net: don't reforward packets already forwarded by offload device
[deliverable/linux.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54
55 struct netpoll_info;
56 struct device;
57 struct phy_device;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* 802.15.4 specific */
61 struct wpan_dev;
62 struct mpls_dev;
63
64 void netdev_set_default_ethtool_ops(struct net_device *dev,
65 const struct ethtool_ops *ops);
66
67 /* Backlog congestion levels */
68 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
69 #define NET_RX_DROP 1 /* packet dropped */
70
71 /*
72 * Transmit return codes: transmit return codes originate from three different
73 * namespaces:
74 *
75 * - qdisc return codes
76 * - driver transmit return codes
77 * - errno values
78 *
79 * Drivers are allowed to return any one of those in their hard_start_xmit()
80 * function. Real network devices commonly used with qdiscs should only return
81 * the driver transmit return codes though - when qdiscs are used, the actual
82 * transmission happens asynchronously, so the value is not propagated to
83 * higher layers. Virtual network devices transmit synchronously, in this case
84 * the driver transmit return codes are consumed by dev_queue_xmit(), all
85 * others are propagated to higher layers.
86 */
87
88 /* qdisc ->enqueue() return codes. */
89 #define NET_XMIT_SUCCESS 0x00
90 #define NET_XMIT_DROP 0x01 /* skb dropped */
91 #define NET_XMIT_CN 0x02 /* congestion notification */
92 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
93 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
94
95 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
96 * indicates that the device will soon be dropping packets, or already drops
97 * some packets of the same priority; prompting us to send less aggressively. */
98 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
99 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
100
101 /* Driver transmit return codes */
102 #define NETDEV_TX_MASK 0xf0
103
104 enum netdev_tx {
105 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
106 NETDEV_TX_OK = 0x00, /* driver took care of packet */
107 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
108 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
109 };
110 typedef enum netdev_tx netdev_tx_t;
111
112 /*
113 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
114 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
115 */
116 static inline bool dev_xmit_complete(int rc)
117 {
118 /*
119 * Positive cases with an skb consumed by a driver:
120 * - successful transmission (rc == NETDEV_TX_OK)
121 * - error while transmitting (rc < 0)
122 * - error while queueing to a different device (rc & NET_XMIT_MASK)
123 */
124 if (likely(rc < NET_XMIT_MASK))
125 return true;
126
127 return false;
128 }
129
130 /*
131 * Compute the worst case header length according to the protocols
132 * used.
133 */
134
135 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
136 # if defined(CONFIG_MAC80211_MESH)
137 # define LL_MAX_HEADER 128
138 # else
139 # define LL_MAX_HEADER 96
140 # endif
141 #else
142 # define LL_MAX_HEADER 32
143 #endif
144
145 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
146 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
147 #define MAX_HEADER LL_MAX_HEADER
148 #else
149 #define MAX_HEADER (LL_MAX_HEADER + 48)
150 #endif
151
152 /*
153 * Old network device statistics. Fields are native words
154 * (unsigned long) so they can be read and written atomically.
155 */
156
157 struct net_device_stats {
158 unsigned long rx_packets;
159 unsigned long tx_packets;
160 unsigned long rx_bytes;
161 unsigned long tx_bytes;
162 unsigned long rx_errors;
163 unsigned long tx_errors;
164 unsigned long rx_dropped;
165 unsigned long tx_dropped;
166 unsigned long multicast;
167 unsigned long collisions;
168 unsigned long rx_length_errors;
169 unsigned long rx_over_errors;
170 unsigned long rx_crc_errors;
171 unsigned long rx_frame_errors;
172 unsigned long rx_fifo_errors;
173 unsigned long rx_missed_errors;
174 unsigned long tx_aborted_errors;
175 unsigned long tx_carrier_errors;
176 unsigned long tx_fifo_errors;
177 unsigned long tx_heartbeat_errors;
178 unsigned long tx_window_errors;
179 unsigned long rx_compressed;
180 unsigned long tx_compressed;
181 };
182
183
184 #include <linux/cache.h>
185 #include <linux/skbuff.h>
186
187 #ifdef CONFIG_RPS
188 #include <linux/static_key.h>
189 extern struct static_key rps_needed;
190 #endif
191
192 struct neighbour;
193 struct neigh_parms;
194 struct sk_buff;
195
196 struct netdev_hw_addr {
197 struct list_head list;
198 unsigned char addr[MAX_ADDR_LEN];
199 unsigned char type;
200 #define NETDEV_HW_ADDR_T_LAN 1
201 #define NETDEV_HW_ADDR_T_SAN 2
202 #define NETDEV_HW_ADDR_T_SLAVE 3
203 #define NETDEV_HW_ADDR_T_UNICAST 4
204 #define NETDEV_HW_ADDR_T_MULTICAST 5
205 bool global_use;
206 int sync_cnt;
207 int refcount;
208 int synced;
209 struct rcu_head rcu_head;
210 };
211
212 struct netdev_hw_addr_list {
213 struct list_head list;
214 int count;
215 };
216
217 #define netdev_hw_addr_list_count(l) ((l)->count)
218 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
219 #define netdev_hw_addr_list_for_each(ha, l) \
220 list_for_each_entry(ha, &(l)->list, list)
221
222 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
223 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
224 #define netdev_for_each_uc_addr(ha, dev) \
225 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
226
227 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
228 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
229 #define netdev_for_each_mc_addr(ha, dev) \
230 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
231
232 struct hh_cache {
233 u16 hh_len;
234 u16 __pad;
235 seqlock_t hh_lock;
236
237 /* cached hardware header; allow for machine alignment needs. */
238 #define HH_DATA_MOD 16
239 #define HH_DATA_OFF(__len) \
240 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
241 #define HH_DATA_ALIGN(__len) \
242 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
243 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
244 };
245
246 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
247 * Alternative is:
248 * dev->hard_header_len ? (dev->hard_header_len +
249 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
250 *
251 * We could use other alignment values, but we must maintain the
252 * relationship HH alignment <= LL alignment.
253 */
254 #define LL_RESERVED_SPACE(dev) \
255 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
256 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
257 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258
259 struct header_ops {
260 int (*create) (struct sk_buff *skb, struct net_device *dev,
261 unsigned short type, const void *daddr,
262 const void *saddr, unsigned int len);
263 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
264 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
265 void (*cache_update)(struct hh_cache *hh,
266 const struct net_device *dev,
267 const unsigned char *haddr);
268 };
269
270 /* These flag bits are private to the generic network queueing
271 * layer, they may not be explicitly referenced by any other
272 * code.
273 */
274
275 enum netdev_state_t {
276 __LINK_STATE_START,
277 __LINK_STATE_PRESENT,
278 __LINK_STATE_NOCARRIER,
279 __LINK_STATE_LINKWATCH_PENDING,
280 __LINK_STATE_DORMANT,
281 };
282
283
284 /*
285 * This structure holds at boot time configured netdevice settings. They
286 * are then used in the device probing.
287 */
288 struct netdev_boot_setup {
289 char name[IFNAMSIZ];
290 struct ifmap map;
291 };
292 #define NETDEV_BOOT_SETUP_MAX 8
293
294 int __init netdev_boot_setup(char *str);
295
296 /*
297 * Structure for NAPI scheduling similar to tasklet but with weighting
298 */
299 struct napi_struct {
300 /* The poll_list must only be managed by the entity which
301 * changes the state of the NAPI_STATE_SCHED bit. This means
302 * whoever atomically sets that bit can add this napi_struct
303 * to the per-cpu poll_list, and whoever clears that bit
304 * can remove from the list right before clearing the bit.
305 */
306 struct list_head poll_list;
307
308 unsigned long state;
309 int weight;
310 unsigned int gro_count;
311 int (*poll)(struct napi_struct *, int);
312 #ifdef CONFIG_NETPOLL
313 spinlock_t poll_lock;
314 int poll_owner;
315 #endif
316 struct net_device *dev;
317 struct sk_buff *gro_list;
318 struct sk_buff *skb;
319 struct hrtimer timer;
320 struct list_head dev_list;
321 struct hlist_node napi_hash_node;
322 unsigned int napi_id;
323 };
324
325 enum {
326 NAPI_STATE_SCHED, /* Poll is scheduled */
327 NAPI_STATE_DISABLE, /* Disable pending */
328 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
329 NAPI_STATE_HASHED, /* In NAPI hash */
330 };
331
332 enum gro_result {
333 GRO_MERGED,
334 GRO_MERGED_FREE,
335 GRO_HELD,
336 GRO_NORMAL,
337 GRO_DROP,
338 };
339 typedef enum gro_result gro_result_t;
340
341 /*
342 * enum rx_handler_result - Possible return values for rx_handlers.
343 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
344 * further.
345 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
346 * case skb->dev was changed by rx_handler.
347 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
348 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
349 *
350 * rx_handlers are functions called from inside __netif_receive_skb(), to do
351 * special processing of the skb, prior to delivery to protocol handlers.
352 *
353 * Currently, a net_device can only have a single rx_handler registered. Trying
354 * to register a second rx_handler will return -EBUSY.
355 *
356 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
357 * To unregister a rx_handler on a net_device, use
358 * netdev_rx_handler_unregister().
359 *
360 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
361 * do with the skb.
362 *
363 * If the rx_handler consumed to skb in some way, it should return
364 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
365 * the skb to be delivered in some other ways.
366 *
367 * If the rx_handler changed skb->dev, to divert the skb to another
368 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
369 * new device will be called if it exists.
370 *
371 * If the rx_handler consider the skb should be ignored, it should return
372 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
373 * are registered on exact device (ptype->dev == skb->dev).
374 *
375 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
376 * delivered, it should return RX_HANDLER_PASS.
377 *
378 * A device without a registered rx_handler will behave as if rx_handler
379 * returned RX_HANDLER_PASS.
380 */
381
382 enum rx_handler_result {
383 RX_HANDLER_CONSUMED,
384 RX_HANDLER_ANOTHER,
385 RX_HANDLER_EXACT,
386 RX_HANDLER_PASS,
387 };
388 typedef enum rx_handler_result rx_handler_result_t;
389 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
390
391 void __napi_schedule(struct napi_struct *n);
392 void __napi_schedule_irqoff(struct napi_struct *n);
393
394 static inline bool napi_disable_pending(struct napi_struct *n)
395 {
396 return test_bit(NAPI_STATE_DISABLE, &n->state);
397 }
398
399 /**
400 * napi_schedule_prep - check if napi can be scheduled
401 * @n: napi context
402 *
403 * Test if NAPI routine is already running, and if not mark
404 * it as running. This is used as a condition variable
405 * insure only one NAPI poll instance runs. We also make
406 * sure there is no pending NAPI disable.
407 */
408 static inline bool napi_schedule_prep(struct napi_struct *n)
409 {
410 return !napi_disable_pending(n) &&
411 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
412 }
413
414 /**
415 * napi_schedule - schedule NAPI poll
416 * @n: napi context
417 *
418 * Schedule NAPI poll routine to be called if it is not already
419 * running.
420 */
421 static inline void napi_schedule(struct napi_struct *n)
422 {
423 if (napi_schedule_prep(n))
424 __napi_schedule(n);
425 }
426
427 /**
428 * napi_schedule_irqoff - schedule NAPI poll
429 * @n: napi context
430 *
431 * Variant of napi_schedule(), assuming hard irqs are masked.
432 */
433 static inline void napi_schedule_irqoff(struct napi_struct *n)
434 {
435 if (napi_schedule_prep(n))
436 __napi_schedule_irqoff(n);
437 }
438
439 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
440 static inline bool napi_reschedule(struct napi_struct *napi)
441 {
442 if (napi_schedule_prep(napi)) {
443 __napi_schedule(napi);
444 return true;
445 }
446 return false;
447 }
448
449 void __napi_complete(struct napi_struct *n);
450 void napi_complete_done(struct napi_struct *n, int work_done);
451 /**
452 * napi_complete - NAPI processing complete
453 * @n: napi context
454 *
455 * Mark NAPI processing as complete.
456 * Consider using napi_complete_done() instead.
457 */
458 static inline void napi_complete(struct napi_struct *n)
459 {
460 return napi_complete_done(n, 0);
461 }
462
463 /**
464 * napi_by_id - lookup a NAPI by napi_id
465 * @napi_id: hashed napi_id
466 *
467 * lookup @napi_id in napi_hash table
468 * must be called under rcu_read_lock()
469 */
470 struct napi_struct *napi_by_id(unsigned int napi_id);
471
472 /**
473 * napi_hash_add - add a NAPI to global hashtable
474 * @napi: napi context
475 *
476 * generate a new napi_id and store a @napi under it in napi_hash
477 */
478 void napi_hash_add(struct napi_struct *napi);
479
480 /**
481 * napi_hash_del - remove a NAPI from global table
482 * @napi: napi context
483 *
484 * Warning: caller must observe rcu grace period
485 * before freeing memory containing @napi
486 */
487 void napi_hash_del(struct napi_struct *napi);
488
489 /**
490 * napi_disable - prevent NAPI from scheduling
491 * @n: napi context
492 *
493 * Stop NAPI from being scheduled on this context.
494 * Waits till any outstanding processing completes.
495 */
496 void napi_disable(struct napi_struct *n);
497
498 /**
499 * napi_enable - enable NAPI scheduling
500 * @n: napi context
501 *
502 * Resume NAPI from being scheduled on this context.
503 * Must be paired with napi_disable.
504 */
505 static inline void napi_enable(struct napi_struct *n)
506 {
507 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
508 smp_mb__before_atomic();
509 clear_bit(NAPI_STATE_SCHED, &n->state);
510 }
511
512 #ifdef CONFIG_SMP
513 /**
514 * napi_synchronize - wait until NAPI is not running
515 * @n: napi context
516 *
517 * Wait until NAPI is done being scheduled on this context.
518 * Waits till any outstanding processing completes but
519 * does not disable future activations.
520 */
521 static inline void napi_synchronize(const struct napi_struct *n)
522 {
523 while (test_bit(NAPI_STATE_SCHED, &n->state))
524 msleep(1);
525 }
526 #else
527 # define napi_synchronize(n) barrier()
528 #endif
529
530 enum netdev_queue_state_t {
531 __QUEUE_STATE_DRV_XOFF,
532 __QUEUE_STATE_STACK_XOFF,
533 __QUEUE_STATE_FROZEN,
534 };
535
536 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
537 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
538 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
539
540 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
541 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
542 QUEUE_STATE_FROZEN)
543 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
544 QUEUE_STATE_FROZEN)
545
546 /*
547 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
548 * netif_tx_* functions below are used to manipulate this flag. The
549 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
550 * queue independently. The netif_xmit_*stopped functions below are called
551 * to check if the queue has been stopped by the driver or stack (either
552 * of the XOFF bits are set in the state). Drivers should not need to call
553 * netif_xmit*stopped functions, they should only be using netif_tx_*.
554 */
555
556 struct netdev_queue {
557 /*
558 * read mostly part
559 */
560 struct net_device *dev;
561 struct Qdisc __rcu *qdisc;
562 struct Qdisc *qdisc_sleeping;
563 #ifdef CONFIG_SYSFS
564 struct kobject kobj;
565 #endif
566 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
567 int numa_node;
568 #endif
569 /*
570 * write mostly part
571 */
572 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
573 int xmit_lock_owner;
574 /*
575 * please use this field instead of dev->trans_start
576 */
577 unsigned long trans_start;
578
579 /*
580 * Number of TX timeouts for this queue
581 * (/sys/class/net/DEV/Q/trans_timeout)
582 */
583 unsigned long trans_timeout;
584
585 unsigned long state;
586
587 #ifdef CONFIG_BQL
588 struct dql dql;
589 #endif
590 unsigned long tx_maxrate;
591 } ____cacheline_aligned_in_smp;
592
593 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
594 {
595 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
596 return q->numa_node;
597 #else
598 return NUMA_NO_NODE;
599 #endif
600 }
601
602 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
603 {
604 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
605 q->numa_node = node;
606 #endif
607 }
608
609 #ifdef CONFIG_RPS
610 /*
611 * This structure holds an RPS map which can be of variable length. The
612 * map is an array of CPUs.
613 */
614 struct rps_map {
615 unsigned int len;
616 struct rcu_head rcu;
617 u16 cpus[0];
618 };
619 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
620
621 /*
622 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
623 * tail pointer for that CPU's input queue at the time of last enqueue, and
624 * a hardware filter index.
625 */
626 struct rps_dev_flow {
627 u16 cpu;
628 u16 filter;
629 unsigned int last_qtail;
630 };
631 #define RPS_NO_FILTER 0xffff
632
633 /*
634 * The rps_dev_flow_table structure contains a table of flow mappings.
635 */
636 struct rps_dev_flow_table {
637 unsigned int mask;
638 struct rcu_head rcu;
639 struct rps_dev_flow flows[0];
640 };
641 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
642 ((_num) * sizeof(struct rps_dev_flow)))
643
644 /*
645 * The rps_sock_flow_table contains mappings of flows to the last CPU
646 * on which they were processed by the application (set in recvmsg).
647 * Each entry is a 32bit value. Upper part is the high order bits
648 * of flow hash, lower part is cpu number.
649 * rps_cpu_mask is used to partition the space, depending on number of
650 * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
651 * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
652 * meaning we use 32-6=26 bits for the hash.
653 */
654 struct rps_sock_flow_table {
655 u32 mask;
656
657 u32 ents[0] ____cacheline_aligned_in_smp;
658 };
659 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
660
661 #define RPS_NO_CPU 0xffff
662
663 extern u32 rps_cpu_mask;
664 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
665
666 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
667 u32 hash)
668 {
669 if (table && hash) {
670 unsigned int index = hash & table->mask;
671 u32 val = hash & ~rps_cpu_mask;
672
673 /* We only give a hint, preemption can change cpu under us */
674 val |= raw_smp_processor_id();
675
676 if (table->ents[index] != val)
677 table->ents[index] = val;
678 }
679 }
680
681 #ifdef CONFIG_RFS_ACCEL
682 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
683 u16 filter_id);
684 #endif
685 #endif /* CONFIG_RPS */
686
687 /* This structure contains an instance of an RX queue. */
688 struct netdev_rx_queue {
689 #ifdef CONFIG_RPS
690 struct rps_map __rcu *rps_map;
691 struct rps_dev_flow_table __rcu *rps_flow_table;
692 #endif
693 struct kobject kobj;
694 struct net_device *dev;
695 } ____cacheline_aligned_in_smp;
696
697 /*
698 * RX queue sysfs structures and functions.
699 */
700 struct rx_queue_attribute {
701 struct attribute attr;
702 ssize_t (*show)(struct netdev_rx_queue *queue,
703 struct rx_queue_attribute *attr, char *buf);
704 ssize_t (*store)(struct netdev_rx_queue *queue,
705 struct rx_queue_attribute *attr, const char *buf, size_t len);
706 };
707
708 #ifdef CONFIG_XPS
709 /*
710 * This structure holds an XPS map which can be of variable length. The
711 * map is an array of queues.
712 */
713 struct xps_map {
714 unsigned int len;
715 unsigned int alloc_len;
716 struct rcu_head rcu;
717 u16 queues[0];
718 };
719 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
720 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
721 / sizeof(u16))
722
723 /*
724 * This structure holds all XPS maps for device. Maps are indexed by CPU.
725 */
726 struct xps_dev_maps {
727 struct rcu_head rcu;
728 struct xps_map __rcu *cpu_map[0];
729 };
730 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
731 (nr_cpu_ids * sizeof(struct xps_map *)))
732 #endif /* CONFIG_XPS */
733
734 #define TC_MAX_QUEUE 16
735 #define TC_BITMASK 15
736 /* HW offloaded queuing disciplines txq count and offset maps */
737 struct netdev_tc_txq {
738 u16 count;
739 u16 offset;
740 };
741
742 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
743 /*
744 * This structure is to hold information about the device
745 * configured to run FCoE protocol stack.
746 */
747 struct netdev_fcoe_hbainfo {
748 char manufacturer[64];
749 char serial_number[64];
750 char hardware_version[64];
751 char driver_version[64];
752 char optionrom_version[64];
753 char firmware_version[64];
754 char model[256];
755 char model_description[256];
756 };
757 #endif
758
759 #define MAX_PHYS_ITEM_ID_LEN 32
760
761 /* This structure holds a unique identifier to identify some
762 * physical item (port for example) used by a netdevice.
763 */
764 struct netdev_phys_item_id {
765 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
766 unsigned char id_len;
767 };
768
769 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
770 struct sk_buff *skb);
771
772 /*
773 * This structure defines the management hooks for network devices.
774 * The following hooks can be defined; unless noted otherwise, they are
775 * optional and can be filled with a null pointer.
776 *
777 * int (*ndo_init)(struct net_device *dev);
778 * This function is called once when network device is registered.
779 * The network device can use this to any late stage initializaton
780 * or semantic validattion. It can fail with an error code which will
781 * be propogated back to register_netdev
782 *
783 * void (*ndo_uninit)(struct net_device *dev);
784 * This function is called when device is unregistered or when registration
785 * fails. It is not called if init fails.
786 *
787 * int (*ndo_open)(struct net_device *dev);
788 * This function is called when network device transistions to the up
789 * state.
790 *
791 * int (*ndo_stop)(struct net_device *dev);
792 * This function is called when network device transistions to the down
793 * state.
794 *
795 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
796 * struct net_device *dev);
797 * Called when a packet needs to be transmitted.
798 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
799 * the queue before that can happen; it's for obsolete devices and weird
800 * corner cases, but the stack really does a non-trivial amount
801 * of useless work if you return NETDEV_TX_BUSY.
802 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
803 * Required can not be NULL.
804 *
805 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
806 * void *accel_priv, select_queue_fallback_t fallback);
807 * Called to decide which queue to when device supports multiple
808 * transmit queues.
809 *
810 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
811 * This function is called to allow device receiver to make
812 * changes to configuration when multicast or promiscious is enabled.
813 *
814 * void (*ndo_set_rx_mode)(struct net_device *dev);
815 * This function is called device changes address list filtering.
816 * If driver handles unicast address filtering, it should set
817 * IFF_UNICAST_FLT to its priv_flags.
818 *
819 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
820 * This function is called when the Media Access Control address
821 * needs to be changed. If this interface is not defined, the
822 * mac address can not be changed.
823 *
824 * int (*ndo_validate_addr)(struct net_device *dev);
825 * Test if Media Access Control address is valid for the device.
826 *
827 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
828 * Called when a user request an ioctl which can't be handled by
829 * the generic interface code. If not defined ioctl's return
830 * not supported error code.
831 *
832 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
833 * Used to set network devices bus interface parameters. This interface
834 * is retained for legacy reason, new devices should use the bus
835 * interface (PCI) for low level management.
836 *
837 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
838 * Called when a user wants to change the Maximum Transfer Unit
839 * of a device. If not defined, any request to change MTU will
840 * will return an error.
841 *
842 * void (*ndo_tx_timeout)(struct net_device *dev);
843 * Callback uses when the transmitter has not made any progress
844 * for dev->watchdog ticks.
845 *
846 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
847 * struct rtnl_link_stats64 *storage);
848 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
849 * Called when a user wants to get the network device usage
850 * statistics. Drivers must do one of the following:
851 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
852 * rtnl_link_stats64 structure passed by the caller.
853 * 2. Define @ndo_get_stats to update a net_device_stats structure
854 * (which should normally be dev->stats) and return a pointer to
855 * it. The structure may be changed asynchronously only if each
856 * field is written atomically.
857 * 3. Update dev->stats asynchronously and atomically, and define
858 * neither operation.
859 *
860 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
861 * If device support VLAN filtering this function is called when a
862 * VLAN id is registered.
863 *
864 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
865 * If device support VLAN filtering this function is called when a
866 * VLAN id is unregistered.
867 *
868 * void (*ndo_poll_controller)(struct net_device *dev);
869 *
870 * SR-IOV management functions.
871 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
872 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
873 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
874 * int max_tx_rate);
875 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
876 * int (*ndo_get_vf_config)(struct net_device *dev,
877 * int vf, struct ifla_vf_info *ivf);
878 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
879 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
880 * struct nlattr *port[]);
881 *
882 * Enable or disable the VF ability to query its RSS Redirection Table and
883 * Hash Key. This is needed since on some devices VF share this information
884 * with PF and querying it may adduce a theoretical security risk.
885 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
886 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
887 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
888 * Called to setup 'tc' number of traffic classes in the net device. This
889 * is always called from the stack with the rtnl lock held and netif tx
890 * queues stopped. This allows the netdevice to perform queue management
891 * safely.
892 *
893 * Fiber Channel over Ethernet (FCoE) offload functions.
894 * int (*ndo_fcoe_enable)(struct net_device *dev);
895 * Called when the FCoE protocol stack wants to start using LLD for FCoE
896 * so the underlying device can perform whatever needed configuration or
897 * initialization to support acceleration of FCoE traffic.
898 *
899 * int (*ndo_fcoe_disable)(struct net_device *dev);
900 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
901 * so the underlying device can perform whatever needed clean-ups to
902 * stop supporting acceleration of FCoE traffic.
903 *
904 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
905 * struct scatterlist *sgl, unsigned int sgc);
906 * Called when the FCoE Initiator wants to initialize an I/O that
907 * is a possible candidate for Direct Data Placement (DDP). The LLD can
908 * perform necessary setup and returns 1 to indicate the device is set up
909 * successfully to perform DDP on this I/O, otherwise this returns 0.
910 *
911 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
912 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
913 * indicated by the FC exchange id 'xid', so the underlying device can
914 * clean up and reuse resources for later DDP requests.
915 *
916 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
917 * struct scatterlist *sgl, unsigned int sgc);
918 * Called when the FCoE Target wants to initialize an I/O that
919 * is a possible candidate for Direct Data Placement (DDP). The LLD can
920 * perform necessary setup and returns 1 to indicate the device is set up
921 * successfully to perform DDP on this I/O, otherwise this returns 0.
922 *
923 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
924 * struct netdev_fcoe_hbainfo *hbainfo);
925 * Called when the FCoE Protocol stack wants information on the underlying
926 * device. This information is utilized by the FCoE protocol stack to
927 * register attributes with Fiber Channel management service as per the
928 * FC-GS Fabric Device Management Information(FDMI) specification.
929 *
930 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
931 * Called when the underlying device wants to override default World Wide
932 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
933 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
934 * protocol stack to use.
935 *
936 * RFS acceleration.
937 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
938 * u16 rxq_index, u32 flow_id);
939 * Set hardware filter for RFS. rxq_index is the target queue index;
940 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
941 * Return the filter ID on success, or a negative error code.
942 *
943 * Slave management functions (for bridge, bonding, etc).
944 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
945 * Called to make another netdev an underling.
946 *
947 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
948 * Called to release previously enslaved netdev.
949 *
950 * Feature/offload setting functions.
951 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
952 * netdev_features_t features);
953 * Adjusts the requested feature flags according to device-specific
954 * constraints, and returns the resulting flags. Must not modify
955 * the device state.
956 *
957 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
958 * Called to update device configuration to new features. Passed
959 * feature set might be less than what was returned by ndo_fix_features()).
960 * Must return >0 or -errno if it changed dev->features itself.
961 *
962 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
963 * struct net_device *dev,
964 * const unsigned char *addr, u16 vid, u16 flags)
965 * Adds an FDB entry to dev for addr.
966 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
967 * struct net_device *dev,
968 * const unsigned char *addr, u16 vid)
969 * Deletes the FDB entry from dev coresponding to addr.
970 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
971 * struct net_device *dev, struct net_device *filter_dev,
972 * int idx)
973 * Used to add FDB entries to dump requests. Implementers should add
974 * entries to skb and update idx with the number of entries.
975 *
976 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
977 * u16 flags)
978 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
979 * struct net_device *dev, u32 filter_mask,
980 * int nlflags)
981 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
982 * u16 flags);
983 *
984 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
985 * Called to change device carrier. Soft-devices (like dummy, team, etc)
986 * which do not represent real hardware may define this to allow their
987 * userspace components to manage their virtual carrier state. Devices
988 * that determine carrier state from physical hardware properties (eg
989 * network cables) or protocol-dependent mechanisms (eg
990 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
991 *
992 * int (*ndo_get_phys_port_id)(struct net_device *dev,
993 * struct netdev_phys_item_id *ppid);
994 * Called to get ID of physical port of this device. If driver does
995 * not implement this, it is assumed that the hw is not able to have
996 * multiple net devices on single physical port.
997 *
998 * void (*ndo_add_vxlan_port)(struct net_device *dev,
999 * sa_family_t sa_family, __be16 port);
1000 * Called by vxlan to notiy a driver about the UDP port and socket
1001 * address family that vxlan is listnening to. It is called only when
1002 * a new port starts listening. The operation is protected by the
1003 * vxlan_net->sock_lock.
1004 *
1005 * void (*ndo_del_vxlan_port)(struct net_device *dev,
1006 * sa_family_t sa_family, __be16 port);
1007 * Called by vxlan to notify the driver about a UDP port and socket
1008 * address family that vxlan is not listening to anymore. The operation
1009 * is protected by the vxlan_net->sock_lock.
1010 *
1011 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1012 * struct net_device *dev)
1013 * Called by upper layer devices to accelerate switching or other
1014 * station functionality into hardware. 'pdev is the lowerdev
1015 * to use for the offload and 'dev' is the net device that will
1016 * back the offload. Returns a pointer to the private structure
1017 * the upper layer will maintain.
1018 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1019 * Called by upper layer device to delete the station created
1020 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1021 * the station and priv is the structure returned by the add
1022 * operation.
1023 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1024 * struct net_device *dev,
1025 * void *priv);
1026 * Callback to use for xmit over the accelerated station. This
1027 * is used in place of ndo_start_xmit on accelerated net
1028 * devices.
1029 * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1030 * struct net_device *dev
1031 * netdev_features_t features);
1032 * Called by core transmit path to determine if device is capable of
1033 * performing offload operations on a given packet. This is to give
1034 * the device an opportunity to implement any restrictions that cannot
1035 * be otherwise expressed by feature flags. The check is called with
1036 * the set of features that the stack has calculated and it returns
1037 * those the driver believes to be appropriate.
1038 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1039 * int queue_index, u32 maxrate);
1040 * Called when a user wants to set a max-rate limitation of specific
1041 * TX queue.
1042 * int (*ndo_get_iflink)(const struct net_device *dev);
1043 * Called to get the iflink value of this device.
1044 * void (*ndo_change_proto_down)(struct net_device *dev,
1045 * bool proto_down);
1046 * This function is used to pass protocol port error state information
1047 * to the switch driver. The switch driver can react to the proto_down
1048 * by doing a phys down on the associated switch port.
1049 *
1050 */
1051 struct net_device_ops {
1052 int (*ndo_init)(struct net_device *dev);
1053 void (*ndo_uninit)(struct net_device *dev);
1054 int (*ndo_open)(struct net_device *dev);
1055 int (*ndo_stop)(struct net_device *dev);
1056 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
1057 struct net_device *dev);
1058 u16 (*ndo_select_queue)(struct net_device *dev,
1059 struct sk_buff *skb,
1060 void *accel_priv,
1061 select_queue_fallback_t fallback);
1062 void (*ndo_change_rx_flags)(struct net_device *dev,
1063 int flags);
1064 void (*ndo_set_rx_mode)(struct net_device *dev);
1065 int (*ndo_set_mac_address)(struct net_device *dev,
1066 void *addr);
1067 int (*ndo_validate_addr)(struct net_device *dev);
1068 int (*ndo_do_ioctl)(struct net_device *dev,
1069 struct ifreq *ifr, int cmd);
1070 int (*ndo_set_config)(struct net_device *dev,
1071 struct ifmap *map);
1072 int (*ndo_change_mtu)(struct net_device *dev,
1073 int new_mtu);
1074 int (*ndo_neigh_setup)(struct net_device *dev,
1075 struct neigh_parms *);
1076 void (*ndo_tx_timeout) (struct net_device *dev);
1077
1078 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1079 struct rtnl_link_stats64 *storage);
1080 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1081
1082 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1083 __be16 proto, u16 vid);
1084 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1085 __be16 proto, u16 vid);
1086 #ifdef CONFIG_NET_POLL_CONTROLLER
1087 void (*ndo_poll_controller)(struct net_device *dev);
1088 int (*ndo_netpoll_setup)(struct net_device *dev,
1089 struct netpoll_info *info);
1090 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1091 #endif
1092 #ifdef CONFIG_NET_RX_BUSY_POLL
1093 int (*ndo_busy_poll)(struct napi_struct *dev);
1094 #endif
1095 int (*ndo_set_vf_mac)(struct net_device *dev,
1096 int queue, u8 *mac);
1097 int (*ndo_set_vf_vlan)(struct net_device *dev,
1098 int queue, u16 vlan, u8 qos);
1099 int (*ndo_set_vf_rate)(struct net_device *dev,
1100 int vf, int min_tx_rate,
1101 int max_tx_rate);
1102 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1103 int vf, bool setting);
1104 int (*ndo_get_vf_config)(struct net_device *dev,
1105 int vf,
1106 struct ifla_vf_info *ivf);
1107 int (*ndo_set_vf_link_state)(struct net_device *dev,
1108 int vf, int link_state);
1109 int (*ndo_get_vf_stats)(struct net_device *dev,
1110 int vf,
1111 struct ifla_vf_stats
1112 *vf_stats);
1113 int (*ndo_set_vf_port)(struct net_device *dev,
1114 int vf,
1115 struct nlattr *port[]);
1116 int (*ndo_get_vf_port)(struct net_device *dev,
1117 int vf, struct sk_buff *skb);
1118 int (*ndo_set_vf_rss_query_en)(
1119 struct net_device *dev,
1120 int vf, bool setting);
1121 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1122 #if IS_ENABLED(CONFIG_FCOE)
1123 int (*ndo_fcoe_enable)(struct net_device *dev);
1124 int (*ndo_fcoe_disable)(struct net_device *dev);
1125 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1126 u16 xid,
1127 struct scatterlist *sgl,
1128 unsigned int sgc);
1129 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1130 u16 xid);
1131 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1132 u16 xid,
1133 struct scatterlist *sgl,
1134 unsigned int sgc);
1135 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1136 struct netdev_fcoe_hbainfo *hbainfo);
1137 #endif
1138
1139 #if IS_ENABLED(CONFIG_LIBFCOE)
1140 #define NETDEV_FCOE_WWNN 0
1141 #define NETDEV_FCOE_WWPN 1
1142 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1143 u64 *wwn, int type);
1144 #endif
1145
1146 #ifdef CONFIG_RFS_ACCEL
1147 int (*ndo_rx_flow_steer)(struct net_device *dev,
1148 const struct sk_buff *skb,
1149 u16 rxq_index,
1150 u32 flow_id);
1151 #endif
1152 int (*ndo_add_slave)(struct net_device *dev,
1153 struct net_device *slave_dev);
1154 int (*ndo_del_slave)(struct net_device *dev,
1155 struct net_device *slave_dev);
1156 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1157 netdev_features_t features);
1158 int (*ndo_set_features)(struct net_device *dev,
1159 netdev_features_t features);
1160 int (*ndo_neigh_construct)(struct neighbour *n);
1161 void (*ndo_neigh_destroy)(struct neighbour *n);
1162
1163 int (*ndo_fdb_add)(struct ndmsg *ndm,
1164 struct nlattr *tb[],
1165 struct net_device *dev,
1166 const unsigned char *addr,
1167 u16 vid,
1168 u16 flags);
1169 int (*ndo_fdb_del)(struct ndmsg *ndm,
1170 struct nlattr *tb[],
1171 struct net_device *dev,
1172 const unsigned char *addr,
1173 u16 vid);
1174 int (*ndo_fdb_dump)(struct sk_buff *skb,
1175 struct netlink_callback *cb,
1176 struct net_device *dev,
1177 struct net_device *filter_dev,
1178 int idx);
1179
1180 int (*ndo_bridge_setlink)(struct net_device *dev,
1181 struct nlmsghdr *nlh,
1182 u16 flags);
1183 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1184 u32 pid, u32 seq,
1185 struct net_device *dev,
1186 u32 filter_mask,
1187 int nlflags);
1188 int (*ndo_bridge_dellink)(struct net_device *dev,
1189 struct nlmsghdr *nlh,
1190 u16 flags);
1191 int (*ndo_change_carrier)(struct net_device *dev,
1192 bool new_carrier);
1193 int (*ndo_get_phys_port_id)(struct net_device *dev,
1194 struct netdev_phys_item_id *ppid);
1195 int (*ndo_get_phys_port_name)(struct net_device *dev,
1196 char *name, size_t len);
1197 void (*ndo_add_vxlan_port)(struct net_device *dev,
1198 sa_family_t sa_family,
1199 __be16 port);
1200 void (*ndo_del_vxlan_port)(struct net_device *dev,
1201 sa_family_t sa_family,
1202 __be16 port);
1203
1204 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1205 struct net_device *dev);
1206 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1207 void *priv);
1208
1209 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1210 struct net_device *dev,
1211 void *priv);
1212 int (*ndo_get_lock_subclass)(struct net_device *dev);
1213 netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1214 struct net_device *dev,
1215 netdev_features_t features);
1216 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1217 int queue_index,
1218 u32 maxrate);
1219 int (*ndo_get_iflink)(const struct net_device *dev);
1220 int (*ndo_change_proto_down)(struct net_device *dev,
1221 bool proto_down);
1222 };
1223
1224 /**
1225 * enum net_device_priv_flags - &struct net_device priv_flags
1226 *
1227 * These are the &struct net_device, they are only set internally
1228 * by drivers and used in the kernel. These flags are invisible to
1229 * userspace, this means that the order of these flags can change
1230 * during any kernel release.
1231 *
1232 * You should have a pretty good reason to be extending these flags.
1233 *
1234 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1235 * @IFF_EBRIDGE: Ethernet bridging device
1236 * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active
1237 * @IFF_MASTER_8023AD: bonding master, 802.3ad
1238 * @IFF_MASTER_ALB: bonding master, balance-alb
1239 * @IFF_BONDING: bonding master or slave
1240 * @IFF_SLAVE_NEEDARP: need ARPs for validation
1241 * @IFF_ISATAP: ISATAP interface (RFC4214)
1242 * @IFF_MASTER_ARPMON: bonding master, ARP mon in use
1243 * @IFF_WAN_HDLC: WAN HDLC device
1244 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1245 * release skb->dst
1246 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1247 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1248 * @IFF_MACVLAN_PORT: device used as macvlan port
1249 * @IFF_BRIDGE_PORT: device used as bridge port
1250 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1251 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1252 * @IFF_UNICAST_FLT: Supports unicast filtering
1253 * @IFF_TEAM_PORT: device used as team port
1254 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1255 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1256 * change when it's running
1257 * @IFF_MACVLAN: Macvlan device
1258 */
1259 enum netdev_priv_flags {
1260 IFF_802_1Q_VLAN = 1<<0,
1261 IFF_EBRIDGE = 1<<1,
1262 IFF_SLAVE_INACTIVE = 1<<2,
1263 IFF_MASTER_8023AD = 1<<3,
1264 IFF_MASTER_ALB = 1<<4,
1265 IFF_BONDING = 1<<5,
1266 IFF_SLAVE_NEEDARP = 1<<6,
1267 IFF_ISATAP = 1<<7,
1268 IFF_MASTER_ARPMON = 1<<8,
1269 IFF_WAN_HDLC = 1<<9,
1270 IFF_XMIT_DST_RELEASE = 1<<10,
1271 IFF_DONT_BRIDGE = 1<<11,
1272 IFF_DISABLE_NETPOLL = 1<<12,
1273 IFF_MACVLAN_PORT = 1<<13,
1274 IFF_BRIDGE_PORT = 1<<14,
1275 IFF_OVS_DATAPATH = 1<<15,
1276 IFF_TX_SKB_SHARING = 1<<16,
1277 IFF_UNICAST_FLT = 1<<17,
1278 IFF_TEAM_PORT = 1<<18,
1279 IFF_SUPP_NOFCS = 1<<19,
1280 IFF_LIVE_ADDR_CHANGE = 1<<20,
1281 IFF_MACVLAN = 1<<21,
1282 IFF_XMIT_DST_RELEASE_PERM = 1<<22,
1283 IFF_IPVLAN_MASTER = 1<<23,
1284 IFF_IPVLAN_SLAVE = 1<<24,
1285 };
1286
1287 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1288 #define IFF_EBRIDGE IFF_EBRIDGE
1289 #define IFF_SLAVE_INACTIVE IFF_SLAVE_INACTIVE
1290 #define IFF_MASTER_8023AD IFF_MASTER_8023AD
1291 #define IFF_MASTER_ALB IFF_MASTER_ALB
1292 #define IFF_BONDING IFF_BONDING
1293 #define IFF_SLAVE_NEEDARP IFF_SLAVE_NEEDARP
1294 #define IFF_ISATAP IFF_ISATAP
1295 #define IFF_MASTER_ARPMON IFF_MASTER_ARPMON
1296 #define IFF_WAN_HDLC IFF_WAN_HDLC
1297 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1298 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1299 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1300 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1301 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1302 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1303 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1304 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1305 #define IFF_TEAM_PORT IFF_TEAM_PORT
1306 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1307 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1308 #define IFF_MACVLAN IFF_MACVLAN
1309 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1310 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER
1311 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE
1312
1313 /**
1314 * struct net_device - The DEVICE structure.
1315 * Actually, this whole structure is a big mistake. It mixes I/O
1316 * data with strictly "high-level" data, and it has to know about
1317 * almost every data structure used in the INET module.
1318 *
1319 * @name: This is the first field of the "visible" part of this structure
1320 * (i.e. as seen by users in the "Space.c" file). It is the name
1321 * of the interface.
1322 *
1323 * @name_hlist: Device name hash chain, please keep it close to name[]
1324 * @ifalias: SNMP alias
1325 * @mem_end: Shared memory end
1326 * @mem_start: Shared memory start
1327 * @base_addr: Device I/O address
1328 * @irq: Device IRQ number
1329 *
1330 * @carrier_changes: Stats to monitor carrier on<->off transitions
1331 *
1332 * @state: Generic network queuing layer state, see netdev_state_t
1333 * @dev_list: The global list of network devices
1334 * @napi_list: List entry, that is used for polling napi devices
1335 * @unreg_list: List entry, that is used, when we are unregistering the
1336 * device, see the function unregister_netdev
1337 * @close_list: List entry, that is used, when we are closing the device
1338 *
1339 * @adj_list: Directly linked devices, like slaves for bonding
1340 * @all_adj_list: All linked devices, *including* neighbours
1341 * @features: Currently active device features
1342 * @hw_features: User-changeable features
1343 *
1344 * @wanted_features: User-requested features
1345 * @vlan_features: Mask of features inheritable by VLAN devices
1346 *
1347 * @hw_enc_features: Mask of features inherited by encapsulating devices
1348 * This field indicates what encapsulation
1349 * offloads the hardware is capable of doing,
1350 * and drivers will need to set them appropriately.
1351 *
1352 * @mpls_features: Mask of features inheritable by MPLS
1353 *
1354 * @ifindex: interface index
1355 * @group: The group, that the device belongs to
1356 *
1357 * @stats: Statistics struct, which was left as a legacy, use
1358 * rtnl_link_stats64 instead
1359 *
1360 * @rx_dropped: Dropped packets by core network,
1361 * do not use this in drivers
1362 * @tx_dropped: Dropped packets by core network,
1363 * do not use this in drivers
1364 *
1365 * @wireless_handlers: List of functions to handle Wireless Extensions,
1366 * instead of ioctl,
1367 * see <net/iw_handler.h> for details.
1368 * @wireless_data: Instance data managed by the core of wireless extensions
1369 *
1370 * @netdev_ops: Includes several pointers to callbacks,
1371 * if one wants to override the ndo_*() functions
1372 * @ethtool_ops: Management operations
1373 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1374 * of Layer 2 headers.
1375 *
1376 * @flags: Interface flags (a la BSD)
1377 * @priv_flags: Like 'flags' but invisible to userspace,
1378 * see if.h for the definitions
1379 * @gflags: Global flags ( kept as legacy )
1380 * @padded: How much padding added by alloc_netdev()
1381 * @operstate: RFC2863 operstate
1382 * @link_mode: Mapping policy to operstate
1383 * @if_port: Selectable AUI, TP, ...
1384 * @dma: DMA channel
1385 * @mtu: Interface MTU value
1386 * @type: Interface hardware type
1387 * @hard_header_len: Hardware header length
1388 *
1389 * @needed_headroom: Extra headroom the hardware may need, but not in all
1390 * cases can this be guaranteed
1391 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1392 * cases can this be guaranteed. Some cases also use
1393 * LL_MAX_HEADER instead to allocate the skb
1394 *
1395 * interface address info:
1396 *
1397 * @perm_addr: Permanent hw address
1398 * @addr_assign_type: Hw address assignment type
1399 * @addr_len: Hardware address length
1400 * @neigh_priv_len; Used in neigh_alloc(),
1401 * initialized only in atm/clip.c
1402 * @dev_id: Used to differentiate devices that share
1403 * the same link layer address
1404 * @dev_port: Used to differentiate devices that share
1405 * the same function
1406 * @addr_list_lock: XXX: need comments on this one
1407 * @uc_promisc: Counter, that indicates, that promiscuous mode
1408 * has been enabled due to the need to listen to
1409 * additional unicast addresses in a device that
1410 * does not implement ndo_set_rx_mode()
1411 * @uc: unicast mac addresses
1412 * @mc: multicast mac addresses
1413 * @dev_addrs: list of device hw addresses
1414 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1415 * @promiscuity: Number of times, the NIC is told to work in
1416 * Promiscuous mode, if it becomes 0 the NIC will
1417 * exit from working in Promiscuous mode
1418 * @allmulti: Counter, enables or disables allmulticast mode
1419 *
1420 * @vlan_info: VLAN info
1421 * @dsa_ptr: dsa specific data
1422 * @tipc_ptr: TIPC specific data
1423 * @atalk_ptr: AppleTalk link
1424 * @ip_ptr: IPv4 specific data
1425 * @dn_ptr: DECnet specific data
1426 * @ip6_ptr: IPv6 specific data
1427 * @ax25_ptr: AX.25 specific data
1428 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1429 *
1430 * @last_rx: Time of last Rx
1431 * @dev_addr: Hw address (before bcast,
1432 * because most packets are unicast)
1433 *
1434 * @_rx: Array of RX queues
1435 * @num_rx_queues: Number of RX queues
1436 * allocated at register_netdev() time
1437 * @real_num_rx_queues: Number of RX queues currently active in device
1438 *
1439 * @rx_handler: handler for received packets
1440 * @rx_handler_data: XXX: need comments on this one
1441 * @ingress_queue: XXX: need comments on this one
1442 * @broadcast: hw bcast address
1443 *
1444 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1445 * indexed by RX queue number. Assigned by driver.
1446 * This must only be set if the ndo_rx_flow_steer
1447 * operation is defined
1448 * @index_hlist: Device index hash chain
1449 *
1450 * @_tx: Array of TX queues
1451 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1452 * @real_num_tx_queues: Number of TX queues currently active in device
1453 * @qdisc: Root qdisc from userspace point of view
1454 * @tx_queue_len: Max frames per queue allowed
1455 * @tx_global_lock: XXX: need comments on this one
1456 *
1457 * @xps_maps: XXX: need comments on this one
1458 *
1459 * @offload_fwd_mark: Offload device fwding mark
1460 *
1461 * @trans_start: Time (in jiffies) of last Tx
1462 * @watchdog_timeo: Represents the timeout that is used by
1463 * the watchdog ( see dev_watchdog() )
1464 * @watchdog_timer: List of timers
1465 *
1466 * @pcpu_refcnt: Number of references to this device
1467 * @todo_list: Delayed register/unregister
1468 * @link_watch_list: XXX: need comments on this one
1469 *
1470 * @reg_state: Register/unregister state machine
1471 * @dismantle: Device is going to be freed
1472 * @rtnl_link_state: This enum represents the phases of creating
1473 * a new link
1474 *
1475 * @destructor: Called from unregister,
1476 * can be used to call free_netdev
1477 * @npinfo: XXX: need comments on this one
1478 * @nd_net: Network namespace this network device is inside
1479 *
1480 * @ml_priv: Mid-layer private
1481 * @lstats: Loopback statistics
1482 * @tstats: Tunnel statistics
1483 * @dstats: Dummy statistics
1484 * @vstats: Virtual ethernet statistics
1485 *
1486 * @garp_port: GARP
1487 * @mrp_port: MRP
1488 *
1489 * @dev: Class/net/name entry
1490 * @sysfs_groups: Space for optional device, statistics and wireless
1491 * sysfs groups
1492 *
1493 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1494 * @rtnl_link_ops: Rtnl_link_ops
1495 *
1496 * @gso_max_size: Maximum size of generic segmentation offload
1497 * @gso_max_segs: Maximum number of segments that can be passed to the
1498 * NIC for GSO
1499 * @gso_min_segs: Minimum number of segments that can be passed to the
1500 * NIC for GSO
1501 *
1502 * @dcbnl_ops: Data Center Bridging netlink ops
1503 * @num_tc: Number of traffic classes in the net device
1504 * @tc_to_txq: XXX: need comments on this one
1505 * @prio_tc_map XXX: need comments on this one
1506 *
1507 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1508 *
1509 * @priomap: XXX: need comments on this one
1510 * @phydev: Physical device may attach itself
1511 * for hardware timestamping
1512 *
1513 * @qdisc_tx_busylock: XXX: need comments on this one
1514 *
1515 * @proto_down: protocol port state information can be sent to the
1516 * switch driver and used to set the phys state of the
1517 * switch port.
1518 *
1519 * FIXME: cleanup struct net_device such that network protocol info
1520 * moves out.
1521 */
1522
1523 struct net_device {
1524 char name[IFNAMSIZ];
1525 struct hlist_node name_hlist;
1526 char *ifalias;
1527 /*
1528 * I/O specific fields
1529 * FIXME: Merge these and struct ifmap into one
1530 */
1531 unsigned long mem_end;
1532 unsigned long mem_start;
1533 unsigned long base_addr;
1534 int irq;
1535
1536 atomic_t carrier_changes;
1537
1538 /*
1539 * Some hardware also needs these fields (state,dev_list,
1540 * napi_list,unreg_list,close_list) but they are not
1541 * part of the usual set specified in Space.c.
1542 */
1543
1544 unsigned long state;
1545
1546 struct list_head dev_list;
1547 struct list_head napi_list;
1548 struct list_head unreg_list;
1549 struct list_head close_list;
1550 struct list_head ptype_all;
1551 struct list_head ptype_specific;
1552
1553 struct {
1554 struct list_head upper;
1555 struct list_head lower;
1556 } adj_list;
1557
1558 struct {
1559 struct list_head upper;
1560 struct list_head lower;
1561 } all_adj_list;
1562
1563 netdev_features_t features;
1564 netdev_features_t hw_features;
1565 netdev_features_t wanted_features;
1566 netdev_features_t vlan_features;
1567 netdev_features_t hw_enc_features;
1568 netdev_features_t mpls_features;
1569
1570 int ifindex;
1571 int group;
1572
1573 struct net_device_stats stats;
1574
1575 atomic_long_t rx_dropped;
1576 atomic_long_t tx_dropped;
1577
1578 #ifdef CONFIG_WIRELESS_EXT
1579 const struct iw_handler_def * wireless_handlers;
1580 struct iw_public_data * wireless_data;
1581 #endif
1582 const struct net_device_ops *netdev_ops;
1583 const struct ethtool_ops *ethtool_ops;
1584 #ifdef CONFIG_NET_SWITCHDEV
1585 const struct switchdev_ops *switchdev_ops;
1586 #endif
1587
1588 const struct header_ops *header_ops;
1589
1590 unsigned int flags;
1591 unsigned int priv_flags;
1592
1593 unsigned short gflags;
1594 unsigned short padded;
1595
1596 unsigned char operstate;
1597 unsigned char link_mode;
1598
1599 unsigned char if_port;
1600 unsigned char dma;
1601
1602 unsigned int mtu;
1603 unsigned short type;
1604 unsigned short hard_header_len;
1605
1606 unsigned short needed_headroom;
1607 unsigned short needed_tailroom;
1608
1609 /* Interface address info. */
1610 unsigned char perm_addr[MAX_ADDR_LEN];
1611 unsigned char addr_assign_type;
1612 unsigned char addr_len;
1613 unsigned short neigh_priv_len;
1614 unsigned short dev_id;
1615 unsigned short dev_port;
1616 spinlock_t addr_list_lock;
1617 unsigned char name_assign_type;
1618 bool uc_promisc;
1619 struct netdev_hw_addr_list uc;
1620 struct netdev_hw_addr_list mc;
1621 struct netdev_hw_addr_list dev_addrs;
1622
1623 #ifdef CONFIG_SYSFS
1624 struct kset *queues_kset;
1625 #endif
1626 unsigned int promiscuity;
1627 unsigned int allmulti;
1628
1629
1630 /* Protocol specific pointers */
1631
1632 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1633 struct vlan_info __rcu *vlan_info;
1634 #endif
1635 #if IS_ENABLED(CONFIG_NET_DSA)
1636 struct dsa_switch_tree *dsa_ptr;
1637 #endif
1638 #if IS_ENABLED(CONFIG_TIPC)
1639 struct tipc_bearer __rcu *tipc_ptr;
1640 #endif
1641 void *atalk_ptr;
1642 struct in_device __rcu *ip_ptr;
1643 struct dn_dev __rcu *dn_ptr;
1644 struct inet6_dev __rcu *ip6_ptr;
1645 void *ax25_ptr;
1646 struct wireless_dev *ieee80211_ptr;
1647 struct wpan_dev *ieee802154_ptr;
1648 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1649 struct mpls_dev __rcu *mpls_ptr;
1650 #endif
1651
1652 /*
1653 * Cache lines mostly used on receive path (including eth_type_trans())
1654 */
1655 unsigned long last_rx;
1656
1657 /* Interface address info used in eth_type_trans() */
1658 unsigned char *dev_addr;
1659
1660
1661 #ifdef CONFIG_SYSFS
1662 struct netdev_rx_queue *_rx;
1663
1664 unsigned int num_rx_queues;
1665 unsigned int real_num_rx_queues;
1666
1667 #endif
1668
1669 unsigned long gro_flush_timeout;
1670 rx_handler_func_t __rcu *rx_handler;
1671 void __rcu *rx_handler_data;
1672
1673 #ifdef CONFIG_NET_CLS_ACT
1674 struct tcf_proto __rcu *ingress_cl_list;
1675 #endif
1676 struct netdev_queue __rcu *ingress_queue;
1677 #ifdef CONFIG_NETFILTER_INGRESS
1678 struct list_head nf_hooks_ingress;
1679 #endif
1680
1681 unsigned char broadcast[MAX_ADDR_LEN];
1682 #ifdef CONFIG_RFS_ACCEL
1683 struct cpu_rmap *rx_cpu_rmap;
1684 #endif
1685 struct hlist_node index_hlist;
1686
1687 /*
1688 * Cache lines mostly used on transmit path
1689 */
1690 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1691 unsigned int num_tx_queues;
1692 unsigned int real_num_tx_queues;
1693 struct Qdisc *qdisc;
1694 unsigned long tx_queue_len;
1695 spinlock_t tx_global_lock;
1696 int watchdog_timeo;
1697
1698 #ifdef CONFIG_XPS
1699 struct xps_dev_maps __rcu *xps_maps;
1700 #endif
1701
1702 #ifdef CONFIG_NET_SWITCHDEV
1703 u32 offload_fwd_mark;
1704 #endif
1705
1706 /* These may be needed for future network-power-down code. */
1707
1708 /*
1709 * trans_start here is expensive for high speed devices on SMP,
1710 * please use netdev_queue->trans_start instead.
1711 */
1712 unsigned long trans_start;
1713
1714 struct timer_list watchdog_timer;
1715
1716 int __percpu *pcpu_refcnt;
1717 struct list_head todo_list;
1718
1719 struct list_head link_watch_list;
1720
1721 enum { NETREG_UNINITIALIZED=0,
1722 NETREG_REGISTERED, /* completed register_netdevice */
1723 NETREG_UNREGISTERING, /* called unregister_netdevice */
1724 NETREG_UNREGISTERED, /* completed unregister todo */
1725 NETREG_RELEASED, /* called free_netdev */
1726 NETREG_DUMMY, /* dummy device for NAPI poll */
1727 } reg_state:8;
1728
1729 bool dismantle;
1730
1731 enum {
1732 RTNL_LINK_INITIALIZED,
1733 RTNL_LINK_INITIALIZING,
1734 } rtnl_link_state:16;
1735
1736 void (*destructor)(struct net_device *dev);
1737
1738 #ifdef CONFIG_NETPOLL
1739 struct netpoll_info __rcu *npinfo;
1740 #endif
1741
1742 possible_net_t nd_net;
1743
1744 /* mid-layer private */
1745 union {
1746 void *ml_priv;
1747 struct pcpu_lstats __percpu *lstats;
1748 struct pcpu_sw_netstats __percpu *tstats;
1749 struct pcpu_dstats __percpu *dstats;
1750 struct pcpu_vstats __percpu *vstats;
1751 };
1752
1753 struct garp_port __rcu *garp_port;
1754 struct mrp_port __rcu *mrp_port;
1755
1756 struct device dev;
1757 const struct attribute_group *sysfs_groups[4];
1758 const struct attribute_group *sysfs_rx_queue_group;
1759
1760 const struct rtnl_link_ops *rtnl_link_ops;
1761
1762 /* for setting kernel sock attribute on TCP connection setup */
1763 #define GSO_MAX_SIZE 65536
1764 unsigned int gso_max_size;
1765 #define GSO_MAX_SEGS 65535
1766 u16 gso_max_segs;
1767 u16 gso_min_segs;
1768 #ifdef CONFIG_DCB
1769 const struct dcbnl_rtnl_ops *dcbnl_ops;
1770 #endif
1771 u8 num_tc;
1772 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1773 u8 prio_tc_map[TC_BITMASK + 1];
1774
1775 #if IS_ENABLED(CONFIG_FCOE)
1776 unsigned int fcoe_ddp_xid;
1777 #endif
1778 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1779 struct netprio_map __rcu *priomap;
1780 #endif
1781 struct phy_device *phydev;
1782 struct lock_class_key *qdisc_tx_busylock;
1783 bool proto_down;
1784 };
1785 #define to_net_dev(d) container_of(d, struct net_device, dev)
1786
1787 #define NETDEV_ALIGN 32
1788
1789 static inline
1790 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1791 {
1792 return dev->prio_tc_map[prio & TC_BITMASK];
1793 }
1794
1795 static inline
1796 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1797 {
1798 if (tc >= dev->num_tc)
1799 return -EINVAL;
1800
1801 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1802 return 0;
1803 }
1804
1805 static inline
1806 void netdev_reset_tc(struct net_device *dev)
1807 {
1808 dev->num_tc = 0;
1809 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1810 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1811 }
1812
1813 static inline
1814 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1815 {
1816 if (tc >= dev->num_tc)
1817 return -EINVAL;
1818
1819 dev->tc_to_txq[tc].count = count;
1820 dev->tc_to_txq[tc].offset = offset;
1821 return 0;
1822 }
1823
1824 static inline
1825 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1826 {
1827 if (num_tc > TC_MAX_QUEUE)
1828 return -EINVAL;
1829
1830 dev->num_tc = num_tc;
1831 return 0;
1832 }
1833
1834 static inline
1835 int netdev_get_num_tc(struct net_device *dev)
1836 {
1837 return dev->num_tc;
1838 }
1839
1840 static inline
1841 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1842 unsigned int index)
1843 {
1844 return &dev->_tx[index];
1845 }
1846
1847 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1848 const struct sk_buff *skb)
1849 {
1850 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1851 }
1852
1853 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1854 void (*f)(struct net_device *,
1855 struct netdev_queue *,
1856 void *),
1857 void *arg)
1858 {
1859 unsigned int i;
1860
1861 for (i = 0; i < dev->num_tx_queues; i++)
1862 f(dev, &dev->_tx[i], arg);
1863 }
1864
1865 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1866 struct sk_buff *skb,
1867 void *accel_priv);
1868
1869 /*
1870 * Net namespace inlines
1871 */
1872 static inline
1873 struct net *dev_net(const struct net_device *dev)
1874 {
1875 return read_pnet(&dev->nd_net);
1876 }
1877
1878 static inline
1879 void dev_net_set(struct net_device *dev, struct net *net)
1880 {
1881 write_pnet(&dev->nd_net, net);
1882 }
1883
1884 static inline bool netdev_uses_dsa(struct net_device *dev)
1885 {
1886 #if IS_ENABLED(CONFIG_NET_DSA)
1887 if (dev->dsa_ptr != NULL)
1888 return dsa_uses_tagged_protocol(dev->dsa_ptr);
1889 #endif
1890 return false;
1891 }
1892
1893 /**
1894 * netdev_priv - access network device private data
1895 * @dev: network device
1896 *
1897 * Get network device private data
1898 */
1899 static inline void *netdev_priv(const struct net_device *dev)
1900 {
1901 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1902 }
1903
1904 /* Set the sysfs physical device reference for the network logical device
1905 * if set prior to registration will cause a symlink during initialization.
1906 */
1907 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1908
1909 /* Set the sysfs device type for the network logical device to allow
1910 * fine-grained identification of different network device types. For
1911 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1912 */
1913 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1914
1915 /* Default NAPI poll() weight
1916 * Device drivers are strongly advised to not use bigger value
1917 */
1918 #define NAPI_POLL_WEIGHT 64
1919
1920 /**
1921 * netif_napi_add - initialize a napi context
1922 * @dev: network device
1923 * @napi: napi context
1924 * @poll: polling function
1925 * @weight: default weight
1926 *
1927 * netif_napi_add() must be used to initialize a napi context prior to calling
1928 * *any* of the other napi related functions.
1929 */
1930 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1931 int (*poll)(struct napi_struct *, int), int weight);
1932
1933 /**
1934 * netif_napi_del - remove a napi context
1935 * @napi: napi context
1936 *
1937 * netif_napi_del() removes a napi context from the network device napi list
1938 */
1939 void netif_napi_del(struct napi_struct *napi);
1940
1941 struct napi_gro_cb {
1942 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1943 void *frag0;
1944
1945 /* Length of frag0. */
1946 unsigned int frag0_len;
1947
1948 /* This indicates where we are processing relative to skb->data. */
1949 int data_offset;
1950
1951 /* This is non-zero if the packet cannot be merged with the new skb. */
1952 u16 flush;
1953
1954 /* Save the IP ID here and check when we get to the transport layer */
1955 u16 flush_id;
1956
1957 /* Number of segments aggregated. */
1958 u16 count;
1959
1960 /* Start offset for remote checksum offload */
1961 u16 gro_remcsum_start;
1962
1963 /* jiffies when first packet was created/queued */
1964 unsigned long age;
1965
1966 /* Used in ipv6_gro_receive() and foo-over-udp */
1967 u16 proto;
1968
1969 /* This is non-zero if the packet may be of the same flow. */
1970 u8 same_flow:1;
1971
1972 /* Used in udp_gro_receive */
1973 u8 udp_mark:1;
1974
1975 /* GRO checksum is valid */
1976 u8 csum_valid:1;
1977
1978 /* Number of checksums via CHECKSUM_UNNECESSARY */
1979 u8 csum_cnt:3;
1980
1981 /* Free the skb? */
1982 u8 free:2;
1983 #define NAPI_GRO_FREE 1
1984 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1985
1986 /* Used in foo-over-udp, set in udp[46]_gro_receive */
1987 u8 is_ipv6:1;
1988
1989 /* 7 bit hole */
1990
1991 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
1992 __wsum csum;
1993
1994 /* used in skb_gro_receive() slow path */
1995 struct sk_buff *last;
1996 };
1997
1998 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1999
2000 struct packet_type {
2001 __be16 type; /* This is really htons(ether_type). */
2002 struct net_device *dev; /* NULL is wildcarded here */
2003 int (*func) (struct sk_buff *,
2004 struct net_device *,
2005 struct packet_type *,
2006 struct net_device *);
2007 bool (*id_match)(struct packet_type *ptype,
2008 struct sock *sk);
2009 void *af_packet_priv;
2010 struct list_head list;
2011 };
2012
2013 struct offload_callbacks {
2014 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2015 netdev_features_t features);
2016 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2017 struct sk_buff *skb);
2018 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2019 };
2020
2021 struct packet_offload {
2022 __be16 type; /* This is really htons(ether_type). */
2023 u16 priority;
2024 struct offload_callbacks callbacks;
2025 struct list_head list;
2026 };
2027
2028 struct udp_offload;
2029
2030 struct udp_offload_callbacks {
2031 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2032 struct sk_buff *skb,
2033 struct udp_offload *uoff);
2034 int (*gro_complete)(struct sk_buff *skb,
2035 int nhoff,
2036 struct udp_offload *uoff);
2037 };
2038
2039 struct udp_offload {
2040 __be16 port;
2041 u8 ipproto;
2042 struct udp_offload_callbacks callbacks;
2043 };
2044
2045 /* often modified stats are per cpu, other are shared (netdev->stats) */
2046 struct pcpu_sw_netstats {
2047 u64 rx_packets;
2048 u64 rx_bytes;
2049 u64 tx_packets;
2050 u64 tx_bytes;
2051 struct u64_stats_sync syncp;
2052 };
2053
2054 #define netdev_alloc_pcpu_stats(type) \
2055 ({ \
2056 typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
2057 if (pcpu_stats) { \
2058 int __cpu; \
2059 for_each_possible_cpu(__cpu) { \
2060 typeof(type) *stat; \
2061 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2062 u64_stats_init(&stat->syncp); \
2063 } \
2064 } \
2065 pcpu_stats; \
2066 })
2067
2068 #include <linux/notifier.h>
2069
2070 /* netdevice notifier chain. Please remember to update the rtnetlink
2071 * notification exclusion list in rtnetlink_event() when adding new
2072 * types.
2073 */
2074 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
2075 #define NETDEV_DOWN 0x0002
2076 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
2077 detected a hardware crash and restarted
2078 - we can use this eg to kick tcp sessions
2079 once done */
2080 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
2081 #define NETDEV_REGISTER 0x0005
2082 #define NETDEV_UNREGISTER 0x0006
2083 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
2084 #define NETDEV_CHANGEADDR 0x0008
2085 #define NETDEV_GOING_DOWN 0x0009
2086 #define NETDEV_CHANGENAME 0x000A
2087 #define NETDEV_FEAT_CHANGE 0x000B
2088 #define NETDEV_BONDING_FAILOVER 0x000C
2089 #define NETDEV_PRE_UP 0x000D
2090 #define NETDEV_PRE_TYPE_CHANGE 0x000E
2091 #define NETDEV_POST_TYPE_CHANGE 0x000F
2092 #define NETDEV_POST_INIT 0x0010
2093 #define NETDEV_UNREGISTER_FINAL 0x0011
2094 #define NETDEV_RELEASE 0x0012
2095 #define NETDEV_NOTIFY_PEERS 0x0013
2096 #define NETDEV_JOIN 0x0014
2097 #define NETDEV_CHANGEUPPER 0x0015
2098 #define NETDEV_RESEND_IGMP 0x0016
2099 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
2100 #define NETDEV_CHANGEINFODATA 0x0018
2101 #define NETDEV_BONDING_INFO 0x0019
2102
2103 int register_netdevice_notifier(struct notifier_block *nb);
2104 int unregister_netdevice_notifier(struct notifier_block *nb);
2105
2106 struct netdev_notifier_info {
2107 struct net_device *dev;
2108 };
2109
2110 struct netdev_notifier_change_info {
2111 struct netdev_notifier_info info; /* must be first */
2112 unsigned int flags_changed;
2113 };
2114
2115 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2116 struct net_device *dev)
2117 {
2118 info->dev = dev;
2119 }
2120
2121 static inline struct net_device *
2122 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2123 {
2124 return info->dev;
2125 }
2126
2127 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2128
2129
2130 extern rwlock_t dev_base_lock; /* Device list lock */
2131
2132 #define for_each_netdev(net, d) \
2133 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2134 #define for_each_netdev_reverse(net, d) \
2135 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2136 #define for_each_netdev_rcu(net, d) \
2137 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2138 #define for_each_netdev_safe(net, d, n) \
2139 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2140 #define for_each_netdev_continue(net, d) \
2141 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2142 #define for_each_netdev_continue_rcu(net, d) \
2143 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2144 #define for_each_netdev_in_bond_rcu(bond, slave) \
2145 for_each_netdev_rcu(&init_net, slave) \
2146 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2147 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2148
2149 static inline struct net_device *next_net_device(struct net_device *dev)
2150 {
2151 struct list_head *lh;
2152 struct net *net;
2153
2154 net = dev_net(dev);
2155 lh = dev->dev_list.next;
2156 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2157 }
2158
2159 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2160 {
2161 struct list_head *lh;
2162 struct net *net;
2163
2164 net = dev_net(dev);
2165 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2166 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2167 }
2168
2169 static inline struct net_device *first_net_device(struct net *net)
2170 {
2171 return list_empty(&net->dev_base_head) ? NULL :
2172 net_device_entry(net->dev_base_head.next);
2173 }
2174
2175 static inline struct net_device *first_net_device_rcu(struct net *net)
2176 {
2177 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2178
2179 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2180 }
2181
2182 int netdev_boot_setup_check(struct net_device *dev);
2183 unsigned long netdev_boot_base(const char *prefix, int unit);
2184 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2185 const char *hwaddr);
2186 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2187 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2188 void dev_add_pack(struct packet_type *pt);
2189 void dev_remove_pack(struct packet_type *pt);
2190 void __dev_remove_pack(struct packet_type *pt);
2191 void dev_add_offload(struct packet_offload *po);
2192 void dev_remove_offload(struct packet_offload *po);
2193
2194 int dev_get_iflink(const struct net_device *dev);
2195 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2196 unsigned short mask);
2197 struct net_device *dev_get_by_name(struct net *net, const char *name);
2198 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2199 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2200 int dev_alloc_name(struct net_device *dev, const char *name);
2201 int dev_open(struct net_device *dev);
2202 int dev_close(struct net_device *dev);
2203 int dev_close_many(struct list_head *head, bool unlink);
2204 void dev_disable_lro(struct net_device *dev);
2205 int dev_loopback_xmit(struct sock *sk, struct sk_buff *newskb);
2206 int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb);
2207 static inline int dev_queue_xmit(struct sk_buff *skb)
2208 {
2209 return dev_queue_xmit_sk(skb->sk, skb);
2210 }
2211 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2212 int register_netdevice(struct net_device *dev);
2213 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2214 void unregister_netdevice_many(struct list_head *head);
2215 static inline void unregister_netdevice(struct net_device *dev)
2216 {
2217 unregister_netdevice_queue(dev, NULL);
2218 }
2219
2220 int netdev_refcnt_read(const struct net_device *dev);
2221 void free_netdev(struct net_device *dev);
2222 void netdev_freemem(struct net_device *dev);
2223 void synchronize_net(void);
2224 int init_dummy_netdev(struct net_device *dev);
2225
2226 DECLARE_PER_CPU(int, xmit_recursion);
2227 static inline int dev_recursion_level(void)
2228 {
2229 return this_cpu_read(xmit_recursion);
2230 }
2231
2232 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2233 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2234 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2235 int netdev_get_name(struct net *net, char *name, int ifindex);
2236 int dev_restart(struct net_device *dev);
2237 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2238
2239 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2240 {
2241 return NAPI_GRO_CB(skb)->data_offset;
2242 }
2243
2244 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2245 {
2246 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2247 }
2248
2249 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2250 {
2251 NAPI_GRO_CB(skb)->data_offset += len;
2252 }
2253
2254 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2255 unsigned int offset)
2256 {
2257 return NAPI_GRO_CB(skb)->frag0 + offset;
2258 }
2259
2260 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2261 {
2262 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2263 }
2264
2265 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2266 unsigned int offset)
2267 {
2268 if (!pskb_may_pull(skb, hlen))
2269 return NULL;
2270
2271 NAPI_GRO_CB(skb)->frag0 = NULL;
2272 NAPI_GRO_CB(skb)->frag0_len = 0;
2273 return skb->data + offset;
2274 }
2275
2276 static inline void *skb_gro_network_header(struct sk_buff *skb)
2277 {
2278 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2279 skb_network_offset(skb);
2280 }
2281
2282 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2283 const void *start, unsigned int len)
2284 {
2285 if (NAPI_GRO_CB(skb)->csum_valid)
2286 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2287 csum_partial(start, len, 0));
2288 }
2289
2290 /* GRO checksum functions. These are logical equivalents of the normal
2291 * checksum functions (in skbuff.h) except that they operate on the GRO
2292 * offsets and fields in sk_buff.
2293 */
2294
2295 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2296
2297 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2298 {
2299 return (NAPI_GRO_CB(skb)->gro_remcsum_start - skb_headroom(skb) ==
2300 skb_gro_offset(skb));
2301 }
2302
2303 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2304 bool zero_okay,
2305 __sum16 check)
2306 {
2307 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2308 skb_checksum_start_offset(skb) <
2309 skb_gro_offset(skb)) &&
2310 !skb_at_gro_remcsum_start(skb) &&
2311 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2312 (!zero_okay || check));
2313 }
2314
2315 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2316 __wsum psum)
2317 {
2318 if (NAPI_GRO_CB(skb)->csum_valid &&
2319 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2320 return 0;
2321
2322 NAPI_GRO_CB(skb)->csum = psum;
2323
2324 return __skb_gro_checksum_complete(skb);
2325 }
2326
2327 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2328 {
2329 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2330 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2331 NAPI_GRO_CB(skb)->csum_cnt--;
2332 } else {
2333 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2334 * verified a new top level checksum or an encapsulated one
2335 * during GRO. This saves work if we fallback to normal path.
2336 */
2337 __skb_incr_checksum_unnecessary(skb);
2338 }
2339 }
2340
2341 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2342 compute_pseudo) \
2343 ({ \
2344 __sum16 __ret = 0; \
2345 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2346 __ret = __skb_gro_checksum_validate_complete(skb, \
2347 compute_pseudo(skb, proto)); \
2348 if (__ret) \
2349 __skb_mark_checksum_bad(skb); \
2350 else \
2351 skb_gro_incr_csum_unnecessary(skb); \
2352 __ret; \
2353 })
2354
2355 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2356 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2357
2358 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2359 compute_pseudo) \
2360 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2361
2362 #define skb_gro_checksum_simple_validate(skb) \
2363 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2364
2365 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2366 {
2367 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2368 !NAPI_GRO_CB(skb)->csum_valid);
2369 }
2370
2371 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2372 __sum16 check, __wsum pseudo)
2373 {
2374 NAPI_GRO_CB(skb)->csum = ~pseudo;
2375 NAPI_GRO_CB(skb)->csum_valid = 1;
2376 }
2377
2378 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2379 do { \
2380 if (__skb_gro_checksum_convert_check(skb)) \
2381 __skb_gro_checksum_convert(skb, check, \
2382 compute_pseudo(skb, proto)); \
2383 } while (0)
2384
2385 struct gro_remcsum {
2386 int offset;
2387 __wsum delta;
2388 };
2389
2390 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2391 {
2392 grc->offset = 0;
2393 grc->delta = 0;
2394 }
2395
2396 static inline void skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2397 int start, int offset,
2398 struct gro_remcsum *grc,
2399 bool nopartial)
2400 {
2401 __wsum delta;
2402
2403 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2404
2405 if (!nopartial) {
2406 NAPI_GRO_CB(skb)->gro_remcsum_start =
2407 ((unsigned char *)ptr + start) - skb->head;
2408 return;
2409 }
2410
2411 delta = remcsum_adjust(ptr, NAPI_GRO_CB(skb)->csum, start, offset);
2412
2413 /* Adjust skb->csum since we changed the packet */
2414 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2415
2416 grc->offset = (ptr + offset) - (void *)skb->head;
2417 grc->delta = delta;
2418 }
2419
2420 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2421 struct gro_remcsum *grc)
2422 {
2423 if (!grc->delta)
2424 return;
2425
2426 remcsum_unadjust((__sum16 *)(skb->head + grc->offset), grc->delta);
2427 }
2428
2429 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2430 unsigned short type,
2431 const void *daddr, const void *saddr,
2432 unsigned int len)
2433 {
2434 if (!dev->header_ops || !dev->header_ops->create)
2435 return 0;
2436
2437 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2438 }
2439
2440 static inline int dev_parse_header(const struct sk_buff *skb,
2441 unsigned char *haddr)
2442 {
2443 const struct net_device *dev = skb->dev;
2444
2445 if (!dev->header_ops || !dev->header_ops->parse)
2446 return 0;
2447 return dev->header_ops->parse(skb, haddr);
2448 }
2449
2450 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2451 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2452 static inline int unregister_gifconf(unsigned int family)
2453 {
2454 return register_gifconf(family, NULL);
2455 }
2456
2457 #ifdef CONFIG_NET_FLOW_LIMIT
2458 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2459 struct sd_flow_limit {
2460 u64 count;
2461 unsigned int num_buckets;
2462 unsigned int history_head;
2463 u16 history[FLOW_LIMIT_HISTORY];
2464 u8 buckets[];
2465 };
2466
2467 extern int netdev_flow_limit_table_len;
2468 #endif /* CONFIG_NET_FLOW_LIMIT */
2469
2470 /*
2471 * Incoming packets are placed on per-cpu queues
2472 */
2473 struct softnet_data {
2474 struct list_head poll_list;
2475 struct sk_buff_head process_queue;
2476
2477 /* stats */
2478 unsigned int processed;
2479 unsigned int time_squeeze;
2480 unsigned int cpu_collision;
2481 unsigned int received_rps;
2482 #ifdef CONFIG_RPS
2483 struct softnet_data *rps_ipi_list;
2484 #endif
2485 #ifdef CONFIG_NET_FLOW_LIMIT
2486 struct sd_flow_limit __rcu *flow_limit;
2487 #endif
2488 struct Qdisc *output_queue;
2489 struct Qdisc **output_queue_tailp;
2490 struct sk_buff *completion_queue;
2491
2492 #ifdef CONFIG_RPS
2493 /* Elements below can be accessed between CPUs for RPS */
2494 struct call_single_data csd ____cacheline_aligned_in_smp;
2495 struct softnet_data *rps_ipi_next;
2496 unsigned int cpu;
2497 unsigned int input_queue_head;
2498 unsigned int input_queue_tail;
2499 #endif
2500 unsigned int dropped;
2501 struct sk_buff_head input_pkt_queue;
2502 struct napi_struct backlog;
2503
2504 };
2505
2506 static inline void input_queue_head_incr(struct softnet_data *sd)
2507 {
2508 #ifdef CONFIG_RPS
2509 sd->input_queue_head++;
2510 #endif
2511 }
2512
2513 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2514 unsigned int *qtail)
2515 {
2516 #ifdef CONFIG_RPS
2517 *qtail = ++sd->input_queue_tail;
2518 #endif
2519 }
2520
2521 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2522
2523 void __netif_schedule(struct Qdisc *q);
2524 void netif_schedule_queue(struct netdev_queue *txq);
2525
2526 static inline void netif_tx_schedule_all(struct net_device *dev)
2527 {
2528 unsigned int i;
2529
2530 for (i = 0; i < dev->num_tx_queues; i++)
2531 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2532 }
2533
2534 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2535 {
2536 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2537 }
2538
2539 /**
2540 * netif_start_queue - allow transmit
2541 * @dev: network device
2542 *
2543 * Allow upper layers to call the device hard_start_xmit routine.
2544 */
2545 static inline void netif_start_queue(struct net_device *dev)
2546 {
2547 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2548 }
2549
2550 static inline void netif_tx_start_all_queues(struct net_device *dev)
2551 {
2552 unsigned int i;
2553
2554 for (i = 0; i < dev->num_tx_queues; i++) {
2555 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2556 netif_tx_start_queue(txq);
2557 }
2558 }
2559
2560 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2561
2562 /**
2563 * netif_wake_queue - restart transmit
2564 * @dev: network device
2565 *
2566 * Allow upper layers to call the device hard_start_xmit routine.
2567 * Used for flow control when transmit resources are available.
2568 */
2569 static inline void netif_wake_queue(struct net_device *dev)
2570 {
2571 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2572 }
2573
2574 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2575 {
2576 unsigned int i;
2577
2578 for (i = 0; i < dev->num_tx_queues; i++) {
2579 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2580 netif_tx_wake_queue(txq);
2581 }
2582 }
2583
2584 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2585 {
2586 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2587 }
2588
2589 /**
2590 * netif_stop_queue - stop transmitted packets
2591 * @dev: network device
2592 *
2593 * Stop upper layers calling the device hard_start_xmit routine.
2594 * Used for flow control when transmit resources are unavailable.
2595 */
2596 static inline void netif_stop_queue(struct net_device *dev)
2597 {
2598 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2599 }
2600
2601 void netif_tx_stop_all_queues(struct net_device *dev);
2602
2603 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2604 {
2605 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2606 }
2607
2608 /**
2609 * netif_queue_stopped - test if transmit queue is flowblocked
2610 * @dev: network device
2611 *
2612 * Test if transmit queue on device is currently unable to send.
2613 */
2614 static inline bool netif_queue_stopped(const struct net_device *dev)
2615 {
2616 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2617 }
2618
2619 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2620 {
2621 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2622 }
2623
2624 static inline bool
2625 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2626 {
2627 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2628 }
2629
2630 static inline bool
2631 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2632 {
2633 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2634 }
2635
2636 /**
2637 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2638 * @dev_queue: pointer to transmit queue
2639 *
2640 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2641 * to give appropriate hint to the cpu.
2642 */
2643 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2644 {
2645 #ifdef CONFIG_BQL
2646 prefetchw(&dev_queue->dql.num_queued);
2647 #endif
2648 }
2649
2650 /**
2651 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2652 * @dev_queue: pointer to transmit queue
2653 *
2654 * BQL enabled drivers might use this helper in their TX completion path,
2655 * to give appropriate hint to the cpu.
2656 */
2657 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2658 {
2659 #ifdef CONFIG_BQL
2660 prefetchw(&dev_queue->dql.limit);
2661 #endif
2662 }
2663
2664 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2665 unsigned int bytes)
2666 {
2667 #ifdef CONFIG_BQL
2668 dql_queued(&dev_queue->dql, bytes);
2669
2670 if (likely(dql_avail(&dev_queue->dql) >= 0))
2671 return;
2672
2673 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2674
2675 /*
2676 * The XOFF flag must be set before checking the dql_avail below,
2677 * because in netdev_tx_completed_queue we update the dql_completed
2678 * before checking the XOFF flag.
2679 */
2680 smp_mb();
2681
2682 /* check again in case another CPU has just made room avail */
2683 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2684 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2685 #endif
2686 }
2687
2688 /**
2689 * netdev_sent_queue - report the number of bytes queued to hardware
2690 * @dev: network device
2691 * @bytes: number of bytes queued to the hardware device queue
2692 *
2693 * Report the number of bytes queued for sending/completion to the network
2694 * device hardware queue. @bytes should be a good approximation and should
2695 * exactly match netdev_completed_queue() @bytes
2696 */
2697 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2698 {
2699 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2700 }
2701
2702 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2703 unsigned int pkts, unsigned int bytes)
2704 {
2705 #ifdef CONFIG_BQL
2706 if (unlikely(!bytes))
2707 return;
2708
2709 dql_completed(&dev_queue->dql, bytes);
2710
2711 /*
2712 * Without the memory barrier there is a small possiblity that
2713 * netdev_tx_sent_queue will miss the update and cause the queue to
2714 * be stopped forever
2715 */
2716 smp_mb();
2717
2718 if (dql_avail(&dev_queue->dql) < 0)
2719 return;
2720
2721 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2722 netif_schedule_queue(dev_queue);
2723 #endif
2724 }
2725
2726 /**
2727 * netdev_completed_queue - report bytes and packets completed by device
2728 * @dev: network device
2729 * @pkts: actual number of packets sent over the medium
2730 * @bytes: actual number of bytes sent over the medium
2731 *
2732 * Report the number of bytes and packets transmitted by the network device
2733 * hardware queue over the physical medium, @bytes must exactly match the
2734 * @bytes amount passed to netdev_sent_queue()
2735 */
2736 static inline void netdev_completed_queue(struct net_device *dev,
2737 unsigned int pkts, unsigned int bytes)
2738 {
2739 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2740 }
2741
2742 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2743 {
2744 #ifdef CONFIG_BQL
2745 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2746 dql_reset(&q->dql);
2747 #endif
2748 }
2749
2750 /**
2751 * netdev_reset_queue - reset the packets and bytes count of a network device
2752 * @dev_queue: network device
2753 *
2754 * Reset the bytes and packet count of a network device and clear the
2755 * software flow control OFF bit for this network device
2756 */
2757 static inline void netdev_reset_queue(struct net_device *dev_queue)
2758 {
2759 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2760 }
2761
2762 /**
2763 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
2764 * @dev: network device
2765 * @queue_index: given tx queue index
2766 *
2767 * Returns 0 if given tx queue index >= number of device tx queues,
2768 * otherwise returns the originally passed tx queue index.
2769 */
2770 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2771 {
2772 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2773 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2774 dev->name, queue_index,
2775 dev->real_num_tx_queues);
2776 return 0;
2777 }
2778
2779 return queue_index;
2780 }
2781
2782 /**
2783 * netif_running - test if up
2784 * @dev: network device
2785 *
2786 * Test if the device has been brought up.
2787 */
2788 static inline bool netif_running(const struct net_device *dev)
2789 {
2790 return test_bit(__LINK_STATE_START, &dev->state);
2791 }
2792
2793 /*
2794 * Routines to manage the subqueues on a device. We only need start
2795 * stop, and a check if it's stopped. All other device management is
2796 * done at the overall netdevice level.
2797 * Also test the device if we're multiqueue.
2798 */
2799
2800 /**
2801 * netif_start_subqueue - allow sending packets on subqueue
2802 * @dev: network device
2803 * @queue_index: sub queue index
2804 *
2805 * Start individual transmit queue of a device with multiple transmit queues.
2806 */
2807 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2808 {
2809 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2810
2811 netif_tx_start_queue(txq);
2812 }
2813
2814 /**
2815 * netif_stop_subqueue - stop sending packets on subqueue
2816 * @dev: network device
2817 * @queue_index: sub queue index
2818 *
2819 * Stop individual transmit queue of a device with multiple transmit queues.
2820 */
2821 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2822 {
2823 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2824 netif_tx_stop_queue(txq);
2825 }
2826
2827 /**
2828 * netif_subqueue_stopped - test status of subqueue
2829 * @dev: network device
2830 * @queue_index: sub queue index
2831 *
2832 * Check individual transmit queue of a device with multiple transmit queues.
2833 */
2834 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2835 u16 queue_index)
2836 {
2837 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2838
2839 return netif_tx_queue_stopped(txq);
2840 }
2841
2842 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2843 struct sk_buff *skb)
2844 {
2845 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2846 }
2847
2848 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2849
2850 #ifdef CONFIG_XPS
2851 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2852 u16 index);
2853 #else
2854 static inline int netif_set_xps_queue(struct net_device *dev,
2855 const struct cpumask *mask,
2856 u16 index)
2857 {
2858 return 0;
2859 }
2860 #endif
2861
2862 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2863 unsigned int num_tx_queues);
2864
2865 /*
2866 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2867 * as a distribution range limit for the returned value.
2868 */
2869 static inline u16 skb_tx_hash(const struct net_device *dev,
2870 struct sk_buff *skb)
2871 {
2872 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2873 }
2874
2875 /**
2876 * netif_is_multiqueue - test if device has multiple transmit queues
2877 * @dev: network device
2878 *
2879 * Check if device has multiple transmit queues
2880 */
2881 static inline bool netif_is_multiqueue(const struct net_device *dev)
2882 {
2883 return dev->num_tx_queues > 1;
2884 }
2885
2886 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2887
2888 #ifdef CONFIG_SYSFS
2889 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2890 #else
2891 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2892 unsigned int rxq)
2893 {
2894 return 0;
2895 }
2896 #endif
2897
2898 #ifdef CONFIG_SYSFS
2899 static inline unsigned int get_netdev_rx_queue_index(
2900 struct netdev_rx_queue *queue)
2901 {
2902 struct net_device *dev = queue->dev;
2903 int index = queue - dev->_rx;
2904
2905 BUG_ON(index >= dev->num_rx_queues);
2906 return index;
2907 }
2908 #endif
2909
2910 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
2911 int netif_get_num_default_rss_queues(void);
2912
2913 enum skb_free_reason {
2914 SKB_REASON_CONSUMED,
2915 SKB_REASON_DROPPED,
2916 };
2917
2918 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2919 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2920
2921 /*
2922 * It is not allowed to call kfree_skb() or consume_skb() from hardware
2923 * interrupt context or with hardware interrupts being disabled.
2924 * (in_irq() || irqs_disabled())
2925 *
2926 * We provide four helpers that can be used in following contexts :
2927 *
2928 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2929 * replacing kfree_skb(skb)
2930 *
2931 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2932 * Typically used in place of consume_skb(skb) in TX completion path
2933 *
2934 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2935 * replacing kfree_skb(skb)
2936 *
2937 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2938 * and consumed a packet. Used in place of consume_skb(skb)
2939 */
2940 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2941 {
2942 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2943 }
2944
2945 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2946 {
2947 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2948 }
2949
2950 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2951 {
2952 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2953 }
2954
2955 static inline void dev_consume_skb_any(struct sk_buff *skb)
2956 {
2957 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2958 }
2959
2960 int netif_rx(struct sk_buff *skb);
2961 int netif_rx_ni(struct sk_buff *skb);
2962 int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb);
2963 static inline int netif_receive_skb(struct sk_buff *skb)
2964 {
2965 return netif_receive_skb_sk(skb->sk, skb);
2966 }
2967 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2968 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2969 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2970 gro_result_t napi_gro_frags(struct napi_struct *napi);
2971 struct packet_offload *gro_find_receive_by_type(__be16 type);
2972 struct packet_offload *gro_find_complete_by_type(__be16 type);
2973
2974 static inline void napi_free_frags(struct napi_struct *napi)
2975 {
2976 kfree_skb(napi->skb);
2977 napi->skb = NULL;
2978 }
2979
2980 int netdev_rx_handler_register(struct net_device *dev,
2981 rx_handler_func_t *rx_handler,
2982 void *rx_handler_data);
2983 void netdev_rx_handler_unregister(struct net_device *dev);
2984
2985 bool dev_valid_name(const char *name);
2986 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2987 int dev_ethtool(struct net *net, struct ifreq *);
2988 unsigned int dev_get_flags(const struct net_device *);
2989 int __dev_change_flags(struct net_device *, unsigned int flags);
2990 int dev_change_flags(struct net_device *, unsigned int);
2991 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2992 unsigned int gchanges);
2993 int dev_change_name(struct net_device *, const char *);
2994 int dev_set_alias(struct net_device *, const char *, size_t);
2995 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2996 int dev_set_mtu(struct net_device *, int);
2997 void dev_set_group(struct net_device *, int);
2998 int dev_set_mac_address(struct net_device *, struct sockaddr *);
2999 int dev_change_carrier(struct net_device *, bool new_carrier);
3000 int dev_get_phys_port_id(struct net_device *dev,
3001 struct netdev_phys_item_id *ppid);
3002 int dev_get_phys_port_name(struct net_device *dev,
3003 char *name, size_t len);
3004 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3005 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3006 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3007 struct netdev_queue *txq, int *ret);
3008 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3009 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3010 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
3011
3012 extern int netdev_budget;
3013
3014 /* Called by rtnetlink.c:rtnl_unlock() */
3015 void netdev_run_todo(void);
3016
3017 /**
3018 * dev_put - release reference to device
3019 * @dev: network device
3020 *
3021 * Release reference to device to allow it to be freed.
3022 */
3023 static inline void dev_put(struct net_device *dev)
3024 {
3025 this_cpu_dec(*dev->pcpu_refcnt);
3026 }
3027
3028 /**
3029 * dev_hold - get reference to device
3030 * @dev: network device
3031 *
3032 * Hold reference to device to keep it from being freed.
3033 */
3034 static inline void dev_hold(struct net_device *dev)
3035 {
3036 this_cpu_inc(*dev->pcpu_refcnt);
3037 }
3038
3039 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3040 * and _off may be called from IRQ context, but it is caller
3041 * who is responsible for serialization of these calls.
3042 *
3043 * The name carrier is inappropriate, these functions should really be
3044 * called netif_lowerlayer_*() because they represent the state of any
3045 * kind of lower layer not just hardware media.
3046 */
3047
3048 void linkwatch_init_dev(struct net_device *dev);
3049 void linkwatch_fire_event(struct net_device *dev);
3050 void linkwatch_forget_dev(struct net_device *dev);
3051
3052 /**
3053 * netif_carrier_ok - test if carrier present
3054 * @dev: network device
3055 *
3056 * Check if carrier is present on device
3057 */
3058 static inline bool netif_carrier_ok(const struct net_device *dev)
3059 {
3060 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3061 }
3062
3063 unsigned long dev_trans_start(struct net_device *dev);
3064
3065 void __netdev_watchdog_up(struct net_device *dev);
3066
3067 void netif_carrier_on(struct net_device *dev);
3068
3069 void netif_carrier_off(struct net_device *dev);
3070
3071 /**
3072 * netif_dormant_on - mark device as dormant.
3073 * @dev: network device
3074 *
3075 * Mark device as dormant (as per RFC2863).
3076 *
3077 * The dormant state indicates that the relevant interface is not
3078 * actually in a condition to pass packets (i.e., it is not 'up') but is
3079 * in a "pending" state, waiting for some external event. For "on-
3080 * demand" interfaces, this new state identifies the situation where the
3081 * interface is waiting for events to place it in the up state.
3082 *
3083 */
3084 static inline void netif_dormant_on(struct net_device *dev)
3085 {
3086 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3087 linkwatch_fire_event(dev);
3088 }
3089
3090 /**
3091 * netif_dormant_off - set device as not dormant.
3092 * @dev: network device
3093 *
3094 * Device is not in dormant state.
3095 */
3096 static inline void netif_dormant_off(struct net_device *dev)
3097 {
3098 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3099 linkwatch_fire_event(dev);
3100 }
3101
3102 /**
3103 * netif_dormant - test if carrier present
3104 * @dev: network device
3105 *
3106 * Check if carrier is present on device
3107 */
3108 static inline bool netif_dormant(const struct net_device *dev)
3109 {
3110 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3111 }
3112
3113
3114 /**
3115 * netif_oper_up - test if device is operational
3116 * @dev: network device
3117 *
3118 * Check if carrier is operational
3119 */
3120 static inline bool netif_oper_up(const struct net_device *dev)
3121 {
3122 return (dev->operstate == IF_OPER_UP ||
3123 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3124 }
3125
3126 /**
3127 * netif_device_present - is device available or removed
3128 * @dev: network device
3129 *
3130 * Check if device has not been removed from system.
3131 */
3132 static inline bool netif_device_present(struct net_device *dev)
3133 {
3134 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3135 }
3136
3137 void netif_device_detach(struct net_device *dev);
3138
3139 void netif_device_attach(struct net_device *dev);
3140
3141 /*
3142 * Network interface message level settings
3143 */
3144
3145 enum {
3146 NETIF_MSG_DRV = 0x0001,
3147 NETIF_MSG_PROBE = 0x0002,
3148 NETIF_MSG_LINK = 0x0004,
3149 NETIF_MSG_TIMER = 0x0008,
3150 NETIF_MSG_IFDOWN = 0x0010,
3151 NETIF_MSG_IFUP = 0x0020,
3152 NETIF_MSG_RX_ERR = 0x0040,
3153 NETIF_MSG_TX_ERR = 0x0080,
3154 NETIF_MSG_TX_QUEUED = 0x0100,
3155 NETIF_MSG_INTR = 0x0200,
3156 NETIF_MSG_TX_DONE = 0x0400,
3157 NETIF_MSG_RX_STATUS = 0x0800,
3158 NETIF_MSG_PKTDATA = 0x1000,
3159 NETIF_MSG_HW = 0x2000,
3160 NETIF_MSG_WOL = 0x4000,
3161 };
3162
3163 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3164 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3165 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3166 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3167 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3168 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3169 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3170 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3171 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3172 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3173 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3174 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3175 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3176 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3177 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3178
3179 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3180 {
3181 /* use default */
3182 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3183 return default_msg_enable_bits;
3184 if (debug_value == 0) /* no output */
3185 return 0;
3186 /* set low N bits */
3187 return (1 << debug_value) - 1;
3188 }
3189
3190 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3191 {
3192 spin_lock(&txq->_xmit_lock);
3193 txq->xmit_lock_owner = cpu;
3194 }
3195
3196 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3197 {
3198 spin_lock_bh(&txq->_xmit_lock);
3199 txq->xmit_lock_owner = smp_processor_id();
3200 }
3201
3202 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3203 {
3204 bool ok = spin_trylock(&txq->_xmit_lock);
3205 if (likely(ok))
3206 txq->xmit_lock_owner = smp_processor_id();
3207 return ok;
3208 }
3209
3210 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3211 {
3212 txq->xmit_lock_owner = -1;
3213 spin_unlock(&txq->_xmit_lock);
3214 }
3215
3216 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3217 {
3218 txq->xmit_lock_owner = -1;
3219 spin_unlock_bh(&txq->_xmit_lock);
3220 }
3221
3222 static inline void txq_trans_update(struct netdev_queue *txq)
3223 {
3224 if (txq->xmit_lock_owner != -1)
3225 txq->trans_start = jiffies;
3226 }
3227
3228 /**
3229 * netif_tx_lock - grab network device transmit lock
3230 * @dev: network device
3231 *
3232 * Get network device transmit lock
3233 */
3234 static inline void netif_tx_lock(struct net_device *dev)
3235 {
3236 unsigned int i;
3237 int cpu;
3238
3239 spin_lock(&dev->tx_global_lock);
3240 cpu = smp_processor_id();
3241 for (i = 0; i < dev->num_tx_queues; i++) {
3242 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3243
3244 /* We are the only thread of execution doing a
3245 * freeze, but we have to grab the _xmit_lock in
3246 * order to synchronize with threads which are in
3247 * the ->hard_start_xmit() handler and already
3248 * checked the frozen bit.
3249 */
3250 __netif_tx_lock(txq, cpu);
3251 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3252 __netif_tx_unlock(txq);
3253 }
3254 }
3255
3256 static inline void netif_tx_lock_bh(struct net_device *dev)
3257 {
3258 local_bh_disable();
3259 netif_tx_lock(dev);
3260 }
3261
3262 static inline void netif_tx_unlock(struct net_device *dev)
3263 {
3264 unsigned int i;
3265
3266 for (i = 0; i < dev->num_tx_queues; i++) {
3267 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3268
3269 /* No need to grab the _xmit_lock here. If the
3270 * queue is not stopped for another reason, we
3271 * force a schedule.
3272 */
3273 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3274 netif_schedule_queue(txq);
3275 }
3276 spin_unlock(&dev->tx_global_lock);
3277 }
3278
3279 static inline void netif_tx_unlock_bh(struct net_device *dev)
3280 {
3281 netif_tx_unlock(dev);
3282 local_bh_enable();
3283 }
3284
3285 #define HARD_TX_LOCK(dev, txq, cpu) { \
3286 if ((dev->features & NETIF_F_LLTX) == 0) { \
3287 __netif_tx_lock(txq, cpu); \
3288 } \
3289 }
3290
3291 #define HARD_TX_TRYLOCK(dev, txq) \
3292 (((dev->features & NETIF_F_LLTX) == 0) ? \
3293 __netif_tx_trylock(txq) : \
3294 true )
3295
3296 #define HARD_TX_UNLOCK(dev, txq) { \
3297 if ((dev->features & NETIF_F_LLTX) == 0) { \
3298 __netif_tx_unlock(txq); \
3299 } \
3300 }
3301
3302 static inline void netif_tx_disable(struct net_device *dev)
3303 {
3304 unsigned int i;
3305 int cpu;
3306
3307 local_bh_disable();
3308 cpu = smp_processor_id();
3309 for (i = 0; i < dev->num_tx_queues; i++) {
3310 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3311
3312 __netif_tx_lock(txq, cpu);
3313 netif_tx_stop_queue(txq);
3314 __netif_tx_unlock(txq);
3315 }
3316 local_bh_enable();
3317 }
3318
3319 static inline void netif_addr_lock(struct net_device *dev)
3320 {
3321 spin_lock(&dev->addr_list_lock);
3322 }
3323
3324 static inline void netif_addr_lock_nested(struct net_device *dev)
3325 {
3326 int subclass = SINGLE_DEPTH_NESTING;
3327
3328 if (dev->netdev_ops->ndo_get_lock_subclass)
3329 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3330
3331 spin_lock_nested(&dev->addr_list_lock, subclass);
3332 }
3333
3334 static inline void netif_addr_lock_bh(struct net_device *dev)
3335 {
3336 spin_lock_bh(&dev->addr_list_lock);
3337 }
3338
3339 static inline void netif_addr_unlock(struct net_device *dev)
3340 {
3341 spin_unlock(&dev->addr_list_lock);
3342 }
3343
3344 static inline void netif_addr_unlock_bh(struct net_device *dev)
3345 {
3346 spin_unlock_bh(&dev->addr_list_lock);
3347 }
3348
3349 /*
3350 * dev_addrs walker. Should be used only for read access. Call with
3351 * rcu_read_lock held.
3352 */
3353 #define for_each_dev_addr(dev, ha) \
3354 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3355
3356 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3357
3358 void ether_setup(struct net_device *dev);
3359
3360 /* Support for loadable net-drivers */
3361 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3362 unsigned char name_assign_type,
3363 void (*setup)(struct net_device *),
3364 unsigned int txqs, unsigned int rxqs);
3365 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3366 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3367
3368 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3369 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3370 count)
3371
3372 int register_netdev(struct net_device *dev);
3373 void unregister_netdev(struct net_device *dev);
3374
3375 /* General hardware address lists handling functions */
3376 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3377 struct netdev_hw_addr_list *from_list, int addr_len);
3378 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3379 struct netdev_hw_addr_list *from_list, int addr_len);
3380 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3381 struct net_device *dev,
3382 int (*sync)(struct net_device *, const unsigned char *),
3383 int (*unsync)(struct net_device *,
3384 const unsigned char *));
3385 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3386 struct net_device *dev,
3387 int (*unsync)(struct net_device *,
3388 const unsigned char *));
3389 void __hw_addr_init(struct netdev_hw_addr_list *list);
3390
3391 /* Functions used for device addresses handling */
3392 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3393 unsigned char addr_type);
3394 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3395 unsigned char addr_type);
3396 void dev_addr_flush(struct net_device *dev);
3397 int dev_addr_init(struct net_device *dev);
3398
3399 /* Functions used for unicast addresses handling */
3400 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3401 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3402 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3403 int dev_uc_sync(struct net_device *to, struct net_device *from);
3404 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3405 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3406 void dev_uc_flush(struct net_device *dev);
3407 void dev_uc_init(struct net_device *dev);
3408
3409 /**
3410 * __dev_uc_sync - Synchonize device's unicast list
3411 * @dev: device to sync
3412 * @sync: function to call if address should be added
3413 * @unsync: function to call if address should be removed
3414 *
3415 * Add newly added addresses to the interface, and release
3416 * addresses that have been deleted.
3417 **/
3418 static inline int __dev_uc_sync(struct net_device *dev,
3419 int (*sync)(struct net_device *,
3420 const unsigned char *),
3421 int (*unsync)(struct net_device *,
3422 const unsigned char *))
3423 {
3424 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3425 }
3426
3427 /**
3428 * __dev_uc_unsync - Remove synchronized addresses from device
3429 * @dev: device to sync
3430 * @unsync: function to call if address should be removed
3431 *
3432 * Remove all addresses that were added to the device by dev_uc_sync().
3433 **/
3434 static inline void __dev_uc_unsync(struct net_device *dev,
3435 int (*unsync)(struct net_device *,
3436 const unsigned char *))
3437 {
3438 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3439 }
3440
3441 /* Functions used for multicast addresses handling */
3442 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3443 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3444 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3445 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3446 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3447 int dev_mc_sync(struct net_device *to, struct net_device *from);
3448 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3449 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3450 void dev_mc_flush(struct net_device *dev);
3451 void dev_mc_init(struct net_device *dev);
3452
3453 /**
3454 * __dev_mc_sync - Synchonize device's multicast list
3455 * @dev: device to sync
3456 * @sync: function to call if address should be added
3457 * @unsync: function to call if address should be removed
3458 *
3459 * Add newly added addresses to the interface, and release
3460 * addresses that have been deleted.
3461 **/
3462 static inline int __dev_mc_sync(struct net_device *dev,
3463 int (*sync)(struct net_device *,
3464 const unsigned char *),
3465 int (*unsync)(struct net_device *,
3466 const unsigned char *))
3467 {
3468 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3469 }
3470
3471 /**
3472 * __dev_mc_unsync - Remove synchronized addresses from device
3473 * @dev: device to sync
3474 * @unsync: function to call if address should be removed
3475 *
3476 * Remove all addresses that were added to the device by dev_mc_sync().
3477 **/
3478 static inline void __dev_mc_unsync(struct net_device *dev,
3479 int (*unsync)(struct net_device *,
3480 const unsigned char *))
3481 {
3482 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3483 }
3484
3485 /* Functions used for secondary unicast and multicast support */
3486 void dev_set_rx_mode(struct net_device *dev);
3487 void __dev_set_rx_mode(struct net_device *dev);
3488 int dev_set_promiscuity(struct net_device *dev, int inc);
3489 int dev_set_allmulti(struct net_device *dev, int inc);
3490 void netdev_state_change(struct net_device *dev);
3491 void netdev_notify_peers(struct net_device *dev);
3492 void netdev_features_change(struct net_device *dev);
3493 /* Load a device via the kmod */
3494 void dev_load(struct net *net, const char *name);
3495 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3496 struct rtnl_link_stats64 *storage);
3497 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3498 const struct net_device_stats *netdev_stats);
3499
3500 extern int netdev_max_backlog;
3501 extern int netdev_tstamp_prequeue;
3502 extern int weight_p;
3503 extern int bpf_jit_enable;
3504
3505 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3506 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3507 struct list_head **iter);
3508 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3509 struct list_head **iter);
3510
3511 /* iterate through upper list, must be called under RCU read lock */
3512 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3513 for (iter = &(dev)->adj_list.upper, \
3514 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3515 updev; \
3516 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3517
3518 /* iterate through upper list, must be called under RCU read lock */
3519 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3520 for (iter = &(dev)->all_adj_list.upper, \
3521 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3522 updev; \
3523 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3524
3525 void *netdev_lower_get_next_private(struct net_device *dev,
3526 struct list_head **iter);
3527 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3528 struct list_head **iter);
3529
3530 #define netdev_for_each_lower_private(dev, priv, iter) \
3531 for (iter = (dev)->adj_list.lower.next, \
3532 priv = netdev_lower_get_next_private(dev, &(iter)); \
3533 priv; \
3534 priv = netdev_lower_get_next_private(dev, &(iter)))
3535
3536 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3537 for (iter = &(dev)->adj_list.lower, \
3538 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3539 priv; \
3540 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3541
3542 void *netdev_lower_get_next(struct net_device *dev,
3543 struct list_head **iter);
3544 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3545 for (iter = &(dev)->adj_list.lower, \
3546 ldev = netdev_lower_get_next(dev, &(iter)); \
3547 ldev; \
3548 ldev = netdev_lower_get_next(dev, &(iter)))
3549
3550 void *netdev_adjacent_get_private(struct list_head *adj_list);
3551 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3552 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3553 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3554 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3555 int netdev_master_upper_dev_link(struct net_device *dev,
3556 struct net_device *upper_dev);
3557 int netdev_master_upper_dev_link_private(struct net_device *dev,
3558 struct net_device *upper_dev,
3559 void *private);
3560 void netdev_upper_dev_unlink(struct net_device *dev,
3561 struct net_device *upper_dev);
3562 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3563 void *netdev_lower_dev_get_private(struct net_device *dev,
3564 struct net_device *lower_dev);
3565
3566 /* RSS keys are 40 or 52 bytes long */
3567 #define NETDEV_RSS_KEY_LEN 52
3568 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3569 void netdev_rss_key_fill(void *buffer, size_t len);
3570
3571 int dev_get_nest_level(struct net_device *dev,
3572 bool (*type_check)(struct net_device *dev));
3573 int skb_checksum_help(struct sk_buff *skb);
3574 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3575 netdev_features_t features, bool tx_path);
3576 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3577 netdev_features_t features);
3578
3579 struct netdev_bonding_info {
3580 ifslave slave;
3581 ifbond master;
3582 };
3583
3584 struct netdev_notifier_bonding_info {
3585 struct netdev_notifier_info info; /* must be first */
3586 struct netdev_bonding_info bonding_info;
3587 };
3588
3589 void netdev_bonding_info_change(struct net_device *dev,
3590 struct netdev_bonding_info *bonding_info);
3591
3592 static inline
3593 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3594 {
3595 return __skb_gso_segment(skb, features, true);
3596 }
3597 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3598
3599 static inline bool can_checksum_protocol(netdev_features_t features,
3600 __be16 protocol)
3601 {
3602 return ((features & NETIF_F_GEN_CSUM) ||
3603 ((features & NETIF_F_V4_CSUM) &&
3604 protocol == htons(ETH_P_IP)) ||
3605 ((features & NETIF_F_V6_CSUM) &&
3606 protocol == htons(ETH_P_IPV6)) ||
3607 ((features & NETIF_F_FCOE_CRC) &&
3608 protocol == htons(ETH_P_FCOE)));
3609 }
3610
3611 #ifdef CONFIG_BUG
3612 void netdev_rx_csum_fault(struct net_device *dev);
3613 #else
3614 static inline void netdev_rx_csum_fault(struct net_device *dev)
3615 {
3616 }
3617 #endif
3618 /* rx skb timestamps */
3619 void net_enable_timestamp(void);
3620 void net_disable_timestamp(void);
3621
3622 #ifdef CONFIG_PROC_FS
3623 int __init dev_proc_init(void);
3624 #else
3625 #define dev_proc_init() 0
3626 #endif
3627
3628 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3629 struct sk_buff *skb, struct net_device *dev,
3630 bool more)
3631 {
3632 skb->xmit_more = more ? 1 : 0;
3633 return ops->ndo_start_xmit(skb, dev);
3634 }
3635
3636 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3637 struct netdev_queue *txq, bool more)
3638 {
3639 const struct net_device_ops *ops = dev->netdev_ops;
3640 int rc;
3641
3642 rc = __netdev_start_xmit(ops, skb, dev, more);
3643 if (rc == NETDEV_TX_OK)
3644 txq_trans_update(txq);
3645
3646 return rc;
3647 }
3648
3649 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3650 const void *ns);
3651 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3652 const void *ns);
3653
3654 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3655 {
3656 return netdev_class_create_file_ns(class_attr, NULL);
3657 }
3658
3659 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3660 {
3661 netdev_class_remove_file_ns(class_attr, NULL);
3662 }
3663
3664 extern struct kobj_ns_type_operations net_ns_type_operations;
3665
3666 const char *netdev_drivername(const struct net_device *dev);
3667
3668 void linkwatch_run_queue(void);
3669
3670 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3671 netdev_features_t f2)
3672 {
3673 if (f1 & NETIF_F_GEN_CSUM)
3674 f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3675 if (f2 & NETIF_F_GEN_CSUM)
3676 f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3677 f1 &= f2;
3678 if (f1 & NETIF_F_GEN_CSUM)
3679 f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3680
3681 return f1;
3682 }
3683
3684 static inline netdev_features_t netdev_get_wanted_features(
3685 struct net_device *dev)
3686 {
3687 return (dev->features & ~dev->hw_features) | dev->wanted_features;
3688 }
3689 netdev_features_t netdev_increment_features(netdev_features_t all,
3690 netdev_features_t one, netdev_features_t mask);
3691
3692 /* Allow TSO being used on stacked device :
3693 * Performing the GSO segmentation before last device
3694 * is a performance improvement.
3695 */
3696 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3697 netdev_features_t mask)
3698 {
3699 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3700 }
3701
3702 int __netdev_update_features(struct net_device *dev);
3703 void netdev_update_features(struct net_device *dev);
3704 void netdev_change_features(struct net_device *dev);
3705
3706 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3707 struct net_device *dev);
3708
3709 netdev_features_t passthru_features_check(struct sk_buff *skb,
3710 struct net_device *dev,
3711 netdev_features_t features);
3712 netdev_features_t netif_skb_features(struct sk_buff *skb);
3713
3714 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3715 {
3716 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3717
3718 /* check flags correspondence */
3719 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3720 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3721 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3722 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3723 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3724 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3725 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3726 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3727 BUILD_BUG_ON(SKB_GSO_IPIP != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3728 BUILD_BUG_ON(SKB_GSO_SIT != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3729 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3730 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3731 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3732
3733 return (features & feature) == feature;
3734 }
3735
3736 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3737 {
3738 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3739 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3740 }
3741
3742 static inline bool netif_needs_gso(struct sk_buff *skb,
3743 netdev_features_t features)
3744 {
3745 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3746 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3747 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3748 }
3749
3750 static inline void netif_set_gso_max_size(struct net_device *dev,
3751 unsigned int size)
3752 {
3753 dev->gso_max_size = size;
3754 }
3755
3756 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3757 int pulled_hlen, u16 mac_offset,
3758 int mac_len)
3759 {
3760 skb->protocol = protocol;
3761 skb->encapsulation = 1;
3762 skb_push(skb, pulled_hlen);
3763 skb_reset_transport_header(skb);
3764 skb->mac_header = mac_offset;
3765 skb->network_header = skb->mac_header + mac_len;
3766 skb->mac_len = mac_len;
3767 }
3768
3769 static inline bool netif_is_macvlan(struct net_device *dev)
3770 {
3771 return dev->priv_flags & IFF_MACVLAN;
3772 }
3773
3774 static inline bool netif_is_macvlan_port(struct net_device *dev)
3775 {
3776 return dev->priv_flags & IFF_MACVLAN_PORT;
3777 }
3778
3779 static inline bool netif_is_ipvlan(struct net_device *dev)
3780 {
3781 return dev->priv_flags & IFF_IPVLAN_SLAVE;
3782 }
3783
3784 static inline bool netif_is_ipvlan_port(struct net_device *dev)
3785 {
3786 return dev->priv_flags & IFF_IPVLAN_MASTER;
3787 }
3788
3789 static inline bool netif_is_bond_master(struct net_device *dev)
3790 {
3791 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3792 }
3793
3794 static inline bool netif_is_bond_slave(struct net_device *dev)
3795 {
3796 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3797 }
3798
3799 static inline bool netif_supports_nofcs(struct net_device *dev)
3800 {
3801 return dev->priv_flags & IFF_SUPP_NOFCS;
3802 }
3803
3804 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3805 static inline void netif_keep_dst(struct net_device *dev)
3806 {
3807 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3808 }
3809
3810 extern struct pernet_operations __net_initdata loopback_net_ops;
3811
3812 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3813
3814 /* netdev_printk helpers, similar to dev_printk */
3815
3816 static inline const char *netdev_name(const struct net_device *dev)
3817 {
3818 if (!dev->name[0] || strchr(dev->name, '%'))
3819 return "(unnamed net_device)";
3820 return dev->name;
3821 }
3822
3823 static inline const char *netdev_reg_state(const struct net_device *dev)
3824 {
3825 switch (dev->reg_state) {
3826 case NETREG_UNINITIALIZED: return " (uninitialized)";
3827 case NETREG_REGISTERED: return "";
3828 case NETREG_UNREGISTERING: return " (unregistering)";
3829 case NETREG_UNREGISTERED: return " (unregistered)";
3830 case NETREG_RELEASED: return " (released)";
3831 case NETREG_DUMMY: return " (dummy)";
3832 }
3833
3834 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3835 return " (unknown)";
3836 }
3837
3838 __printf(3, 4)
3839 void netdev_printk(const char *level, const struct net_device *dev,
3840 const char *format, ...);
3841 __printf(2, 3)
3842 void netdev_emerg(const struct net_device *dev, const char *format, ...);
3843 __printf(2, 3)
3844 void netdev_alert(const struct net_device *dev, const char *format, ...);
3845 __printf(2, 3)
3846 void netdev_crit(const struct net_device *dev, const char *format, ...);
3847 __printf(2, 3)
3848 void netdev_err(const struct net_device *dev, const char *format, ...);
3849 __printf(2, 3)
3850 void netdev_warn(const struct net_device *dev, const char *format, ...);
3851 __printf(2, 3)
3852 void netdev_notice(const struct net_device *dev, const char *format, ...);
3853 __printf(2, 3)
3854 void netdev_info(const struct net_device *dev, const char *format, ...);
3855
3856 #define MODULE_ALIAS_NETDEV(device) \
3857 MODULE_ALIAS("netdev-" device)
3858
3859 #if defined(CONFIG_DYNAMIC_DEBUG)
3860 #define netdev_dbg(__dev, format, args...) \
3861 do { \
3862 dynamic_netdev_dbg(__dev, format, ##args); \
3863 } while (0)
3864 #elif defined(DEBUG)
3865 #define netdev_dbg(__dev, format, args...) \
3866 netdev_printk(KERN_DEBUG, __dev, format, ##args)
3867 #else
3868 #define netdev_dbg(__dev, format, args...) \
3869 ({ \
3870 if (0) \
3871 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3872 })
3873 #endif
3874
3875 #if defined(VERBOSE_DEBUG)
3876 #define netdev_vdbg netdev_dbg
3877 #else
3878
3879 #define netdev_vdbg(dev, format, args...) \
3880 ({ \
3881 if (0) \
3882 netdev_printk(KERN_DEBUG, dev, format, ##args); \
3883 0; \
3884 })
3885 #endif
3886
3887 /*
3888 * netdev_WARN() acts like dev_printk(), but with the key difference
3889 * of using a WARN/WARN_ON to get the message out, including the
3890 * file/line information and a backtrace.
3891 */
3892 #define netdev_WARN(dev, format, args...) \
3893 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \
3894 netdev_reg_state(dev), ##args)
3895
3896 /* netif printk helpers, similar to netdev_printk */
3897
3898 #define netif_printk(priv, type, level, dev, fmt, args...) \
3899 do { \
3900 if (netif_msg_##type(priv)) \
3901 netdev_printk(level, (dev), fmt, ##args); \
3902 } while (0)
3903
3904 #define netif_level(level, priv, type, dev, fmt, args...) \
3905 do { \
3906 if (netif_msg_##type(priv)) \
3907 netdev_##level(dev, fmt, ##args); \
3908 } while (0)
3909
3910 #define netif_emerg(priv, type, dev, fmt, args...) \
3911 netif_level(emerg, priv, type, dev, fmt, ##args)
3912 #define netif_alert(priv, type, dev, fmt, args...) \
3913 netif_level(alert, priv, type, dev, fmt, ##args)
3914 #define netif_crit(priv, type, dev, fmt, args...) \
3915 netif_level(crit, priv, type, dev, fmt, ##args)
3916 #define netif_err(priv, type, dev, fmt, args...) \
3917 netif_level(err, priv, type, dev, fmt, ##args)
3918 #define netif_warn(priv, type, dev, fmt, args...) \
3919 netif_level(warn, priv, type, dev, fmt, ##args)
3920 #define netif_notice(priv, type, dev, fmt, args...) \
3921 netif_level(notice, priv, type, dev, fmt, ##args)
3922 #define netif_info(priv, type, dev, fmt, args...) \
3923 netif_level(info, priv, type, dev, fmt, ##args)
3924
3925 #if defined(CONFIG_DYNAMIC_DEBUG)
3926 #define netif_dbg(priv, type, netdev, format, args...) \
3927 do { \
3928 if (netif_msg_##type(priv)) \
3929 dynamic_netdev_dbg(netdev, format, ##args); \
3930 } while (0)
3931 #elif defined(DEBUG)
3932 #define netif_dbg(priv, type, dev, format, args...) \
3933 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3934 #else
3935 #define netif_dbg(priv, type, dev, format, args...) \
3936 ({ \
3937 if (0) \
3938 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3939 0; \
3940 })
3941 #endif
3942
3943 #if defined(VERBOSE_DEBUG)
3944 #define netif_vdbg netif_dbg
3945 #else
3946 #define netif_vdbg(priv, type, dev, format, args...) \
3947 ({ \
3948 if (0) \
3949 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3950 0; \
3951 })
3952 #endif
3953
3954 /*
3955 * The list of packet types we will receive (as opposed to discard)
3956 * and the routines to invoke.
3957 *
3958 * Why 16. Because with 16 the only overlap we get on a hash of the
3959 * low nibble of the protocol value is RARP/SNAP/X.25.
3960 *
3961 * NOTE: That is no longer true with the addition of VLAN tags. Not
3962 * sure which should go first, but I bet it won't make much
3963 * difference if we are running VLANs. The good news is that
3964 * this protocol won't be in the list unless compiled in, so
3965 * the average user (w/out VLANs) will not be adversely affected.
3966 * --BLG
3967 *
3968 * 0800 IP
3969 * 8100 802.1Q VLAN
3970 * 0001 802.3
3971 * 0002 AX.25
3972 * 0004 802.2
3973 * 8035 RARP
3974 * 0005 SNAP
3975 * 0805 X.25
3976 * 0806 ARP
3977 * 8137 IPX
3978 * 0009 Localtalk
3979 * 86DD IPv6
3980 */
3981 #define PTYPE_HASH_SIZE (16)
3982 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
3983
3984 #endif /* _LINUX_NETDEVICE_H */
This page took 0.122135 seconds and 5 git commands to generate.