Merge tag 'bcm5301x-dt-2014-11-27' of https://github.com/hauke/linux into next/dt
[deliverable/linux.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/pm_qos.h>
29 #include <linux/timer.h>
30 #include <linux/bug.h>
31 #include <linux/delay.h>
32 #include <linux/atomic.h>
33 #include <linux/prefetch.h>
34 #include <asm/cache.h>
35 #include <asm/byteorder.h>
36
37 #include <linux/percpu.h>
38 #include <linux/rculist.h>
39 #include <linux/dmaengine.h>
40 #include <linux/workqueue.h>
41 #include <linux/dynamic_queue_limits.h>
42
43 #include <linux/ethtool.h>
44 #include <net/net_namespace.h>
45 #include <net/dsa.h>
46 #ifdef CONFIG_DCB
47 #include <net/dcbnl.h>
48 #endif
49 #include <net/netprio_cgroup.h>
50
51 #include <linux/netdev_features.h>
52 #include <linux/neighbour.h>
53 #include <uapi/linux/netdevice.h>
54
55 struct netpoll_info;
56 struct device;
57 struct phy_device;
58 /* 802.11 specific */
59 struct wireless_dev;
60
61 void netdev_set_default_ethtool_ops(struct net_device *dev,
62 const struct ethtool_ops *ops);
63
64 /* Backlog congestion levels */
65 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
66 #define NET_RX_DROP 1 /* packet dropped */
67
68 /*
69 * Transmit return codes: transmit return codes originate from three different
70 * namespaces:
71 *
72 * - qdisc return codes
73 * - driver transmit return codes
74 * - errno values
75 *
76 * Drivers are allowed to return any one of those in their hard_start_xmit()
77 * function. Real network devices commonly used with qdiscs should only return
78 * the driver transmit return codes though - when qdiscs are used, the actual
79 * transmission happens asynchronously, so the value is not propagated to
80 * higher layers. Virtual network devices transmit synchronously, in this case
81 * the driver transmit return codes are consumed by dev_queue_xmit(), all
82 * others are propagated to higher layers.
83 */
84
85 /* qdisc ->enqueue() return codes. */
86 #define NET_XMIT_SUCCESS 0x00
87 #define NET_XMIT_DROP 0x01 /* skb dropped */
88 #define NET_XMIT_CN 0x02 /* congestion notification */
89 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
90 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
91
92 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
93 * indicates that the device will soon be dropping packets, or already drops
94 * some packets of the same priority; prompting us to send less aggressively. */
95 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
96 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
97
98 /* Driver transmit return codes */
99 #define NETDEV_TX_MASK 0xf0
100
101 enum netdev_tx {
102 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
103 NETDEV_TX_OK = 0x00, /* driver took care of packet */
104 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
105 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
106 };
107 typedef enum netdev_tx netdev_tx_t;
108
109 /*
110 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
111 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
112 */
113 static inline bool dev_xmit_complete(int rc)
114 {
115 /*
116 * Positive cases with an skb consumed by a driver:
117 * - successful transmission (rc == NETDEV_TX_OK)
118 * - error while transmitting (rc < 0)
119 * - error while queueing to a different device (rc & NET_XMIT_MASK)
120 */
121 if (likely(rc < NET_XMIT_MASK))
122 return true;
123
124 return false;
125 }
126
127 /*
128 * Compute the worst case header length according to the protocols
129 * used.
130 */
131
132 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
133 # if defined(CONFIG_MAC80211_MESH)
134 # define LL_MAX_HEADER 128
135 # else
136 # define LL_MAX_HEADER 96
137 # endif
138 #else
139 # define LL_MAX_HEADER 32
140 #endif
141
142 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
143 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
144 #define MAX_HEADER LL_MAX_HEADER
145 #else
146 #define MAX_HEADER (LL_MAX_HEADER + 48)
147 #endif
148
149 /*
150 * Old network device statistics. Fields are native words
151 * (unsigned long) so they can be read and written atomically.
152 */
153
154 struct net_device_stats {
155 unsigned long rx_packets;
156 unsigned long tx_packets;
157 unsigned long rx_bytes;
158 unsigned long tx_bytes;
159 unsigned long rx_errors;
160 unsigned long tx_errors;
161 unsigned long rx_dropped;
162 unsigned long tx_dropped;
163 unsigned long multicast;
164 unsigned long collisions;
165 unsigned long rx_length_errors;
166 unsigned long rx_over_errors;
167 unsigned long rx_crc_errors;
168 unsigned long rx_frame_errors;
169 unsigned long rx_fifo_errors;
170 unsigned long rx_missed_errors;
171 unsigned long tx_aborted_errors;
172 unsigned long tx_carrier_errors;
173 unsigned long tx_fifo_errors;
174 unsigned long tx_heartbeat_errors;
175 unsigned long tx_window_errors;
176 unsigned long rx_compressed;
177 unsigned long tx_compressed;
178 };
179
180
181 #include <linux/cache.h>
182 #include <linux/skbuff.h>
183
184 #ifdef CONFIG_RPS
185 #include <linux/static_key.h>
186 extern struct static_key rps_needed;
187 #endif
188
189 struct neighbour;
190 struct neigh_parms;
191 struct sk_buff;
192
193 struct netdev_hw_addr {
194 struct list_head list;
195 unsigned char addr[MAX_ADDR_LEN];
196 unsigned char type;
197 #define NETDEV_HW_ADDR_T_LAN 1
198 #define NETDEV_HW_ADDR_T_SAN 2
199 #define NETDEV_HW_ADDR_T_SLAVE 3
200 #define NETDEV_HW_ADDR_T_UNICAST 4
201 #define NETDEV_HW_ADDR_T_MULTICAST 5
202 bool global_use;
203 int sync_cnt;
204 int refcount;
205 int synced;
206 struct rcu_head rcu_head;
207 };
208
209 struct netdev_hw_addr_list {
210 struct list_head list;
211 int count;
212 };
213
214 #define netdev_hw_addr_list_count(l) ((l)->count)
215 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
216 #define netdev_hw_addr_list_for_each(ha, l) \
217 list_for_each_entry(ha, &(l)->list, list)
218
219 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
220 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
221 #define netdev_for_each_uc_addr(ha, dev) \
222 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
223
224 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
225 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
226 #define netdev_for_each_mc_addr(ha, dev) \
227 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
228
229 struct hh_cache {
230 u16 hh_len;
231 u16 __pad;
232 seqlock_t hh_lock;
233
234 /* cached hardware header; allow for machine alignment needs. */
235 #define HH_DATA_MOD 16
236 #define HH_DATA_OFF(__len) \
237 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
238 #define HH_DATA_ALIGN(__len) \
239 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
240 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
241 };
242
243 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
244 * Alternative is:
245 * dev->hard_header_len ? (dev->hard_header_len +
246 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
247 *
248 * We could use other alignment values, but we must maintain the
249 * relationship HH alignment <= LL alignment.
250 */
251 #define LL_RESERVED_SPACE(dev) \
252 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
253 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
254 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
255
256 struct header_ops {
257 int (*create) (struct sk_buff *skb, struct net_device *dev,
258 unsigned short type, const void *daddr,
259 const void *saddr, unsigned int len);
260 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
261 int (*rebuild)(struct sk_buff *skb);
262 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
263 void (*cache_update)(struct hh_cache *hh,
264 const struct net_device *dev,
265 const unsigned char *haddr);
266 };
267
268 /* These flag bits are private to the generic network queueing
269 * layer, they may not be explicitly referenced by any other
270 * code.
271 */
272
273 enum netdev_state_t {
274 __LINK_STATE_START,
275 __LINK_STATE_PRESENT,
276 __LINK_STATE_NOCARRIER,
277 __LINK_STATE_LINKWATCH_PENDING,
278 __LINK_STATE_DORMANT,
279 };
280
281
282 /*
283 * This structure holds at boot time configured netdevice settings. They
284 * are then used in the device probing.
285 */
286 struct netdev_boot_setup {
287 char name[IFNAMSIZ];
288 struct ifmap map;
289 };
290 #define NETDEV_BOOT_SETUP_MAX 8
291
292 int __init netdev_boot_setup(char *str);
293
294 /*
295 * Structure for NAPI scheduling similar to tasklet but with weighting
296 */
297 struct napi_struct {
298 /* The poll_list must only be managed by the entity which
299 * changes the state of the NAPI_STATE_SCHED bit. This means
300 * whoever atomically sets that bit can add this napi_struct
301 * to the per-cpu poll_list, and whoever clears that bit
302 * can remove from the list right before clearing the bit.
303 */
304 struct list_head poll_list;
305
306 unsigned long state;
307 int weight;
308 unsigned int gro_count;
309 int (*poll)(struct napi_struct *, int);
310 #ifdef CONFIG_NETPOLL
311 spinlock_t poll_lock;
312 int poll_owner;
313 #endif
314 struct net_device *dev;
315 struct sk_buff *gro_list;
316 struct sk_buff *skb;
317 struct list_head dev_list;
318 struct hlist_node napi_hash_node;
319 unsigned int napi_id;
320 };
321
322 enum {
323 NAPI_STATE_SCHED, /* Poll is scheduled */
324 NAPI_STATE_DISABLE, /* Disable pending */
325 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
326 NAPI_STATE_HASHED, /* In NAPI hash */
327 };
328
329 enum gro_result {
330 GRO_MERGED,
331 GRO_MERGED_FREE,
332 GRO_HELD,
333 GRO_NORMAL,
334 GRO_DROP,
335 };
336 typedef enum gro_result gro_result_t;
337
338 /*
339 * enum rx_handler_result - Possible return values for rx_handlers.
340 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
341 * further.
342 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
343 * case skb->dev was changed by rx_handler.
344 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
345 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
346 *
347 * rx_handlers are functions called from inside __netif_receive_skb(), to do
348 * special processing of the skb, prior to delivery to protocol handlers.
349 *
350 * Currently, a net_device can only have a single rx_handler registered. Trying
351 * to register a second rx_handler will return -EBUSY.
352 *
353 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
354 * To unregister a rx_handler on a net_device, use
355 * netdev_rx_handler_unregister().
356 *
357 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
358 * do with the skb.
359 *
360 * If the rx_handler consumed to skb in some way, it should return
361 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
362 * the skb to be delivered in some other ways.
363 *
364 * If the rx_handler changed skb->dev, to divert the skb to another
365 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
366 * new device will be called if it exists.
367 *
368 * If the rx_handler consider the skb should be ignored, it should return
369 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
370 * are registered on exact device (ptype->dev == skb->dev).
371 *
372 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
373 * delivered, it should return RX_HANDLER_PASS.
374 *
375 * A device without a registered rx_handler will behave as if rx_handler
376 * returned RX_HANDLER_PASS.
377 */
378
379 enum rx_handler_result {
380 RX_HANDLER_CONSUMED,
381 RX_HANDLER_ANOTHER,
382 RX_HANDLER_EXACT,
383 RX_HANDLER_PASS,
384 };
385 typedef enum rx_handler_result rx_handler_result_t;
386 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
387
388 void __napi_schedule(struct napi_struct *n);
389
390 static inline bool napi_disable_pending(struct napi_struct *n)
391 {
392 return test_bit(NAPI_STATE_DISABLE, &n->state);
393 }
394
395 /**
396 * napi_schedule_prep - check if napi can be scheduled
397 * @n: napi context
398 *
399 * Test if NAPI routine is already running, and if not mark
400 * it as running. This is used as a condition variable
401 * insure only one NAPI poll instance runs. We also make
402 * sure there is no pending NAPI disable.
403 */
404 static inline bool napi_schedule_prep(struct napi_struct *n)
405 {
406 return !napi_disable_pending(n) &&
407 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
408 }
409
410 /**
411 * napi_schedule - schedule NAPI poll
412 * @n: napi context
413 *
414 * Schedule NAPI poll routine to be called if it is not already
415 * running.
416 */
417 static inline void napi_schedule(struct napi_struct *n)
418 {
419 if (napi_schedule_prep(n))
420 __napi_schedule(n);
421 }
422
423 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
424 static inline bool napi_reschedule(struct napi_struct *napi)
425 {
426 if (napi_schedule_prep(napi)) {
427 __napi_schedule(napi);
428 return true;
429 }
430 return false;
431 }
432
433 /**
434 * napi_complete - NAPI processing complete
435 * @n: napi context
436 *
437 * Mark NAPI processing as complete.
438 */
439 void __napi_complete(struct napi_struct *n);
440 void napi_complete(struct napi_struct *n);
441
442 /**
443 * napi_by_id - lookup a NAPI by napi_id
444 * @napi_id: hashed napi_id
445 *
446 * lookup @napi_id in napi_hash table
447 * must be called under rcu_read_lock()
448 */
449 struct napi_struct *napi_by_id(unsigned int napi_id);
450
451 /**
452 * napi_hash_add - add a NAPI to global hashtable
453 * @napi: napi context
454 *
455 * generate a new napi_id and store a @napi under it in napi_hash
456 */
457 void napi_hash_add(struct napi_struct *napi);
458
459 /**
460 * napi_hash_del - remove a NAPI from global table
461 * @napi: napi context
462 *
463 * Warning: caller must observe rcu grace period
464 * before freeing memory containing @napi
465 */
466 void napi_hash_del(struct napi_struct *napi);
467
468 /**
469 * napi_disable - prevent NAPI from scheduling
470 * @n: napi context
471 *
472 * Stop NAPI from being scheduled on this context.
473 * Waits till any outstanding processing completes.
474 */
475 static inline void napi_disable(struct napi_struct *n)
476 {
477 might_sleep();
478 set_bit(NAPI_STATE_DISABLE, &n->state);
479 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
480 msleep(1);
481 clear_bit(NAPI_STATE_DISABLE, &n->state);
482 }
483
484 /**
485 * napi_enable - enable NAPI scheduling
486 * @n: napi context
487 *
488 * Resume NAPI from being scheduled on this context.
489 * Must be paired with napi_disable.
490 */
491 static inline void napi_enable(struct napi_struct *n)
492 {
493 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
494 smp_mb__before_atomic();
495 clear_bit(NAPI_STATE_SCHED, &n->state);
496 }
497
498 #ifdef CONFIG_SMP
499 /**
500 * napi_synchronize - wait until NAPI is not running
501 * @n: napi context
502 *
503 * Wait until NAPI is done being scheduled on this context.
504 * Waits till any outstanding processing completes but
505 * does not disable future activations.
506 */
507 static inline void napi_synchronize(const struct napi_struct *n)
508 {
509 while (test_bit(NAPI_STATE_SCHED, &n->state))
510 msleep(1);
511 }
512 #else
513 # define napi_synchronize(n) barrier()
514 #endif
515
516 enum netdev_queue_state_t {
517 __QUEUE_STATE_DRV_XOFF,
518 __QUEUE_STATE_STACK_XOFF,
519 __QUEUE_STATE_FROZEN,
520 };
521
522 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
523 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
524 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
525
526 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
527 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
528 QUEUE_STATE_FROZEN)
529 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
530 QUEUE_STATE_FROZEN)
531
532 /*
533 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
534 * netif_tx_* functions below are used to manipulate this flag. The
535 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
536 * queue independently. The netif_xmit_*stopped functions below are called
537 * to check if the queue has been stopped by the driver or stack (either
538 * of the XOFF bits are set in the state). Drivers should not need to call
539 * netif_xmit*stopped functions, they should only be using netif_tx_*.
540 */
541
542 struct netdev_queue {
543 /*
544 * read mostly part
545 */
546 struct net_device *dev;
547 struct Qdisc __rcu *qdisc;
548 struct Qdisc *qdisc_sleeping;
549 #ifdef CONFIG_SYSFS
550 struct kobject kobj;
551 #endif
552 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
553 int numa_node;
554 #endif
555 /*
556 * write mostly part
557 */
558 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
559 int xmit_lock_owner;
560 /*
561 * please use this field instead of dev->trans_start
562 */
563 unsigned long trans_start;
564
565 /*
566 * Number of TX timeouts for this queue
567 * (/sys/class/net/DEV/Q/trans_timeout)
568 */
569 unsigned long trans_timeout;
570
571 unsigned long state;
572
573 #ifdef CONFIG_BQL
574 struct dql dql;
575 #endif
576 } ____cacheline_aligned_in_smp;
577
578 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
579 {
580 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
581 return q->numa_node;
582 #else
583 return NUMA_NO_NODE;
584 #endif
585 }
586
587 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
588 {
589 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
590 q->numa_node = node;
591 #endif
592 }
593
594 #ifdef CONFIG_RPS
595 /*
596 * This structure holds an RPS map which can be of variable length. The
597 * map is an array of CPUs.
598 */
599 struct rps_map {
600 unsigned int len;
601 struct rcu_head rcu;
602 u16 cpus[0];
603 };
604 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
605
606 /*
607 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
608 * tail pointer for that CPU's input queue at the time of last enqueue, and
609 * a hardware filter index.
610 */
611 struct rps_dev_flow {
612 u16 cpu;
613 u16 filter;
614 unsigned int last_qtail;
615 };
616 #define RPS_NO_FILTER 0xffff
617
618 /*
619 * The rps_dev_flow_table structure contains a table of flow mappings.
620 */
621 struct rps_dev_flow_table {
622 unsigned int mask;
623 struct rcu_head rcu;
624 struct rps_dev_flow flows[0];
625 };
626 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
627 ((_num) * sizeof(struct rps_dev_flow)))
628
629 /*
630 * The rps_sock_flow_table contains mappings of flows to the last CPU
631 * on which they were processed by the application (set in recvmsg).
632 */
633 struct rps_sock_flow_table {
634 unsigned int mask;
635 u16 ents[0];
636 };
637 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
638 ((_num) * sizeof(u16)))
639
640 #define RPS_NO_CPU 0xffff
641
642 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
643 u32 hash)
644 {
645 if (table && hash) {
646 unsigned int cpu, index = hash & table->mask;
647
648 /* We only give a hint, preemption can change cpu under us */
649 cpu = raw_smp_processor_id();
650
651 if (table->ents[index] != cpu)
652 table->ents[index] = cpu;
653 }
654 }
655
656 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
657 u32 hash)
658 {
659 if (table && hash)
660 table->ents[hash & table->mask] = RPS_NO_CPU;
661 }
662
663 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
664
665 #ifdef CONFIG_RFS_ACCEL
666 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
667 u16 filter_id);
668 #endif
669 #endif /* CONFIG_RPS */
670
671 /* This structure contains an instance of an RX queue. */
672 struct netdev_rx_queue {
673 #ifdef CONFIG_RPS
674 struct rps_map __rcu *rps_map;
675 struct rps_dev_flow_table __rcu *rps_flow_table;
676 #endif
677 struct kobject kobj;
678 struct net_device *dev;
679 } ____cacheline_aligned_in_smp;
680
681 /*
682 * RX queue sysfs structures and functions.
683 */
684 struct rx_queue_attribute {
685 struct attribute attr;
686 ssize_t (*show)(struct netdev_rx_queue *queue,
687 struct rx_queue_attribute *attr, char *buf);
688 ssize_t (*store)(struct netdev_rx_queue *queue,
689 struct rx_queue_attribute *attr, const char *buf, size_t len);
690 };
691
692 #ifdef CONFIG_XPS
693 /*
694 * This structure holds an XPS map which can be of variable length. The
695 * map is an array of queues.
696 */
697 struct xps_map {
698 unsigned int len;
699 unsigned int alloc_len;
700 struct rcu_head rcu;
701 u16 queues[0];
702 };
703 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
704 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
705 / sizeof(u16))
706
707 /*
708 * This structure holds all XPS maps for device. Maps are indexed by CPU.
709 */
710 struct xps_dev_maps {
711 struct rcu_head rcu;
712 struct xps_map __rcu *cpu_map[0];
713 };
714 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
715 (nr_cpu_ids * sizeof(struct xps_map *)))
716 #endif /* CONFIG_XPS */
717
718 #define TC_MAX_QUEUE 16
719 #define TC_BITMASK 15
720 /* HW offloaded queuing disciplines txq count and offset maps */
721 struct netdev_tc_txq {
722 u16 count;
723 u16 offset;
724 };
725
726 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
727 /*
728 * This structure is to hold information about the device
729 * configured to run FCoE protocol stack.
730 */
731 struct netdev_fcoe_hbainfo {
732 char manufacturer[64];
733 char serial_number[64];
734 char hardware_version[64];
735 char driver_version[64];
736 char optionrom_version[64];
737 char firmware_version[64];
738 char model[256];
739 char model_description[256];
740 };
741 #endif
742
743 #define MAX_PHYS_PORT_ID_LEN 32
744
745 /* This structure holds a unique identifier to identify the
746 * physical port used by a netdevice.
747 */
748 struct netdev_phys_port_id {
749 unsigned char id[MAX_PHYS_PORT_ID_LEN];
750 unsigned char id_len;
751 };
752
753 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
754 struct sk_buff *skb);
755
756 /*
757 * This structure defines the management hooks for network devices.
758 * The following hooks can be defined; unless noted otherwise, they are
759 * optional and can be filled with a null pointer.
760 *
761 * int (*ndo_init)(struct net_device *dev);
762 * This function is called once when network device is registered.
763 * The network device can use this to any late stage initializaton
764 * or semantic validattion. It can fail with an error code which will
765 * be propogated back to register_netdev
766 *
767 * void (*ndo_uninit)(struct net_device *dev);
768 * This function is called when device is unregistered or when registration
769 * fails. It is not called if init fails.
770 *
771 * int (*ndo_open)(struct net_device *dev);
772 * This function is called when network device transistions to the up
773 * state.
774 *
775 * int (*ndo_stop)(struct net_device *dev);
776 * This function is called when network device transistions to the down
777 * state.
778 *
779 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
780 * struct net_device *dev);
781 * Called when a packet needs to be transmitted.
782 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
783 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
784 * Required can not be NULL.
785 *
786 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
787 * void *accel_priv, select_queue_fallback_t fallback);
788 * Called to decide which queue to when device supports multiple
789 * transmit queues.
790 *
791 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
792 * This function is called to allow device receiver to make
793 * changes to configuration when multicast or promiscious is enabled.
794 *
795 * void (*ndo_set_rx_mode)(struct net_device *dev);
796 * This function is called device changes address list filtering.
797 * If driver handles unicast address filtering, it should set
798 * IFF_UNICAST_FLT to its priv_flags.
799 *
800 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
801 * This function is called when the Media Access Control address
802 * needs to be changed. If this interface is not defined, the
803 * mac address can not be changed.
804 *
805 * int (*ndo_validate_addr)(struct net_device *dev);
806 * Test if Media Access Control address is valid for the device.
807 *
808 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
809 * Called when a user request an ioctl which can't be handled by
810 * the generic interface code. If not defined ioctl's return
811 * not supported error code.
812 *
813 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
814 * Used to set network devices bus interface parameters. This interface
815 * is retained for legacy reason, new devices should use the bus
816 * interface (PCI) for low level management.
817 *
818 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
819 * Called when a user wants to change the Maximum Transfer Unit
820 * of a device. If not defined, any request to change MTU will
821 * will return an error.
822 *
823 * void (*ndo_tx_timeout)(struct net_device *dev);
824 * Callback uses when the transmitter has not made any progress
825 * for dev->watchdog ticks.
826 *
827 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
828 * struct rtnl_link_stats64 *storage);
829 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
830 * Called when a user wants to get the network device usage
831 * statistics. Drivers must do one of the following:
832 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
833 * rtnl_link_stats64 structure passed by the caller.
834 * 2. Define @ndo_get_stats to update a net_device_stats structure
835 * (which should normally be dev->stats) and return a pointer to
836 * it. The structure may be changed asynchronously only if each
837 * field is written atomically.
838 * 3. Update dev->stats asynchronously and atomically, and define
839 * neither operation.
840 *
841 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16t vid);
842 * If device support VLAN filtering this function is called when a
843 * VLAN id is registered.
844 *
845 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
846 * If device support VLAN filtering this function is called when a
847 * VLAN id is unregistered.
848 *
849 * void (*ndo_poll_controller)(struct net_device *dev);
850 *
851 * SR-IOV management functions.
852 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
853 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
854 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
855 * int max_tx_rate);
856 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
857 * int (*ndo_get_vf_config)(struct net_device *dev,
858 * int vf, struct ifla_vf_info *ivf);
859 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
860 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
861 * struct nlattr *port[]);
862 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
863 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
864 * Called to setup 'tc' number of traffic classes in the net device. This
865 * is always called from the stack with the rtnl lock held and netif tx
866 * queues stopped. This allows the netdevice to perform queue management
867 * safely.
868 *
869 * Fiber Channel over Ethernet (FCoE) offload functions.
870 * int (*ndo_fcoe_enable)(struct net_device *dev);
871 * Called when the FCoE protocol stack wants to start using LLD for FCoE
872 * so the underlying device can perform whatever needed configuration or
873 * initialization to support acceleration of FCoE traffic.
874 *
875 * int (*ndo_fcoe_disable)(struct net_device *dev);
876 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
877 * so the underlying device can perform whatever needed clean-ups to
878 * stop supporting acceleration of FCoE traffic.
879 *
880 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
881 * struct scatterlist *sgl, unsigned int sgc);
882 * Called when the FCoE Initiator wants to initialize an I/O that
883 * is a possible candidate for Direct Data Placement (DDP). The LLD can
884 * perform necessary setup and returns 1 to indicate the device is set up
885 * successfully to perform DDP on this I/O, otherwise this returns 0.
886 *
887 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
888 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
889 * indicated by the FC exchange id 'xid', so the underlying device can
890 * clean up and reuse resources for later DDP requests.
891 *
892 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
893 * struct scatterlist *sgl, unsigned int sgc);
894 * Called when the FCoE Target wants to initialize an I/O that
895 * is a possible candidate for Direct Data Placement (DDP). The LLD can
896 * perform necessary setup and returns 1 to indicate the device is set up
897 * successfully to perform DDP on this I/O, otherwise this returns 0.
898 *
899 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
900 * struct netdev_fcoe_hbainfo *hbainfo);
901 * Called when the FCoE Protocol stack wants information on the underlying
902 * device. This information is utilized by the FCoE protocol stack to
903 * register attributes with Fiber Channel management service as per the
904 * FC-GS Fabric Device Management Information(FDMI) specification.
905 *
906 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
907 * Called when the underlying device wants to override default World Wide
908 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
909 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
910 * protocol stack to use.
911 *
912 * RFS acceleration.
913 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
914 * u16 rxq_index, u32 flow_id);
915 * Set hardware filter for RFS. rxq_index is the target queue index;
916 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
917 * Return the filter ID on success, or a negative error code.
918 *
919 * Slave management functions (for bridge, bonding, etc).
920 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
921 * Called to make another netdev an underling.
922 *
923 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
924 * Called to release previously enslaved netdev.
925 *
926 * Feature/offload setting functions.
927 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
928 * netdev_features_t features);
929 * Adjusts the requested feature flags according to device-specific
930 * constraints, and returns the resulting flags. Must not modify
931 * the device state.
932 *
933 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
934 * Called to update device configuration to new features. Passed
935 * feature set might be less than what was returned by ndo_fix_features()).
936 * Must return >0 or -errno if it changed dev->features itself.
937 *
938 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
939 * struct net_device *dev,
940 * const unsigned char *addr, u16 flags)
941 * Adds an FDB entry to dev for addr.
942 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
943 * struct net_device *dev,
944 * const unsigned char *addr)
945 * Deletes the FDB entry from dev coresponding to addr.
946 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
947 * struct net_device *dev, struct net_device *filter_dev,
948 * int idx)
949 * Used to add FDB entries to dump requests. Implementers should add
950 * entries to skb and update idx with the number of entries.
951 *
952 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
953 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
954 * struct net_device *dev, u32 filter_mask)
955 *
956 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
957 * Called to change device carrier. Soft-devices (like dummy, team, etc)
958 * which do not represent real hardware may define this to allow their
959 * userspace components to manage their virtual carrier state. Devices
960 * that determine carrier state from physical hardware properties (eg
961 * network cables) or protocol-dependent mechanisms (eg
962 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
963 *
964 * int (*ndo_get_phys_port_id)(struct net_device *dev,
965 * struct netdev_phys_port_id *ppid);
966 * Called to get ID of physical port of this device. If driver does
967 * not implement this, it is assumed that the hw is not able to have
968 * multiple net devices on single physical port.
969 *
970 * void (*ndo_add_vxlan_port)(struct net_device *dev,
971 * sa_family_t sa_family, __be16 port);
972 * Called by vxlan to notiy a driver about the UDP port and socket
973 * address family that vxlan is listnening to. It is called only when
974 * a new port starts listening. The operation is protected by the
975 * vxlan_net->sock_lock.
976 *
977 * void (*ndo_del_vxlan_port)(struct net_device *dev,
978 * sa_family_t sa_family, __be16 port);
979 * Called by vxlan to notify the driver about a UDP port and socket
980 * address family that vxlan is not listening to anymore. The operation
981 * is protected by the vxlan_net->sock_lock.
982 *
983 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
984 * struct net_device *dev)
985 * Called by upper layer devices to accelerate switching or other
986 * station functionality into hardware. 'pdev is the lowerdev
987 * to use for the offload and 'dev' is the net device that will
988 * back the offload. Returns a pointer to the private structure
989 * the upper layer will maintain.
990 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
991 * Called by upper layer device to delete the station created
992 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
993 * the station and priv is the structure returned by the add
994 * operation.
995 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
996 * struct net_device *dev,
997 * void *priv);
998 * Callback to use for xmit over the accelerated station. This
999 * is used in place of ndo_start_xmit on accelerated net
1000 * devices.
1001 * bool (*ndo_gso_check) (struct sk_buff *skb,
1002 * struct net_device *dev);
1003 * Called by core transmit path to determine if device is capable of
1004 * performing GSO on a packet. The device returns true if it is
1005 * able to GSO the packet, false otherwise. If the return value is
1006 * false the stack will do software GSO.
1007 */
1008 struct net_device_ops {
1009 int (*ndo_init)(struct net_device *dev);
1010 void (*ndo_uninit)(struct net_device *dev);
1011 int (*ndo_open)(struct net_device *dev);
1012 int (*ndo_stop)(struct net_device *dev);
1013 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
1014 struct net_device *dev);
1015 u16 (*ndo_select_queue)(struct net_device *dev,
1016 struct sk_buff *skb,
1017 void *accel_priv,
1018 select_queue_fallback_t fallback);
1019 void (*ndo_change_rx_flags)(struct net_device *dev,
1020 int flags);
1021 void (*ndo_set_rx_mode)(struct net_device *dev);
1022 int (*ndo_set_mac_address)(struct net_device *dev,
1023 void *addr);
1024 int (*ndo_validate_addr)(struct net_device *dev);
1025 int (*ndo_do_ioctl)(struct net_device *dev,
1026 struct ifreq *ifr, int cmd);
1027 int (*ndo_set_config)(struct net_device *dev,
1028 struct ifmap *map);
1029 int (*ndo_change_mtu)(struct net_device *dev,
1030 int new_mtu);
1031 int (*ndo_neigh_setup)(struct net_device *dev,
1032 struct neigh_parms *);
1033 void (*ndo_tx_timeout) (struct net_device *dev);
1034
1035 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1036 struct rtnl_link_stats64 *storage);
1037 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1038
1039 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1040 __be16 proto, u16 vid);
1041 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1042 __be16 proto, u16 vid);
1043 #ifdef CONFIG_NET_POLL_CONTROLLER
1044 void (*ndo_poll_controller)(struct net_device *dev);
1045 int (*ndo_netpoll_setup)(struct net_device *dev,
1046 struct netpoll_info *info);
1047 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1048 #endif
1049 #ifdef CONFIG_NET_RX_BUSY_POLL
1050 int (*ndo_busy_poll)(struct napi_struct *dev);
1051 #endif
1052 int (*ndo_set_vf_mac)(struct net_device *dev,
1053 int queue, u8 *mac);
1054 int (*ndo_set_vf_vlan)(struct net_device *dev,
1055 int queue, u16 vlan, u8 qos);
1056 int (*ndo_set_vf_rate)(struct net_device *dev,
1057 int vf, int min_tx_rate,
1058 int max_tx_rate);
1059 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1060 int vf, bool setting);
1061 int (*ndo_get_vf_config)(struct net_device *dev,
1062 int vf,
1063 struct ifla_vf_info *ivf);
1064 int (*ndo_set_vf_link_state)(struct net_device *dev,
1065 int vf, int link_state);
1066 int (*ndo_set_vf_port)(struct net_device *dev,
1067 int vf,
1068 struct nlattr *port[]);
1069 int (*ndo_get_vf_port)(struct net_device *dev,
1070 int vf, struct sk_buff *skb);
1071 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1072 #if IS_ENABLED(CONFIG_FCOE)
1073 int (*ndo_fcoe_enable)(struct net_device *dev);
1074 int (*ndo_fcoe_disable)(struct net_device *dev);
1075 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1076 u16 xid,
1077 struct scatterlist *sgl,
1078 unsigned int sgc);
1079 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1080 u16 xid);
1081 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1082 u16 xid,
1083 struct scatterlist *sgl,
1084 unsigned int sgc);
1085 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1086 struct netdev_fcoe_hbainfo *hbainfo);
1087 #endif
1088
1089 #if IS_ENABLED(CONFIG_LIBFCOE)
1090 #define NETDEV_FCOE_WWNN 0
1091 #define NETDEV_FCOE_WWPN 1
1092 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1093 u64 *wwn, int type);
1094 #endif
1095
1096 #ifdef CONFIG_RFS_ACCEL
1097 int (*ndo_rx_flow_steer)(struct net_device *dev,
1098 const struct sk_buff *skb,
1099 u16 rxq_index,
1100 u32 flow_id);
1101 #endif
1102 int (*ndo_add_slave)(struct net_device *dev,
1103 struct net_device *slave_dev);
1104 int (*ndo_del_slave)(struct net_device *dev,
1105 struct net_device *slave_dev);
1106 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1107 netdev_features_t features);
1108 int (*ndo_set_features)(struct net_device *dev,
1109 netdev_features_t features);
1110 int (*ndo_neigh_construct)(struct neighbour *n);
1111 void (*ndo_neigh_destroy)(struct neighbour *n);
1112
1113 int (*ndo_fdb_add)(struct ndmsg *ndm,
1114 struct nlattr *tb[],
1115 struct net_device *dev,
1116 const unsigned char *addr,
1117 u16 flags);
1118 int (*ndo_fdb_del)(struct ndmsg *ndm,
1119 struct nlattr *tb[],
1120 struct net_device *dev,
1121 const unsigned char *addr);
1122 int (*ndo_fdb_dump)(struct sk_buff *skb,
1123 struct netlink_callback *cb,
1124 struct net_device *dev,
1125 struct net_device *filter_dev,
1126 int idx);
1127
1128 int (*ndo_bridge_setlink)(struct net_device *dev,
1129 struct nlmsghdr *nlh);
1130 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1131 u32 pid, u32 seq,
1132 struct net_device *dev,
1133 u32 filter_mask);
1134 int (*ndo_bridge_dellink)(struct net_device *dev,
1135 struct nlmsghdr *nlh);
1136 int (*ndo_change_carrier)(struct net_device *dev,
1137 bool new_carrier);
1138 int (*ndo_get_phys_port_id)(struct net_device *dev,
1139 struct netdev_phys_port_id *ppid);
1140 void (*ndo_add_vxlan_port)(struct net_device *dev,
1141 sa_family_t sa_family,
1142 __be16 port);
1143 void (*ndo_del_vxlan_port)(struct net_device *dev,
1144 sa_family_t sa_family,
1145 __be16 port);
1146
1147 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1148 struct net_device *dev);
1149 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1150 void *priv);
1151
1152 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1153 struct net_device *dev,
1154 void *priv);
1155 int (*ndo_get_lock_subclass)(struct net_device *dev);
1156 bool (*ndo_gso_check) (struct sk_buff *skb,
1157 struct net_device *dev);
1158 };
1159
1160 /**
1161 * enum net_device_priv_flags - &struct net_device priv_flags
1162 *
1163 * These are the &struct net_device, they are only set internally
1164 * by drivers and used in the kernel. These flags are invisible to
1165 * userspace, this means that the order of these flags can change
1166 * during any kernel release.
1167 *
1168 * You should have a pretty good reason to be extending these flags.
1169 *
1170 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1171 * @IFF_EBRIDGE: Ethernet bridging device
1172 * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active
1173 * @IFF_MASTER_8023AD: bonding master, 802.3ad
1174 * @IFF_MASTER_ALB: bonding master, balance-alb
1175 * @IFF_BONDING: bonding master or slave
1176 * @IFF_SLAVE_NEEDARP: need ARPs for validation
1177 * @IFF_ISATAP: ISATAP interface (RFC4214)
1178 * @IFF_MASTER_ARPMON: bonding master, ARP mon in use
1179 * @IFF_WAN_HDLC: WAN HDLC device
1180 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1181 * release skb->dst
1182 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1183 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1184 * @IFF_MACVLAN_PORT: device used as macvlan port
1185 * @IFF_BRIDGE_PORT: device used as bridge port
1186 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1187 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1188 * @IFF_UNICAST_FLT: Supports unicast filtering
1189 * @IFF_TEAM_PORT: device used as team port
1190 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1191 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1192 * change when it's running
1193 * @IFF_MACVLAN: Macvlan device
1194 */
1195 enum netdev_priv_flags {
1196 IFF_802_1Q_VLAN = 1<<0,
1197 IFF_EBRIDGE = 1<<1,
1198 IFF_SLAVE_INACTIVE = 1<<2,
1199 IFF_MASTER_8023AD = 1<<3,
1200 IFF_MASTER_ALB = 1<<4,
1201 IFF_BONDING = 1<<5,
1202 IFF_SLAVE_NEEDARP = 1<<6,
1203 IFF_ISATAP = 1<<7,
1204 IFF_MASTER_ARPMON = 1<<8,
1205 IFF_WAN_HDLC = 1<<9,
1206 IFF_XMIT_DST_RELEASE = 1<<10,
1207 IFF_DONT_BRIDGE = 1<<11,
1208 IFF_DISABLE_NETPOLL = 1<<12,
1209 IFF_MACVLAN_PORT = 1<<13,
1210 IFF_BRIDGE_PORT = 1<<14,
1211 IFF_OVS_DATAPATH = 1<<15,
1212 IFF_TX_SKB_SHARING = 1<<16,
1213 IFF_UNICAST_FLT = 1<<17,
1214 IFF_TEAM_PORT = 1<<18,
1215 IFF_SUPP_NOFCS = 1<<19,
1216 IFF_LIVE_ADDR_CHANGE = 1<<20,
1217 IFF_MACVLAN = 1<<21,
1218 IFF_XMIT_DST_RELEASE_PERM = 1<<22,
1219 };
1220
1221 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1222 #define IFF_EBRIDGE IFF_EBRIDGE
1223 #define IFF_SLAVE_INACTIVE IFF_SLAVE_INACTIVE
1224 #define IFF_MASTER_8023AD IFF_MASTER_8023AD
1225 #define IFF_MASTER_ALB IFF_MASTER_ALB
1226 #define IFF_BONDING IFF_BONDING
1227 #define IFF_SLAVE_NEEDARP IFF_SLAVE_NEEDARP
1228 #define IFF_ISATAP IFF_ISATAP
1229 #define IFF_MASTER_ARPMON IFF_MASTER_ARPMON
1230 #define IFF_WAN_HDLC IFF_WAN_HDLC
1231 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1232 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1233 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1234 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1235 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1236 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1237 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1238 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1239 #define IFF_TEAM_PORT IFF_TEAM_PORT
1240 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1241 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1242 #define IFF_MACVLAN IFF_MACVLAN
1243 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1244
1245 /**
1246 * struct net_device - The DEVICE structure.
1247 * Actually, this whole structure is a big mistake. It mixes I/O
1248 * data with strictly "high-level" data, and it has to know about
1249 * almost every data structure used in the INET module.
1250 *
1251 * @name: This is the first field of the "visible" part of this structure
1252 * (i.e. as seen by users in the "Space.c" file). It is the name
1253 * of the interface.
1254 *
1255 * @name_hlist: Device name hash chain, please keep it close to name[]
1256 * @ifalias: SNMP alias
1257 * @mem_end: Shared memory end
1258 * @mem_start: Shared memory start
1259 * @base_addr: Device I/O address
1260 * @irq: Device IRQ number
1261 *
1262 * @state: Generic network queuing layer state, see netdev_state_t
1263 * @dev_list: The global list of network devices
1264 * @napi_list: List entry, that is used for polling napi devices
1265 * @unreg_list: List entry, that is used, when we are unregistering the
1266 * device, see the function unregister_netdev
1267 * @close_list: List entry, that is used, when we are closing the device
1268 *
1269 * @adj_list: Directly linked devices, like slaves for bonding
1270 * @all_adj_list: All linked devices, *including* neighbours
1271 * @features: Currently active device features
1272 * @hw_features: User-changeable features
1273 *
1274 * @wanted_features: User-requested features
1275 * @vlan_features: Mask of features inheritable by VLAN devices
1276 *
1277 * @hw_enc_features: Mask of features inherited by encapsulating devices
1278 * This field indicates what encapsulation
1279 * offloads the hardware is capable of doing,
1280 * and drivers will need to set them appropriately.
1281 *
1282 * @mpls_features: Mask of features inheritable by MPLS
1283 *
1284 * @ifindex: interface index
1285 * @iflink: unique device identifier
1286 *
1287 * @stats: Statistics struct, which was left as a legacy, use
1288 * rtnl_link_stats64 instead
1289 *
1290 * @rx_dropped: Dropped packets by core network,
1291 * do not use this in drivers
1292 * @tx_dropped: Dropped packets by core network,
1293 * do not use this in drivers
1294 *
1295 * @carrier_changes: Stats to monitor carrier on<->off transitions
1296 *
1297 * @wireless_handlers: List of functions to handle Wireless Extensions,
1298 * instead of ioctl,
1299 * see <net/iw_handler.h> for details.
1300 * @wireless_data: Instance data managed by the core of wireless extensions
1301 *
1302 * @netdev_ops: Includes several pointers to callbacks,
1303 * if one wants to override the ndo_*() functions
1304 * @ethtool_ops: Management operations
1305 * @fwd_ops: Management operations
1306 * @header_ops: Includes callbacks for creating,parsing,rebuilding,etc
1307 * of Layer 2 headers.
1308 *
1309 * @flags: Interface flags (a la BSD)
1310 * @priv_flags: Like 'flags' but invisible to userspace,
1311 * see if.h for the definitions
1312 * @gflags: Global flags ( kept as legacy )
1313 * @padded: How much padding added by alloc_netdev()
1314 * @operstate: RFC2863 operstate
1315 * @link_mode: Mapping policy to operstate
1316 * @if_port: Selectable AUI, TP, ...
1317 * @dma: DMA channel
1318 * @mtu: Interface MTU value
1319 * @type: Interface hardware type
1320 * @hard_header_len: Hardware header length
1321 *
1322 * @needed_headroom: Extra headroom the hardware may need, but not in all
1323 * cases can this be guaranteed
1324 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1325 * cases can this be guaranteed. Some cases also use
1326 * LL_MAX_HEADER instead to allocate the skb
1327 *
1328 * interface address info:
1329 *
1330 * @perm_addr: Permanent hw address
1331 * @addr_assign_type: Hw address assignment type
1332 * @addr_len: Hardware address length
1333 * @neigh_priv_len; Used in neigh_alloc(),
1334 * initialized only in atm/clip.c
1335 * @dev_id: Used to differentiate devices that share
1336 * the same link layer address
1337 * @dev_port: Used to differentiate devices that share
1338 * the same function
1339 * @addr_list_lock: XXX: need comments on this one
1340 * @uc: unicast mac addresses
1341 * @mc: multicast mac addresses
1342 * @dev_addrs: list of device hw addresses
1343 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1344 * @uc_promisc: Counter, that indicates, that promiscuous mode
1345 * has been enabled due to the need to listen to
1346 * additional unicast addresses in a device that
1347 * does not implement ndo_set_rx_mode()
1348 * @promiscuity: Number of times, the NIC is told to work in
1349 * Promiscuous mode, if it becomes 0 the NIC will
1350 * exit from working in Promiscuous mode
1351 * @allmulti: Counter, enables or disables allmulticast mode
1352 *
1353 * @vlan_info: VLAN info
1354 * @dsa_ptr: dsa specific data
1355 * @tipc_ptr: TIPC specific data
1356 * @atalk_ptr: AppleTalk link
1357 * @ip_ptr: IPv4 specific data
1358 * @dn_ptr: DECnet specific data
1359 * @ip6_ptr: IPv6 specific data
1360 * @ax25_ptr: AX.25 specific data
1361 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1362 *
1363 * @last_rx: Time of last Rx
1364 * @dev_addr: Hw address (before bcast,
1365 * because most packets are unicast)
1366 *
1367 * @_rx: Array of RX queues
1368 * @num_rx_queues: Number of RX queues
1369 * allocated at register_netdev() time
1370 * @real_num_rx_queues: Number of RX queues currently active in device
1371 *
1372 * @rx_handler: handler for received packets
1373 * @rx_handler_data: XXX: need comments on this one
1374 * @ingress_queue: XXX: need comments on this one
1375 * @broadcast: hw bcast address
1376 *
1377 * @_tx: Array of TX queues
1378 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1379 * @real_num_tx_queues: Number of TX queues currently active in device
1380 * @qdisc: Root qdisc from userspace point of view
1381 * @tx_queue_len: Max frames per queue allowed
1382 * @tx_global_lock: XXX: need comments on this one
1383 *
1384 * @xps_maps: XXX: need comments on this one
1385 *
1386 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1387 * indexed by RX queue number. Assigned by driver.
1388 * This must only be set if the ndo_rx_flow_steer
1389 * operation is defined
1390 *
1391 * @trans_start: Time (in jiffies) of last Tx
1392 * @watchdog_timeo: Represents the timeout that is used by
1393 * the watchdog ( see dev_watchdog() )
1394 * @watchdog_timer: List of timers
1395 *
1396 * @pcpu_refcnt: Number of references to this device
1397 * @todo_list: Delayed register/unregister
1398 * @index_hlist: Device index hash chain
1399 * @link_watch_list: XXX: need comments on this one
1400 *
1401 * @reg_state: Register/unregister state machine
1402 * @dismantle: Device is going to be freed
1403 * @rtnl_link_state: This enum represents the phases of creating
1404 * a new link
1405 *
1406 * @destructor: Called from unregister,
1407 * can be used to call free_netdev
1408 * @npinfo: XXX: need comments on this one
1409 * @nd_net: Network namespace this network device is inside
1410 *
1411 * @ml_priv: Mid-layer private
1412 * @lstats: Loopback statistics
1413 * @tstats: Tunnel statistics
1414 * @dstats: Dummy statistics
1415 * @vstats: Virtual ethernet statistics
1416 *
1417 * @garp_port: GARP
1418 * @mrp_port: MRP
1419 *
1420 * @dev: Class/net/name entry
1421 * @sysfs_groups: Space for optional device, statistics and wireless
1422 * sysfs groups
1423 *
1424 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1425 * @rtnl_link_ops: Rtnl_link_ops
1426 *
1427 * @gso_max_size: Maximum size of generic segmentation offload
1428 * @gso_max_segs: Maximum number of segments that can be passed to the
1429 * NIC for GSO
1430 * @gso_min_segs: Minimum number of segments that can be passed to the
1431 * NIC for GSO
1432 *
1433 * @dcbnl_ops: Data Center Bridging netlink ops
1434 * @num_tc: Number of traffic classes in the net device
1435 * @tc_to_txq: XXX: need comments on this one
1436 * @prio_tc_map XXX: need comments on this one
1437 *
1438 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1439 *
1440 * @priomap: XXX: need comments on this one
1441 * @phydev: Physical device may attach itself
1442 * for hardware timestamping
1443 *
1444 * @qdisc_tx_busylock: XXX: need comments on this one
1445 *
1446 * @group: The group, that the device belongs to
1447 * @pm_qos_req: Power Management QoS object
1448 *
1449 * FIXME: cleanup struct net_device such that network protocol info
1450 * moves out.
1451 */
1452
1453 struct net_device {
1454 char name[IFNAMSIZ];
1455 struct hlist_node name_hlist;
1456 char *ifalias;
1457 /*
1458 * I/O specific fields
1459 * FIXME: Merge these and struct ifmap into one
1460 */
1461 unsigned long mem_end;
1462 unsigned long mem_start;
1463 unsigned long base_addr;
1464 int irq;
1465
1466 /*
1467 * Some hardware also needs these fields (state,dev_list,
1468 * napi_list,unreg_list,close_list) but they are not
1469 * part of the usual set specified in Space.c.
1470 */
1471
1472 unsigned long state;
1473
1474 struct list_head dev_list;
1475 struct list_head napi_list;
1476 struct list_head unreg_list;
1477 struct list_head close_list;
1478
1479 struct {
1480 struct list_head upper;
1481 struct list_head lower;
1482 } adj_list;
1483
1484 struct {
1485 struct list_head upper;
1486 struct list_head lower;
1487 } all_adj_list;
1488
1489 netdev_features_t features;
1490 netdev_features_t hw_features;
1491 netdev_features_t wanted_features;
1492 netdev_features_t vlan_features;
1493 netdev_features_t hw_enc_features;
1494 netdev_features_t mpls_features;
1495
1496 int ifindex;
1497 int iflink;
1498
1499 struct net_device_stats stats;
1500
1501 atomic_long_t rx_dropped;
1502 atomic_long_t tx_dropped;
1503
1504 atomic_t carrier_changes;
1505
1506 #ifdef CONFIG_WIRELESS_EXT
1507 const struct iw_handler_def * wireless_handlers;
1508 struct iw_public_data * wireless_data;
1509 #endif
1510 const struct net_device_ops *netdev_ops;
1511 const struct ethtool_ops *ethtool_ops;
1512 const struct forwarding_accel_ops *fwd_ops;
1513
1514 const struct header_ops *header_ops;
1515
1516 unsigned int flags;
1517 unsigned int priv_flags;
1518
1519 unsigned short gflags;
1520 unsigned short padded;
1521
1522 unsigned char operstate;
1523 unsigned char link_mode;
1524
1525 unsigned char if_port;
1526 unsigned char dma;
1527
1528 unsigned int mtu;
1529 unsigned short type;
1530 unsigned short hard_header_len;
1531
1532 unsigned short needed_headroom;
1533 unsigned short needed_tailroom;
1534
1535 /* Interface address info. */
1536 unsigned char perm_addr[MAX_ADDR_LEN];
1537 unsigned char addr_assign_type;
1538 unsigned char addr_len;
1539 unsigned short neigh_priv_len;
1540 unsigned short dev_id;
1541 unsigned short dev_port;
1542 spinlock_t addr_list_lock;
1543 struct netdev_hw_addr_list uc;
1544 struct netdev_hw_addr_list mc;
1545 struct netdev_hw_addr_list dev_addrs;
1546
1547 #ifdef CONFIG_SYSFS
1548 struct kset *queues_kset;
1549 #endif
1550
1551 unsigned char name_assign_type;
1552
1553 bool uc_promisc;
1554 unsigned int promiscuity;
1555 unsigned int allmulti;
1556
1557
1558 /* Protocol specific pointers */
1559
1560 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1561 struct vlan_info __rcu *vlan_info;
1562 #endif
1563 #if IS_ENABLED(CONFIG_NET_DSA)
1564 struct dsa_switch_tree *dsa_ptr;
1565 #endif
1566 #if IS_ENABLED(CONFIG_TIPC)
1567 struct tipc_bearer __rcu *tipc_ptr;
1568 #endif
1569 void *atalk_ptr;
1570 struct in_device __rcu *ip_ptr;
1571 struct dn_dev __rcu *dn_ptr;
1572 struct inet6_dev __rcu *ip6_ptr;
1573 void *ax25_ptr;
1574 struct wireless_dev *ieee80211_ptr;
1575
1576 /*
1577 * Cache lines mostly used on receive path (including eth_type_trans())
1578 */
1579 unsigned long last_rx;
1580
1581 /* Interface address info used in eth_type_trans() */
1582 unsigned char *dev_addr;
1583
1584
1585 #ifdef CONFIG_SYSFS
1586 struct netdev_rx_queue *_rx;
1587
1588 unsigned int num_rx_queues;
1589 unsigned int real_num_rx_queues;
1590
1591 #endif
1592
1593 rx_handler_func_t __rcu *rx_handler;
1594 void __rcu *rx_handler_data;
1595
1596 struct netdev_queue __rcu *ingress_queue;
1597 unsigned char broadcast[MAX_ADDR_LEN];
1598
1599
1600 /*
1601 * Cache lines mostly used on transmit path
1602 */
1603 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1604 unsigned int num_tx_queues;
1605 unsigned int real_num_tx_queues;
1606 struct Qdisc *qdisc;
1607 unsigned long tx_queue_len;
1608 spinlock_t tx_global_lock;
1609
1610 #ifdef CONFIG_XPS
1611 struct xps_dev_maps __rcu *xps_maps;
1612 #endif
1613 #ifdef CONFIG_RFS_ACCEL
1614 struct cpu_rmap *rx_cpu_rmap;
1615 #endif
1616
1617 /* These may be needed for future network-power-down code. */
1618
1619 /*
1620 * trans_start here is expensive for high speed devices on SMP,
1621 * please use netdev_queue->trans_start instead.
1622 */
1623 unsigned long trans_start;
1624
1625 int watchdog_timeo;
1626 struct timer_list watchdog_timer;
1627
1628 int __percpu *pcpu_refcnt;
1629 struct list_head todo_list;
1630
1631 struct hlist_node index_hlist;
1632 struct list_head link_watch_list;
1633
1634 enum { NETREG_UNINITIALIZED=0,
1635 NETREG_REGISTERED, /* completed register_netdevice */
1636 NETREG_UNREGISTERING, /* called unregister_netdevice */
1637 NETREG_UNREGISTERED, /* completed unregister todo */
1638 NETREG_RELEASED, /* called free_netdev */
1639 NETREG_DUMMY, /* dummy device for NAPI poll */
1640 } reg_state:8;
1641
1642 bool dismantle;
1643
1644 enum {
1645 RTNL_LINK_INITIALIZED,
1646 RTNL_LINK_INITIALIZING,
1647 } rtnl_link_state:16;
1648
1649 void (*destructor)(struct net_device *dev);
1650
1651 #ifdef CONFIG_NETPOLL
1652 struct netpoll_info __rcu *npinfo;
1653 #endif
1654
1655 #ifdef CONFIG_NET_NS
1656 struct net *nd_net;
1657 #endif
1658
1659 /* mid-layer private */
1660 union {
1661 void *ml_priv;
1662 struct pcpu_lstats __percpu *lstats;
1663 struct pcpu_sw_netstats __percpu *tstats;
1664 struct pcpu_dstats __percpu *dstats;
1665 struct pcpu_vstats __percpu *vstats;
1666 };
1667
1668 struct garp_port __rcu *garp_port;
1669 struct mrp_port __rcu *mrp_port;
1670
1671 struct device dev;
1672 const struct attribute_group *sysfs_groups[4];
1673 const struct attribute_group *sysfs_rx_queue_group;
1674
1675 const struct rtnl_link_ops *rtnl_link_ops;
1676
1677 /* for setting kernel sock attribute on TCP connection setup */
1678 #define GSO_MAX_SIZE 65536
1679 unsigned int gso_max_size;
1680 #define GSO_MAX_SEGS 65535
1681 u16 gso_max_segs;
1682 u16 gso_min_segs;
1683 #ifdef CONFIG_DCB
1684 const struct dcbnl_rtnl_ops *dcbnl_ops;
1685 #endif
1686 u8 num_tc;
1687 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1688 u8 prio_tc_map[TC_BITMASK + 1];
1689
1690 #if IS_ENABLED(CONFIG_FCOE)
1691 unsigned int fcoe_ddp_xid;
1692 #endif
1693 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1694 struct netprio_map __rcu *priomap;
1695 #endif
1696 struct phy_device *phydev;
1697 struct lock_class_key *qdisc_tx_busylock;
1698 int group;
1699 struct pm_qos_request pm_qos_req;
1700 };
1701 #define to_net_dev(d) container_of(d, struct net_device, dev)
1702
1703 #define NETDEV_ALIGN 32
1704
1705 static inline
1706 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1707 {
1708 return dev->prio_tc_map[prio & TC_BITMASK];
1709 }
1710
1711 static inline
1712 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1713 {
1714 if (tc >= dev->num_tc)
1715 return -EINVAL;
1716
1717 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1718 return 0;
1719 }
1720
1721 static inline
1722 void netdev_reset_tc(struct net_device *dev)
1723 {
1724 dev->num_tc = 0;
1725 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1726 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1727 }
1728
1729 static inline
1730 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1731 {
1732 if (tc >= dev->num_tc)
1733 return -EINVAL;
1734
1735 dev->tc_to_txq[tc].count = count;
1736 dev->tc_to_txq[tc].offset = offset;
1737 return 0;
1738 }
1739
1740 static inline
1741 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1742 {
1743 if (num_tc > TC_MAX_QUEUE)
1744 return -EINVAL;
1745
1746 dev->num_tc = num_tc;
1747 return 0;
1748 }
1749
1750 static inline
1751 int netdev_get_num_tc(struct net_device *dev)
1752 {
1753 return dev->num_tc;
1754 }
1755
1756 static inline
1757 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1758 unsigned int index)
1759 {
1760 return &dev->_tx[index];
1761 }
1762
1763 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1764 const struct sk_buff *skb)
1765 {
1766 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1767 }
1768
1769 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1770 void (*f)(struct net_device *,
1771 struct netdev_queue *,
1772 void *),
1773 void *arg)
1774 {
1775 unsigned int i;
1776
1777 for (i = 0; i < dev->num_tx_queues; i++)
1778 f(dev, &dev->_tx[i], arg);
1779 }
1780
1781 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1782 struct sk_buff *skb,
1783 void *accel_priv);
1784
1785 /*
1786 * Net namespace inlines
1787 */
1788 static inline
1789 struct net *dev_net(const struct net_device *dev)
1790 {
1791 return read_pnet(&dev->nd_net);
1792 }
1793
1794 static inline
1795 void dev_net_set(struct net_device *dev, struct net *net)
1796 {
1797 #ifdef CONFIG_NET_NS
1798 release_net(dev->nd_net);
1799 dev->nd_net = hold_net(net);
1800 #endif
1801 }
1802
1803 static inline bool netdev_uses_dsa(struct net_device *dev)
1804 {
1805 #if IS_ENABLED(CONFIG_NET_DSA)
1806 if (dev->dsa_ptr != NULL)
1807 return dsa_uses_tagged_protocol(dev->dsa_ptr);
1808 #endif
1809 return false;
1810 }
1811
1812 /**
1813 * netdev_priv - access network device private data
1814 * @dev: network device
1815 *
1816 * Get network device private data
1817 */
1818 static inline void *netdev_priv(const struct net_device *dev)
1819 {
1820 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1821 }
1822
1823 /* Set the sysfs physical device reference for the network logical device
1824 * if set prior to registration will cause a symlink during initialization.
1825 */
1826 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1827
1828 /* Set the sysfs device type for the network logical device to allow
1829 * fine-grained identification of different network device types. For
1830 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1831 */
1832 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1833
1834 /* Default NAPI poll() weight
1835 * Device drivers are strongly advised to not use bigger value
1836 */
1837 #define NAPI_POLL_WEIGHT 64
1838
1839 /**
1840 * netif_napi_add - initialize a napi context
1841 * @dev: network device
1842 * @napi: napi context
1843 * @poll: polling function
1844 * @weight: default weight
1845 *
1846 * netif_napi_add() must be used to initialize a napi context prior to calling
1847 * *any* of the other napi related functions.
1848 */
1849 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1850 int (*poll)(struct napi_struct *, int), int weight);
1851
1852 /**
1853 * netif_napi_del - remove a napi context
1854 * @napi: napi context
1855 *
1856 * netif_napi_del() removes a napi context from the network device napi list
1857 */
1858 void netif_napi_del(struct napi_struct *napi);
1859
1860 struct napi_gro_cb {
1861 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1862 void *frag0;
1863
1864 /* Length of frag0. */
1865 unsigned int frag0_len;
1866
1867 /* This indicates where we are processing relative to skb->data. */
1868 int data_offset;
1869
1870 /* This is non-zero if the packet cannot be merged with the new skb. */
1871 u16 flush;
1872
1873 /* Save the IP ID here and check when we get to the transport layer */
1874 u16 flush_id;
1875
1876 /* Number of segments aggregated. */
1877 u16 count;
1878
1879 /* This is non-zero if the packet may be of the same flow. */
1880 u8 same_flow;
1881
1882 /* Free the skb? */
1883 u8 free;
1884 #define NAPI_GRO_FREE 1
1885 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1886
1887 /* jiffies when first packet was created/queued */
1888 unsigned long age;
1889
1890 /* Used in ipv6_gro_receive() and foo-over-udp */
1891 u16 proto;
1892
1893 /* Used in udp_gro_receive */
1894 u8 udp_mark:1;
1895
1896 /* GRO checksum is valid */
1897 u8 csum_valid:1;
1898
1899 /* Number of checksums via CHECKSUM_UNNECESSARY */
1900 u8 csum_cnt:3;
1901
1902 /* Used in foo-over-udp, set in udp[46]_gro_receive */
1903 u8 is_ipv6:1;
1904
1905 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
1906 __wsum csum;
1907
1908 /* used in skb_gro_receive() slow path */
1909 struct sk_buff *last;
1910 };
1911
1912 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1913
1914 struct packet_type {
1915 __be16 type; /* This is really htons(ether_type). */
1916 struct net_device *dev; /* NULL is wildcarded here */
1917 int (*func) (struct sk_buff *,
1918 struct net_device *,
1919 struct packet_type *,
1920 struct net_device *);
1921 bool (*id_match)(struct packet_type *ptype,
1922 struct sock *sk);
1923 void *af_packet_priv;
1924 struct list_head list;
1925 };
1926
1927 struct offload_callbacks {
1928 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1929 netdev_features_t features);
1930 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1931 struct sk_buff *skb);
1932 int (*gro_complete)(struct sk_buff *skb, int nhoff);
1933 };
1934
1935 struct packet_offload {
1936 __be16 type; /* This is really htons(ether_type). */
1937 struct offload_callbacks callbacks;
1938 struct list_head list;
1939 };
1940
1941 struct udp_offload {
1942 __be16 port;
1943 u8 ipproto;
1944 struct offload_callbacks callbacks;
1945 };
1946
1947 /* often modified stats are per cpu, other are shared (netdev->stats) */
1948 struct pcpu_sw_netstats {
1949 u64 rx_packets;
1950 u64 rx_bytes;
1951 u64 tx_packets;
1952 u64 tx_bytes;
1953 struct u64_stats_sync syncp;
1954 };
1955
1956 #define netdev_alloc_pcpu_stats(type) \
1957 ({ \
1958 typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
1959 if (pcpu_stats) { \
1960 int i; \
1961 for_each_possible_cpu(i) { \
1962 typeof(type) *stat; \
1963 stat = per_cpu_ptr(pcpu_stats, i); \
1964 u64_stats_init(&stat->syncp); \
1965 } \
1966 } \
1967 pcpu_stats; \
1968 })
1969
1970 #include <linux/notifier.h>
1971
1972 /* netdevice notifier chain. Please remember to update the rtnetlink
1973 * notification exclusion list in rtnetlink_event() when adding new
1974 * types.
1975 */
1976 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
1977 #define NETDEV_DOWN 0x0002
1978 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
1979 detected a hardware crash and restarted
1980 - we can use this eg to kick tcp sessions
1981 once done */
1982 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
1983 #define NETDEV_REGISTER 0x0005
1984 #define NETDEV_UNREGISTER 0x0006
1985 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
1986 #define NETDEV_CHANGEADDR 0x0008
1987 #define NETDEV_GOING_DOWN 0x0009
1988 #define NETDEV_CHANGENAME 0x000A
1989 #define NETDEV_FEAT_CHANGE 0x000B
1990 #define NETDEV_BONDING_FAILOVER 0x000C
1991 #define NETDEV_PRE_UP 0x000D
1992 #define NETDEV_PRE_TYPE_CHANGE 0x000E
1993 #define NETDEV_POST_TYPE_CHANGE 0x000F
1994 #define NETDEV_POST_INIT 0x0010
1995 #define NETDEV_UNREGISTER_FINAL 0x0011
1996 #define NETDEV_RELEASE 0x0012
1997 #define NETDEV_NOTIFY_PEERS 0x0013
1998 #define NETDEV_JOIN 0x0014
1999 #define NETDEV_CHANGEUPPER 0x0015
2000 #define NETDEV_RESEND_IGMP 0x0016
2001 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
2002 #define NETDEV_CHANGEINFODATA 0x0018
2003
2004 int register_netdevice_notifier(struct notifier_block *nb);
2005 int unregister_netdevice_notifier(struct notifier_block *nb);
2006
2007 struct netdev_notifier_info {
2008 struct net_device *dev;
2009 };
2010
2011 struct netdev_notifier_change_info {
2012 struct netdev_notifier_info info; /* must be first */
2013 unsigned int flags_changed;
2014 };
2015
2016 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2017 struct net_device *dev)
2018 {
2019 info->dev = dev;
2020 }
2021
2022 static inline struct net_device *
2023 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2024 {
2025 return info->dev;
2026 }
2027
2028 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2029
2030
2031 extern rwlock_t dev_base_lock; /* Device list lock */
2032
2033 #define for_each_netdev(net, d) \
2034 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2035 #define for_each_netdev_reverse(net, d) \
2036 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2037 #define for_each_netdev_rcu(net, d) \
2038 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2039 #define for_each_netdev_safe(net, d, n) \
2040 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2041 #define for_each_netdev_continue(net, d) \
2042 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2043 #define for_each_netdev_continue_rcu(net, d) \
2044 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2045 #define for_each_netdev_in_bond_rcu(bond, slave) \
2046 for_each_netdev_rcu(&init_net, slave) \
2047 if (netdev_master_upper_dev_get_rcu(slave) == bond)
2048 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2049
2050 static inline struct net_device *next_net_device(struct net_device *dev)
2051 {
2052 struct list_head *lh;
2053 struct net *net;
2054
2055 net = dev_net(dev);
2056 lh = dev->dev_list.next;
2057 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2058 }
2059
2060 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2061 {
2062 struct list_head *lh;
2063 struct net *net;
2064
2065 net = dev_net(dev);
2066 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2067 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2068 }
2069
2070 static inline struct net_device *first_net_device(struct net *net)
2071 {
2072 return list_empty(&net->dev_base_head) ? NULL :
2073 net_device_entry(net->dev_base_head.next);
2074 }
2075
2076 static inline struct net_device *first_net_device_rcu(struct net *net)
2077 {
2078 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2079
2080 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2081 }
2082
2083 int netdev_boot_setup_check(struct net_device *dev);
2084 unsigned long netdev_boot_base(const char *prefix, int unit);
2085 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2086 const char *hwaddr);
2087 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2088 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2089 void dev_add_pack(struct packet_type *pt);
2090 void dev_remove_pack(struct packet_type *pt);
2091 void __dev_remove_pack(struct packet_type *pt);
2092 void dev_add_offload(struct packet_offload *po);
2093 void dev_remove_offload(struct packet_offload *po);
2094
2095 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2096 unsigned short mask);
2097 struct net_device *dev_get_by_name(struct net *net, const char *name);
2098 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2099 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2100 int dev_alloc_name(struct net_device *dev, const char *name);
2101 int dev_open(struct net_device *dev);
2102 int dev_close(struct net_device *dev);
2103 void dev_disable_lro(struct net_device *dev);
2104 int dev_loopback_xmit(struct sk_buff *newskb);
2105 int dev_queue_xmit(struct sk_buff *skb);
2106 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2107 int register_netdevice(struct net_device *dev);
2108 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2109 void unregister_netdevice_many(struct list_head *head);
2110 static inline void unregister_netdevice(struct net_device *dev)
2111 {
2112 unregister_netdevice_queue(dev, NULL);
2113 }
2114
2115 int netdev_refcnt_read(const struct net_device *dev);
2116 void free_netdev(struct net_device *dev);
2117 void netdev_freemem(struct net_device *dev);
2118 void synchronize_net(void);
2119 int init_dummy_netdev(struct net_device *dev);
2120
2121 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2122 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2123 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2124 int netdev_get_name(struct net *net, char *name, int ifindex);
2125 int dev_restart(struct net_device *dev);
2126 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2127
2128 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2129 {
2130 return NAPI_GRO_CB(skb)->data_offset;
2131 }
2132
2133 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2134 {
2135 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2136 }
2137
2138 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2139 {
2140 NAPI_GRO_CB(skb)->data_offset += len;
2141 }
2142
2143 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2144 unsigned int offset)
2145 {
2146 return NAPI_GRO_CB(skb)->frag0 + offset;
2147 }
2148
2149 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2150 {
2151 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2152 }
2153
2154 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2155 unsigned int offset)
2156 {
2157 if (!pskb_may_pull(skb, hlen))
2158 return NULL;
2159
2160 NAPI_GRO_CB(skb)->frag0 = NULL;
2161 NAPI_GRO_CB(skb)->frag0_len = 0;
2162 return skb->data + offset;
2163 }
2164
2165 static inline void *skb_gro_network_header(struct sk_buff *skb)
2166 {
2167 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2168 skb_network_offset(skb);
2169 }
2170
2171 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2172 const void *start, unsigned int len)
2173 {
2174 if (NAPI_GRO_CB(skb)->csum_valid)
2175 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2176 csum_partial(start, len, 0));
2177 }
2178
2179 /* GRO checksum functions. These are logical equivalents of the normal
2180 * checksum functions (in skbuff.h) except that they operate on the GRO
2181 * offsets and fields in sk_buff.
2182 */
2183
2184 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2185
2186 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2187 bool zero_okay,
2188 __sum16 check)
2189 {
2190 return (skb->ip_summed != CHECKSUM_PARTIAL &&
2191 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2192 (!zero_okay || check));
2193 }
2194
2195 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2196 __wsum psum)
2197 {
2198 if (NAPI_GRO_CB(skb)->csum_valid &&
2199 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2200 return 0;
2201
2202 NAPI_GRO_CB(skb)->csum = psum;
2203
2204 return __skb_gro_checksum_complete(skb);
2205 }
2206
2207 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2208 {
2209 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2210 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2211 NAPI_GRO_CB(skb)->csum_cnt--;
2212 } else {
2213 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2214 * verified a new top level checksum or an encapsulated one
2215 * during GRO. This saves work if we fallback to normal path.
2216 */
2217 __skb_incr_checksum_unnecessary(skb);
2218 }
2219 }
2220
2221 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2222 compute_pseudo) \
2223 ({ \
2224 __sum16 __ret = 0; \
2225 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2226 __ret = __skb_gro_checksum_validate_complete(skb, \
2227 compute_pseudo(skb, proto)); \
2228 if (__ret) \
2229 __skb_mark_checksum_bad(skb); \
2230 else \
2231 skb_gro_incr_csum_unnecessary(skb); \
2232 __ret; \
2233 })
2234
2235 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2236 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2237
2238 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2239 compute_pseudo) \
2240 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2241
2242 #define skb_gro_checksum_simple_validate(skb) \
2243 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2244
2245 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2246 {
2247 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2248 !NAPI_GRO_CB(skb)->csum_valid);
2249 }
2250
2251 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2252 __sum16 check, __wsum pseudo)
2253 {
2254 NAPI_GRO_CB(skb)->csum = ~pseudo;
2255 NAPI_GRO_CB(skb)->csum_valid = 1;
2256 }
2257
2258 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2259 do { \
2260 if (__skb_gro_checksum_convert_check(skb)) \
2261 __skb_gro_checksum_convert(skb, check, \
2262 compute_pseudo(skb, proto)); \
2263 } while (0)
2264
2265 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2266 unsigned short type,
2267 const void *daddr, const void *saddr,
2268 unsigned int len)
2269 {
2270 if (!dev->header_ops || !dev->header_ops->create)
2271 return 0;
2272
2273 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2274 }
2275
2276 static inline int dev_parse_header(const struct sk_buff *skb,
2277 unsigned char *haddr)
2278 {
2279 const struct net_device *dev = skb->dev;
2280
2281 if (!dev->header_ops || !dev->header_ops->parse)
2282 return 0;
2283 return dev->header_ops->parse(skb, haddr);
2284 }
2285
2286 static inline int dev_rebuild_header(struct sk_buff *skb)
2287 {
2288 const struct net_device *dev = skb->dev;
2289
2290 if (!dev->header_ops || !dev->header_ops->rebuild)
2291 return 0;
2292 return dev->header_ops->rebuild(skb);
2293 }
2294
2295 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2296 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2297 static inline int unregister_gifconf(unsigned int family)
2298 {
2299 return register_gifconf(family, NULL);
2300 }
2301
2302 #ifdef CONFIG_NET_FLOW_LIMIT
2303 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2304 struct sd_flow_limit {
2305 u64 count;
2306 unsigned int num_buckets;
2307 unsigned int history_head;
2308 u16 history[FLOW_LIMIT_HISTORY];
2309 u8 buckets[];
2310 };
2311
2312 extern int netdev_flow_limit_table_len;
2313 #endif /* CONFIG_NET_FLOW_LIMIT */
2314
2315 /*
2316 * Incoming packets are placed on per-cpu queues
2317 */
2318 struct softnet_data {
2319 struct Qdisc *output_queue;
2320 struct Qdisc **output_queue_tailp;
2321 struct list_head poll_list;
2322 struct sk_buff *completion_queue;
2323 struct sk_buff_head process_queue;
2324
2325 /* stats */
2326 unsigned int processed;
2327 unsigned int time_squeeze;
2328 unsigned int cpu_collision;
2329 unsigned int received_rps;
2330
2331 #ifdef CONFIG_RPS
2332 struct softnet_data *rps_ipi_list;
2333
2334 /* Elements below can be accessed between CPUs for RPS */
2335 struct call_single_data csd ____cacheline_aligned_in_smp;
2336 struct softnet_data *rps_ipi_next;
2337 unsigned int cpu;
2338 unsigned int input_queue_head;
2339 unsigned int input_queue_tail;
2340 #endif
2341 unsigned int dropped;
2342 struct sk_buff_head input_pkt_queue;
2343 struct napi_struct backlog;
2344
2345 #ifdef CONFIG_NET_FLOW_LIMIT
2346 struct sd_flow_limit __rcu *flow_limit;
2347 #endif
2348 };
2349
2350 static inline void input_queue_head_incr(struct softnet_data *sd)
2351 {
2352 #ifdef CONFIG_RPS
2353 sd->input_queue_head++;
2354 #endif
2355 }
2356
2357 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2358 unsigned int *qtail)
2359 {
2360 #ifdef CONFIG_RPS
2361 *qtail = ++sd->input_queue_tail;
2362 #endif
2363 }
2364
2365 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2366
2367 void __netif_schedule(struct Qdisc *q);
2368 void netif_schedule_queue(struct netdev_queue *txq);
2369
2370 static inline void netif_tx_schedule_all(struct net_device *dev)
2371 {
2372 unsigned int i;
2373
2374 for (i = 0; i < dev->num_tx_queues; i++)
2375 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2376 }
2377
2378 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2379 {
2380 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2381 }
2382
2383 /**
2384 * netif_start_queue - allow transmit
2385 * @dev: network device
2386 *
2387 * Allow upper layers to call the device hard_start_xmit routine.
2388 */
2389 static inline void netif_start_queue(struct net_device *dev)
2390 {
2391 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2392 }
2393
2394 static inline void netif_tx_start_all_queues(struct net_device *dev)
2395 {
2396 unsigned int i;
2397
2398 for (i = 0; i < dev->num_tx_queues; i++) {
2399 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2400 netif_tx_start_queue(txq);
2401 }
2402 }
2403
2404 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2405
2406 /**
2407 * netif_wake_queue - restart transmit
2408 * @dev: network device
2409 *
2410 * Allow upper layers to call the device hard_start_xmit routine.
2411 * Used for flow control when transmit resources are available.
2412 */
2413 static inline void netif_wake_queue(struct net_device *dev)
2414 {
2415 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2416 }
2417
2418 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2419 {
2420 unsigned int i;
2421
2422 for (i = 0; i < dev->num_tx_queues; i++) {
2423 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2424 netif_tx_wake_queue(txq);
2425 }
2426 }
2427
2428 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2429 {
2430 if (WARN_ON(!dev_queue)) {
2431 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2432 return;
2433 }
2434 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2435 }
2436
2437 /**
2438 * netif_stop_queue - stop transmitted packets
2439 * @dev: network device
2440 *
2441 * Stop upper layers calling the device hard_start_xmit routine.
2442 * Used for flow control when transmit resources are unavailable.
2443 */
2444 static inline void netif_stop_queue(struct net_device *dev)
2445 {
2446 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2447 }
2448
2449 static inline void netif_tx_stop_all_queues(struct net_device *dev)
2450 {
2451 unsigned int i;
2452
2453 for (i = 0; i < dev->num_tx_queues; i++) {
2454 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2455 netif_tx_stop_queue(txq);
2456 }
2457 }
2458
2459 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2460 {
2461 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2462 }
2463
2464 /**
2465 * netif_queue_stopped - test if transmit queue is flowblocked
2466 * @dev: network device
2467 *
2468 * Test if transmit queue on device is currently unable to send.
2469 */
2470 static inline bool netif_queue_stopped(const struct net_device *dev)
2471 {
2472 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2473 }
2474
2475 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2476 {
2477 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2478 }
2479
2480 static inline bool
2481 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2482 {
2483 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2484 }
2485
2486 static inline bool
2487 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2488 {
2489 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2490 }
2491
2492 /**
2493 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2494 * @dev_queue: pointer to transmit queue
2495 *
2496 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2497 * to give appropriate hint to the cpu.
2498 */
2499 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2500 {
2501 #ifdef CONFIG_BQL
2502 prefetchw(&dev_queue->dql.num_queued);
2503 #endif
2504 }
2505
2506 /**
2507 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2508 * @dev_queue: pointer to transmit queue
2509 *
2510 * BQL enabled drivers might use this helper in their TX completion path,
2511 * to give appropriate hint to the cpu.
2512 */
2513 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2514 {
2515 #ifdef CONFIG_BQL
2516 prefetchw(&dev_queue->dql.limit);
2517 #endif
2518 }
2519
2520 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2521 unsigned int bytes)
2522 {
2523 #ifdef CONFIG_BQL
2524 dql_queued(&dev_queue->dql, bytes);
2525
2526 if (likely(dql_avail(&dev_queue->dql) >= 0))
2527 return;
2528
2529 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2530
2531 /*
2532 * The XOFF flag must be set before checking the dql_avail below,
2533 * because in netdev_tx_completed_queue we update the dql_completed
2534 * before checking the XOFF flag.
2535 */
2536 smp_mb();
2537
2538 /* check again in case another CPU has just made room avail */
2539 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2540 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2541 #endif
2542 }
2543
2544 /**
2545 * netdev_sent_queue - report the number of bytes queued to hardware
2546 * @dev: network device
2547 * @bytes: number of bytes queued to the hardware device queue
2548 *
2549 * Report the number of bytes queued for sending/completion to the network
2550 * device hardware queue. @bytes should be a good approximation and should
2551 * exactly match netdev_completed_queue() @bytes
2552 */
2553 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2554 {
2555 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2556 }
2557
2558 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2559 unsigned int pkts, unsigned int bytes)
2560 {
2561 #ifdef CONFIG_BQL
2562 if (unlikely(!bytes))
2563 return;
2564
2565 dql_completed(&dev_queue->dql, bytes);
2566
2567 /*
2568 * Without the memory barrier there is a small possiblity that
2569 * netdev_tx_sent_queue will miss the update and cause the queue to
2570 * be stopped forever
2571 */
2572 smp_mb();
2573
2574 if (dql_avail(&dev_queue->dql) < 0)
2575 return;
2576
2577 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2578 netif_schedule_queue(dev_queue);
2579 #endif
2580 }
2581
2582 /**
2583 * netdev_completed_queue - report bytes and packets completed by device
2584 * @dev: network device
2585 * @pkts: actual number of packets sent over the medium
2586 * @bytes: actual number of bytes sent over the medium
2587 *
2588 * Report the number of bytes and packets transmitted by the network device
2589 * hardware queue over the physical medium, @bytes must exactly match the
2590 * @bytes amount passed to netdev_sent_queue()
2591 */
2592 static inline void netdev_completed_queue(struct net_device *dev,
2593 unsigned int pkts, unsigned int bytes)
2594 {
2595 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2596 }
2597
2598 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2599 {
2600 #ifdef CONFIG_BQL
2601 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2602 dql_reset(&q->dql);
2603 #endif
2604 }
2605
2606 /**
2607 * netdev_reset_queue - reset the packets and bytes count of a network device
2608 * @dev_queue: network device
2609 *
2610 * Reset the bytes and packet count of a network device and clear the
2611 * software flow control OFF bit for this network device
2612 */
2613 static inline void netdev_reset_queue(struct net_device *dev_queue)
2614 {
2615 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2616 }
2617
2618 /**
2619 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
2620 * @dev: network device
2621 * @queue_index: given tx queue index
2622 *
2623 * Returns 0 if given tx queue index >= number of device tx queues,
2624 * otherwise returns the originally passed tx queue index.
2625 */
2626 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2627 {
2628 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2629 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2630 dev->name, queue_index,
2631 dev->real_num_tx_queues);
2632 return 0;
2633 }
2634
2635 return queue_index;
2636 }
2637
2638 /**
2639 * netif_running - test if up
2640 * @dev: network device
2641 *
2642 * Test if the device has been brought up.
2643 */
2644 static inline bool netif_running(const struct net_device *dev)
2645 {
2646 return test_bit(__LINK_STATE_START, &dev->state);
2647 }
2648
2649 /*
2650 * Routines to manage the subqueues on a device. We only need start
2651 * stop, and a check if it's stopped. All other device management is
2652 * done at the overall netdevice level.
2653 * Also test the device if we're multiqueue.
2654 */
2655
2656 /**
2657 * netif_start_subqueue - allow sending packets on subqueue
2658 * @dev: network device
2659 * @queue_index: sub queue index
2660 *
2661 * Start individual transmit queue of a device with multiple transmit queues.
2662 */
2663 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2664 {
2665 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2666
2667 netif_tx_start_queue(txq);
2668 }
2669
2670 /**
2671 * netif_stop_subqueue - stop sending packets on subqueue
2672 * @dev: network device
2673 * @queue_index: sub queue index
2674 *
2675 * Stop individual transmit queue of a device with multiple transmit queues.
2676 */
2677 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2678 {
2679 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2680 netif_tx_stop_queue(txq);
2681 }
2682
2683 /**
2684 * netif_subqueue_stopped - test status of subqueue
2685 * @dev: network device
2686 * @queue_index: sub queue index
2687 *
2688 * Check individual transmit queue of a device with multiple transmit queues.
2689 */
2690 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2691 u16 queue_index)
2692 {
2693 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2694
2695 return netif_tx_queue_stopped(txq);
2696 }
2697
2698 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2699 struct sk_buff *skb)
2700 {
2701 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2702 }
2703
2704 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2705
2706 #ifdef CONFIG_XPS
2707 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2708 u16 index);
2709 #else
2710 static inline int netif_set_xps_queue(struct net_device *dev,
2711 const struct cpumask *mask,
2712 u16 index)
2713 {
2714 return 0;
2715 }
2716 #endif
2717
2718 /*
2719 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2720 * as a distribution range limit for the returned value.
2721 */
2722 static inline u16 skb_tx_hash(const struct net_device *dev,
2723 struct sk_buff *skb)
2724 {
2725 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2726 }
2727
2728 /**
2729 * netif_is_multiqueue - test if device has multiple transmit queues
2730 * @dev: network device
2731 *
2732 * Check if device has multiple transmit queues
2733 */
2734 static inline bool netif_is_multiqueue(const struct net_device *dev)
2735 {
2736 return dev->num_tx_queues > 1;
2737 }
2738
2739 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2740
2741 #ifdef CONFIG_SYSFS
2742 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2743 #else
2744 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2745 unsigned int rxq)
2746 {
2747 return 0;
2748 }
2749 #endif
2750
2751 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2752 const struct net_device *from_dev)
2753 {
2754 int err;
2755
2756 err = netif_set_real_num_tx_queues(to_dev,
2757 from_dev->real_num_tx_queues);
2758 if (err)
2759 return err;
2760 #ifdef CONFIG_SYSFS
2761 return netif_set_real_num_rx_queues(to_dev,
2762 from_dev->real_num_rx_queues);
2763 #else
2764 return 0;
2765 #endif
2766 }
2767
2768 #ifdef CONFIG_SYSFS
2769 static inline unsigned int get_netdev_rx_queue_index(
2770 struct netdev_rx_queue *queue)
2771 {
2772 struct net_device *dev = queue->dev;
2773 int index = queue - dev->_rx;
2774
2775 BUG_ON(index >= dev->num_rx_queues);
2776 return index;
2777 }
2778 #endif
2779
2780 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
2781 int netif_get_num_default_rss_queues(void);
2782
2783 enum skb_free_reason {
2784 SKB_REASON_CONSUMED,
2785 SKB_REASON_DROPPED,
2786 };
2787
2788 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2789 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2790
2791 /*
2792 * It is not allowed to call kfree_skb() or consume_skb() from hardware
2793 * interrupt context or with hardware interrupts being disabled.
2794 * (in_irq() || irqs_disabled())
2795 *
2796 * We provide four helpers that can be used in following contexts :
2797 *
2798 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2799 * replacing kfree_skb(skb)
2800 *
2801 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2802 * Typically used in place of consume_skb(skb) in TX completion path
2803 *
2804 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2805 * replacing kfree_skb(skb)
2806 *
2807 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2808 * and consumed a packet. Used in place of consume_skb(skb)
2809 */
2810 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2811 {
2812 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2813 }
2814
2815 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2816 {
2817 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2818 }
2819
2820 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2821 {
2822 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2823 }
2824
2825 static inline void dev_consume_skb_any(struct sk_buff *skb)
2826 {
2827 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2828 }
2829
2830 int netif_rx(struct sk_buff *skb);
2831 int netif_rx_ni(struct sk_buff *skb);
2832 int netif_receive_skb(struct sk_buff *skb);
2833 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2834 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2835 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2836 gro_result_t napi_gro_frags(struct napi_struct *napi);
2837 struct packet_offload *gro_find_receive_by_type(__be16 type);
2838 struct packet_offload *gro_find_complete_by_type(__be16 type);
2839
2840 static inline void napi_free_frags(struct napi_struct *napi)
2841 {
2842 kfree_skb(napi->skb);
2843 napi->skb = NULL;
2844 }
2845
2846 int netdev_rx_handler_register(struct net_device *dev,
2847 rx_handler_func_t *rx_handler,
2848 void *rx_handler_data);
2849 void netdev_rx_handler_unregister(struct net_device *dev);
2850
2851 bool dev_valid_name(const char *name);
2852 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2853 int dev_ethtool(struct net *net, struct ifreq *);
2854 unsigned int dev_get_flags(const struct net_device *);
2855 int __dev_change_flags(struct net_device *, unsigned int flags);
2856 int dev_change_flags(struct net_device *, unsigned int);
2857 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2858 unsigned int gchanges);
2859 int dev_change_name(struct net_device *, const char *);
2860 int dev_set_alias(struct net_device *, const char *, size_t);
2861 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2862 int dev_set_mtu(struct net_device *, int);
2863 void dev_set_group(struct net_device *, int);
2864 int dev_set_mac_address(struct net_device *, struct sockaddr *);
2865 int dev_change_carrier(struct net_device *, bool new_carrier);
2866 int dev_get_phys_port_id(struct net_device *dev,
2867 struct netdev_phys_port_id *ppid);
2868 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
2869 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2870 struct netdev_queue *txq, int *ret);
2871 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2872 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2873 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
2874
2875 extern int netdev_budget;
2876
2877 /* Called by rtnetlink.c:rtnl_unlock() */
2878 void netdev_run_todo(void);
2879
2880 /**
2881 * dev_put - release reference to device
2882 * @dev: network device
2883 *
2884 * Release reference to device to allow it to be freed.
2885 */
2886 static inline void dev_put(struct net_device *dev)
2887 {
2888 this_cpu_dec(*dev->pcpu_refcnt);
2889 }
2890
2891 /**
2892 * dev_hold - get reference to device
2893 * @dev: network device
2894 *
2895 * Hold reference to device to keep it from being freed.
2896 */
2897 static inline void dev_hold(struct net_device *dev)
2898 {
2899 this_cpu_inc(*dev->pcpu_refcnt);
2900 }
2901
2902 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2903 * and _off may be called from IRQ context, but it is caller
2904 * who is responsible for serialization of these calls.
2905 *
2906 * The name carrier is inappropriate, these functions should really be
2907 * called netif_lowerlayer_*() because they represent the state of any
2908 * kind of lower layer not just hardware media.
2909 */
2910
2911 void linkwatch_init_dev(struct net_device *dev);
2912 void linkwatch_fire_event(struct net_device *dev);
2913 void linkwatch_forget_dev(struct net_device *dev);
2914
2915 /**
2916 * netif_carrier_ok - test if carrier present
2917 * @dev: network device
2918 *
2919 * Check if carrier is present on device
2920 */
2921 static inline bool netif_carrier_ok(const struct net_device *dev)
2922 {
2923 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2924 }
2925
2926 unsigned long dev_trans_start(struct net_device *dev);
2927
2928 void __netdev_watchdog_up(struct net_device *dev);
2929
2930 void netif_carrier_on(struct net_device *dev);
2931
2932 void netif_carrier_off(struct net_device *dev);
2933
2934 /**
2935 * netif_dormant_on - mark device as dormant.
2936 * @dev: network device
2937 *
2938 * Mark device as dormant (as per RFC2863).
2939 *
2940 * The dormant state indicates that the relevant interface is not
2941 * actually in a condition to pass packets (i.e., it is not 'up') but is
2942 * in a "pending" state, waiting for some external event. For "on-
2943 * demand" interfaces, this new state identifies the situation where the
2944 * interface is waiting for events to place it in the up state.
2945 *
2946 */
2947 static inline void netif_dormant_on(struct net_device *dev)
2948 {
2949 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2950 linkwatch_fire_event(dev);
2951 }
2952
2953 /**
2954 * netif_dormant_off - set device as not dormant.
2955 * @dev: network device
2956 *
2957 * Device is not in dormant state.
2958 */
2959 static inline void netif_dormant_off(struct net_device *dev)
2960 {
2961 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2962 linkwatch_fire_event(dev);
2963 }
2964
2965 /**
2966 * netif_dormant - test if carrier present
2967 * @dev: network device
2968 *
2969 * Check if carrier is present on device
2970 */
2971 static inline bool netif_dormant(const struct net_device *dev)
2972 {
2973 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2974 }
2975
2976
2977 /**
2978 * netif_oper_up - test if device is operational
2979 * @dev: network device
2980 *
2981 * Check if carrier is operational
2982 */
2983 static inline bool netif_oper_up(const struct net_device *dev)
2984 {
2985 return (dev->operstate == IF_OPER_UP ||
2986 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2987 }
2988
2989 /**
2990 * netif_device_present - is device available or removed
2991 * @dev: network device
2992 *
2993 * Check if device has not been removed from system.
2994 */
2995 static inline bool netif_device_present(struct net_device *dev)
2996 {
2997 return test_bit(__LINK_STATE_PRESENT, &dev->state);
2998 }
2999
3000 void netif_device_detach(struct net_device *dev);
3001
3002 void netif_device_attach(struct net_device *dev);
3003
3004 /*
3005 * Network interface message level settings
3006 */
3007
3008 enum {
3009 NETIF_MSG_DRV = 0x0001,
3010 NETIF_MSG_PROBE = 0x0002,
3011 NETIF_MSG_LINK = 0x0004,
3012 NETIF_MSG_TIMER = 0x0008,
3013 NETIF_MSG_IFDOWN = 0x0010,
3014 NETIF_MSG_IFUP = 0x0020,
3015 NETIF_MSG_RX_ERR = 0x0040,
3016 NETIF_MSG_TX_ERR = 0x0080,
3017 NETIF_MSG_TX_QUEUED = 0x0100,
3018 NETIF_MSG_INTR = 0x0200,
3019 NETIF_MSG_TX_DONE = 0x0400,
3020 NETIF_MSG_RX_STATUS = 0x0800,
3021 NETIF_MSG_PKTDATA = 0x1000,
3022 NETIF_MSG_HW = 0x2000,
3023 NETIF_MSG_WOL = 0x4000,
3024 };
3025
3026 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3027 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3028 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3029 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3030 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3031 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3032 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3033 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3034 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3035 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3036 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3037 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3038 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3039 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3040 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3041
3042 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3043 {
3044 /* use default */
3045 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3046 return default_msg_enable_bits;
3047 if (debug_value == 0) /* no output */
3048 return 0;
3049 /* set low N bits */
3050 return (1 << debug_value) - 1;
3051 }
3052
3053 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3054 {
3055 spin_lock(&txq->_xmit_lock);
3056 txq->xmit_lock_owner = cpu;
3057 }
3058
3059 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3060 {
3061 spin_lock_bh(&txq->_xmit_lock);
3062 txq->xmit_lock_owner = smp_processor_id();
3063 }
3064
3065 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3066 {
3067 bool ok = spin_trylock(&txq->_xmit_lock);
3068 if (likely(ok))
3069 txq->xmit_lock_owner = smp_processor_id();
3070 return ok;
3071 }
3072
3073 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3074 {
3075 txq->xmit_lock_owner = -1;
3076 spin_unlock(&txq->_xmit_lock);
3077 }
3078
3079 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3080 {
3081 txq->xmit_lock_owner = -1;
3082 spin_unlock_bh(&txq->_xmit_lock);
3083 }
3084
3085 static inline void txq_trans_update(struct netdev_queue *txq)
3086 {
3087 if (txq->xmit_lock_owner != -1)
3088 txq->trans_start = jiffies;
3089 }
3090
3091 /**
3092 * netif_tx_lock - grab network device transmit lock
3093 * @dev: network device
3094 *
3095 * Get network device transmit lock
3096 */
3097 static inline void netif_tx_lock(struct net_device *dev)
3098 {
3099 unsigned int i;
3100 int cpu;
3101
3102 spin_lock(&dev->tx_global_lock);
3103 cpu = smp_processor_id();
3104 for (i = 0; i < dev->num_tx_queues; i++) {
3105 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3106
3107 /* We are the only thread of execution doing a
3108 * freeze, but we have to grab the _xmit_lock in
3109 * order to synchronize with threads which are in
3110 * the ->hard_start_xmit() handler and already
3111 * checked the frozen bit.
3112 */
3113 __netif_tx_lock(txq, cpu);
3114 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3115 __netif_tx_unlock(txq);
3116 }
3117 }
3118
3119 static inline void netif_tx_lock_bh(struct net_device *dev)
3120 {
3121 local_bh_disable();
3122 netif_tx_lock(dev);
3123 }
3124
3125 static inline void netif_tx_unlock(struct net_device *dev)
3126 {
3127 unsigned int i;
3128
3129 for (i = 0; i < dev->num_tx_queues; i++) {
3130 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3131
3132 /* No need to grab the _xmit_lock here. If the
3133 * queue is not stopped for another reason, we
3134 * force a schedule.
3135 */
3136 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3137 netif_schedule_queue(txq);
3138 }
3139 spin_unlock(&dev->tx_global_lock);
3140 }
3141
3142 static inline void netif_tx_unlock_bh(struct net_device *dev)
3143 {
3144 netif_tx_unlock(dev);
3145 local_bh_enable();
3146 }
3147
3148 #define HARD_TX_LOCK(dev, txq, cpu) { \
3149 if ((dev->features & NETIF_F_LLTX) == 0) { \
3150 __netif_tx_lock(txq, cpu); \
3151 } \
3152 }
3153
3154 #define HARD_TX_TRYLOCK(dev, txq) \
3155 (((dev->features & NETIF_F_LLTX) == 0) ? \
3156 __netif_tx_trylock(txq) : \
3157 true )
3158
3159 #define HARD_TX_UNLOCK(dev, txq) { \
3160 if ((dev->features & NETIF_F_LLTX) == 0) { \
3161 __netif_tx_unlock(txq); \
3162 } \
3163 }
3164
3165 static inline void netif_tx_disable(struct net_device *dev)
3166 {
3167 unsigned int i;
3168 int cpu;
3169
3170 local_bh_disable();
3171 cpu = smp_processor_id();
3172 for (i = 0; i < dev->num_tx_queues; i++) {
3173 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3174
3175 __netif_tx_lock(txq, cpu);
3176 netif_tx_stop_queue(txq);
3177 __netif_tx_unlock(txq);
3178 }
3179 local_bh_enable();
3180 }
3181
3182 static inline void netif_addr_lock(struct net_device *dev)
3183 {
3184 spin_lock(&dev->addr_list_lock);
3185 }
3186
3187 static inline void netif_addr_lock_nested(struct net_device *dev)
3188 {
3189 int subclass = SINGLE_DEPTH_NESTING;
3190
3191 if (dev->netdev_ops->ndo_get_lock_subclass)
3192 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3193
3194 spin_lock_nested(&dev->addr_list_lock, subclass);
3195 }
3196
3197 static inline void netif_addr_lock_bh(struct net_device *dev)
3198 {
3199 spin_lock_bh(&dev->addr_list_lock);
3200 }
3201
3202 static inline void netif_addr_unlock(struct net_device *dev)
3203 {
3204 spin_unlock(&dev->addr_list_lock);
3205 }
3206
3207 static inline void netif_addr_unlock_bh(struct net_device *dev)
3208 {
3209 spin_unlock_bh(&dev->addr_list_lock);
3210 }
3211
3212 /*
3213 * dev_addrs walker. Should be used only for read access. Call with
3214 * rcu_read_lock held.
3215 */
3216 #define for_each_dev_addr(dev, ha) \
3217 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3218
3219 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3220
3221 void ether_setup(struct net_device *dev);
3222
3223 /* Support for loadable net-drivers */
3224 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3225 unsigned char name_assign_type,
3226 void (*setup)(struct net_device *),
3227 unsigned int txqs, unsigned int rxqs);
3228 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3229 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3230
3231 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3232 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3233 count)
3234
3235 int register_netdev(struct net_device *dev);
3236 void unregister_netdev(struct net_device *dev);
3237
3238 /* General hardware address lists handling functions */
3239 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3240 struct netdev_hw_addr_list *from_list, int addr_len);
3241 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3242 struct netdev_hw_addr_list *from_list, int addr_len);
3243 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3244 struct net_device *dev,
3245 int (*sync)(struct net_device *, const unsigned char *),
3246 int (*unsync)(struct net_device *,
3247 const unsigned char *));
3248 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3249 struct net_device *dev,
3250 int (*unsync)(struct net_device *,
3251 const unsigned char *));
3252 void __hw_addr_init(struct netdev_hw_addr_list *list);
3253
3254 /* Functions used for device addresses handling */
3255 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3256 unsigned char addr_type);
3257 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3258 unsigned char addr_type);
3259 void dev_addr_flush(struct net_device *dev);
3260 int dev_addr_init(struct net_device *dev);
3261
3262 /* Functions used for unicast addresses handling */
3263 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3264 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3265 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3266 int dev_uc_sync(struct net_device *to, struct net_device *from);
3267 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3268 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3269 void dev_uc_flush(struct net_device *dev);
3270 void dev_uc_init(struct net_device *dev);
3271
3272 /**
3273 * __dev_uc_sync - Synchonize device's unicast list
3274 * @dev: device to sync
3275 * @sync: function to call if address should be added
3276 * @unsync: function to call if address should be removed
3277 *
3278 * Add newly added addresses to the interface, and release
3279 * addresses that have been deleted.
3280 **/
3281 static inline int __dev_uc_sync(struct net_device *dev,
3282 int (*sync)(struct net_device *,
3283 const unsigned char *),
3284 int (*unsync)(struct net_device *,
3285 const unsigned char *))
3286 {
3287 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3288 }
3289
3290 /**
3291 * __dev_uc_unsync - Remove synchronized addresses from device
3292 * @dev: device to sync
3293 * @unsync: function to call if address should be removed
3294 *
3295 * Remove all addresses that were added to the device by dev_uc_sync().
3296 **/
3297 static inline void __dev_uc_unsync(struct net_device *dev,
3298 int (*unsync)(struct net_device *,
3299 const unsigned char *))
3300 {
3301 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3302 }
3303
3304 /* Functions used for multicast addresses handling */
3305 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3306 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3307 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3308 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3309 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3310 int dev_mc_sync(struct net_device *to, struct net_device *from);
3311 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3312 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3313 void dev_mc_flush(struct net_device *dev);
3314 void dev_mc_init(struct net_device *dev);
3315
3316 /**
3317 * __dev_mc_sync - Synchonize device's multicast list
3318 * @dev: device to sync
3319 * @sync: function to call if address should be added
3320 * @unsync: function to call if address should be removed
3321 *
3322 * Add newly added addresses to the interface, and release
3323 * addresses that have been deleted.
3324 **/
3325 static inline int __dev_mc_sync(struct net_device *dev,
3326 int (*sync)(struct net_device *,
3327 const unsigned char *),
3328 int (*unsync)(struct net_device *,
3329 const unsigned char *))
3330 {
3331 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3332 }
3333
3334 /**
3335 * __dev_mc_unsync - Remove synchronized addresses from device
3336 * @dev: device to sync
3337 * @unsync: function to call if address should be removed
3338 *
3339 * Remove all addresses that were added to the device by dev_mc_sync().
3340 **/
3341 static inline void __dev_mc_unsync(struct net_device *dev,
3342 int (*unsync)(struct net_device *,
3343 const unsigned char *))
3344 {
3345 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3346 }
3347
3348 /* Functions used for secondary unicast and multicast support */
3349 void dev_set_rx_mode(struct net_device *dev);
3350 void __dev_set_rx_mode(struct net_device *dev);
3351 int dev_set_promiscuity(struct net_device *dev, int inc);
3352 int dev_set_allmulti(struct net_device *dev, int inc);
3353 void netdev_state_change(struct net_device *dev);
3354 void netdev_notify_peers(struct net_device *dev);
3355 void netdev_features_change(struct net_device *dev);
3356 /* Load a device via the kmod */
3357 void dev_load(struct net *net, const char *name);
3358 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3359 struct rtnl_link_stats64 *storage);
3360 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3361 const struct net_device_stats *netdev_stats);
3362
3363 extern int netdev_max_backlog;
3364 extern int netdev_tstamp_prequeue;
3365 extern int weight_p;
3366 extern int bpf_jit_enable;
3367
3368 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3369 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3370 struct list_head **iter);
3371 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3372 struct list_head **iter);
3373
3374 /* iterate through upper list, must be called under RCU read lock */
3375 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3376 for (iter = &(dev)->adj_list.upper, \
3377 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3378 updev; \
3379 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3380
3381 /* iterate through upper list, must be called under RCU read lock */
3382 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3383 for (iter = &(dev)->all_adj_list.upper, \
3384 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3385 updev; \
3386 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3387
3388 void *netdev_lower_get_next_private(struct net_device *dev,
3389 struct list_head **iter);
3390 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3391 struct list_head **iter);
3392
3393 #define netdev_for_each_lower_private(dev, priv, iter) \
3394 for (iter = (dev)->adj_list.lower.next, \
3395 priv = netdev_lower_get_next_private(dev, &(iter)); \
3396 priv; \
3397 priv = netdev_lower_get_next_private(dev, &(iter)))
3398
3399 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3400 for (iter = &(dev)->adj_list.lower, \
3401 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3402 priv; \
3403 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3404
3405 void *netdev_lower_get_next(struct net_device *dev,
3406 struct list_head **iter);
3407 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3408 for (iter = &(dev)->adj_list.lower, \
3409 ldev = netdev_lower_get_next(dev, &(iter)); \
3410 ldev; \
3411 ldev = netdev_lower_get_next(dev, &(iter)))
3412
3413 void *netdev_adjacent_get_private(struct list_head *adj_list);
3414 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3415 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3416 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3417 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3418 int netdev_master_upper_dev_link(struct net_device *dev,
3419 struct net_device *upper_dev);
3420 int netdev_master_upper_dev_link_private(struct net_device *dev,
3421 struct net_device *upper_dev,
3422 void *private);
3423 void netdev_upper_dev_unlink(struct net_device *dev,
3424 struct net_device *upper_dev);
3425 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3426 void *netdev_lower_dev_get_private(struct net_device *dev,
3427 struct net_device *lower_dev);
3428 int dev_get_nest_level(struct net_device *dev,
3429 bool (*type_check)(struct net_device *dev));
3430 int skb_checksum_help(struct sk_buff *skb);
3431 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3432 netdev_features_t features, bool tx_path);
3433 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3434 netdev_features_t features);
3435
3436 static inline
3437 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3438 {
3439 return __skb_gso_segment(skb, features, true);
3440 }
3441 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3442
3443 static inline bool can_checksum_protocol(netdev_features_t features,
3444 __be16 protocol)
3445 {
3446 return ((features & NETIF_F_GEN_CSUM) ||
3447 ((features & NETIF_F_V4_CSUM) &&
3448 protocol == htons(ETH_P_IP)) ||
3449 ((features & NETIF_F_V6_CSUM) &&
3450 protocol == htons(ETH_P_IPV6)) ||
3451 ((features & NETIF_F_FCOE_CRC) &&
3452 protocol == htons(ETH_P_FCOE)));
3453 }
3454
3455 #ifdef CONFIG_BUG
3456 void netdev_rx_csum_fault(struct net_device *dev);
3457 #else
3458 static inline void netdev_rx_csum_fault(struct net_device *dev)
3459 {
3460 }
3461 #endif
3462 /* rx skb timestamps */
3463 void net_enable_timestamp(void);
3464 void net_disable_timestamp(void);
3465
3466 #ifdef CONFIG_PROC_FS
3467 int __init dev_proc_init(void);
3468 #else
3469 #define dev_proc_init() 0
3470 #endif
3471
3472 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3473 struct sk_buff *skb, struct net_device *dev,
3474 bool more)
3475 {
3476 skb->xmit_more = more ? 1 : 0;
3477 return ops->ndo_start_xmit(skb, dev);
3478 }
3479
3480 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3481 struct netdev_queue *txq, bool more)
3482 {
3483 const struct net_device_ops *ops = dev->netdev_ops;
3484 int rc;
3485
3486 rc = __netdev_start_xmit(ops, skb, dev, more);
3487 if (rc == NETDEV_TX_OK)
3488 txq_trans_update(txq);
3489
3490 return rc;
3491 }
3492
3493 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3494 const void *ns);
3495 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3496 const void *ns);
3497
3498 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3499 {
3500 return netdev_class_create_file_ns(class_attr, NULL);
3501 }
3502
3503 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3504 {
3505 netdev_class_remove_file_ns(class_attr, NULL);
3506 }
3507
3508 extern struct kobj_ns_type_operations net_ns_type_operations;
3509
3510 const char *netdev_drivername(const struct net_device *dev);
3511
3512 void linkwatch_run_queue(void);
3513
3514 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3515 netdev_features_t f2)
3516 {
3517 if (f1 & NETIF_F_GEN_CSUM)
3518 f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3519 if (f2 & NETIF_F_GEN_CSUM)
3520 f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3521 f1 &= f2;
3522 if (f1 & NETIF_F_GEN_CSUM)
3523 f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3524
3525 return f1;
3526 }
3527
3528 static inline netdev_features_t netdev_get_wanted_features(
3529 struct net_device *dev)
3530 {
3531 return (dev->features & ~dev->hw_features) | dev->wanted_features;
3532 }
3533 netdev_features_t netdev_increment_features(netdev_features_t all,
3534 netdev_features_t one, netdev_features_t mask);
3535
3536 /* Allow TSO being used on stacked device :
3537 * Performing the GSO segmentation before last device
3538 * is a performance improvement.
3539 */
3540 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3541 netdev_features_t mask)
3542 {
3543 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3544 }
3545
3546 int __netdev_update_features(struct net_device *dev);
3547 void netdev_update_features(struct net_device *dev);
3548 void netdev_change_features(struct net_device *dev);
3549
3550 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3551 struct net_device *dev);
3552
3553 netdev_features_t netif_skb_features(struct sk_buff *skb);
3554
3555 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3556 {
3557 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3558
3559 /* check flags correspondence */
3560 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3561 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3562 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3563 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3564 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3565 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3566 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3567 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3568 BUILD_BUG_ON(SKB_GSO_IPIP != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3569 BUILD_BUG_ON(SKB_GSO_SIT != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3570 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3571 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3572 BUILD_BUG_ON(SKB_GSO_MPLS != (NETIF_F_GSO_MPLS >> NETIF_F_GSO_SHIFT));
3573
3574 return (features & feature) == feature;
3575 }
3576
3577 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3578 {
3579 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3580 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3581 }
3582
3583 static inline bool netif_needs_gso(struct net_device *dev, struct sk_buff *skb,
3584 netdev_features_t features)
3585 {
3586 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3587 (dev->netdev_ops->ndo_gso_check &&
3588 !dev->netdev_ops->ndo_gso_check(skb, dev)) ||
3589 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3590 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3591 }
3592
3593 static inline void netif_set_gso_max_size(struct net_device *dev,
3594 unsigned int size)
3595 {
3596 dev->gso_max_size = size;
3597 }
3598
3599 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3600 int pulled_hlen, u16 mac_offset,
3601 int mac_len)
3602 {
3603 skb->protocol = protocol;
3604 skb->encapsulation = 1;
3605 skb_push(skb, pulled_hlen);
3606 skb_reset_transport_header(skb);
3607 skb->mac_header = mac_offset;
3608 skb->network_header = skb->mac_header + mac_len;
3609 skb->mac_len = mac_len;
3610 }
3611
3612 static inline bool netif_is_macvlan(struct net_device *dev)
3613 {
3614 return dev->priv_flags & IFF_MACVLAN;
3615 }
3616
3617 static inline bool netif_is_bond_master(struct net_device *dev)
3618 {
3619 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3620 }
3621
3622 static inline bool netif_is_bond_slave(struct net_device *dev)
3623 {
3624 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3625 }
3626
3627 static inline bool netif_supports_nofcs(struct net_device *dev)
3628 {
3629 return dev->priv_flags & IFF_SUPP_NOFCS;
3630 }
3631
3632 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3633 static inline void netif_keep_dst(struct net_device *dev)
3634 {
3635 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3636 }
3637
3638 extern struct pernet_operations __net_initdata loopback_net_ops;
3639
3640 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3641
3642 /* netdev_printk helpers, similar to dev_printk */
3643
3644 static inline const char *netdev_name(const struct net_device *dev)
3645 {
3646 if (!dev->name[0] || strchr(dev->name, '%'))
3647 return "(unnamed net_device)";
3648 return dev->name;
3649 }
3650
3651 static inline const char *netdev_reg_state(const struct net_device *dev)
3652 {
3653 switch (dev->reg_state) {
3654 case NETREG_UNINITIALIZED: return " (uninitialized)";
3655 case NETREG_REGISTERED: return "";
3656 case NETREG_UNREGISTERING: return " (unregistering)";
3657 case NETREG_UNREGISTERED: return " (unregistered)";
3658 case NETREG_RELEASED: return " (released)";
3659 case NETREG_DUMMY: return " (dummy)";
3660 }
3661
3662 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3663 return " (unknown)";
3664 }
3665
3666 __printf(3, 4)
3667 void netdev_printk(const char *level, const struct net_device *dev,
3668 const char *format, ...);
3669 __printf(2, 3)
3670 void netdev_emerg(const struct net_device *dev, const char *format, ...);
3671 __printf(2, 3)
3672 void netdev_alert(const struct net_device *dev, const char *format, ...);
3673 __printf(2, 3)
3674 void netdev_crit(const struct net_device *dev, const char *format, ...);
3675 __printf(2, 3)
3676 void netdev_err(const struct net_device *dev, const char *format, ...);
3677 __printf(2, 3)
3678 void netdev_warn(const struct net_device *dev, const char *format, ...);
3679 __printf(2, 3)
3680 void netdev_notice(const struct net_device *dev, const char *format, ...);
3681 __printf(2, 3)
3682 void netdev_info(const struct net_device *dev, const char *format, ...);
3683
3684 #define MODULE_ALIAS_NETDEV(device) \
3685 MODULE_ALIAS("netdev-" device)
3686
3687 #if defined(CONFIG_DYNAMIC_DEBUG)
3688 #define netdev_dbg(__dev, format, args...) \
3689 do { \
3690 dynamic_netdev_dbg(__dev, format, ##args); \
3691 } while (0)
3692 #elif defined(DEBUG)
3693 #define netdev_dbg(__dev, format, args...) \
3694 netdev_printk(KERN_DEBUG, __dev, format, ##args)
3695 #else
3696 #define netdev_dbg(__dev, format, args...) \
3697 ({ \
3698 if (0) \
3699 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3700 })
3701 #endif
3702
3703 #if defined(VERBOSE_DEBUG)
3704 #define netdev_vdbg netdev_dbg
3705 #else
3706
3707 #define netdev_vdbg(dev, format, args...) \
3708 ({ \
3709 if (0) \
3710 netdev_printk(KERN_DEBUG, dev, format, ##args); \
3711 0; \
3712 })
3713 #endif
3714
3715 /*
3716 * netdev_WARN() acts like dev_printk(), but with the key difference
3717 * of using a WARN/WARN_ON to get the message out, including the
3718 * file/line information and a backtrace.
3719 */
3720 #define netdev_WARN(dev, format, args...) \
3721 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \
3722 netdev_reg_state(dev), ##args)
3723
3724 /* netif printk helpers, similar to netdev_printk */
3725
3726 #define netif_printk(priv, type, level, dev, fmt, args...) \
3727 do { \
3728 if (netif_msg_##type(priv)) \
3729 netdev_printk(level, (dev), fmt, ##args); \
3730 } while (0)
3731
3732 #define netif_level(level, priv, type, dev, fmt, args...) \
3733 do { \
3734 if (netif_msg_##type(priv)) \
3735 netdev_##level(dev, fmt, ##args); \
3736 } while (0)
3737
3738 #define netif_emerg(priv, type, dev, fmt, args...) \
3739 netif_level(emerg, priv, type, dev, fmt, ##args)
3740 #define netif_alert(priv, type, dev, fmt, args...) \
3741 netif_level(alert, priv, type, dev, fmt, ##args)
3742 #define netif_crit(priv, type, dev, fmt, args...) \
3743 netif_level(crit, priv, type, dev, fmt, ##args)
3744 #define netif_err(priv, type, dev, fmt, args...) \
3745 netif_level(err, priv, type, dev, fmt, ##args)
3746 #define netif_warn(priv, type, dev, fmt, args...) \
3747 netif_level(warn, priv, type, dev, fmt, ##args)
3748 #define netif_notice(priv, type, dev, fmt, args...) \
3749 netif_level(notice, priv, type, dev, fmt, ##args)
3750 #define netif_info(priv, type, dev, fmt, args...) \
3751 netif_level(info, priv, type, dev, fmt, ##args)
3752
3753 #if defined(CONFIG_DYNAMIC_DEBUG)
3754 #define netif_dbg(priv, type, netdev, format, args...) \
3755 do { \
3756 if (netif_msg_##type(priv)) \
3757 dynamic_netdev_dbg(netdev, format, ##args); \
3758 } while (0)
3759 #elif defined(DEBUG)
3760 #define netif_dbg(priv, type, dev, format, args...) \
3761 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3762 #else
3763 #define netif_dbg(priv, type, dev, format, args...) \
3764 ({ \
3765 if (0) \
3766 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3767 0; \
3768 })
3769 #endif
3770
3771 #if defined(VERBOSE_DEBUG)
3772 #define netif_vdbg netif_dbg
3773 #else
3774 #define netif_vdbg(priv, type, dev, format, args...) \
3775 ({ \
3776 if (0) \
3777 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3778 0; \
3779 })
3780 #endif
3781
3782 /*
3783 * The list of packet types we will receive (as opposed to discard)
3784 * and the routines to invoke.
3785 *
3786 * Why 16. Because with 16 the only overlap we get on a hash of the
3787 * low nibble of the protocol value is RARP/SNAP/X.25.
3788 *
3789 * NOTE: That is no longer true with the addition of VLAN tags. Not
3790 * sure which should go first, but I bet it won't make much
3791 * difference if we are running VLANs. The good news is that
3792 * this protocol won't be in the list unless compiled in, so
3793 * the average user (w/out VLANs) will not be adversely affected.
3794 * --BLG
3795 *
3796 * 0800 IP
3797 * 8100 802.1Q VLAN
3798 * 0001 802.3
3799 * 0002 AX.25
3800 * 0004 802.2
3801 * 8035 RARP
3802 * 0005 SNAP
3803 * 0805 X.25
3804 * 0806 ARP
3805 * 8137 IPX
3806 * 0009 Localtalk
3807 * 86DD IPv6
3808 */
3809 #define PTYPE_HASH_SIZE (16)
3810 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
3811
3812 #endif /* _LINUX_NETDEVICE_H */
This page took 0.177291 seconds and 5 git commands to generate.