<<18,
1316 IFF_IPVLAN_SLAVE = 1<<19,
1317 IFF_L3MDEV_MASTER = 1<<20,
1318 IFF_NO_QUEUE = 1<<21,
1319 IFF_OPENVSWITCH = 1<<22,
1320 IFF_L3MDEV_SLAVE = 1<<23,
1321 IFF_TEAM = 1<<24,
1322 };
1323
1324 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1325 #define IFF_EBRIDGE IFF_EBRIDGE
1326 #define IFF_BONDING IFF_BONDING
1327 #define IFF_ISATAP IFF_ISATAP
1328 #define IFF_WAN_HDLC IFF_WAN_HDLC
1329 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1330 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1331 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1332 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1333 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1334 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1335 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1336 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1337 #define IFF_TEAM_PORT IFF_TEAM_PORT
1338 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1339 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1340 #define IFF_MACVLAN IFF_MACVLAN
1341 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1342 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER
1343 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE
1344 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1345 #define IFF_NO_QUEUE IFF_NO_QUEUE
1346 #define IFF_OPENVSWITCH IFF_OPENVSWITCH
1347 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1348 #define IFF_TEAM IFF_TEAM
1349
1350 /**
1351 * struct net_device - The DEVICE structure.
1352 * Actually, this whole structure is a big mistake. It mixes I/O
1353 * data with strictly "high-level" data, and it has to know about
1354 * almost every data structure used in the INET module.
1355 *
1356 * @name: This is the first field of the "visible" part of this structure
1357 * (i.e. as seen by users in the "Space.c" file). It is the name
1358 * of the interface.
1359 *
1360 * @name_hlist: Device name hash chain, please keep it close to name[]
1361 * @ifalias: SNMP alias
1362 * @mem_end: Shared memory end
1363 * @mem_start: Shared memory start
1364 * @base_addr: Device I/O address
1365 * @irq: Device IRQ number
1366 *
1367 * @carrier_changes: Stats to monitor carrier on<->off transitions
1368 *
1369 * @state: Generic network queuing layer state, see netdev_state_t
1370 * @dev_list: The global list of network devices
1371 * @napi_list: List entry, that is used for polling napi devices
1372 * @unreg_list: List entry, that is used, when we are unregistering the
1373 * device, see the function unregister_netdev
1374 * @close_list: List entry, that is used, when we are closing the device
1375 *
1376 * @adj_list: Directly linked devices, like slaves for bonding
1377 * @all_adj_list: All linked devices, *including* neighbours
1378 * @features: Currently active device features
1379 * @hw_features: User-changeable features
1380 *
1381 * @wanted_features: User-requested features
1382 * @vlan_features: Mask of features inheritable by VLAN devices
1383 *
1384 * @hw_enc_features: Mask of features inherited by encapsulating devices
1385 * This field indicates what encapsulation
1386 * offloads the hardware is capable of doing,
1387 * and drivers will need to set them appropriately.
1388 *
1389 * @mpls_features: Mask of features inheritable by MPLS
1390 *
1391 * @ifindex: interface index
1392 * @group: The group, that the device belongs to
1393 *
1394 * @stats: Statistics struct, which was left as a legacy, use
1395 * rtnl_link_stats64 instead
1396 *
1397 * @rx_dropped: Dropped packets by core network,
1398 * do not use this in drivers
1399 * @tx_dropped: Dropped packets by core network,
1400 * do not use this in drivers
1401 *
1402 * @wireless_handlers: List of functions to handle Wireless Extensions,
1403 * instead of ioctl,
1404 * see <net/iw_handler.h> for details.
1405 * @wireless_data: Instance data managed by the core of wireless extensions
1406 *
1407 * @netdev_ops: Includes several pointers to callbacks,
1408 * if one wants to override the ndo_*() functions
1409 * @ethtool_ops: Management operations
1410 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1411 * of Layer 2 headers.
1412 *
1413 * @flags: Interface flags (a la BSD)
1414 * @priv_flags: Like 'flags' but invisible to userspace,
1415 * see if.h for the definitions
1416 * @gflags: Global flags ( kept as legacy )
1417 * @padded: How much padding added by alloc_netdev()
1418 * @operstate: RFC2863 operstate
1419 * @link_mode: Mapping policy to operstate
1420 * @if_port: Selectable AUI, TP, ...
1421 * @dma: DMA channel
1422 * @mtu: Interface MTU value
1423 * @type: Interface hardware type
1424 * @hard_header_len: Hardware header length, which means that this is the
1425 * minimum size of a packet.
1426 *
1427 * @needed_headroom: Extra headroom the hardware may need, but not in all
1428 * cases can this be guaranteed
1429 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1430 * cases can this be guaranteed. Some cases also use
1431 * LL_MAX_HEADER instead to allocate the skb
1432 *
1433 * interface address info:
1434 *
1435 * @perm_addr: Permanent hw address
1436 * @addr_assign_type: Hw address assignment type
1437 * @addr_len: Hardware address length
1438 * @neigh_priv_len; Used in neigh_alloc(),
1439 * initialized only in atm/clip.c
1440 * @dev_id: Used to differentiate devices that share
1441 * the same link layer address
1442 * @dev_port: Used to differentiate devices that share
1443 * the same function
1444 * @addr_list_lock: XXX: need comments on this one
1445 * @uc_promisc: Counter, that indicates, that promiscuous mode
1446 * has been enabled due to the need to listen to
1447 * additional unicast addresses in a device that
1448 * does not implement ndo_set_rx_mode()
1449 * @uc: unicast mac addresses
1450 * @mc: multicast mac addresses
1451 * @dev_addrs: list of device hw addresses
1452 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1453 * @promiscuity: Number of times, the NIC is told to work in
1454 * Promiscuous mode, if it becomes 0 the NIC will
1455 * exit from working in Promiscuous mode
1456 * @allmulti: Counter, enables or disables allmulticast mode
1457 *
1458 * @vlan_info: VLAN info
1459 * @dsa_ptr: dsa specific data
1460 * @tipc_ptr: TIPC specific data
1461 * @atalk_ptr: AppleTalk link
1462 * @ip_ptr: IPv4 specific data
1463 * @dn_ptr: DECnet specific data
1464 * @ip6_ptr: IPv6 specific data
1465 * @ax25_ptr: AX.25 specific data
1466 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1467 *
1468 * @last_rx: Time of last Rx
1469 * @dev_addr: Hw address (before bcast,
1470 * because most packets are unicast)
1471 *
1472 * @_rx: Array of RX queues
1473 * @num_rx_queues: Number of RX queues
1474 * allocated at register_netdev() time
1475 * @real_num_rx_queues: Number of RX queues currently active in device
1476 *
1477 * @rx_handler: handler for received packets
1478 * @rx_handler_data: XXX: need comments on this one
1479 * @ingress_queue: XXX: need comments on this one
1480 * @broadcast: hw bcast address
1481 *
1482 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1483 * indexed by RX queue number. Assigned by driver.
1484 * This must only be set if the ndo_rx_flow_steer
1485 * operation is defined
1486 * @index_hlist: Device index hash chain
1487 *
1488 * @_tx: Array of TX queues
1489 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1490 * @real_num_tx_queues: Number of TX queues currently active in device
1491 * @qdisc: Root qdisc from userspace point of view
1492 * @tx_queue_len: Max frames per queue allowed
1493 * @tx_global_lock: XXX: need comments on this one
1494 *
1495 * @xps_maps: XXX: need comments on this one
1496 *
1497 * @offload_fwd_mark: Offload device fwding mark
1498 *
1499 * @trans_start: Time (in jiffies) of last Tx
1500 * @watchdog_timeo: Represents the timeout that is used by
1501 * the watchdog ( see dev_watchdog() )
1502 * @watchdog_timer: List of timers
1503 *
1504 * @pcpu_refcnt: Number of references to this device
1505 * @todo_list: Delayed register/unregister
1506 * @link_watch_list: XXX: need comments on this one
1507 *
1508 * @reg_state: Register/unregister state machine
1509 * @dismantle: Device is going to be freed
1510 * @rtnl_link_state: This enum represents the phases of creating
1511 * a new link
1512 *
1513 * @destructor: Called from unregister,
1514 * can be used to call free_netdev
1515 * @npinfo: XXX: need comments on this one
1516 * @nd_net: Network namespace this network device is inside
1517 *
1518 * @ml_priv: Mid-layer private
1519 * @lstats: Loopback statistics
1520 * @tstats: Tunnel statistics
1521 * @dstats: Dummy statistics
1522 * @vstats: Virtual ethernet statistics
1523 *
1524 * @garp_port: GARP
1525 * @mrp_port: MRP
1526 *
1527 * @dev: Class/net/name entry
1528 * @sysfs_groups: Space for optional device, statistics and wireless
1529 * sysfs groups
1530 *
1531 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1532 * @rtnl_link_ops: Rtnl_link_ops
1533 *
1534 * @gso_max_size: Maximum size of generic segmentation offload
1535 * @gso_max_segs: Maximum number of segments that can be passed to the
1536 * NIC for GSO
1537 * @gso_min_segs: Minimum number of segments that can be passed to the
1538 * NIC for GSO
1539 *
1540 * @dcbnl_ops: Data Center Bridging netlink ops
1541 * @num_tc: Number of traffic classes in the net device
1542 * @tc_to_txq: XXX: need comments on this one
1543 * @prio_tc_map XXX: need comments on this one
1544 *
1545 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1546 *
1547 * @priomap: XXX: need comments on this one
1548 * @phydev: Physical device may attach itself
1549 * for hardware timestamping
1550 *
1551 * @qdisc_tx_busylock: XXX: need comments on this one
1552 *
1553 * @proto_down: protocol port state information can be sent to the
1554 * switch driver and used to set the phys state of the
1555 * switch port.
1556 *
1557 * FIXME: cleanup struct net_device such that network protocol info
1558 * moves out.
1559 */
1560
1561 struct net_device {
1562 char name[IFNAMSIZ];
1563 struct hlist_node name_hlist;
1564 char *ifalias;
1565 /*
1566 * I/O specific fields
1567 * FIXME: Merge these and struct ifmap into one
1568 */
1569 unsigned long mem_end;
1570 unsigned long mem_start;
1571 unsigned long base_addr;
1572 int irq;
1573
1574 atomic_t carrier_changes;
1575
1576 /*
1577 * Some hardware also needs these fields (state,dev_list,
1578 * napi_list,unreg_list,close_list) but they are not
1579 * part of the usual set specified in Space.c.
1580 */
1581
1582 unsigned long state;
1583
1584 struct list_head dev_list;
1585 struct list_head napi_list;
1586 struct list_head unreg_list;
1587 struct list_head close_list;
1588 struct list_head ptype_all;
1589 struct list_head ptype_specific;
1590
1591 struct {
1592 struct list_head upper;
1593 struct list_head lower;
1594 } adj_list;
1595
1596 struct {
1597 struct list_head upper;
1598 struct list_head lower;
1599 } all_adj_list;
1600
1601 netdev_features_t features;
1602 netdev_features_t hw_features;
1603 netdev_features_t wanted_features;
1604 netdev_features_t vlan_features;
1605 netdev_features_t hw_enc_features;
1606 netdev_features_t mpls_features;
1607
1608 int ifindex;
1609 int group;
1610
1611 struct net_device_stats stats;
1612
1613 atomic_long_t rx_dropped;
1614 atomic_long_t tx_dropped;
1615
1616 #ifdef CONFIG_WIRELESS_EXT
1617 const struct iw_handler_def * wireless_handlers;
1618 struct iw_public_data * wireless_data;
1619 #endif
1620 const struct net_device_ops *netdev_ops;
1621 const struct ethtool_ops *ethtool_ops;
1622 #ifdef CONFIG_NET_SWITCHDEV
1623 const struct switchdev_ops *switchdev_ops;
1624 #endif
1625 #ifdef CONFIG_NET_L3_MASTER_DEV
1626 const struct l3mdev_ops *l3mdev_ops;
1627 #endif
1628
1629 const struct header_ops *header_ops;
1630
1631 unsigned int flags;
1632 unsigned int priv_flags;
1633
1634 unsigned short gflags;
1635 unsigned short padded;
1636
1637 unsigned char operstate;
1638 unsigned char link_mode;
1639
1640 unsigned char if_port;
1641 unsigned char dma;
1642
1643 unsigned int mtu;
1644 unsigned short type;
1645 unsigned short hard_header_len;
1646
1647 unsigned short needed_headroom;
1648 unsigned short needed_tailroom;
1649
1650 /* Interface address info. */
1651 unsigned char perm_addr[MAX_ADDR_LEN];
1652 unsigned char addr_assign_type;
1653 unsigned char addr_len;
1654 unsigned short neigh_priv_len;
1655 unsigned short dev_id;
1656 unsigned short dev_port;
1657 spinlock_t addr_list_lock;
1658 unsigned char name_assign_type;
1659 bool uc_promisc;
1660 struct netdev_hw_addr_list uc;
1661 struct netdev_hw_addr_list mc;
1662 struct netdev_hw_addr_list dev_addrs;
1663
1664 #ifdef CONFIG_SYSFS
1665 struct kset *queues_kset;
1666 #endif
1667 unsigned int promiscuity;
1668 unsigned int allmulti;
1669
1670
1671 /* Protocol specific pointers */
1672
1673 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1674 struct vlan_info __rcu *vlan_info;
1675 #endif
1676 #if IS_ENABLED(CONFIG_NET_DSA)
1677 struct dsa_switch_tree *dsa_ptr;
1678 #endif
1679 #if IS_ENABLED(CONFIG_TIPC)
1680 struct tipc_bearer __rcu *tipc_ptr;
1681 #endif
1682 void *atalk_ptr;
1683 struct in_device __rcu *ip_ptr;
1684 struct dn_dev __rcu *dn_ptr;
1685 struct inet6_dev __rcu *ip6_ptr;
1686 void *ax25_ptr;
1687 struct wireless_dev *ieee80211_ptr;
1688 struct wpan_dev *ieee802154_ptr;
1689 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1690 struct mpls_dev __rcu *mpls_ptr;
1691 #endif
1692
1693 /*
1694 * Cache lines mostly used on receive path (including eth_type_trans())
1695 */
1696 unsigned long last_rx;
1697
1698 /* Interface address info used in eth_type_trans() */
1699 unsigned char *dev_addr;
1700
1701
1702 #ifdef CONFIG_SYSFS
1703 struct netdev_rx_queue *_rx;
1704
1705 unsigned int num_rx_queues;
1706 unsigned int real_num_rx_queues;
1707
1708 #endif
1709
1710 unsigned long gro_flush_timeout;
1711 rx_handler_func_t __rcu *rx_handler;
1712 void __rcu *rx_handler_data;
1713
1714 #ifdef CONFIG_NET_CLS_ACT
1715 struct tcf_proto __rcu *ingress_cl_list;
1716 #endif
1717 struct netdev_queue __rcu *ingress_queue;
1718 #ifdef CONFIG_NETFILTER_INGRESS
1719 struct list_head nf_hooks_ingress;
1720 #endif
1721
1722 unsigned char broadcast[MAX_ADDR_LEN];
1723 #ifdef CONFIG_RFS_ACCEL
1724 struct cpu_rmap *rx_cpu_rmap;
1725 #endif
1726 struct hlist_node index_hlist;
1727
1728 /*
1729 * Cache lines mostly used on transmit path
1730 */
1731 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1732 unsigned int num_tx_queues;
1733 unsigned int real_num_tx_queues;
1734 struct Qdisc *qdisc;
1735 unsigned long tx_queue_len;
1736 spinlock_t tx_global_lock;
1737 int watchdog_timeo;
1738
1739 #ifdef CONFIG_XPS
1740 struct xps_dev_maps __rcu *xps_maps;
1741 #endif
1742 #ifdef CONFIG_NET_CLS_ACT
1743 struct tcf_proto __rcu *egress_cl_list;
1744 #endif
1745 #ifdef CONFIG_NET_SWITCHDEV
1746 u32 offload_fwd_mark;
1747 #endif
1748
1749 /* These may be needed for future network-power-down code. */
1750
1751 /*
1752 * trans_start here is expensive for high speed devices on SMP,
1753 * please use netdev_queue->trans_start instead.
1754 */
1755 unsigned long trans_start;
1756
1757 struct timer_list watchdog_timer;
1758
1759 int __percpu *pcpu_refcnt;
1760 struct list_head todo_list;
1761
1762 struct list_head link_watch_list;
1763
1764 enum { NETREG_UNINITIALIZED=0,
1765 NETREG_REGISTERED, /* completed register_netdevice */
1766 NETREG_UNREGISTERING, /* called unregister_netdevice */
1767 NETREG_UNREGISTERED, /* completed unregister todo */
1768 NETREG_RELEASED, /* called free_netdev */
1769 NETREG_DUMMY, /* dummy device for NAPI poll */
1770 } reg_state:8;
1771
1772 bool dismantle;
1773
1774 enum {
1775 RTNL_LINK_INITIALIZED,
1776 RTNL_LINK_INITIALIZING,
1777 } rtnl_link_state:16;
1778
1779 void (*destructor)(struct net_device *dev);
1780
1781 #ifdef CONFIG_NETPOLL
1782 struct netpoll_info __rcu *npinfo;
1783 #endif
1784
1785 possible_net_t nd_net;
1786
1787 /* mid-layer private */
1788 union {
1789 void *ml_priv;
1790 struct pcpu_lstats __percpu *lstats;
1791 struct pcpu_sw_netstats __percpu *tstats;
1792 struct pcpu_dstats __percpu *dstats;
1793 struct pcpu_vstats __percpu *vstats;
1794 };
1795
1796 struct garp_port __rcu *garp_port;
1797 struct mrp_port __rcu *mrp_port;
1798
1799 struct device dev;
1800 const struct attribute_group *sysfs_groups[4];
1801 const struct attribute_group *sysfs_rx_queue_group;
1802
1803 const struct rtnl_link_ops *rtnl_link_ops;
1804
1805 /* for setting kernel sock attribute on TCP connection setup */
1806 #define GSO_MAX_SIZE 65536
1807 unsigned int gso_max_size;
1808 #define GSO_MAX_SEGS 65535
1809 u16 gso_max_segs;
1810 u16 gso_min_segs;
1811 #ifdef CONFIG_DCB
1812 const struct dcbnl_rtnl_ops *dcbnl_ops;
1813 #endif
1814 u8 num_tc;
1815 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1816 u8 prio_tc_map[TC_BITMASK + 1];
1817
1818 #if IS_ENABLED(CONFIG_FCOE)
1819 unsigned int fcoe_ddp_xid;
1820 #endif
1821 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1822 struct netprio_map __rcu *priomap;
1823 #endif
1824 struct phy_device *phydev;
1825 struct lock_class_key *qdisc_tx_busylock;
1826 bool proto_down;
1827 };
1828 #define to_net_dev(d) container_of(d, struct net_device, dev)
1829
1830 #define NETDEV_ALIGN 32
1831
1832 static inline
1833 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1834 {
1835 return dev->prio_tc_map[prio & TC_BITMASK];
1836 }
1837
1838 static inline
1839 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1840 {
1841 if (tc >= dev->num_tc)
1842 return -EINVAL;
1843
1844 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1845 return 0;
1846 }
1847
1848 static inline
1849 void netdev_reset_tc(struct net_device *dev)
1850 {
1851 dev->num_tc = 0;
1852 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1853 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1854 }
1855
1856 static inline
1857 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1858 {
1859 if (tc >= dev->num_tc)
1860 return -EINVAL;
1861
1862 dev->tc_to_txq[tc].count = count;
1863 dev->tc_to_txq[tc].offset = offset;
1864 return 0;
1865 }
1866
1867 static inline
1868 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1869 {
1870 if (num_tc > TC_MAX_QUEUE)
1871 return -EINVAL;
1872
1873 dev->num_tc = num_tc;
1874 return 0;
1875 }
1876
1877 static inline
1878 int netdev_get_num_tc(struct net_device *dev)
1879 {
1880 return dev->num_tc;
1881 }
1882
1883 static inline
1884 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1885 unsigned int index)
1886 {
1887 return &dev->_tx[index];
1888 }
1889
1890 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1891 const struct sk_buff *skb)
1892 {
1893 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1894 }
1895
1896 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1897 void (*f)(struct net_device *,
1898 struct netdev_queue *,
1899 void *),
1900 void *arg)
1901 {
1902 unsigned int i;
1903
1904 for (i = 0; i < dev->num_tx_queues; i++)
1905 f(dev, &dev->_tx[i], arg);
1906 }
1907
1908 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1909 struct sk_buff *skb,
1910 void *accel_priv);
1911
1912 /*
1913 * Net namespace inlines
1914 */
1915 static inline
1916 struct net *dev_net(const struct net_device *dev)
1917 {
1918 return read_pnet(&dev->nd_net);
1919 }
1920
1921 static inline
1922 void dev_net_set(struct net_device *dev, struct net *net)
1923 {
1924 write_pnet(&dev->nd_net, net);
1925 }
1926
1927 static inline bool netdev_uses_dsa(struct net_device *dev)
1928 {
1929 #if IS_ENABLED(CONFIG_NET_DSA)
1930 if (dev->dsa_ptr != NULL)
1931 return dsa_uses_tagged_protocol(dev->dsa_ptr);
1932 #endif
1933 return false;
1934 }
1935
1936 /**
1937 * netdev_priv - access network device private data
1938 * @dev: network device
1939 *
1940 * Get network device private data
1941 */
1942 static inline void *netdev_priv(const struct net_device *dev)
1943 {
1944 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1945 }
1946
1947 /* Set the sysfs physical device reference for the network logical device
1948 * if set prior to registration will cause a symlink during initialization.
1949 */
1950 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1951
1952 /* Set the sysfs device type for the network logical device to allow
1953 * fine-grained identification of different network device types. For
1954 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1955 */
1956 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1957
1958 /* Default NAPI poll() weight
1959 * Device drivers are strongly advised to not use bigger value
1960 */
1961 #define NAPI_POLL_WEIGHT 64
1962
1963 /**
1964 * netif_napi_add - initialize a napi context
1965 * @dev: network device
1966 * @napi: napi context
1967 * @poll: polling function
1968 * @weight: default weight
1969 *
1970 * netif_napi_add() must be used to initialize a napi context prior to calling
1971 * *any* of the other napi related functions.
1972 */
1973 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1974 int (*poll)(struct napi_struct *, int), int weight);
1975
1976 /**
1977 * netif_tx_napi_add - initialize a napi context
1978 * @dev: network device
1979 * @napi: napi context
1980 * @poll: polling function
1981 * @weight: default weight
1982 *
1983 * This variant of netif_napi_add() should be used from drivers using NAPI
1984 * to exclusively poll a TX queue.
1985 * This will avoid we add it into napi_hash[], thus polluting this hash table.
1986 */
1987 static inline void netif_tx_napi_add(struct net_device *dev,
1988 struct napi_struct *napi,
1989 int (*poll)(struct napi_struct *, int),
1990 int weight)
1991 {
1992 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
1993 netif_napi_add(dev, napi, poll, weight);
1994 }
1995
1996 /**
1997 * netif_napi_del - remove a napi context
1998 * @napi: napi context
1999 *
2000 * netif_napi_del() removes a napi context from the network device napi list
2001 */
2002 void netif_napi_del(struct napi_struct *napi);
2003
2004 struct napi_gro_cb {
2005 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2006 void *frag0;
2007
2008 /* Length of frag0. */
2009 unsigned int frag0_len;
2010
2011 /* This indicates where we are processing relative to skb->data. */
2012 int data_offset;
2013
2014 /* This is non-zero if the packet cannot be merged with the new skb. */
2015 u16 flush;
2016
2017 /* Save the IP ID here and check when we get to the transport layer */
2018 u16 flush_id;
2019
2020 /* Number of segments aggregated. */
2021 u16 count;
2022
2023 /* Start offset for remote checksum offload */
2024 u16 gro_remcsum_start;
2025
2026 /* jiffies when first packet was created/queued */
2027 unsigned long age;
2028
2029 /* Used in ipv6_gro_receive() and foo-over-udp */
2030 u16 proto;
2031
2032 /* This is non-zero if the packet may be of the same flow. */
2033 u8 same_flow:1;
2034
2035 /* Used in udp_gro_receive */
2036 u8 udp_mark:1;
2037
2038 /* GRO checksum is valid */
2039 u8 csum_valid:1;
2040
2041 /* Number of checksums via CHECKSUM_UNNECESSARY */
2042 u8 csum_cnt:3;
2043
2044 /* Free the skb? */
2045 u8 free:2;
2046 #define NAPI_GRO_FREE 1
2047 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2048
2049 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2050 u8 is_ipv6:1;
2051
2052 /* 7 bit hole */
2053
2054 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2055 __wsum csum;
2056
2057 /* used in skb_gro_receive() slow path */
2058 struct sk_buff *last;
2059 };
2060
2061 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2062
2063 struct packet_type {
2064 __be16 type; /* This is really htons(ether_type). */
2065 struct net_device *dev; /* NULL is wildcarded here */
2066 int (*func) (struct sk_buff *,
2067 struct net_device *,
2068 struct packet_type *,
2069 struct net_device *);
2070 bool (*id_match)(struct packet_type *ptype,
2071 struct sock *sk);
2072 void *af_packet_priv;
2073 struct list_head list;
2074 };
2075
2076 struct offload_callbacks {
2077 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2078 netdev_features_t features);
2079 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2080 struct sk_buff *skb);
2081 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2082 };
2083
2084 struct packet_offload {
2085 __be16 type; /* This is really htons(ether_type). */
2086 u16 priority;
2087 struct offload_callbacks callbacks;
2088 struct list_head list;
2089 };
2090
2091 struct udp_offload;
2092
2093 struct udp_offload_callbacks {
2094 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2095 struct sk_buff *skb,
2096 struct udp_offload *uoff);
2097 int (*gro_complete)(struct sk_buff *skb,
2098 int nhoff,
2099 struct udp_offload *uoff);
2100 };
2101
2102 struct udp_offload {
2103 __be16 port;
2104 u8 ipproto;
2105 struct udp_offload_callbacks callbacks;
2106 };
2107
2108 /* often modified stats are per cpu, other are shared (netdev->stats) */
2109 struct pcpu_sw_netstats {
2110 u64 rx_packets;
2111 u64 rx_bytes;
2112 u64 tx_packets;
2113 u64 tx_bytes;
2114 struct u64_stats_sync syncp;
2115 };
2116
2117 #define __netdev_alloc_pcpu_stats(type, gfp) \
2118 ({ \
2119 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2120 if (pcpu_stats) { \
2121 int __cpu; \
2122 for_each_possible_cpu(__cpu) { \
2123 typeof(type) *stat; \
2124 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2125 u64_stats_init(&stat->syncp); \
2126 } \
2127 } \
2128 pcpu_stats; \
2129 })
2130
2131 #define netdev_alloc_pcpu_stats(type) \
2132 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2133
2134 enum netdev_lag_tx_type {
2135 NETDEV_LAG_TX_TYPE_UNKNOWN,
2136 NETDEV_LAG_TX_TYPE_RANDOM,
2137 NETDEV_LAG_TX_TYPE_BROADCAST,
2138 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2139 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2140 NETDEV_LAG_TX_TYPE_HASH,
2141 };
2142
2143 struct netdev_lag_upper_info {
2144 enum netdev_lag_tx_type tx_type;
2145 };
2146
2147 struct netdev_lag_lower_state_info {
2148 u8 link_up : 1,
2149 tx_enabled : 1;
2150 };
2151
2152 #include <linux/notifier.h>
2153
2154 /* netdevice notifier chain. Please remember to update the rtnetlink
2155 * notification exclusion list in rtnetlink_event() when adding new
2156 * types.
2157 */
2158 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
2159 #define NETDEV_DOWN 0x0002
2160 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
2161 detected a hardware crash and restarted
2162 - we can use this eg to kick tcp sessions
2163 once done */
2164 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
2165 #define NETDEV_REGISTER 0x0005
2166 #define NETDEV_UNREGISTER 0x0006
2167 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
2168 #define NETDEV_CHANGEADDR 0x0008
2169 #define NETDEV_GOING_DOWN 0x0009
2170 #define NETDEV_CHANGENAME 0x000A
2171 #define NETDEV_FEAT_CHANGE 0x000B
2172 #define NETDEV_BONDING_FAILOVER 0x000C
2173 #define NETDEV_PRE_UP 0x000D
2174 #define NETDEV_PRE_TYPE_CHANGE 0x000E
2175 #define NETDEV_POST_TYPE_CHANGE 0x000F
2176 #define NETDEV_POST_INIT 0x0010
2177 #define NETDEV_UNREGISTER_FINAL 0x0011
2178 #define NETDEV_RELEASE 0x0012
2179 #define NETDEV_NOTIFY_PEERS 0x0013
2180 #define NETDEV_JOIN 0x0014
2181 #define NETDEV_CHANGEUPPER 0x0015
2182 #define NETDEV_RESEND_IGMP 0x0016
2183 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
2184 #define NETDEV_CHANGEINFODATA 0x0018
2185 #define NETDEV_BONDING_INFO 0x0019
2186 #define NETDEV_PRECHANGEUPPER 0x001A
2187 #define NETDEV_CHANGELOWERSTATE 0x001B
2188
2189 int register_netdevice_notifier(struct notifier_block *nb);
2190 int unregister_netdevice_notifier(struct notifier_block *nb);
2191
2192 struct netdev_notifier_info {
2193 struct net_device *dev;
2194 };
2195
2196 struct netdev_notifier_change_info {
2197 struct netdev_notifier_info info; /* must be first */
2198 unsigned int flags_changed;
2199 };
2200
2201 struct netdev_notifier_changeupper_info {
2202 struct netdev_notifier_info info; /* must be first */
2203 struct net_device *upper_dev; /* new upper dev */
2204 bool master; /* is upper dev master */
2205 bool linking; /* is the nofication for link or unlink */
2206 void *upper_info; /* upper dev info */
2207 };
2208
2209 struct netdev_notifier_changelowerstate_info {
2210 struct netdev_notifier_info info; /* must be first */
2211 void *lower_state_info; /* is lower dev state */
2212 };
2213
2214 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2215 struct net_device *dev)
2216 {
2217 info->dev = dev;
2218 }
2219
2220 static inline struct net_device *
2221 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2222 {
2223 return info->dev;
2224 }
2225
2226 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2227
2228
2229 extern rwlock_t dev_base_lock; /* Device list lock */
2230
2231 #define for_each_netdev(net, d) \
2232 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2233 #define for_each_netdev_reverse(net, d) \
2234 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2235 #define for_each_netdev_rcu(net, d) \
2236 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2237 #define for_each_netdev_safe(net, d, n) \
2238 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2239 #define for_each_netdev_continue(net, d) \
2240 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2241 #define for_each_netdev_continue_rcu(net, d) \
2242 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2243 #define for_each_netdev_in_bond_rcu(bond, slave) \
2244 for_each_netdev_rcu(&init_net, slave) \
2245 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2246 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2247
2248 static inline struct net_device *next_net_device(struct net_device *dev)
2249 {
2250 struct list_head *lh;
2251 struct net *net;
2252
2253 net = dev_net(dev);
2254 lh = dev->dev_list.next;
2255 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2256 }
2257
2258 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2259 {
2260 struct list_head *lh;
2261 struct net *net;
2262
2263 net = dev_net(dev);
2264 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2265 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2266 }
2267
2268 static inline struct net_device *first_net_device(struct net *net)
2269 {
2270 return list_empty(&net->dev_base_head) ? NULL :
2271 net_device_entry(net->dev_base_head.next);
2272 }
2273
2274 static inline struct net_device *first_net_device_rcu(struct net *net)
2275 {
2276 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2277
2278 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2279 }
2280
2281 int netdev_boot_setup_check(struct net_device *dev);
2282 unsigned long netdev_boot_base(const char *prefix, int unit);
2283 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2284 const char *hwaddr);
2285 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2286 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2287 void dev_add_pack(struct packet_type *pt);
2288 void dev_remove_pack(struct packet_type *pt);
2289 void __dev_remove_pack(struct packet_type *pt);
2290 void dev_add_offload(struct packet_offload *po);
2291 void dev_remove_offload(struct packet_offload *po);
2292
2293 int dev_get_iflink(const struct net_device *dev);
2294 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2295 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2296 unsigned short mask);
2297 struct net_device *dev_get_by_name(struct net *net, const char *name);
2298 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2299 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2300 int dev_alloc_name(struct net_device *dev, const char *name);
2301 int dev_open(struct net_device *dev);
2302 int dev_close(struct net_device *dev);
2303 int dev_close_many(struct list_head *head, bool unlink);
2304 void dev_disable_lro(struct net_device *dev);
2305 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2306 int dev_queue_xmit(struct sk_buff *skb);
2307 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2308 int register_netdevice(struct net_device *dev);
2309 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2310 void unregister_netdevice_many(struct list_head *head);
2311 static inline void unregister_netdevice(struct net_device *dev)
2312 {
2313 unregister_netdevice_queue(dev, NULL);
2314 }
2315
2316 int netdev_refcnt_read(const struct net_device *dev);
2317 void free_netdev(struct net_device *dev);
2318 void netdev_freemem(struct net_device *dev);
2319 void synchronize_net(void);
2320 int init_dummy_netdev(struct net_device *dev);
2321
2322 DECLARE_PER_CPU(int, xmit_recursion);
2323 static inline int dev_recursion_level(void)
2324 {
2325 return this_cpu_read(xmit_recursion);
2326 }
2327
2328 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2329 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2330 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2331 int netdev_get_name(struct net *net, char *name, int ifindex);
2332 int dev_restart(struct net_device *dev);
2333 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2334
2335 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2336 {
2337 return NAPI_GRO_CB(skb)->data_offset;
2338 }
2339
2340 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2341 {
2342 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2343 }
2344
2345 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2346 {
2347 NAPI_GRO_CB(skb)->data_offset += len;
2348 }
2349
2350 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2351 unsigned int offset)
2352 {
2353 return NAPI_GRO_CB(skb)->frag0 + offset;
2354 }
2355
2356 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2357 {
2358 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2359 }
2360
2361 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2362 unsigned int offset)
2363 {
2364 if (!pskb_may_pull(skb, hlen))
2365 return NULL;
2366
2367 NAPI_GRO_CB(skb)->frag0 = NULL;
2368 NAPI_GRO_CB(skb)->frag0_len = 0;
2369 return skb->data + offset;
2370 }
2371
2372 static inline void *skb_gro_network_header(struct sk_buff *skb)
2373 {
2374 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2375 skb_network_offset(skb);
2376 }
2377
2378 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2379 const void *start, unsigned int len)
2380 {
2381 if (NAPI_GRO_CB(skb)->csum_valid)
2382 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2383 csum_partial(start, len, 0));
2384 }
2385
2386 /* GRO checksum functions. These are logical equivalents of the normal
2387 * checksum functions (in skbuff.h) except that they operate on the GRO
2388 * offsets and fields in sk_buff.
2389 */
2390
2391 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2392
2393 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2394 {
2395 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2396 }
2397
2398 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2399 bool zero_okay,
2400 __sum16 check)
2401 {
2402 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2403 skb_checksum_start_offset(skb) <
2404 skb_gro_offset(skb)) &&
2405 !skb_at_gro_remcsum_start(skb) &&
2406 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2407 (!zero_okay || check));
2408 }
2409
2410 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2411 __wsum psum)
2412 {
2413 if (NAPI_GRO_CB(skb)->csum_valid &&
2414 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2415 return 0;
2416
2417 NAPI_GRO_CB(skb)->csum = psum;
2418
2419 return __skb_gro_checksum_complete(skb);
2420 }
2421
2422 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2423 {
2424 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2425 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2426 NAPI_GRO_CB(skb)->csum_cnt--;
2427 } else {
2428 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2429 * verified a new top level checksum or an encapsulated one
2430 * during GRO. This saves work if we fallback to normal path.
2431 */
2432 __skb_incr_checksum_unnecessary(skb);
2433 }
2434 }
2435
2436 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2437 compute_pseudo) \
2438 ({ \
2439 __sum16 __ret = 0; \
2440 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2441 __ret = __skb_gro_checksum_validate_complete(skb, \
2442 compute_pseudo(skb, proto)); \
2443 if (__ret) \
2444 __skb_mark_checksum_bad(skb); \
2445 else \
2446 skb_gro_incr_csum_unnecessary(skb); \
2447 __ret; \
2448 })
2449
2450 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2451 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2452
2453 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2454 compute_pseudo) \
2455 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2456
2457 #define skb_gro_checksum_simple_validate(skb) \
2458 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2459
2460 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2461 {
2462 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2463 !NAPI_GRO_CB(skb)->csum_valid);
2464 }
2465
2466 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2467 __sum16 check, __wsum pseudo)
2468 {
2469 NAPI_GRO_CB(skb)->csum = ~pseudo;
2470 NAPI_GRO_CB(skb)->csum_valid = 1;
2471 }
2472
2473 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2474 do { \
2475 if (__skb_gro_checksum_convert_check(skb)) \
2476 __skb_gro_checksum_convert(skb, check, \
2477 compute_pseudo(skb, proto)); \
2478 } while (0)
2479
2480 struct gro_remcsum {
2481 int offset;
2482 __wsum delta;
2483 };
2484
2485 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2486 {
2487 grc->offset = 0;
2488 grc->delta = 0;
2489 }
2490
2491 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2492 unsigned int off, size_t hdrlen,
2493 int start, int offset,
2494 struct gro_remcsum *grc,
2495 bool nopartial)
2496 {
2497 __wsum delta;
2498 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2499
2500 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2501
2502 if (!nopartial) {
2503 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2504 return ptr;
2505 }
2506
2507 ptr = skb_gro_header_fast(skb, off);
2508 if (skb_gro_header_hard(skb, off + plen)) {
2509 ptr = skb_gro_header_slow(skb, off + plen, off);
2510 if (!ptr)
2511 return NULL;
2512 }
2513
2514 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2515 start, offset);
2516
2517 /* Adjust skb->csum since we changed the packet */
2518 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2519
2520 grc->offset = off + hdrlen + offset;
2521 grc->delta = delta;
2522
2523 return ptr;
2524 }
2525
2526 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2527 struct gro_remcsum *grc)
2528 {
2529 void *ptr;
2530 size_t plen = grc->offset + sizeof(u16);
2531
2532 if (!grc->delta)
2533 return;
2534
2535 ptr = skb_gro_header_fast(skb, grc->offset);
2536 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2537 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2538 if (!ptr)
2539 return;
2540 }
2541
2542 remcsum_unadjust((__sum16 *)ptr, grc->delta);
2543 }
2544
2545 struct skb_csum_offl_spec {
2546 __u16 ipv4_okay:1,
2547 ipv6_okay:1,
2548 encap_okay:1,
2549 ip_options_okay:1,
2550 ext_hdrs_okay:1,
2551 tcp_okay:1,
2552 udp_okay:1,
2553 sctp_okay:1,
2554 vlan_okay:1,
2555 no_encapped_ipv6:1,
2556 no_not_encapped:1;
2557 };
2558
2559 bool __skb_csum_offload_chk(struct sk_buff *skb,
2560 const struct skb_csum_offl_spec *spec,
2561 bool *csum_encapped,
2562 bool csum_help);
2563
2564 static inline bool skb_csum_offload_chk(struct sk_buff *skb,
2565 const struct skb_csum_offl_spec *spec,
2566 bool *csum_encapped,
2567 bool csum_help)
2568 {
2569 if (skb->ip_summed != CHECKSUM_PARTIAL)
2570 return false;
2571
2572 return __skb_csum_offload_chk(skb, spec, csum_encapped, csum_help);
2573 }
2574
2575 static inline bool skb_csum_offload_chk_help(struct sk_buff *skb,
2576 const struct skb_csum_offl_spec *spec)
2577 {
2578 bool csum_encapped;
2579
2580 return skb_csum_offload_chk(skb, spec, &csum_encapped, true);
2581 }
2582
2583 static inline bool skb_csum_off_chk_help_cmn(struct sk_buff *skb)
2584 {
2585 static const struct skb_csum_offl_spec csum_offl_spec = {
2586 .ipv4_okay = 1,
2587 .ip_options_okay = 1,
2588 .ipv6_okay = 1,
2589 .vlan_okay = 1,
2590 .tcp_okay = 1,
2591 .udp_okay = 1,
2592 };
2593
2594 return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2595 }
2596
2597 static inline bool skb_csum_off_chk_help_cmn_v4_only(struct sk_buff *skb)
2598 {
2599 static const struct skb_csum_offl_spec csum_offl_spec = {
2600 .ipv4_okay = 1,
2601 .ip_options_okay = 1,
2602 .tcp_okay = 1,
2603 .udp_okay = 1,
2604 .vlan_okay = 1,
2605 };
2606
2607 return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2608 }
2609
2610 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2611 unsigned short type,
2612 const void *daddr, const void *saddr,
2613 unsigned int len)
2614 {
2615 if (!dev->header_ops || !dev->header_ops->create)
2616 return 0;
2617
2618 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2619 }
2620
2621 static inline int dev_parse_header(const struct sk_buff *skb,
2622 unsigned char *haddr)
2623 {
2624 const struct net_device *dev = skb->dev;
2625
2626 if (!dev->header_ops || !dev->header_ops->parse)
2627 return 0;
2628 return dev->header_ops->parse(skb, haddr);
2629 }
2630
2631 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2632 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2633 static inline int unregister_gifconf(unsigned int family)
2634 {
2635 return register_gifconf(family, NULL);
2636 }
2637
2638 #ifdef CONFIG_NET_FLOW_LIMIT
2639 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2640 struct sd_flow_limit {
2641 u64 count;
2642 unsigned int num_buckets;
2643 unsigned int history_head;
2644 u16 history[FLOW_LIMIT_HISTORY];
2645 u8 buckets[];
2646 };
2647
2648 extern int netdev_flow_limit_table_len;
2649 #endif /* CONFIG_NET_FLOW_LIMIT */
2650
2651 /*
2652 * Incoming packets are placed on per-cpu queues
2653 */
2654 struct softnet_data {
2655 struct list_head poll_list;
2656 struct sk_buff_head process_queue;
2657
2658 /* stats */
2659 unsigned int processed;
2660 unsigned int time_squeeze;
2661 unsigned int cpu_collision;
2662 unsigned int received_rps;
2663 #ifdef CONFIG_RPS
2664 struct softnet_data *rps_ipi_list;
2665 #endif
2666 #ifdef CONFIG_NET_FLOW_LIMIT
2667 struct sd_flow_limit __rcu *flow_limit;
2668 #endif
2669 struct Qdisc *output_queue;
2670 struct Qdisc **output_queue_tailp;
2671 struct sk_buff *completion_queue;
2672
2673 #ifdef CONFIG_RPS
2674 /* Elements below can be accessed between CPUs for RPS */
2675 struct call_single_data csd ____cacheline_aligned_in_smp;
2676 struct softnet_data *rps_ipi_next;
2677 unsigned int cpu;
2678 unsigned int input_queue_head;
2679 unsigned int input_queue_tail;
2680 #endif
2681 unsigned int dropped;
2682 struct sk_buff_head input_pkt_queue;
2683 struct napi_struct backlog;
2684
2685 };
2686
2687 static inline void input_queue_head_incr(struct softnet_data *sd)
2688 {
2689 #ifdef CONFIG_RPS
2690 sd->input_queue_head++;
2691 #endif
2692 }
2693
2694 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2695 unsigned int *qtail)
2696 {
2697 #ifdef CONFIG_RPS
2698 *qtail = ++sd->input_queue_tail;
2699 #endif
2700 }
2701
2702 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2703
2704 void __netif_schedule(struct Qdisc *q);
2705 void netif_schedule_queue(struct netdev_queue *txq);
2706
2707 static inline void netif_tx_schedule_all(struct net_device *dev)
2708 {
2709 unsigned int i;
2710
2711 for (i = 0; i < dev->num_tx_queues; i++)
2712 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2713 }
2714
2715 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2716 {
2717 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2718 }
2719
2720 /**
2721 * netif_start_queue - allow transmit
2722 * @dev: network device
2723 *
2724 * Allow upper layers to call the device hard_start_xmit routine.
2725 */
2726 static inline void netif_start_queue(struct net_device *dev)
2727 {
2728 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2729 }
2730
2731 static inline void netif_tx_start_all_queues(struct net_device *dev)
2732 {
2733 unsigned int i;
2734
2735 for (i = 0; i < dev->num_tx_queues; i++) {
2736 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2737 netif_tx_start_queue(txq);
2738 }
2739 }
2740
2741 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2742
2743 /**
2744 * netif_wake_queue - restart transmit
2745 * @dev: network device
2746 *
2747 * Allow upper layers to call the device hard_start_xmit routine.
2748 * Used for flow control when transmit resources are available.
2749 */
2750 static inline void netif_wake_queue(struct net_device *dev)
2751 {
2752 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2753 }
2754
2755 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2756 {
2757 unsigned int i;
2758
2759 for (i = 0; i < dev->num_tx_queues; i++) {
2760 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2761 netif_tx_wake_queue(txq);
2762 }
2763 }
2764
2765 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2766 {
2767 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2768 }
2769
2770 /**
2771 * netif_stop_queue - stop transmitted packets
2772 * @dev: network device
2773 *
2774 * Stop upper layers calling the device hard_start_xmit routine.
2775 * Used for flow control when transmit resources are unavailable.
2776 */
2777 static inline void netif_stop_queue(struct net_device *dev)
2778 {
2779 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2780 }
2781
2782 void netif_tx_stop_all_queues(struct net_device *dev);
2783
2784 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2785 {
2786 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2787 }
2788
2789 /**
2790 * netif_queue_stopped - test if transmit queue is flowblocked
2791 * @dev: network device
2792 *
2793 * Test if transmit queue on device is currently unable to send.
2794 */
2795 static inline bool netif_queue_stopped(const struct net_device *dev)
2796 {
2797 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2798 }
2799
2800 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2801 {
2802 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2803 }
2804
2805 static inline bool
2806 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2807 {
2808 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2809 }
2810
2811 static inline bool
2812 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2813 {
2814 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2815 }
2816
2817 /**
2818 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2819 * @dev_queue: pointer to transmit queue
2820 *
2821 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2822 * to give appropriate hint to the cpu.
2823 */
2824 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2825 {
2826 #ifdef CONFIG_BQL
2827 prefetchw(&dev_queue->dql.num_queued);
2828 #endif
2829 }
2830
2831 /**
2832 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2833 * @dev_queue: pointer to transmit queue
2834 *
2835 * BQL enabled drivers might use this helper in their TX completion path,
2836 * to give appropriate hint to the cpu.
2837 */
2838 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2839 {
2840 #ifdef CONFIG_BQL
2841 prefetchw(&dev_queue->dql.limit);
2842 #endif
2843 }
2844
2845 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2846 unsigned int bytes)
2847 {
2848 #ifdef CONFIG_BQL
2849 dql_queued(&dev_queue->dql, bytes);
2850
2851 if (likely(dql_avail(&dev_queue->dql) >= 0))
2852 return;
2853
2854 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2855
2856 /*
2857 * The XOFF flag must be set before checking the dql_avail below,
2858 * because in netdev_tx_completed_queue we update the dql_completed
2859 * before checking the XOFF flag.
2860 */
2861 smp_mb();
2862
2863 /* check again in case another CPU has just made room avail */
2864 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2865 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2866 #endif
2867 }
2868
2869 /**
2870 * netdev_sent_queue - report the number of bytes queued to hardware
2871 * @dev: network device
2872 * @bytes: number of bytes queued to the hardware device queue
2873 *
2874 * Report the number of bytes queued for sending/completion to the network
2875 * device hardware queue. @bytes should be a good approximation and should
2876 * exactly match netdev_completed_queue() @bytes
2877 */
2878 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2879 {
2880 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2881 }
2882
2883 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2884 unsigned int pkts, unsigned int bytes)
2885 {
2886 #ifdef CONFIG_BQL
2887 if (unlikely(!bytes))
2888 return;
2889
2890 dql_completed(&dev_queue->dql, bytes);
2891
2892 /*
2893 * Without the memory barrier there is a small possiblity that
2894 * netdev_tx_sent_queue will miss the update and cause the queue to
2895 * be stopped forever
2896 */
2897 smp_mb();
2898
2899 if (dql_avail(&dev_queue->dql) < 0)
2900 return;
2901
2902 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2903 netif_schedule_queue(dev_queue);
2904 #endif
2905 }
2906
2907 /**
2908 * netdev_completed_queue - report bytes and packets completed by device
2909 * @dev: network device
2910 * @pkts: actual number of packets sent over the medium
2911 * @bytes: actual number of bytes sent over the medium
2912 *
2913 * Report the number of bytes and packets transmitted by the network device
2914 * hardware queue over the physical medium, @bytes must exactly match the
2915 * @bytes amount passed to netdev_sent_queue()
2916 */
2917 static inline void netdev_completed_queue(struct net_device *dev,
2918 unsigned int pkts, unsigned int bytes)
2919 {
2920 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2921 }
2922
2923 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2924 {
2925 #ifdef CONFIG_BQL
2926 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2927 dql_reset(&q->dql);
2928 #endif
2929 }
2930
2931 /**
2932 * netdev_reset_queue - reset the packets and bytes count of a network device
2933 * @dev_queue: network device
2934 *
2935 * Reset the bytes and packet count of a network device and clear the
2936 * software flow control OFF bit for this network device
2937 */
2938 static inline void netdev_reset_queue(struct net_device *dev_queue)
2939 {
2940 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2941 }
2942
2943 /**
2944 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
2945 * @dev: network device
2946 * @queue_index: given tx queue index
2947 *
2948 * Returns 0 if given tx queue index >= number of device tx queues,
2949 * otherwise returns the originally passed tx queue index.
2950 */
2951 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2952 {
2953 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2954 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2955 dev->name, queue_index,
2956 dev->real_num_tx_queues);
2957 return 0;
2958 }
2959
2960 return queue_index;
2961 }
2962
2963 /**
2964 * netif_running - test if up
2965 * @dev: network device
2966 *
2967 * Test if the device has been brought up.
2968 */
2969 static inline bool netif_running(const struct net_device *dev)
2970 {
2971 return test_bit(__LINK_STATE_START, &dev->state);
2972 }
2973
2974 /*
2975 * Routines to manage the subqueues on a device. We only need start
2976 * stop, and a check if it's stopped. All other device management is
2977 * done at the overall netdevice level.
2978 * Also test the device if we're multiqueue.
2979 */
2980
2981 /**
2982 * netif_start_subqueue - allow sending packets on subqueue
2983 * @dev: network device
2984 * @queue_index: sub queue index
2985 *
2986 * Start individual transmit queue of a device with multiple transmit queues.
2987 */
2988 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2989 {
2990 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2991
2992 netif_tx_start_queue(txq);
2993 }
2994
2995 /**
2996 * netif_stop_subqueue - stop sending packets on subqueue
2997 * @dev: network device
2998 * @queue_index: sub queue index
2999 *
3000 * Stop individual transmit queue of a device with multiple transmit queues.
3001 */
3002 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3003 {
3004 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3005 netif_tx_stop_queue(txq);
3006 }
3007
3008 /**
3009 * netif_subqueue_stopped - test status of subqueue
3010 * @dev: network device
3011 * @queue_index: sub queue index
3012 *
3013 * Check individual transmit queue of a device with multiple transmit queues.
3014 */
3015 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3016 u16 queue_index)
3017 {
3018 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3019
3020 return netif_tx_queue_stopped(txq);
3021 }
3022
3023 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3024 struct sk_buff *skb)
3025 {
3026 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3027 }
3028
3029 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
3030
3031 #ifdef CONFIG_XPS
3032 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3033 u16 index);
3034 #else
3035 static inline int netif_set_xps_queue(struct net_device *dev,
3036 const struct cpumask *mask,
3037 u16 index)
3038 {
3039 return 0;
3040 }
3041 #endif
3042
3043 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3044 unsigned int num_tx_queues);
3045
3046 /*
3047 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3048 * as a distribution range limit for the returned value.
3049 */
3050 static inline u16 skb_tx_hash(const struct net_device *dev,
3051 struct sk_buff *skb)
3052 {
3053 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3054 }
3055
3056 /**
3057 * netif_is_multiqueue - test if device has multiple transmit queues
3058 * @dev: network device
3059 *
3060 * Check if device has multiple transmit queues
3061 */
3062 static inline bool netif_is_multiqueue(const struct net_device *dev)
3063 {
3064 return dev->num_tx_queues > 1;
3065 }
3066
3067 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3068
3069 #ifdef CONFIG_SYSFS
3070 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3071 #else
3072 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3073 unsigned int rxq)
3074 {
3075 return 0;
3076 }
3077 #endif
3078
3079 #ifdef CONFIG_SYSFS
3080 static inline unsigned int get_netdev_rx_queue_index(
3081 struct netdev_rx_queue *queue)
3082 {
3083 struct net_device *dev = queue->dev;
3084 int index = queue - dev->_rx;
3085
3086 BUG_ON(index >= dev->num_rx_queues);
3087 return index;
3088 }
3089 #endif
3090
3091 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3092 int netif_get_num_default_rss_queues(void);
3093
3094 enum skb_free_reason {
3095 SKB_REASON_CONSUMED,
3096 SKB_REASON_DROPPED,
3097 };
3098
3099 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3100 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3101
3102 /*
3103 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3104 * interrupt context or with hardware interrupts being disabled.
3105 * (in_irq() || irqs_disabled())
3106 *
3107 * We provide four helpers that can be used in following contexts :
3108 *
3109 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3110 * replacing kfree_skb(skb)
3111 *
3112 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3113 * Typically used in place of consume_skb(skb) in TX completion path
3114 *
3115 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3116 * replacing kfree_skb(skb)
3117 *
3118 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3119 * and consumed a packet. Used in place of consume_skb(skb)
3120 */
3121 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3122 {
3123 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3124 }
3125
3126 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3127 {
3128 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3129 }
3130
3131 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3132 {
3133 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3134 }
3135
3136 static inline void dev_consume_skb_any(struct sk_buff *skb)
3137 {
3138 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3139 }
3140
3141 int netif_rx(struct sk_buff *skb);
3142 int netif_rx_ni(struct sk_buff *skb);
3143 int netif_receive_skb(struct sk_buff *skb);
3144 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3145 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3146 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3147 gro_result_t napi_gro_frags(struct napi_struct *napi);
3148 struct packet_offload *gro_find_receive_by_type(__be16 type);
3149 struct packet_offload *gro_find_complete_by_type(__be16 type);
3150
3151 static inline void napi_free_frags(struct napi_struct *napi)
3152 {
3153 kfree_skb(napi->skb);
3154 napi->skb = NULL;
3155 }
3156
3157 int netdev_rx_handler_register(struct net_device *dev,
3158 rx_handler_func_t *rx_handler,
3159 void *rx_handler_data);
3160 void netdev_rx_handler_unregister(struct net_device *dev);
3161
3162 bool dev_valid_name(const char *name);
3163 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3164 int dev_ethtool(struct net *net, struct ifreq *);
3165 unsigned int dev_get_flags(const struct net_device *);
3166 int __dev_change_flags(struct net_device *, unsigned int flags);
3167 int dev_change_flags(struct net_device *, unsigned int);
3168 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3169 unsigned int gchanges);
3170 int dev_change_name(struct net_device *, const char *);
3171 int dev_set_alias(struct net_device *, const char *, size_t);
3172 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3173 int dev_set_mtu(struct net_device *, int);
3174 void dev_set_group(struct net_device *, int);
3175 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3176 int dev_change_carrier(struct net_device *, bool new_carrier);
3177 int dev_get_phys_port_id(struct net_device *dev,
3178 struct netdev_phys_item_id *ppid);
3179 int dev_get_phys_port_name(struct net_device *dev,
3180 char *name, size_t len);
3181 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3182 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3183 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3184 struct netdev_queue *txq, int *ret);
3185 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3186 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3187 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
3188
3189 extern int netdev_budget;
3190
3191 /* Called by rtnetlink.c:rtnl_unlock() */
3192 void netdev_run_todo(void);
3193
3194 /**
3195 * dev_put - release reference to device
3196 * @dev: network device
3197 *
3198 * Release reference to device to allow it to be freed.
3199 */
3200 static inline void dev_put(struct net_device *dev)
3201 {
3202 this_cpu_dec(*dev->pcpu_refcnt);
3203 }
3204
3205 /**
3206 * dev_hold - get reference to device
3207 * @dev: network device
3208 *
3209 * Hold reference to device to keep it from being freed.
3210 */
3211 static inline void dev_hold(struct net_device *dev)
3212 {
3213 this_cpu_inc(*dev->pcpu_refcnt);
3214 }
3215
3216 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3217 * and _off may be called from IRQ context, but it is caller
3218 * who is responsible for serialization of these calls.
3219 *
3220 * The name carrier is inappropriate, these functions should really be
3221 * called netif_lowerlayer_*() because they represent the state of any
3222 * kind of lower layer not just hardware media.
3223 */
3224
3225 void linkwatch_init_dev(struct net_device *dev);
3226 void linkwatch_fire_event(struct net_device *dev);
3227 void linkwatch_forget_dev(struct net_device *dev);
3228
3229 /**
3230 * netif_carrier_ok - test if carrier present
3231 * @dev: network device
3232 *
3233 * Check if carrier is present on device
3234 */
3235 static inline bool netif_carrier_ok(const struct net_device *dev)
3236 {
3237 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3238 }
3239
3240 unsigned long dev_trans_start(struct net_device *dev);
3241
3242 void __netdev_watchdog_up(struct net_device *dev);
3243
3244 void netif_carrier_on(struct net_device *dev);
3245
3246 void netif_carrier_off(struct net_device *dev);
3247
3248 /**
3249 * netif_dormant_on - mark device as dormant.
3250 * @dev: network device
3251 *
3252 * Mark device as dormant (as per RFC2863).
3253 *
3254 * The dormant state indicates that the relevant interface is not
3255 * actually in a condition to pass packets (i.e., it is not 'up') but is
3256 * in a "pending" state, waiting for some external event. For "on-
3257 * demand" interfaces, this new state identifies the situation where the
3258 * interface is waiting for events to place it in the up state.
3259 *
3260 */
3261 static inline void netif_dormant_on(struct net_device *dev)
3262 {
3263 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3264 linkwatch_fire_event(dev);
3265 }
3266
3267 /**
3268 * netif_dormant_off - set device as not dormant.
3269 * @dev: network device
3270 *
3271 * Device is not in dormant state.
3272 */
3273 static inline void netif_dormant_off(struct net_device *dev)
3274 {
3275 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3276 linkwatch_fire_event(dev);
3277 }
3278
3279 /**
3280 * netif_dormant - test if carrier present
3281 * @dev: network device
3282 *
3283 * Check if carrier is present on device
3284 */
3285 static inline bool netif_dormant(const struct net_device *dev)
3286 {
3287 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3288 }
3289
3290
3291 /**
3292 * netif_oper_up - test if device is operational
3293 * @dev: network device
3294 *
3295 * Check if carrier is operational
3296 */
3297 static inline bool netif_oper_up(const struct net_device *dev)
3298 {
3299 return (dev->operstate == IF_OPER_UP ||
3300 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3301 }
3302
3303 /**
3304 * netif_device_present - is device available or removed
3305 * @dev: network device
3306 *
3307 * Check if device has not been removed from system.
3308 */
3309 static inline bool netif_device_present(struct net_device *dev)
3310 {
3311 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3312 }
3313
3314 void netif_device_detach(struct net_device *dev);
3315
3316 void netif_device_attach(struct net_device *dev);
3317
3318 /*
3319 * Network interface message level settings
3320 */
3321
3322 enum {
3323 NETIF_MSG_DRV = 0x0001,
3324 NETIF_MSG_PROBE = 0x0002,
3325 NETIF_MSG_LINK = 0x0004,
3326 NETIF_MSG_TIMER = 0x0008,
3327 NETIF_MSG_IFDOWN = 0x0010,
3328 NETIF_MSG_IFUP = 0x0020,
3329 NETIF_MSG_RX_ERR = 0x0040,
3330 NETIF_MSG_TX_ERR = 0x0080,
3331 NETIF_MSG_TX_QUEUED = 0x0100,
3332 NETIF_MSG_INTR = 0x0200,
3333 NETIF_MSG_TX_DONE = 0x0400,
3334 NETIF_MSG_RX_STATUS = 0x0800,
3335 NETIF_MSG_PKTDATA = 0x1000,
3336 NETIF_MSG_HW = 0x2000,
3337 NETIF_MSG_WOL = 0x4000,
3338 };
3339
3340 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3341 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3342 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3343 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3344 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3345 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3346 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3347 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3348 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3349 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3350 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3351 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3352 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3353 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3354 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3355
3356 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3357 {
3358 /* use default */
3359 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3360 return default_msg_enable_bits;
3361 if (debug_value == 0) /* no output */
3362 return 0;
3363 /* set low N bits */
3364 return (1 << debug_value) - 1;
3365 }
3366
3367 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3368 {
3369 spin_lock(&txq->_xmit_lock);
3370 txq->xmit_lock_owner = cpu;
3371 }
3372
3373 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3374 {
3375 spin_lock_bh(&txq->_xmit_lock);
3376 txq->xmit_lock_owner = smp_processor_id();
3377 }
3378
3379 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3380 {
3381 bool ok = spin_trylock(&txq->_xmit_lock);
3382 if (likely(ok))
3383 txq->xmit_lock_owner = smp_processor_id();
3384 return ok;
3385 }
3386
3387 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3388 {
3389 txq->xmit_lock_owner = -1;
3390 spin_unlock(&txq->_xmit_lock);
3391 }
3392
3393 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3394 {
3395 txq->xmit_lock_owner = -1;
3396 spin_unlock_bh(&txq->_xmit_lock);
3397 }
3398
3399 static inline void txq_trans_update(struct netdev_queue *txq)
3400 {
3401 if (txq->xmit_lock_owner != -1)
3402 txq->trans_start = jiffies;
3403 }
3404
3405 /**
3406 * netif_tx_lock - grab network device transmit lock
3407 * @dev: network device
3408 *
3409 * Get network device transmit lock
3410 */
3411 static inline void netif_tx_lock(struct net_device *dev)
3412 {
3413 unsigned int i;
3414 int cpu;
3415
3416 spin_lock(&dev->tx_global_lock);
3417 cpu = smp_processor_id();
3418 for (i = 0; i < dev->num_tx_queues; i++) {
3419 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3420
3421 /* We are the only thread of execution doing a
3422 * freeze, but we have to grab the _xmit_lock in
3423 * order to synchronize with threads which are in
3424 * the ->hard_start_xmit() handler and already
3425 * checked the frozen bit.
3426 */
3427 __netif_tx_lock(txq, cpu);
3428 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3429 __netif_tx_unlock(txq);
3430 }
3431 }
3432
3433 static inline void netif_tx_lock_bh(struct net_device *dev)
3434 {
3435 local_bh_disable();
3436 netif_tx_lock(dev);
3437 }
3438
3439 static inline void netif_tx_unlock(struct net_device *dev)
3440 {
3441 unsigned int i;
3442
3443 for (i = 0; i < dev->num_tx_queues; i++) {
3444 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3445
3446 /* No need to grab the _xmit_lock here. If the
3447 * queue is not stopped for another reason, we
3448 * force a schedule.
3449 */
3450 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3451 netif_schedule_queue(txq);
3452 }
3453 spin_unlock(&dev->tx_global_lock);
3454 }
3455
3456 static inline void netif_tx_unlock_bh(struct net_device *dev)
3457 {
3458 netif_tx_unlock(dev);
3459 local_bh_enable();
3460 }
3461
3462 #define HARD_TX_LOCK(dev, txq, cpu) { \
3463 if ((dev->features & NETIF_F_LLTX) == 0) { \
3464 __netif_tx_lock(txq, cpu); \
3465 } \
3466 }
3467
3468 #define HARD_TX_TRYLOCK(dev, txq) \
3469 (((dev->features & NETIF_F_LLTX) == 0) ? \
3470 __netif_tx_trylock(txq) : \
3471 true )
3472
3473 #define HARD_TX_UNLOCK(dev, txq) { \
3474 if ((dev->features & NETIF_F_LLTX) == 0) { \
3475 __netif_tx_unlock(txq); \
3476 } \
3477 }
3478
3479 static inline void netif_tx_disable(struct net_device *dev)
3480 {
3481 unsigned int i;
3482 int cpu;
3483
3484 local_bh_disable();
3485 cpu = smp_processor_id();
3486 for (i = 0; i < dev->num_tx_queues; i++) {
3487 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3488
3489 __netif_tx_lock(txq, cpu);
3490 netif_tx_stop_queue(txq);
3491 __netif_tx_unlock(txq);
3492 }
3493 local_bh_enable();
3494 }
3495
3496 static inline void netif_addr_lock(struct net_device *dev)
3497 {
3498 spin_lock(&dev->addr_list_lock);
3499 }
3500
3501 static inline void netif_addr_lock_nested(struct net_device *dev)
3502 {
3503 int subclass = SINGLE_DEPTH_NESTING;
3504
3505 if (dev->netdev_ops->ndo_get_lock_subclass)
3506 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3507
3508 spin_lock_nested(&dev->addr_list_lock, subclass);
3509 }
3510
3511 static inline void netif_addr_lock_bh(struct net_device *dev)
3512 {
3513 spin_lock_bh(&dev->addr_list_lock);
3514 }
3515
3516 static inline void netif_addr_unlock(struct net_device *dev)
3517 {
3518 spin_unlock(&dev->addr_list_lock);
3519 }
3520
3521 static inline void netif_addr_unlock_bh(struct net_device *dev)
3522 {
3523 spin_unlock_bh(&dev->addr_list_lock);
3524 }
3525
3526 /*
3527 * dev_addrs walker. Should be used only for read access. Call with
3528 * rcu_read_lock held.
3529 */
3530 #define for_each_dev_addr(dev, ha) \
3531 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3532
3533 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3534
3535 void ether_setup(struct net_device *dev);
3536
3537 /* Support for loadable net-drivers */
3538 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3539 unsigned char name_assign_type,
3540 void (*setup)(struct net_device *),
3541 unsigned int txqs, unsigned int rxqs);
3542 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3543 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3544
3545 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3546 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3547 count)
3548
3549 int register_netdev(struct net_device *dev);
3550 void unregister_netdev(struct net_device *dev);
3551
3552 /* General hardware address lists handling functions */
3553 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3554 struct netdev_hw_addr_list *from_list, int addr_len);
3555 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3556 struct netdev_hw_addr_list *from_list, int addr_len);
3557 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3558 struct net_device *dev,
3559 int (*sync)(struct net_device *, const unsigned char *),
3560 int (*unsync)(struct net_device *,
3561 const unsigned char *));
3562 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3563 struct net_device *dev,
3564 int (*unsync)(struct net_device *,
3565 const unsigned char *));
3566 void __hw_addr_init(struct netdev_hw_addr_list *list);
3567
3568 /* Functions used for device addresses handling */
3569 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3570 unsigned char addr_type);
3571 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3572 unsigned char addr_type);
3573 void dev_addr_flush(struct net_device *dev);
3574 int dev_addr_init(struct net_device *dev);
3575
3576 /* Functions used for unicast addresses handling */
3577 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3578 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3579 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3580 int dev_uc_sync(struct net_device *to, struct net_device *from);
3581 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3582 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3583 void dev_uc_flush(struct net_device *dev);
3584 void dev_uc_init(struct net_device *dev);
3585
3586 /**
3587 * __dev_uc_sync - Synchonize device's unicast list
3588 * @dev: device to sync
3589 * @sync: function to call if address should be added
3590 * @unsync: function to call if address should be removed
3591 *
3592 * Add newly added addresses to the interface, and release
3593 * addresses that have been deleted.
3594 **/
3595 static inline int __dev_uc_sync(struct net_device *dev,
3596 int (*sync)(struct net_device *,
3597 const unsigned char *),
3598 int (*unsync)(struct net_device *,
3599 const unsigned char *))
3600 {
3601 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3602 }
3603
3604 /**
3605 * __dev_uc_unsync - Remove synchronized addresses from device
3606 * @dev: device to sync
3607 * @unsync: function to call if address should be removed
3608 *
3609 * Remove all addresses that were added to the device by dev_uc_sync().
3610 **/
3611 static inline void __dev_uc_unsync(struct net_device *dev,
3612 int (*unsync)(struct net_device *,
3613 const unsigned char *))
3614 {
3615 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3616 }
3617
3618 /* Functions used for multicast addresses handling */
3619 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3620 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3621 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3622 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3623 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3624 int dev_mc_sync(struct net_device *to, struct net_device *from);
3625 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3626 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3627 void dev_mc_flush(struct net_device *dev);
3628 void dev_mc_init(struct net_device *dev);
3629
3630 /**
3631 * __dev_mc_sync - Synchonize device's multicast list
3632 * @dev: device to sync
3633 * @sync: function to call if address should be added
3634 * @unsync: function to call if address should be removed
3635 *
3636 * Add newly added addresses to the interface, and release
3637 * addresses that have been deleted.
3638 **/
3639 static inline int __dev_mc_sync(struct net_device *dev,
3640 int (*sync)(struct net_device *,
3641 const unsigned char *),
3642 int (*unsync)(struct net_device *,
3643 const unsigned char *))
3644 {
3645 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3646 }
3647
3648 /**
3649 * __dev_mc_unsync - Remove synchronized addresses from device
3650 * @dev: device to sync
3651 * @unsync: function to call if address should be removed
3652 *
3653 * Remove all addresses that were added to the device by dev_mc_sync().
3654 **/
3655 static inline void __dev_mc_unsync(struct net_device *dev,
3656 int (*unsync)(struct net_device *,
3657 const unsigned char *))
3658 {
3659 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3660 }
3661
3662 /* Functions used for secondary unicast and multicast support */
3663 void dev_set_rx_mode(struct net_device *dev);
3664 void __dev_set_rx_mode(struct net_device *dev);
3665 int dev_set_promiscuity(struct net_device *dev, int inc);
3666 int dev_set_allmulti(struct net_device *dev, int inc);
3667 void netdev_state_change(struct net_device *dev);
3668 void netdev_notify_peers(struct net_device *dev);
3669 void netdev_features_change(struct net_device *dev);
3670 /* Load a device via the kmod */
3671 void dev_load(struct net *net, const char *name);
3672 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3673 struct rtnl_link_stats64 *storage);
3674 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3675 const struct net_device_stats *netdev_stats);
3676
3677 extern int netdev_max_backlog;
3678 extern int netdev_tstamp_prequeue;
3679 extern int weight_p;
3680 extern int bpf_jit_enable;
3681
3682 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3683 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3684 struct list_head **iter);
3685 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3686 struct list_head **iter);
3687
3688 /* iterate through upper list, must be called under RCU read lock */
3689 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3690 for (iter = &(dev)->adj_list.upper, \
3691 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3692 updev; \
3693 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3694
3695 /* iterate through upper list, must be called under RCU read lock */
3696 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3697 for (iter = &(dev)->all_adj_list.upper, \
3698 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3699 updev; \
3700 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3701
3702 void *netdev_lower_get_next_private(struct net_device *dev,
3703 struct list_head **iter);
3704 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3705 struct list_head **iter);
3706
3707 #define netdev_for_each_lower_private(dev, priv, iter) \
3708 for (iter = (dev)->adj_list.lower.next, \
3709 priv = netdev_lower_get_next_private(dev, &(iter)); \
3710 priv; \
3711 priv = netdev_lower_get_next_private(dev, &(iter)))
3712
3713 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3714 for (iter = &(dev)->adj_list.lower, \
3715 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3716 priv; \
3717 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3718
3719 void *netdev_lower_get_next(struct net_device *dev,
3720 struct list_head **iter);
3721 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3722 for (iter = &(dev)->adj_list.lower, \
3723 ldev = netdev_lower_get_next(dev, &(iter)); \
3724 ldev; \
3725 ldev = netdev_lower_get_next(dev, &(iter)))
3726
3727 void *netdev_adjacent_get_private(struct list_head *adj_list);
3728 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3729 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3730 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3731 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3732 int netdev_master_upper_dev_link(struct net_device *dev,
3733 struct net_device *upper_dev,
3734 void *upper_priv, void *upper_info);
3735 void netdev_upper_dev_unlink(struct net_device *dev,
3736 struct net_device *upper_dev);
3737 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3738 void *netdev_lower_dev_get_private(struct net_device *dev,
3739 struct net_device *lower_dev);
3740 void netdev_lower_state_changed(struct net_device *lower_dev,
3741 void *lower_state_info);
3742
3743 /* RSS keys are 40 or 52 bytes long */
3744 #define NETDEV_RSS_KEY_LEN 52
3745 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3746 void netdev_rss_key_fill(void *buffer, size_t len);
3747
3748 int dev_get_nest_level(struct net_device *dev,
3749 bool (*type_check)(const struct net_device *dev));
3750 int skb_checksum_help(struct sk_buff *skb);
3751 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3752 netdev_features_t features, bool tx_path);
3753 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3754 netdev_features_t features);
3755
3756 struct netdev_bonding_info {
3757 ifslave slave;
3758 ifbond master;
3759 };
3760
3761 struct netdev_notifier_bonding_info {
3762 struct netdev_notifier_info info; /* must be first */
3763 struct netdev_bonding_info bonding_info;
3764 };
3765
3766 void netdev_bonding_info_change(struct net_device *dev,
3767 struct netdev_bonding_info *bonding_info);
3768
3769 static inline
3770 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3771 {
3772 return __skb_gso_segment(skb, features, true);
3773 }
3774 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3775
3776 static inline bool can_checksum_protocol(netdev_features_t features,
3777 __be16 protocol)
3778 {
3779 if (protocol == htons(ETH_P_FCOE))
3780 return !!(features & NETIF_F_FCOE_CRC);
3781
3782 /* Assume this is an IP checksum (not SCTP CRC) */
3783
3784 if (features & NETIF_F_HW_CSUM) {
3785 /* Can checksum everything */
3786 return true;
3787 }
3788
3789 switch (protocol) {
3790 case htons(ETH_P_IP):
3791 return !!(features & NETIF_F_IP_CSUM);
3792 case htons(ETH_P_IPV6):
3793 return !!(features & NETIF_F_IPV6_CSUM);
3794 default:
3795 return false;
3796 }
3797 }
3798
3799 /* Map an ethertype into IP protocol if possible */
3800 static inline int eproto_to_ipproto(int eproto)
3801 {
3802 switch (eproto) {
3803 case htons(ETH_P_IP):
3804 return IPPROTO_IP;
3805 case htons(ETH_P_IPV6):
3806 return IPPROTO_IPV6;
3807 default:
3808 return -1;
3809 }
3810 }
3811
3812 #ifdef CONFIG_BUG
3813 void netdev_rx_csum_fault(struct net_device *dev);
3814 #else
3815 static inline void netdev_rx_csum_fault(struct net_device *dev)
3816 {
3817 }
3818 #endif
3819 /* rx skb timestamps */
3820 void net_enable_timestamp(void);
3821 void net_disable_timestamp(void);
3822
3823 #ifdef CONFIG_PROC_FS
3824 int __init dev_proc_init(void);
3825 #else
3826 #define dev_proc_init() 0
3827 #endif
3828
3829 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3830 struct sk_buff *skb, struct net_device *dev,
3831 bool more)
3832 {
3833 skb->xmit_more = more ? 1 : 0;
3834 return ops->ndo_start_xmit(skb, dev);
3835 }
3836
3837 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3838 struct netdev_queue *txq, bool more)
3839 {
3840 const struct net_device_ops *ops = dev->netdev_ops;
3841 int rc;
3842
3843 rc = __netdev_start_xmit(ops, skb, dev, more);
3844 if (rc == NETDEV_TX_OK)
3845 txq_trans_update(txq);
3846
3847 return rc;
3848 }
3849
3850 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3851 const void *ns);
3852 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3853 const void *ns);
3854
3855 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3856 {
3857 return netdev_class_create_file_ns(class_attr, NULL);
3858 }
3859
3860 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3861 {
3862 netdev_class_remove_file_ns(class_attr, NULL);
3863 }
3864
3865 extern struct kobj_ns_type_operations net_ns_type_operations;
3866
3867 const char *netdev_drivername(const struct net_device *dev);
3868
3869 void linkwatch_run_queue(void);
3870
3871 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3872 netdev_features_t f2)
3873 {
3874 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
3875 if (f1 & NETIF_F_HW_CSUM)
3876 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3877 else
3878 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3879 }
3880
3881 return f1 & f2;
3882 }
3883
3884 static inline netdev_features_t netdev_get_wanted_features(
3885 struct net_device *dev)
3886 {
3887 return (dev->features & ~dev->hw_features) | dev->wanted_features;
3888 }
3889 netdev_features_t netdev_increment_features(netdev_features_t all,
3890 netdev_features_t one, netdev_features_t mask);
3891
3892 /* Allow TSO being used on stacked device :
3893 * Performing the GSO segmentation before last device
3894 * is a performance improvement.
3895 */
3896 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3897 netdev_features_t mask)
3898 {
3899 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3900 }
3901
3902 int __netdev_update_features(struct net_device *dev);
3903 void netdev_update_features(struct net_device *dev);
3904 void netdev_change_features(struct net_device *dev);
3905
3906 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3907 struct net_device *dev);
3908
3909 netdev_features_t passthru_features_check(struct sk_buff *skb,
3910 struct net_device *dev,
3911 netdev_features_t features);
3912 netdev_features_t netif_skb_features(struct sk_buff *skb);
3913
3914 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3915 {
3916 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3917
3918 /* check flags correspondence */
3919 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3920 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3921 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3922 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3923 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3924 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3925 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3926 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3927 BUILD_BUG_ON(SKB_GSO_IPIP != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3928 BUILD_BUG_ON(SKB_GSO_SIT != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3929 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3930 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3931 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3932
3933 return (features & feature) == feature;
3934 }
3935
3936 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3937 {
3938 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3939 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3940 }
3941
3942 static inline bool netif_needs_gso(struct sk_buff *skb,
3943 netdev_features_t features)
3944 {
3945 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3946 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3947 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3948 }
3949
3950 static inline void netif_set_gso_max_size(struct net_device *dev,
3951 unsigned int size)
3952 {
3953 dev->gso_max_size = size;
3954 }
3955
3956 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3957 int pulled_hlen, u16 mac_offset,
3958 int mac_len)
3959 {
3960 skb->protocol = protocol;
3961 skb->encapsulation = 1;
3962 skb_push(skb, pulled_hlen);
3963 skb_reset_transport_header(skb);
3964 skb->mac_header = mac_offset;
3965 skb->network_header = skb->mac_header + mac_len;
3966 skb->mac_len = mac_len;
3967 }
3968
3969 static inline bool netif_is_macvlan(const struct net_device *dev)
3970 {
3971 return dev->priv_flags & IFF_MACVLAN;
3972 }
3973
3974 static inline bool netif_is_macvlan_port(const struct net_device *dev)
3975 {
3976 return dev->priv_flags & IFF_MACVLAN_PORT;
3977 }
3978
3979 static inline bool netif_is_ipvlan(const struct net_device *dev)
3980 {
3981 return dev->priv_flags & IFF_IPVLAN_SLAVE;
3982 }
3983
3984 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
3985 {
3986 return dev->priv_flags & IFF_IPVLAN_MASTER;
3987 }
3988
3989 static inline bool netif_is_bond_master(const struct net_device *dev)
3990 {
3991 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3992 }
3993
3994 static inline bool netif_is_bond_slave(const struct net_device *dev)
3995 {
3996 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3997 }
3998
3999 static inline bool netif_supports_nofcs(struct net_device *dev)
4000 {
4001 return dev->priv_flags & IFF_SUPP_NOFCS;
4002 }
4003
4004 static inline bool netif_is_l3_master(const struct net_device *dev)
4005 {
4006 return dev->priv_flags & IFF_L3MDEV_MASTER;
4007 }
4008
4009 static inline bool netif_is_l3_slave(const struct net_device *dev)
4010 {
4011 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4012 }
4013
4014 static inline bool netif_is_bridge_master(const struct net_device *dev)
4015 {
4016 return dev->priv_flags & IFF_EBRIDGE;
4017 }
4018
4019 static inline bool netif_is_bridge_port(const struct net_device *dev)
4020 {
4021 return dev->priv_flags & IFF_BRIDGE_PORT;
4022 }
4023
4024 static inline bool netif_is_ovs_master(const struct net_device *dev)
4025 {
4026 return dev->priv_flags & IFF_OPENVSWITCH;
4027 }
4028
4029 static inline bool netif_is_team_master(const struct net_device *dev)
4030 {
4031 return dev->priv_flags & IFF_TEAM;
4032 }
4033
4034 static inline bool netif_is_team_port(const struct net_device *dev)
4035 {
4036 return dev->priv_flags & IFF_TEAM_PORT;
4037 }
4038
4039 static inline bool netif_is_lag_master(const struct net_device *dev)
4040 {
4041 return netif_is_bond_master(dev) || netif_is_team_master(dev);
4042 }
4043
4044 static inline bool netif_is_lag_port(const struct net_device *dev)
4045 {
4046 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4047 }
4048
4049 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4050 static inline void netif_keep_dst(struct net_device *dev)
4051 {
4052 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4053 }
4054
4055 extern struct pernet_operations __net_initdata loopback_net_ops;
4056
4057 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4058
4059 /* netdev_printk helpers, similar to dev_printk */
4060
4061 static inline const char *netdev_name(const struct net_device *dev)
4062 {
4063 if (!dev->name[0] || strchr(dev->name, '%'))
4064 return "(unnamed net_device)";
4065 return dev->name;
4066 }
4067
4068 static inline const char *netdev_reg_state(const struct net_device *dev)
4069 {
4070 switch (dev->reg_state) {
4071 case NETREG_UNINITIALIZED: return " (uninitialized)";
4072 case NETREG_REGISTERED: return "";
4073 case NETREG_UNREGISTERING: return " (unregistering)";
4074 case NETREG_UNREGISTERED: return " (unregistered)";
4075 case NETREG_RELEASED: return " (released)";
4076 case NETREG_DUMMY: return " (dummy)";
4077 }
4078
4079 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4080 return " (unknown)";
4081 }
4082
4083 __printf(3, 4)
4084 void netdev_printk(const char *level, const struct net_device *dev,
4085 const char *format, ...);
4086 __printf(2, 3)
4087 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4088 __printf(2, 3)
4089 void netdev_alert(const struct net_device *dev, const char *format, ...);
4090 __printf(2, 3)
4091 void netdev_crit(const struct net_device *dev, const char *format, ...);
4092 __printf(2, 3)
4093 void netdev_err(const struct net_device *dev, const char *format, ...);
4094 __printf(2, 3)
4095 void netdev_warn(const struct net_device *dev, const char *format, ...);
4096 __printf(2, 3)
4097 void netdev_notice(const struct net_device *dev, const char *format, ...);
4098 __printf(2, 3)
4099 void netdev_info(const struct net_device *dev, const char *format, ...);
4100
4101 #define MODULE_ALIAS_NETDEV(device) \
4102 MODULE_ALIAS("netdev-" device)
4103
4104 #if defined(CONFIG_DYNAMIC_DEBUG)
4105 #define netdev_dbg(__dev, format, args...) \
4106 do { \
4107 dynamic_netdev_dbg(__dev, format, ##args); \
4108 } while (0)
4109 #elif defined(DEBUG)
4110 #define netdev_dbg(__dev, format, args...) \
4111 netdev_printk(KERN_DEBUG, __dev, format, ##args)
4112 #else
4113 #define netdev_dbg(__dev, format, args...) \
4114 ({ \
4115 if (0) \
4116 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4117 })
4118 #endif
4119
4120 #if defined(VERBOSE_DEBUG)
4121 #define netdev_vdbg netdev_dbg
4122 #else
4123
4124 #define netdev_vdbg(dev, format, args...) \
4125 ({ \
4126 if (0) \
4127 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4128 0; \
4129 })
4130 #endif
4131
4132 /*
4133 * netdev_WARN() acts like dev_printk(), but with the key difference
4134 * of using a WARN/WARN_ON to get the message out, including the
4135 * file/line information and a backtrace.
4136 */
4137 #define netdev_WARN(dev, format, args...) \
4138 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \
4139 netdev_reg_state(dev), ##args)
4140
4141 /* netif printk helpers, similar to netdev_printk */
4142
4143 #define netif_printk(priv, type, level, dev, fmt, args...) \
4144 do { \
4145 if (netif_msg_##type(priv)) \
4146 netdev_printk(level, (dev), fmt, ##args); \
4147 } while (0)
4148
4149 #define netif_level(level, priv, type, dev, fmt, args...) \
4150 do { \
4151 if (netif_msg_##type(priv)) \
4152 netdev_##level(dev, fmt, ##args); \
4153 } while (0)
4154
4155 #define netif_emerg(priv, type, dev, fmt, args...) \
4156 netif_level(emerg, priv, type, dev, fmt, ##args)
4157 #define netif_alert(priv, type, dev, fmt, args...) \
4158 netif_level(alert, priv, type, dev, fmt, ##args)
4159 #define netif_crit(priv, type, dev, fmt, args...) \
4160 netif_level(crit, priv, type, dev, fmt, ##args)
4161 #define netif_err(priv, type, dev, fmt, args...) \
4162 netif_level(err, priv, type, dev, fmt, ##args)
4163 #define netif_warn(priv, type, dev, fmt, args...) \
4164 netif_level(warn, priv, type, dev, fmt, ##args)
4165 #define netif_notice(priv, type, dev, fmt, args...) \
4166 netif_level(notice, priv, type, dev, fmt, ##args)
4167 #define netif_info(priv, type, dev, fmt, args...) \
4168 netif_level(info, priv, type, dev, fmt, ##args)
4169
4170 #if defined(CONFIG_DYNAMIC_DEBUG)
4171 #define netif_dbg(priv, type, netdev, format, args...) \
4172 do { \
4173 if (netif_msg_##type(priv)) \
4174 dynamic_netdev_dbg(netdev, format, ##args); \
4175 } while (0)
4176 #elif defined(DEBUG)
4177 #define netif_dbg(priv, type, dev, format, args...) \
4178 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4179 #else
4180 #define netif_dbg(priv, type, dev, format, args...) \
4181 ({ \
4182 if (0) \
4183 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4184 0; \
4185 })
4186 #endif
4187
4188 #if defined(VERBOSE_DEBUG)
4189 #define netif_vdbg netif_dbg
4190 #else
4191 #define netif_vdbg(priv, type, dev, format, args...) \
4192 ({ \
4193 if (0) \
4194 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4195 0; \
4196 })
4197 #endif
4198
4199 /*
4200 * The list of packet types we will receive (as opposed to discard)
4201 * and the routines to invoke.
4202 *
4203 * Why 16. Because with 16 the only overlap we get on a hash of the
4204 * low nibble of the protocol value is RARP/SNAP/X.25.
4205 *
4206 * NOTE: That is no longer true with the addition of VLAN tags. Not
4207 * sure which should go first, but I bet it won't make much
4208 * difference if we are running VLANs. The good news is that
4209 * this protocol won't be in the list unless compiled in, so
4210 * the average user (w/out VLANs) will not be adversely affected.
4211 * --BLG
4212 *
4213 * 0800 IP
4214 * 8100 802.1Q VLAN
4215 * 0001 802.3
4216 * 0002 AX.25
4217 * 0004 802.2
4218 * 8035 RARP
4219 * 0005 SNAP
4220 * 0805 X.25
4221 * 0806 ARP
4222 * 8137 IPX
4223 * 0009 Localtalk
4224 * 86DD IPv6
4225 */
4226 #define PTYPE_HASH_SIZE (16)
4227 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4228
4229 #endif /* _LINUX_NETDEVICE_H */
This page took 0.178282 seconds and 5 git commands to generate.