net: remove netdevice gso_min_segs
[deliverable/linux.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54 #include <uapi/linux/pkt_cls.h>
55
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 /* 802.11 specific */
60 struct wireless_dev;
61 /* 802.15.4 specific */
62 struct wpan_dev;
63 struct mpls_dev;
64
65 void netdev_set_default_ethtool_ops(struct net_device *dev,
66 const struct ethtool_ops *ops);
67
68 /* Backlog congestion levels */
69 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
70 #define NET_RX_DROP 1 /* packet dropped */
71
72 /*
73 * Transmit return codes: transmit return codes originate from three different
74 * namespaces:
75 *
76 * - qdisc return codes
77 * - driver transmit return codes
78 * - errno values
79 *
80 * Drivers are allowed to return any one of those in their hard_start_xmit()
81 * function. Real network devices commonly used with qdiscs should only return
82 * the driver transmit return codes though - when qdiscs are used, the actual
83 * transmission happens asynchronously, so the value is not propagated to
84 * higher layers. Virtual network devices transmit synchronously; in this case
85 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
86 * others are propagated to higher layers.
87 */
88
89 /* qdisc ->enqueue() return codes. */
90 #define NET_XMIT_SUCCESS 0x00
91 #define NET_XMIT_DROP 0x01 /* skb dropped */
92 #define NET_XMIT_CN 0x02 /* congestion notification */
93 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
94 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
95
96 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
97 * indicates that the device will soon be dropping packets, or already drops
98 * some packets of the same priority; prompting us to send less aggressively. */
99 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
100 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
101
102 /* Driver transmit return codes */
103 #define NETDEV_TX_MASK 0xf0
104
105 enum netdev_tx {
106 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
107 NETDEV_TX_OK = 0x00, /* driver took care of packet */
108 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
109 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
110 };
111 typedef enum netdev_tx netdev_tx_t;
112
113 /*
114 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
115 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
116 */
117 static inline bool dev_xmit_complete(int rc)
118 {
119 /*
120 * Positive cases with an skb consumed by a driver:
121 * - successful transmission (rc == NETDEV_TX_OK)
122 * - error while transmitting (rc < 0)
123 * - error while queueing to a different device (rc & NET_XMIT_MASK)
124 */
125 if (likely(rc < NET_XMIT_MASK))
126 return true;
127
128 return false;
129 }
130
131 /*
132 * Compute the worst-case header length according to the protocols
133 * used.
134 */
135
136 #if defined(CONFIG_HYPERV_NET)
137 # define LL_MAX_HEADER 128
138 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
139 # if defined(CONFIG_MAC80211_MESH)
140 # define LL_MAX_HEADER 128
141 # else
142 # define LL_MAX_HEADER 96
143 # endif
144 #else
145 # define LL_MAX_HEADER 32
146 #endif
147
148 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
149 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
150 #define MAX_HEADER LL_MAX_HEADER
151 #else
152 #define MAX_HEADER (LL_MAX_HEADER + 48)
153 #endif
154
155 /*
156 * Old network device statistics. Fields are native words
157 * (unsigned long) so they can be read and written atomically.
158 */
159
160 struct net_device_stats {
161 unsigned long rx_packets;
162 unsigned long tx_packets;
163 unsigned long rx_bytes;
164 unsigned long tx_bytes;
165 unsigned long rx_errors;
166 unsigned long tx_errors;
167 unsigned long rx_dropped;
168 unsigned long tx_dropped;
169 unsigned long multicast;
170 unsigned long collisions;
171 unsigned long rx_length_errors;
172 unsigned long rx_over_errors;
173 unsigned long rx_crc_errors;
174 unsigned long rx_frame_errors;
175 unsigned long rx_fifo_errors;
176 unsigned long rx_missed_errors;
177 unsigned long tx_aborted_errors;
178 unsigned long tx_carrier_errors;
179 unsigned long tx_fifo_errors;
180 unsigned long tx_heartbeat_errors;
181 unsigned long tx_window_errors;
182 unsigned long rx_compressed;
183 unsigned long tx_compressed;
184 };
185
186
187 #include <linux/cache.h>
188 #include <linux/skbuff.h>
189
190 #ifdef CONFIG_RPS
191 #include <linux/static_key.h>
192 extern struct static_key rps_needed;
193 #endif
194
195 struct neighbour;
196 struct neigh_parms;
197 struct sk_buff;
198
199 struct netdev_hw_addr {
200 struct list_head list;
201 unsigned char addr[MAX_ADDR_LEN];
202 unsigned char type;
203 #define NETDEV_HW_ADDR_T_LAN 1
204 #define NETDEV_HW_ADDR_T_SAN 2
205 #define NETDEV_HW_ADDR_T_SLAVE 3
206 #define NETDEV_HW_ADDR_T_UNICAST 4
207 #define NETDEV_HW_ADDR_T_MULTICAST 5
208 bool global_use;
209 int sync_cnt;
210 int refcount;
211 int synced;
212 struct rcu_head rcu_head;
213 };
214
215 struct netdev_hw_addr_list {
216 struct list_head list;
217 int count;
218 };
219
220 #define netdev_hw_addr_list_count(l) ((l)->count)
221 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
222 #define netdev_hw_addr_list_for_each(ha, l) \
223 list_for_each_entry(ha, &(l)->list, list)
224
225 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
226 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
227 #define netdev_for_each_uc_addr(ha, dev) \
228 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
229
230 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
231 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
232 #define netdev_for_each_mc_addr(ha, dev) \
233 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
234
235 struct hh_cache {
236 u16 hh_len;
237 u16 __pad;
238 seqlock_t hh_lock;
239
240 /* cached hardware header; allow for machine alignment needs. */
241 #define HH_DATA_MOD 16
242 #define HH_DATA_OFF(__len) \
243 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
244 #define HH_DATA_ALIGN(__len) \
245 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
246 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
247 };
248
249 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
250 * Alternative is:
251 * dev->hard_header_len ? (dev->hard_header_len +
252 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
253 *
254 * We could use other alignment values, but we must maintain the
255 * relationship HH alignment <= LL alignment.
256 */
257 #define LL_RESERVED_SPACE(dev) \
258 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
259 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
260 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
261
262 struct header_ops {
263 int (*create) (struct sk_buff *skb, struct net_device *dev,
264 unsigned short type, const void *daddr,
265 const void *saddr, unsigned int len);
266 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
267 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
268 void (*cache_update)(struct hh_cache *hh,
269 const struct net_device *dev,
270 const unsigned char *haddr);
271 bool (*validate)(const char *ll_header, unsigned int len);
272 };
273
274 /* These flag bits are private to the generic network queueing
275 * layer; they may not be explicitly referenced by any other
276 * code.
277 */
278
279 enum netdev_state_t {
280 __LINK_STATE_START,
281 __LINK_STATE_PRESENT,
282 __LINK_STATE_NOCARRIER,
283 __LINK_STATE_LINKWATCH_PENDING,
284 __LINK_STATE_DORMANT,
285 };
286
287
288 /*
289 * This structure holds boot-time configured netdevice settings. They
290 * are then used in the device probing.
291 */
292 struct netdev_boot_setup {
293 char name[IFNAMSIZ];
294 struct ifmap map;
295 };
296 #define NETDEV_BOOT_SETUP_MAX 8
297
298 int __init netdev_boot_setup(char *str);
299
300 /*
301 * Structure for NAPI scheduling similar to tasklet but with weighting
302 */
303 struct napi_struct {
304 /* The poll_list must only be managed by the entity which
305 * changes the state of the NAPI_STATE_SCHED bit. This means
306 * whoever atomically sets that bit can add this napi_struct
307 * to the per-CPU poll_list, and whoever clears that bit
308 * can remove from the list right before clearing the bit.
309 */
310 struct list_head poll_list;
311
312 unsigned long state;
313 int weight;
314 unsigned int gro_count;
315 int (*poll)(struct napi_struct *, int);
316 #ifdef CONFIG_NETPOLL
317 spinlock_t poll_lock;
318 int poll_owner;
319 #endif
320 struct net_device *dev;
321 struct sk_buff *gro_list;
322 struct sk_buff *skb;
323 struct hrtimer timer;
324 struct list_head dev_list;
325 struct hlist_node napi_hash_node;
326 unsigned int napi_id;
327 };
328
329 enum {
330 NAPI_STATE_SCHED, /* Poll is scheduled */
331 NAPI_STATE_DISABLE, /* Disable pending */
332 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
333 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */
334 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
335 };
336
337 enum gro_result {
338 GRO_MERGED,
339 GRO_MERGED_FREE,
340 GRO_HELD,
341 GRO_NORMAL,
342 GRO_DROP,
343 };
344 typedef enum gro_result gro_result_t;
345
346 /*
347 * enum rx_handler_result - Possible return values for rx_handlers.
348 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
349 * further.
350 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
351 * case skb->dev was changed by rx_handler.
352 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
353 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
354 *
355 * rx_handlers are functions called from inside __netif_receive_skb(), to do
356 * special processing of the skb, prior to delivery to protocol handlers.
357 *
358 * Currently, a net_device can only have a single rx_handler registered. Trying
359 * to register a second rx_handler will return -EBUSY.
360 *
361 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
362 * To unregister a rx_handler on a net_device, use
363 * netdev_rx_handler_unregister().
364 *
365 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
366 * do with the skb.
367 *
368 * If the rx_handler consumed the skb in some way, it should return
369 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
370 * the skb to be delivered in some other way.
371 *
372 * If the rx_handler changed skb->dev, to divert the skb to another
373 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
374 * new device will be called if it exists.
375 *
376 * If the rx_handler decides the skb should be ignored, it should return
377 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
378 * are registered on exact device (ptype->dev == skb->dev).
379 *
380 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
381 * delivered, it should return RX_HANDLER_PASS.
382 *
383 * A device without a registered rx_handler will behave as if rx_handler
384 * returned RX_HANDLER_PASS.
385 */
386
387 enum rx_handler_result {
388 RX_HANDLER_CONSUMED,
389 RX_HANDLER_ANOTHER,
390 RX_HANDLER_EXACT,
391 RX_HANDLER_PASS,
392 };
393 typedef enum rx_handler_result rx_handler_result_t;
394 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
395
396 void __napi_schedule(struct napi_struct *n);
397 void __napi_schedule_irqoff(struct napi_struct *n);
398
399 static inline bool napi_disable_pending(struct napi_struct *n)
400 {
401 return test_bit(NAPI_STATE_DISABLE, &n->state);
402 }
403
404 /**
405 * napi_schedule_prep - check if NAPI can be scheduled
406 * @n: NAPI context
407 *
408 * Test if NAPI routine is already running, and if not mark
409 * it as running. This is used as a condition variable to
410 * insure only one NAPI poll instance runs. We also make
411 * sure there is no pending NAPI disable.
412 */
413 static inline bool napi_schedule_prep(struct napi_struct *n)
414 {
415 return !napi_disable_pending(n) &&
416 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
417 }
418
419 /**
420 * napi_schedule - schedule NAPI poll
421 * @n: NAPI context
422 *
423 * Schedule NAPI poll routine to be called if it is not already
424 * running.
425 */
426 static inline void napi_schedule(struct napi_struct *n)
427 {
428 if (napi_schedule_prep(n))
429 __napi_schedule(n);
430 }
431
432 /**
433 * napi_schedule_irqoff - schedule NAPI poll
434 * @n: NAPI context
435 *
436 * Variant of napi_schedule(), assuming hard irqs are masked.
437 */
438 static inline void napi_schedule_irqoff(struct napi_struct *n)
439 {
440 if (napi_schedule_prep(n))
441 __napi_schedule_irqoff(n);
442 }
443
444 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
445 static inline bool napi_reschedule(struct napi_struct *napi)
446 {
447 if (napi_schedule_prep(napi)) {
448 __napi_schedule(napi);
449 return true;
450 }
451 return false;
452 }
453
454 void __napi_complete(struct napi_struct *n);
455 void napi_complete_done(struct napi_struct *n, int work_done);
456 /**
457 * napi_complete - NAPI processing complete
458 * @n: NAPI context
459 *
460 * Mark NAPI processing as complete.
461 * Consider using napi_complete_done() instead.
462 */
463 static inline void napi_complete(struct napi_struct *n)
464 {
465 return napi_complete_done(n, 0);
466 }
467
468 /**
469 * napi_hash_add - add a NAPI to global hashtable
470 * @napi: NAPI context
471 *
472 * Generate a new napi_id and store a @napi under it in napi_hash.
473 * Used for busy polling (CONFIG_NET_RX_BUSY_POLL).
474 * Note: This is normally automatically done from netif_napi_add(),
475 * so might disappear in a future Linux version.
476 */
477 void napi_hash_add(struct napi_struct *napi);
478
479 /**
480 * napi_hash_del - remove a NAPI from global table
481 * @napi: NAPI context
482 *
483 * Warning: caller must observe RCU grace period
484 * before freeing memory containing @napi, if
485 * this function returns true.
486 * Note: core networking stack automatically calls it
487 * from netif_napi_del().
488 * Drivers might want to call this helper to combine all
489 * the needed RCU grace periods into a single one.
490 */
491 bool napi_hash_del(struct napi_struct *napi);
492
493 /**
494 * napi_disable - prevent NAPI from scheduling
495 * @n: NAPI context
496 *
497 * Stop NAPI from being scheduled on this context.
498 * Waits till any outstanding processing completes.
499 */
500 void napi_disable(struct napi_struct *n);
501
502 /**
503 * napi_enable - enable NAPI scheduling
504 * @n: NAPI context
505 *
506 * Resume NAPI from being scheduled on this context.
507 * Must be paired with napi_disable.
508 */
509 static inline void napi_enable(struct napi_struct *n)
510 {
511 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
512 smp_mb__before_atomic();
513 clear_bit(NAPI_STATE_SCHED, &n->state);
514 clear_bit(NAPI_STATE_NPSVC, &n->state);
515 }
516
517 /**
518 * napi_synchronize - wait until NAPI is not running
519 * @n: NAPI context
520 *
521 * Wait until NAPI is done being scheduled on this context.
522 * Waits till any outstanding processing completes but
523 * does not disable future activations.
524 */
525 static inline void napi_synchronize(const struct napi_struct *n)
526 {
527 if (IS_ENABLED(CONFIG_SMP))
528 while (test_bit(NAPI_STATE_SCHED, &n->state))
529 msleep(1);
530 else
531 barrier();
532 }
533
534 enum netdev_queue_state_t {
535 __QUEUE_STATE_DRV_XOFF,
536 __QUEUE_STATE_STACK_XOFF,
537 __QUEUE_STATE_FROZEN,
538 };
539
540 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
541 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
542 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
543
544 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
545 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
546 QUEUE_STATE_FROZEN)
547 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
548 QUEUE_STATE_FROZEN)
549
550 /*
551 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
552 * netif_tx_* functions below are used to manipulate this flag. The
553 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
554 * queue independently. The netif_xmit_*stopped functions below are called
555 * to check if the queue has been stopped by the driver or stack (either
556 * of the XOFF bits are set in the state). Drivers should not need to call
557 * netif_xmit*stopped functions, they should only be using netif_tx_*.
558 */
559
560 struct netdev_queue {
561 /*
562 * read-mostly part
563 */
564 struct net_device *dev;
565 struct Qdisc __rcu *qdisc;
566 struct Qdisc *qdisc_sleeping;
567 #ifdef CONFIG_SYSFS
568 struct kobject kobj;
569 #endif
570 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
571 int numa_node;
572 #endif
573 /*
574 * write-mostly part
575 */
576 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
577 int xmit_lock_owner;
578 /*
579 * please use this field instead of dev->trans_start
580 */
581 unsigned long trans_start;
582
583 /*
584 * Number of TX timeouts for this queue
585 * (/sys/class/net/DEV/Q/trans_timeout)
586 */
587 unsigned long trans_timeout;
588
589 unsigned long state;
590
591 #ifdef CONFIG_BQL
592 struct dql dql;
593 #endif
594 unsigned long tx_maxrate;
595 } ____cacheline_aligned_in_smp;
596
597 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
598 {
599 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
600 return q->numa_node;
601 #else
602 return NUMA_NO_NODE;
603 #endif
604 }
605
606 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
607 {
608 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
609 q->numa_node = node;
610 #endif
611 }
612
613 #ifdef CONFIG_RPS
614 /*
615 * This structure holds an RPS map which can be of variable length. The
616 * map is an array of CPUs.
617 */
618 struct rps_map {
619 unsigned int len;
620 struct rcu_head rcu;
621 u16 cpus[0];
622 };
623 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
624
625 /*
626 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
627 * tail pointer for that CPU's input queue at the time of last enqueue, and
628 * a hardware filter index.
629 */
630 struct rps_dev_flow {
631 u16 cpu;
632 u16 filter;
633 unsigned int last_qtail;
634 };
635 #define RPS_NO_FILTER 0xffff
636
637 /*
638 * The rps_dev_flow_table structure contains a table of flow mappings.
639 */
640 struct rps_dev_flow_table {
641 unsigned int mask;
642 struct rcu_head rcu;
643 struct rps_dev_flow flows[0];
644 };
645 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
646 ((_num) * sizeof(struct rps_dev_flow)))
647
648 /*
649 * The rps_sock_flow_table contains mappings of flows to the last CPU
650 * on which they were processed by the application (set in recvmsg).
651 * Each entry is a 32bit value. Upper part is the high-order bits
652 * of flow hash, lower part is CPU number.
653 * rps_cpu_mask is used to partition the space, depending on number of
654 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
655 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
656 * meaning we use 32-6=26 bits for the hash.
657 */
658 struct rps_sock_flow_table {
659 u32 mask;
660
661 u32 ents[0] ____cacheline_aligned_in_smp;
662 };
663 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
664
665 #define RPS_NO_CPU 0xffff
666
667 extern u32 rps_cpu_mask;
668 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
669
670 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
671 u32 hash)
672 {
673 if (table && hash) {
674 unsigned int index = hash & table->mask;
675 u32 val = hash & ~rps_cpu_mask;
676
677 /* We only give a hint, preemption can change CPU under us */
678 val |= raw_smp_processor_id();
679
680 if (table->ents[index] != val)
681 table->ents[index] = val;
682 }
683 }
684
685 #ifdef CONFIG_RFS_ACCEL
686 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
687 u16 filter_id);
688 #endif
689 #endif /* CONFIG_RPS */
690
691 /* This structure contains an instance of an RX queue. */
692 struct netdev_rx_queue {
693 #ifdef CONFIG_RPS
694 struct rps_map __rcu *rps_map;
695 struct rps_dev_flow_table __rcu *rps_flow_table;
696 #endif
697 struct kobject kobj;
698 struct net_device *dev;
699 } ____cacheline_aligned_in_smp;
700
701 /*
702 * RX queue sysfs structures and functions.
703 */
704 struct rx_queue_attribute {
705 struct attribute attr;
706 ssize_t (*show)(struct netdev_rx_queue *queue,
707 struct rx_queue_attribute *attr, char *buf);
708 ssize_t (*store)(struct netdev_rx_queue *queue,
709 struct rx_queue_attribute *attr, const char *buf, size_t len);
710 };
711
712 #ifdef CONFIG_XPS
713 /*
714 * This structure holds an XPS map which can be of variable length. The
715 * map is an array of queues.
716 */
717 struct xps_map {
718 unsigned int len;
719 unsigned int alloc_len;
720 struct rcu_head rcu;
721 u16 queues[0];
722 };
723 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
724 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
725 - sizeof(struct xps_map)) / sizeof(u16))
726
727 /*
728 * This structure holds all XPS maps for device. Maps are indexed by CPU.
729 */
730 struct xps_dev_maps {
731 struct rcu_head rcu;
732 struct xps_map __rcu *cpu_map[0];
733 };
734 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
735 (nr_cpu_ids * sizeof(struct xps_map *)))
736 #endif /* CONFIG_XPS */
737
738 #define TC_MAX_QUEUE 16
739 #define TC_BITMASK 15
740 /* HW offloaded queuing disciplines txq count and offset maps */
741 struct netdev_tc_txq {
742 u16 count;
743 u16 offset;
744 };
745
746 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
747 /*
748 * This structure is to hold information about the device
749 * configured to run FCoE protocol stack.
750 */
751 struct netdev_fcoe_hbainfo {
752 char manufacturer[64];
753 char serial_number[64];
754 char hardware_version[64];
755 char driver_version[64];
756 char optionrom_version[64];
757 char firmware_version[64];
758 char model[256];
759 char model_description[256];
760 };
761 #endif
762
763 #define MAX_PHYS_ITEM_ID_LEN 32
764
765 /* This structure holds a unique identifier to identify some
766 * physical item (port for example) used by a netdevice.
767 */
768 struct netdev_phys_item_id {
769 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
770 unsigned char id_len;
771 };
772
773 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
774 struct netdev_phys_item_id *b)
775 {
776 return a->id_len == b->id_len &&
777 memcmp(a->id, b->id, a->id_len) == 0;
778 }
779
780 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
781 struct sk_buff *skb);
782
783 /* These structures hold the attributes of qdisc and classifiers
784 * that are being passed to the netdevice through the setup_tc op.
785 */
786 enum {
787 TC_SETUP_MQPRIO,
788 TC_SETUP_CLSU32,
789 TC_SETUP_CLSFLOWER,
790 };
791
792 struct tc_cls_u32_offload;
793
794 struct tc_to_netdev {
795 unsigned int type;
796 union {
797 u8 tc;
798 struct tc_cls_u32_offload *cls_u32;
799 struct tc_cls_flower_offload *cls_flower;
800 };
801 };
802
803
804 /*
805 * This structure defines the management hooks for network devices.
806 * The following hooks can be defined; unless noted otherwise, they are
807 * optional and can be filled with a null pointer.
808 *
809 * int (*ndo_init)(struct net_device *dev);
810 * This function is called once when a network device is registered.
811 * The network device can use this for any late stage initialization
812 * or semantic validation. It can fail with an error code which will
813 * be propagated back to register_netdev.
814 *
815 * void (*ndo_uninit)(struct net_device *dev);
816 * This function is called when device is unregistered or when registration
817 * fails. It is not called if init fails.
818 *
819 * int (*ndo_open)(struct net_device *dev);
820 * This function is called when a network device transitions to the up
821 * state.
822 *
823 * int (*ndo_stop)(struct net_device *dev);
824 * This function is called when a network device transitions to the down
825 * state.
826 *
827 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
828 * struct net_device *dev);
829 * Called when a packet needs to be transmitted.
830 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
831 * the queue before that can happen; it's for obsolete devices and weird
832 * corner cases, but the stack really does a non-trivial amount
833 * of useless work if you return NETDEV_TX_BUSY.
834 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
835 * Required; cannot be NULL.
836 *
837 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
838 * netdev_features_t features);
839 * Adjusts the requested feature flags according to device-specific
840 * constraints, and returns the resulting flags. Must not modify
841 * the device state.
842 *
843 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
844 * void *accel_priv, select_queue_fallback_t fallback);
845 * Called to decide which queue to use when device supports multiple
846 * transmit queues.
847 *
848 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
849 * This function is called to allow device receiver to make
850 * changes to configuration when multicast or promiscuous is enabled.
851 *
852 * void (*ndo_set_rx_mode)(struct net_device *dev);
853 * This function is called device changes address list filtering.
854 * If driver handles unicast address filtering, it should set
855 * IFF_UNICAST_FLT in its priv_flags.
856 *
857 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
858 * This function is called when the Media Access Control address
859 * needs to be changed. If this interface is not defined, the
860 * MAC address can not be changed.
861 *
862 * int (*ndo_validate_addr)(struct net_device *dev);
863 * Test if Media Access Control address is valid for the device.
864 *
865 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
866 * Called when a user requests an ioctl which can't be handled by
867 * the generic interface code. If not defined ioctls return
868 * not supported error code.
869 *
870 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
871 * Used to set network devices bus interface parameters. This interface
872 * is retained for legacy reasons; new devices should use the bus
873 * interface (PCI) for low level management.
874 *
875 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
876 * Called when a user wants to change the Maximum Transfer Unit
877 * of a device. If not defined, any request to change MTU will
878 * will return an error.
879 *
880 * void (*ndo_tx_timeout)(struct net_device *dev);
881 * Callback used when the transmitter has not made any progress
882 * for dev->watchdog ticks.
883 *
884 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
885 * struct rtnl_link_stats64 *storage);
886 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
887 * Called when a user wants to get the network device usage
888 * statistics. Drivers must do one of the following:
889 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
890 * rtnl_link_stats64 structure passed by the caller.
891 * 2. Define @ndo_get_stats to update a net_device_stats structure
892 * (which should normally be dev->stats) and return a pointer to
893 * it. The structure may be changed asynchronously only if each
894 * field is written atomically.
895 * 3. Update dev->stats asynchronously and atomically, and define
896 * neither operation.
897 *
898 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
899 * If device supports VLAN filtering this function is called when a
900 * VLAN id is registered.
901 *
902 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
903 * If device supports VLAN filtering this function is called when a
904 * VLAN id is unregistered.
905 *
906 * void (*ndo_poll_controller)(struct net_device *dev);
907 *
908 * SR-IOV management functions.
909 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
910 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
911 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
912 * int max_tx_rate);
913 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
914 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
915 * int (*ndo_get_vf_config)(struct net_device *dev,
916 * int vf, struct ifla_vf_info *ivf);
917 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
918 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
919 * struct nlattr *port[]);
920 *
921 * Enable or disable the VF ability to query its RSS Redirection Table and
922 * Hash Key. This is needed since on some devices VF share this information
923 * with PF and querying it may introduce a theoretical security risk.
924 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
925 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
926 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
927 * Called to setup 'tc' number of traffic classes in the net device. This
928 * is always called from the stack with the rtnl lock held and netif tx
929 * queues stopped. This allows the netdevice to perform queue management
930 * safely.
931 *
932 * Fiber Channel over Ethernet (FCoE) offload functions.
933 * int (*ndo_fcoe_enable)(struct net_device *dev);
934 * Called when the FCoE protocol stack wants to start using LLD for FCoE
935 * so the underlying device can perform whatever needed configuration or
936 * initialization to support acceleration of FCoE traffic.
937 *
938 * int (*ndo_fcoe_disable)(struct net_device *dev);
939 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
940 * so the underlying device can perform whatever needed clean-ups to
941 * stop supporting acceleration of FCoE traffic.
942 *
943 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
944 * struct scatterlist *sgl, unsigned int sgc);
945 * Called when the FCoE Initiator wants to initialize an I/O that
946 * is a possible candidate for Direct Data Placement (DDP). The LLD can
947 * perform necessary setup and returns 1 to indicate the device is set up
948 * successfully to perform DDP on this I/O, otherwise this returns 0.
949 *
950 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
951 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
952 * indicated by the FC exchange id 'xid', so the underlying device can
953 * clean up and reuse resources for later DDP requests.
954 *
955 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
956 * struct scatterlist *sgl, unsigned int sgc);
957 * Called when the FCoE Target wants to initialize an I/O that
958 * is a possible candidate for Direct Data Placement (DDP). The LLD can
959 * perform necessary setup and returns 1 to indicate the device is set up
960 * successfully to perform DDP on this I/O, otherwise this returns 0.
961 *
962 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
963 * struct netdev_fcoe_hbainfo *hbainfo);
964 * Called when the FCoE Protocol stack wants information on the underlying
965 * device. This information is utilized by the FCoE protocol stack to
966 * register attributes with Fiber Channel management service as per the
967 * FC-GS Fabric Device Management Information(FDMI) specification.
968 *
969 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
970 * Called when the underlying device wants to override default World Wide
971 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
972 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
973 * protocol stack to use.
974 *
975 * RFS acceleration.
976 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
977 * u16 rxq_index, u32 flow_id);
978 * Set hardware filter for RFS. rxq_index is the target queue index;
979 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
980 * Return the filter ID on success, or a negative error code.
981 *
982 * Slave management functions (for bridge, bonding, etc).
983 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
984 * Called to make another netdev an underling.
985 *
986 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
987 * Called to release previously enslaved netdev.
988 *
989 * Feature/offload setting functions.
990 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
991 * Called to update device configuration to new features. Passed
992 * feature set might be less than what was returned by ndo_fix_features()).
993 * Must return >0 or -errno if it changed dev->features itself.
994 *
995 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
996 * struct net_device *dev,
997 * const unsigned char *addr, u16 vid, u16 flags)
998 * Adds an FDB entry to dev for addr.
999 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1000 * struct net_device *dev,
1001 * const unsigned char *addr, u16 vid)
1002 * Deletes the FDB entry from dev coresponding to addr.
1003 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1004 * struct net_device *dev, struct net_device *filter_dev,
1005 * int idx)
1006 * Used to add FDB entries to dump requests. Implementers should add
1007 * entries to skb and update idx with the number of entries.
1008 *
1009 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1010 * u16 flags)
1011 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1012 * struct net_device *dev, u32 filter_mask,
1013 * int nlflags)
1014 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1015 * u16 flags);
1016 *
1017 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1018 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1019 * which do not represent real hardware may define this to allow their
1020 * userspace components to manage their virtual carrier state. Devices
1021 * that determine carrier state from physical hardware properties (eg
1022 * network cables) or protocol-dependent mechanisms (eg
1023 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1024 *
1025 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1026 * struct netdev_phys_item_id *ppid);
1027 * Called to get ID of physical port of this device. If driver does
1028 * not implement this, it is assumed that the hw is not able to have
1029 * multiple net devices on single physical port.
1030 *
1031 * void (*ndo_add_vxlan_port)(struct net_device *dev,
1032 * sa_family_t sa_family, __be16 port);
1033 * Called by vxlan to notify a driver about the UDP port and socket
1034 * address family that vxlan is listening to. It is called only when
1035 * a new port starts listening. The operation is protected by the
1036 * vxlan_net->sock_lock.
1037 *
1038 * void (*ndo_add_geneve_port)(struct net_device *dev,
1039 * sa_family_t sa_family, __be16 port);
1040 * Called by geneve to notify a driver about the UDP port and socket
1041 * address family that geneve is listnening to. It is called only when
1042 * a new port starts listening. The operation is protected by the
1043 * geneve_net->sock_lock.
1044 *
1045 * void (*ndo_del_geneve_port)(struct net_device *dev,
1046 * sa_family_t sa_family, __be16 port);
1047 * Called by geneve to notify the driver about a UDP port and socket
1048 * address family that geneve is not listening to anymore. The operation
1049 * is protected by the geneve_net->sock_lock.
1050 *
1051 * void (*ndo_del_vxlan_port)(struct net_device *dev,
1052 * sa_family_t sa_family, __be16 port);
1053 * Called by vxlan to notify the driver about a UDP port and socket
1054 * address family that vxlan is not listening to anymore. The operation
1055 * is protected by the vxlan_net->sock_lock.
1056 *
1057 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1058 * struct net_device *dev)
1059 * Called by upper layer devices to accelerate switching or other
1060 * station functionality into hardware. 'pdev is the lowerdev
1061 * to use for the offload and 'dev' is the net device that will
1062 * back the offload. Returns a pointer to the private structure
1063 * the upper layer will maintain.
1064 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1065 * Called by upper layer device to delete the station created
1066 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1067 * the station and priv is the structure returned by the add
1068 * operation.
1069 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1070 * struct net_device *dev,
1071 * void *priv);
1072 * Callback to use for xmit over the accelerated station. This
1073 * is used in place of ndo_start_xmit on accelerated net
1074 * devices.
1075 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1076 * struct net_device *dev
1077 * netdev_features_t features);
1078 * Called by core transmit path to determine if device is capable of
1079 * performing offload operations on a given packet. This is to give
1080 * the device an opportunity to implement any restrictions that cannot
1081 * be otherwise expressed by feature flags. The check is called with
1082 * the set of features that the stack has calculated and it returns
1083 * those the driver believes to be appropriate.
1084 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1085 * int queue_index, u32 maxrate);
1086 * Called when a user wants to set a max-rate limitation of specific
1087 * TX queue.
1088 * int (*ndo_get_iflink)(const struct net_device *dev);
1089 * Called to get the iflink value of this device.
1090 * void (*ndo_change_proto_down)(struct net_device *dev,
1091 * bool proto_down);
1092 * This function is used to pass protocol port error state information
1093 * to the switch driver. The switch driver can react to the proto_down
1094 * by doing a phys down on the associated switch port.
1095 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1096 * This function is used to get egress tunnel information for given skb.
1097 * This is useful for retrieving outer tunnel header parameters while
1098 * sampling packet.
1099 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1100 * This function is used to specify the headroom that the skb must
1101 * consider when allocation skb during packet reception. Setting
1102 * appropriate rx headroom value allows avoiding skb head copy on
1103 * forward. Setting a negative value resets the rx headroom to the
1104 * default value.
1105 *
1106 */
1107 struct net_device_ops {
1108 int (*ndo_init)(struct net_device *dev);
1109 void (*ndo_uninit)(struct net_device *dev);
1110 int (*ndo_open)(struct net_device *dev);
1111 int (*ndo_stop)(struct net_device *dev);
1112 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1113 struct net_device *dev);
1114 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1115 struct net_device *dev,
1116 netdev_features_t features);
1117 u16 (*ndo_select_queue)(struct net_device *dev,
1118 struct sk_buff *skb,
1119 void *accel_priv,
1120 select_queue_fallback_t fallback);
1121 void (*ndo_change_rx_flags)(struct net_device *dev,
1122 int flags);
1123 void (*ndo_set_rx_mode)(struct net_device *dev);
1124 int (*ndo_set_mac_address)(struct net_device *dev,
1125 void *addr);
1126 int (*ndo_validate_addr)(struct net_device *dev);
1127 int (*ndo_do_ioctl)(struct net_device *dev,
1128 struct ifreq *ifr, int cmd);
1129 int (*ndo_set_config)(struct net_device *dev,
1130 struct ifmap *map);
1131 int (*ndo_change_mtu)(struct net_device *dev,
1132 int new_mtu);
1133 int (*ndo_neigh_setup)(struct net_device *dev,
1134 struct neigh_parms *);
1135 void (*ndo_tx_timeout) (struct net_device *dev);
1136
1137 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1138 struct rtnl_link_stats64 *storage);
1139 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1140
1141 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1142 __be16 proto, u16 vid);
1143 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1144 __be16 proto, u16 vid);
1145 #ifdef CONFIG_NET_POLL_CONTROLLER
1146 void (*ndo_poll_controller)(struct net_device *dev);
1147 int (*ndo_netpoll_setup)(struct net_device *dev,
1148 struct netpoll_info *info);
1149 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1150 #endif
1151 #ifdef CONFIG_NET_RX_BUSY_POLL
1152 int (*ndo_busy_poll)(struct napi_struct *dev);
1153 #endif
1154 int (*ndo_set_vf_mac)(struct net_device *dev,
1155 int queue, u8 *mac);
1156 int (*ndo_set_vf_vlan)(struct net_device *dev,
1157 int queue, u16 vlan, u8 qos);
1158 int (*ndo_set_vf_rate)(struct net_device *dev,
1159 int vf, int min_tx_rate,
1160 int max_tx_rate);
1161 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1162 int vf, bool setting);
1163 int (*ndo_set_vf_trust)(struct net_device *dev,
1164 int vf, bool setting);
1165 int (*ndo_get_vf_config)(struct net_device *dev,
1166 int vf,
1167 struct ifla_vf_info *ivf);
1168 int (*ndo_set_vf_link_state)(struct net_device *dev,
1169 int vf, int link_state);
1170 int (*ndo_get_vf_stats)(struct net_device *dev,
1171 int vf,
1172 struct ifla_vf_stats
1173 *vf_stats);
1174 int (*ndo_set_vf_port)(struct net_device *dev,
1175 int vf,
1176 struct nlattr *port[]);
1177 int (*ndo_get_vf_port)(struct net_device *dev,
1178 int vf, struct sk_buff *skb);
1179 int (*ndo_set_vf_guid)(struct net_device *dev,
1180 int vf, u64 guid,
1181 int guid_type);
1182 int (*ndo_set_vf_rss_query_en)(
1183 struct net_device *dev,
1184 int vf, bool setting);
1185 int (*ndo_setup_tc)(struct net_device *dev,
1186 u32 handle,
1187 __be16 protocol,
1188 struct tc_to_netdev *tc);
1189 #if IS_ENABLED(CONFIG_FCOE)
1190 int (*ndo_fcoe_enable)(struct net_device *dev);
1191 int (*ndo_fcoe_disable)(struct net_device *dev);
1192 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1193 u16 xid,
1194 struct scatterlist *sgl,
1195 unsigned int sgc);
1196 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1197 u16 xid);
1198 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1199 u16 xid,
1200 struct scatterlist *sgl,
1201 unsigned int sgc);
1202 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1203 struct netdev_fcoe_hbainfo *hbainfo);
1204 #endif
1205
1206 #if IS_ENABLED(CONFIG_LIBFCOE)
1207 #define NETDEV_FCOE_WWNN 0
1208 #define NETDEV_FCOE_WWPN 1
1209 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1210 u64 *wwn, int type);
1211 #endif
1212
1213 #ifdef CONFIG_RFS_ACCEL
1214 int (*ndo_rx_flow_steer)(struct net_device *dev,
1215 const struct sk_buff *skb,
1216 u16 rxq_index,
1217 u32 flow_id);
1218 #endif
1219 int (*ndo_add_slave)(struct net_device *dev,
1220 struct net_device *slave_dev);
1221 int (*ndo_del_slave)(struct net_device *dev,
1222 struct net_device *slave_dev);
1223 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1224 netdev_features_t features);
1225 int (*ndo_set_features)(struct net_device *dev,
1226 netdev_features_t features);
1227 int (*ndo_neigh_construct)(struct neighbour *n);
1228 void (*ndo_neigh_destroy)(struct neighbour *n);
1229
1230 int (*ndo_fdb_add)(struct ndmsg *ndm,
1231 struct nlattr *tb[],
1232 struct net_device *dev,
1233 const unsigned char *addr,
1234 u16 vid,
1235 u16 flags);
1236 int (*ndo_fdb_del)(struct ndmsg *ndm,
1237 struct nlattr *tb[],
1238 struct net_device *dev,
1239 const unsigned char *addr,
1240 u16 vid);
1241 int (*ndo_fdb_dump)(struct sk_buff *skb,
1242 struct netlink_callback *cb,
1243 struct net_device *dev,
1244 struct net_device *filter_dev,
1245 int idx);
1246
1247 int (*ndo_bridge_setlink)(struct net_device *dev,
1248 struct nlmsghdr *nlh,
1249 u16 flags);
1250 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1251 u32 pid, u32 seq,
1252 struct net_device *dev,
1253 u32 filter_mask,
1254 int nlflags);
1255 int (*ndo_bridge_dellink)(struct net_device *dev,
1256 struct nlmsghdr *nlh,
1257 u16 flags);
1258 int (*ndo_change_carrier)(struct net_device *dev,
1259 bool new_carrier);
1260 int (*ndo_get_phys_port_id)(struct net_device *dev,
1261 struct netdev_phys_item_id *ppid);
1262 int (*ndo_get_phys_port_name)(struct net_device *dev,
1263 char *name, size_t len);
1264 void (*ndo_add_vxlan_port)(struct net_device *dev,
1265 sa_family_t sa_family,
1266 __be16 port);
1267 void (*ndo_del_vxlan_port)(struct net_device *dev,
1268 sa_family_t sa_family,
1269 __be16 port);
1270 void (*ndo_add_geneve_port)(struct net_device *dev,
1271 sa_family_t sa_family,
1272 __be16 port);
1273 void (*ndo_del_geneve_port)(struct net_device *dev,
1274 sa_family_t sa_family,
1275 __be16 port);
1276 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1277 struct net_device *dev);
1278 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1279 void *priv);
1280
1281 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1282 struct net_device *dev,
1283 void *priv);
1284 int (*ndo_get_lock_subclass)(struct net_device *dev);
1285 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1286 int queue_index,
1287 u32 maxrate);
1288 int (*ndo_get_iflink)(const struct net_device *dev);
1289 int (*ndo_change_proto_down)(struct net_device *dev,
1290 bool proto_down);
1291 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1292 struct sk_buff *skb);
1293 void (*ndo_set_rx_headroom)(struct net_device *dev,
1294 int needed_headroom);
1295 };
1296
1297 /**
1298 * enum net_device_priv_flags - &struct net_device priv_flags
1299 *
1300 * These are the &struct net_device, they are only set internally
1301 * by drivers and used in the kernel. These flags are invisible to
1302 * userspace; this means that the order of these flags can change
1303 * during any kernel release.
1304 *
1305 * You should have a pretty good reason to be extending these flags.
1306 *
1307 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1308 * @IFF_EBRIDGE: Ethernet bridging device
1309 * @IFF_BONDING: bonding master or slave
1310 * @IFF_ISATAP: ISATAP interface (RFC4214)
1311 * @IFF_WAN_HDLC: WAN HDLC device
1312 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1313 * release skb->dst
1314 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1315 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1316 * @IFF_MACVLAN_PORT: device used as macvlan port
1317 * @IFF_BRIDGE_PORT: device used as bridge port
1318 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1319 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1320 * @IFF_UNICAST_FLT: Supports unicast filtering
1321 * @IFF_TEAM_PORT: device used as team port
1322 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1323 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1324 * change when it's running
1325 * @IFF_MACVLAN: Macvlan device
1326 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1327 * underlying stacked devices
1328 * @IFF_IPVLAN_MASTER: IPvlan master device
1329 * @IFF_IPVLAN_SLAVE: IPvlan slave device
1330 * @IFF_L3MDEV_MASTER: device is an L3 master device
1331 * @IFF_NO_QUEUE: device can run without qdisc attached
1332 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1333 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1334 * @IFF_TEAM: device is a team device
1335 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1336 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1337 * entity (i.e. the master device for bridged veth)
1338 * @IFF_MACSEC: device is a MACsec device
1339 */
1340 enum netdev_priv_flags {
1341 IFF_802_1Q_VLAN = 1<<0,
1342 IFF_EBRIDGE = 1<<1,
1343 IFF_BONDING = 1<<2,
1344 IFF_ISATAP = 1<<3,
1345 IFF_WAN_HDLC = 1<<4,
1346 IFF_XMIT_DST_RELEASE = 1<<5,
1347 IFF_DONT_BRIDGE = 1<<6,
1348 IFF_DISABLE_NETPOLL = 1<<7,
1349 IFF_MACVLAN_PORT = 1<<8,
1350 IFF_BRIDGE_PORT = 1<<9,
1351 IFF_OVS_DATAPATH = 1<<10,
1352 IFF_TX_SKB_SHARING = 1<<11,
1353 IFF_UNICAST_FLT = 1<<12,
1354 IFF_TEAM_PORT = 1<<13,
1355 IFF_SUPP_NOFCS = 1<<14,
1356 IFF_LIVE_ADDR_CHANGE = 1<<15,
1357 IFF_MACVLAN = 1<<16,
1358 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1359 IFF_IPVLAN_MASTER = 1<<18,
1360 IFF_IPVLAN_SLAVE = 1<<19,
1361 IFF_L3MDEV_MASTER = 1<<20,
1362 IFF_NO_QUEUE = 1<<21,
1363 IFF_OPENVSWITCH = 1<<22,
1364 IFF_L3MDEV_SLAVE = 1<<23,
1365 IFF_TEAM = 1<<24,
1366 IFF_RXFH_CONFIGURED = 1<<25,
1367 IFF_PHONY_HEADROOM = 1<<26,
1368 IFF_MACSEC = 1<<27,
1369 };
1370
1371 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1372 #define IFF_EBRIDGE IFF_EBRIDGE
1373 #define IFF_BONDING IFF_BONDING
1374 #define IFF_ISATAP IFF_ISATAP
1375 #define IFF_WAN_HDLC IFF_WAN_HDLC
1376 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1377 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1378 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1379 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1380 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1381 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1382 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1383 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1384 #define IFF_TEAM_PORT IFF_TEAM_PORT
1385 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1386 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1387 #define IFF_MACVLAN IFF_MACVLAN
1388 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1389 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER
1390 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE
1391 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1392 #define IFF_NO_QUEUE IFF_NO_QUEUE
1393 #define IFF_OPENVSWITCH IFF_OPENVSWITCH
1394 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1395 #define IFF_TEAM IFF_TEAM
1396 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1397 #define IFF_MACSEC IFF_MACSEC
1398
1399 /**
1400 * struct net_device - The DEVICE structure.
1401 * Actually, this whole structure is a big mistake. It mixes I/O
1402 * data with strictly "high-level" data, and it has to know about
1403 * almost every data structure used in the INET module.
1404 *
1405 * @name: This is the first field of the "visible" part of this structure
1406 * (i.e. as seen by users in the "Space.c" file). It is the name
1407 * of the interface.
1408 *
1409 * @name_hlist: Device name hash chain, please keep it close to name[]
1410 * @ifalias: SNMP alias
1411 * @mem_end: Shared memory end
1412 * @mem_start: Shared memory start
1413 * @base_addr: Device I/O address
1414 * @irq: Device IRQ number
1415 *
1416 * @carrier_changes: Stats to monitor carrier on<->off transitions
1417 *
1418 * @state: Generic network queuing layer state, see netdev_state_t
1419 * @dev_list: The global list of network devices
1420 * @napi_list: List entry used for polling NAPI devices
1421 * @unreg_list: List entry when we are unregistering the
1422 * device; see the function unregister_netdev
1423 * @close_list: List entry used when we are closing the device
1424 * @ptype_all: Device-specific packet handlers for all protocols
1425 * @ptype_specific: Device-specific, protocol-specific packet handlers
1426 *
1427 * @adj_list: Directly linked devices, like slaves for bonding
1428 * @all_adj_list: All linked devices, *including* neighbours
1429 * @features: Currently active device features
1430 * @hw_features: User-changeable features
1431 *
1432 * @wanted_features: User-requested features
1433 * @vlan_features: Mask of features inheritable by VLAN devices
1434 *
1435 * @hw_enc_features: Mask of features inherited by encapsulating devices
1436 * This field indicates what encapsulation
1437 * offloads the hardware is capable of doing,
1438 * and drivers will need to set them appropriately.
1439 *
1440 * @mpls_features: Mask of features inheritable by MPLS
1441 *
1442 * @ifindex: interface index
1443 * @group: The group the device belongs to
1444 *
1445 * @stats: Statistics struct, which was left as a legacy, use
1446 * rtnl_link_stats64 instead
1447 *
1448 * @rx_dropped: Dropped packets by core network,
1449 * do not use this in drivers
1450 * @tx_dropped: Dropped packets by core network,
1451 * do not use this in drivers
1452 * @rx_nohandler: nohandler dropped packets by core network on
1453 * inactive devices, do not use this in drivers
1454 *
1455 * @wireless_handlers: List of functions to handle Wireless Extensions,
1456 * instead of ioctl,
1457 * see <net/iw_handler.h> for details.
1458 * @wireless_data: Instance data managed by the core of wireless extensions
1459 *
1460 * @netdev_ops: Includes several pointers to callbacks,
1461 * if one wants to override the ndo_*() functions
1462 * @ethtool_ops: Management operations
1463 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1464 * of Layer 2 headers.
1465 *
1466 * @flags: Interface flags (a la BSD)
1467 * @priv_flags: Like 'flags' but invisible to userspace,
1468 * see if.h for the definitions
1469 * @gflags: Global flags ( kept as legacy )
1470 * @padded: How much padding added by alloc_netdev()
1471 * @operstate: RFC2863 operstate
1472 * @link_mode: Mapping policy to operstate
1473 * @if_port: Selectable AUI, TP, ...
1474 * @dma: DMA channel
1475 * @mtu: Interface MTU value
1476 * @type: Interface hardware type
1477 * @hard_header_len: Maximum hardware header length.
1478 *
1479 * @needed_headroom: Extra headroom the hardware may need, but not in all
1480 * cases can this be guaranteed
1481 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1482 * cases can this be guaranteed. Some cases also use
1483 * LL_MAX_HEADER instead to allocate the skb
1484 *
1485 * interface address info:
1486 *
1487 * @perm_addr: Permanent hw address
1488 * @addr_assign_type: Hw address assignment type
1489 * @addr_len: Hardware address length
1490 * @neigh_priv_len; Used in neigh_alloc(),
1491 * initialized only in atm/clip.c
1492 * @dev_id: Used to differentiate devices that share
1493 * the same link layer address
1494 * @dev_port: Used to differentiate devices that share
1495 * the same function
1496 * @addr_list_lock: XXX: need comments on this one
1497 * @uc_promisc: Counter that indicates promiscuous mode
1498 * has been enabled due to the need to listen to
1499 * additional unicast addresses in a device that
1500 * does not implement ndo_set_rx_mode()
1501 * @uc: unicast mac addresses
1502 * @mc: multicast mac addresses
1503 * @dev_addrs: list of device hw addresses
1504 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1505 * @promiscuity: Number of times the NIC is told to work in
1506 * promiscuous mode; if it becomes 0 the NIC will
1507 * exit promiscuous mode
1508 * @allmulti: Counter, enables or disables allmulticast mode
1509 *
1510 * @vlan_info: VLAN info
1511 * @dsa_ptr: dsa specific data
1512 * @tipc_ptr: TIPC specific data
1513 * @atalk_ptr: AppleTalk link
1514 * @ip_ptr: IPv4 specific data
1515 * @dn_ptr: DECnet specific data
1516 * @ip6_ptr: IPv6 specific data
1517 * @ax25_ptr: AX.25 specific data
1518 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1519 *
1520 * @last_rx: Time of last Rx
1521 * @dev_addr: Hw address (before bcast,
1522 * because most packets are unicast)
1523 *
1524 * @_rx: Array of RX queues
1525 * @num_rx_queues: Number of RX queues
1526 * allocated at register_netdev() time
1527 * @real_num_rx_queues: Number of RX queues currently active in device
1528 *
1529 * @rx_handler: handler for received packets
1530 * @rx_handler_data: XXX: need comments on this one
1531 * @ingress_queue: XXX: need comments on this one
1532 * @broadcast: hw bcast address
1533 *
1534 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1535 * indexed by RX queue number. Assigned by driver.
1536 * This must only be set if the ndo_rx_flow_steer
1537 * operation is defined
1538 * @index_hlist: Device index hash chain
1539 *
1540 * @_tx: Array of TX queues
1541 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1542 * @real_num_tx_queues: Number of TX queues currently active in device
1543 * @qdisc: Root qdisc from userspace point of view
1544 * @tx_queue_len: Max frames per queue allowed
1545 * @tx_global_lock: XXX: need comments on this one
1546 *
1547 * @xps_maps: XXX: need comments on this one
1548 *
1549 * @offload_fwd_mark: Offload device fwding mark
1550 *
1551 * @trans_start: Time (in jiffies) of last Tx
1552 * @watchdog_timeo: Represents the timeout that is used by
1553 * the watchdog (see dev_watchdog())
1554 * @watchdog_timer: List of timers
1555 *
1556 * @pcpu_refcnt: Number of references to this device
1557 * @todo_list: Delayed register/unregister
1558 * @link_watch_list: XXX: need comments on this one
1559 *
1560 * @reg_state: Register/unregister state machine
1561 * @dismantle: Device is going to be freed
1562 * @rtnl_link_state: This enum represents the phases of creating
1563 * a new link
1564 *
1565 * @destructor: Called from unregister,
1566 * can be used to call free_netdev
1567 * @npinfo: XXX: need comments on this one
1568 * @nd_net: Network namespace this network device is inside
1569 *
1570 * @ml_priv: Mid-layer private
1571 * @lstats: Loopback statistics
1572 * @tstats: Tunnel statistics
1573 * @dstats: Dummy statistics
1574 * @vstats: Virtual ethernet statistics
1575 *
1576 * @garp_port: GARP
1577 * @mrp_port: MRP
1578 *
1579 * @dev: Class/net/name entry
1580 * @sysfs_groups: Space for optional device, statistics and wireless
1581 * sysfs groups
1582 *
1583 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1584 * @rtnl_link_ops: Rtnl_link_ops
1585 *
1586 * @gso_max_size: Maximum size of generic segmentation offload
1587 * @gso_max_segs: Maximum number of segments that can be passed to the
1588 * NIC for GSO
1589 *
1590 * @dcbnl_ops: Data Center Bridging netlink ops
1591 * @num_tc: Number of traffic classes in the net device
1592 * @tc_to_txq: XXX: need comments on this one
1593 * @prio_tc_map XXX: need comments on this one
1594 *
1595 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1596 *
1597 * @priomap: XXX: need comments on this one
1598 * @phydev: Physical device may attach itself
1599 * for hardware timestamping
1600 *
1601 * @qdisc_tx_busylock: XXX: need comments on this one
1602 *
1603 * @proto_down: protocol port state information can be sent to the
1604 * switch driver and used to set the phys state of the
1605 * switch port.
1606 *
1607 * FIXME: cleanup struct net_device such that network protocol info
1608 * moves out.
1609 */
1610
1611 struct net_device {
1612 char name[IFNAMSIZ];
1613 struct hlist_node name_hlist;
1614 char *ifalias;
1615 /*
1616 * I/O specific fields
1617 * FIXME: Merge these and struct ifmap into one
1618 */
1619 unsigned long mem_end;
1620 unsigned long mem_start;
1621 unsigned long base_addr;
1622 int irq;
1623
1624 atomic_t carrier_changes;
1625
1626 /*
1627 * Some hardware also needs these fields (state,dev_list,
1628 * napi_list,unreg_list,close_list) but they are not
1629 * part of the usual set specified in Space.c.
1630 */
1631
1632 unsigned long state;
1633
1634 struct list_head dev_list;
1635 struct list_head napi_list;
1636 struct list_head unreg_list;
1637 struct list_head close_list;
1638 struct list_head ptype_all;
1639 struct list_head ptype_specific;
1640
1641 struct {
1642 struct list_head upper;
1643 struct list_head lower;
1644 } adj_list;
1645
1646 struct {
1647 struct list_head upper;
1648 struct list_head lower;
1649 } all_adj_list;
1650
1651 netdev_features_t features;
1652 netdev_features_t hw_features;
1653 netdev_features_t wanted_features;
1654 netdev_features_t vlan_features;
1655 netdev_features_t hw_enc_features;
1656 netdev_features_t mpls_features;
1657
1658 int ifindex;
1659 int group;
1660
1661 struct net_device_stats stats;
1662
1663 atomic_long_t rx_dropped;
1664 atomic_long_t tx_dropped;
1665 atomic_long_t rx_nohandler;
1666
1667 #ifdef CONFIG_WIRELESS_EXT
1668 const struct iw_handler_def *wireless_handlers;
1669 struct iw_public_data *wireless_data;
1670 #endif
1671 const struct net_device_ops *netdev_ops;
1672 const struct ethtool_ops *ethtool_ops;
1673 #ifdef CONFIG_NET_SWITCHDEV
1674 const struct switchdev_ops *switchdev_ops;
1675 #endif
1676 #ifdef CONFIG_NET_L3_MASTER_DEV
1677 const struct l3mdev_ops *l3mdev_ops;
1678 #endif
1679
1680 const struct header_ops *header_ops;
1681
1682 unsigned int flags;
1683 unsigned int priv_flags;
1684
1685 unsigned short gflags;
1686 unsigned short padded;
1687
1688 unsigned char operstate;
1689 unsigned char link_mode;
1690
1691 unsigned char if_port;
1692 unsigned char dma;
1693
1694 unsigned int mtu;
1695 unsigned short type;
1696 unsigned short hard_header_len;
1697
1698 unsigned short needed_headroom;
1699 unsigned short needed_tailroom;
1700
1701 /* Interface address info. */
1702 unsigned char perm_addr[MAX_ADDR_LEN];
1703 unsigned char addr_assign_type;
1704 unsigned char addr_len;
1705 unsigned short neigh_priv_len;
1706 unsigned short dev_id;
1707 unsigned short dev_port;
1708 spinlock_t addr_list_lock;
1709 unsigned char name_assign_type;
1710 bool uc_promisc;
1711 struct netdev_hw_addr_list uc;
1712 struct netdev_hw_addr_list mc;
1713 struct netdev_hw_addr_list dev_addrs;
1714
1715 #ifdef CONFIG_SYSFS
1716 struct kset *queues_kset;
1717 #endif
1718 unsigned int promiscuity;
1719 unsigned int allmulti;
1720
1721
1722 /* Protocol-specific pointers */
1723
1724 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1725 struct vlan_info __rcu *vlan_info;
1726 #endif
1727 #if IS_ENABLED(CONFIG_NET_DSA)
1728 struct dsa_switch_tree *dsa_ptr;
1729 #endif
1730 #if IS_ENABLED(CONFIG_TIPC)
1731 struct tipc_bearer __rcu *tipc_ptr;
1732 #endif
1733 void *atalk_ptr;
1734 struct in_device __rcu *ip_ptr;
1735 struct dn_dev __rcu *dn_ptr;
1736 struct inet6_dev __rcu *ip6_ptr;
1737 void *ax25_ptr;
1738 struct wireless_dev *ieee80211_ptr;
1739 struct wpan_dev *ieee802154_ptr;
1740 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1741 struct mpls_dev __rcu *mpls_ptr;
1742 #endif
1743
1744 /*
1745 * Cache lines mostly used on receive path (including eth_type_trans())
1746 */
1747 unsigned long last_rx;
1748
1749 /* Interface address info used in eth_type_trans() */
1750 unsigned char *dev_addr;
1751
1752 #ifdef CONFIG_SYSFS
1753 struct netdev_rx_queue *_rx;
1754
1755 unsigned int num_rx_queues;
1756 unsigned int real_num_rx_queues;
1757 #endif
1758
1759 unsigned long gro_flush_timeout;
1760 rx_handler_func_t __rcu *rx_handler;
1761 void __rcu *rx_handler_data;
1762
1763 #ifdef CONFIG_NET_CLS_ACT
1764 struct tcf_proto __rcu *ingress_cl_list;
1765 #endif
1766 struct netdev_queue __rcu *ingress_queue;
1767 #ifdef CONFIG_NETFILTER_INGRESS
1768 struct list_head nf_hooks_ingress;
1769 #endif
1770
1771 unsigned char broadcast[MAX_ADDR_LEN];
1772 #ifdef CONFIG_RFS_ACCEL
1773 struct cpu_rmap *rx_cpu_rmap;
1774 #endif
1775 struct hlist_node index_hlist;
1776
1777 /*
1778 * Cache lines mostly used on transmit path
1779 */
1780 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1781 unsigned int num_tx_queues;
1782 unsigned int real_num_tx_queues;
1783 struct Qdisc *qdisc;
1784 unsigned long tx_queue_len;
1785 spinlock_t tx_global_lock;
1786 int watchdog_timeo;
1787
1788 #ifdef CONFIG_XPS
1789 struct xps_dev_maps __rcu *xps_maps;
1790 #endif
1791 #ifdef CONFIG_NET_CLS_ACT
1792 struct tcf_proto __rcu *egress_cl_list;
1793 #endif
1794 #ifdef CONFIG_NET_SWITCHDEV
1795 u32 offload_fwd_mark;
1796 #endif
1797
1798 /* These may be needed for future network-power-down code. */
1799
1800 /*
1801 * trans_start here is expensive for high speed devices on SMP,
1802 * please use netdev_queue->trans_start instead.
1803 */
1804 unsigned long trans_start;
1805
1806 struct timer_list watchdog_timer;
1807
1808 int __percpu *pcpu_refcnt;
1809 struct list_head todo_list;
1810
1811 struct list_head link_watch_list;
1812
1813 enum { NETREG_UNINITIALIZED=0,
1814 NETREG_REGISTERED, /* completed register_netdevice */
1815 NETREG_UNREGISTERING, /* called unregister_netdevice */
1816 NETREG_UNREGISTERED, /* completed unregister todo */
1817 NETREG_RELEASED, /* called free_netdev */
1818 NETREG_DUMMY, /* dummy device for NAPI poll */
1819 } reg_state:8;
1820
1821 bool dismantle;
1822
1823 enum {
1824 RTNL_LINK_INITIALIZED,
1825 RTNL_LINK_INITIALIZING,
1826 } rtnl_link_state:16;
1827
1828 void (*destructor)(struct net_device *dev);
1829
1830 #ifdef CONFIG_NETPOLL
1831 struct netpoll_info __rcu *npinfo;
1832 #endif
1833
1834 possible_net_t nd_net;
1835
1836 /* mid-layer private */
1837 union {
1838 void *ml_priv;
1839 struct pcpu_lstats __percpu *lstats;
1840 struct pcpu_sw_netstats __percpu *tstats;
1841 struct pcpu_dstats __percpu *dstats;
1842 struct pcpu_vstats __percpu *vstats;
1843 };
1844
1845 struct garp_port __rcu *garp_port;
1846 struct mrp_port __rcu *mrp_port;
1847
1848 struct device dev;
1849 const struct attribute_group *sysfs_groups[4];
1850 const struct attribute_group *sysfs_rx_queue_group;
1851
1852 const struct rtnl_link_ops *rtnl_link_ops;
1853
1854 /* for setting kernel sock attribute on TCP connection setup */
1855 #define GSO_MAX_SIZE 65536
1856 unsigned int gso_max_size;
1857 #define GSO_MAX_SEGS 65535
1858 u16 gso_max_segs;
1859
1860 #ifdef CONFIG_DCB
1861 const struct dcbnl_rtnl_ops *dcbnl_ops;
1862 #endif
1863 u8 num_tc;
1864 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1865 u8 prio_tc_map[TC_BITMASK + 1];
1866
1867 #if IS_ENABLED(CONFIG_FCOE)
1868 unsigned int fcoe_ddp_xid;
1869 #endif
1870 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1871 struct netprio_map __rcu *priomap;
1872 #endif
1873 struct phy_device *phydev;
1874 struct lock_class_key *qdisc_tx_busylock;
1875 bool proto_down;
1876 };
1877 #define to_net_dev(d) container_of(d, struct net_device, dev)
1878
1879 #define NETDEV_ALIGN 32
1880
1881 static inline
1882 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1883 {
1884 return dev->prio_tc_map[prio & TC_BITMASK];
1885 }
1886
1887 static inline
1888 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1889 {
1890 if (tc >= dev->num_tc)
1891 return -EINVAL;
1892
1893 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1894 return 0;
1895 }
1896
1897 static inline
1898 void netdev_reset_tc(struct net_device *dev)
1899 {
1900 dev->num_tc = 0;
1901 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1902 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1903 }
1904
1905 static inline
1906 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1907 {
1908 if (tc >= dev->num_tc)
1909 return -EINVAL;
1910
1911 dev->tc_to_txq[tc].count = count;
1912 dev->tc_to_txq[tc].offset = offset;
1913 return 0;
1914 }
1915
1916 static inline
1917 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1918 {
1919 if (num_tc > TC_MAX_QUEUE)
1920 return -EINVAL;
1921
1922 dev->num_tc = num_tc;
1923 return 0;
1924 }
1925
1926 static inline
1927 int netdev_get_num_tc(struct net_device *dev)
1928 {
1929 return dev->num_tc;
1930 }
1931
1932 static inline
1933 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1934 unsigned int index)
1935 {
1936 return &dev->_tx[index];
1937 }
1938
1939 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1940 const struct sk_buff *skb)
1941 {
1942 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1943 }
1944
1945 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1946 void (*f)(struct net_device *,
1947 struct netdev_queue *,
1948 void *),
1949 void *arg)
1950 {
1951 unsigned int i;
1952
1953 for (i = 0; i < dev->num_tx_queues; i++)
1954 f(dev, &dev->_tx[i], arg);
1955 }
1956
1957 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1958 struct sk_buff *skb,
1959 void *accel_priv);
1960
1961 /* returns the headroom that the master device needs to take in account
1962 * when forwarding to this dev
1963 */
1964 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
1965 {
1966 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
1967 }
1968
1969 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
1970 {
1971 if (dev->netdev_ops->ndo_set_rx_headroom)
1972 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
1973 }
1974
1975 /* set the device rx headroom to the dev's default */
1976 static inline void netdev_reset_rx_headroom(struct net_device *dev)
1977 {
1978 netdev_set_rx_headroom(dev, -1);
1979 }
1980
1981 /*
1982 * Net namespace inlines
1983 */
1984 static inline
1985 struct net *dev_net(const struct net_device *dev)
1986 {
1987 return read_pnet(&dev->nd_net);
1988 }
1989
1990 static inline
1991 void dev_net_set(struct net_device *dev, struct net *net)
1992 {
1993 write_pnet(&dev->nd_net, net);
1994 }
1995
1996 static inline bool netdev_uses_dsa(struct net_device *dev)
1997 {
1998 #if IS_ENABLED(CONFIG_NET_DSA)
1999 if (dev->dsa_ptr != NULL)
2000 return dsa_uses_tagged_protocol(dev->dsa_ptr);
2001 #endif
2002 return false;
2003 }
2004
2005 /**
2006 * netdev_priv - access network device private data
2007 * @dev: network device
2008 *
2009 * Get network device private data
2010 */
2011 static inline void *netdev_priv(const struct net_device *dev)
2012 {
2013 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2014 }
2015
2016 /* Set the sysfs physical device reference for the network logical device
2017 * if set prior to registration will cause a symlink during initialization.
2018 */
2019 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2020
2021 /* Set the sysfs device type for the network logical device to allow
2022 * fine-grained identification of different network device types. For
2023 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2024 */
2025 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2026
2027 /* Default NAPI poll() weight
2028 * Device drivers are strongly advised to not use bigger value
2029 */
2030 #define NAPI_POLL_WEIGHT 64
2031
2032 /**
2033 * netif_napi_add - initialize a NAPI context
2034 * @dev: network device
2035 * @napi: NAPI context
2036 * @poll: polling function
2037 * @weight: default weight
2038 *
2039 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2040 * *any* of the other NAPI-related functions.
2041 */
2042 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2043 int (*poll)(struct napi_struct *, int), int weight);
2044
2045 /**
2046 * netif_tx_napi_add - initialize a NAPI context
2047 * @dev: network device
2048 * @napi: NAPI context
2049 * @poll: polling function
2050 * @weight: default weight
2051 *
2052 * This variant of netif_napi_add() should be used from drivers using NAPI
2053 * to exclusively poll a TX queue.
2054 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2055 */
2056 static inline void netif_tx_napi_add(struct net_device *dev,
2057 struct napi_struct *napi,
2058 int (*poll)(struct napi_struct *, int),
2059 int weight)
2060 {
2061 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2062 netif_napi_add(dev, napi, poll, weight);
2063 }
2064
2065 /**
2066 * netif_napi_del - remove a NAPI context
2067 * @napi: NAPI context
2068 *
2069 * netif_napi_del() removes a NAPI context from the network device NAPI list
2070 */
2071 void netif_napi_del(struct napi_struct *napi);
2072
2073 struct napi_gro_cb {
2074 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2075 void *frag0;
2076
2077 /* Length of frag0. */
2078 unsigned int frag0_len;
2079
2080 /* This indicates where we are processing relative to skb->data. */
2081 int data_offset;
2082
2083 /* This is non-zero if the packet cannot be merged with the new skb. */
2084 u16 flush;
2085
2086 /* Save the IP ID here and check when we get to the transport layer */
2087 u16 flush_id;
2088
2089 /* Number of segments aggregated. */
2090 u16 count;
2091
2092 /* Start offset for remote checksum offload */
2093 u16 gro_remcsum_start;
2094
2095 /* jiffies when first packet was created/queued */
2096 unsigned long age;
2097
2098 /* Used in ipv6_gro_receive() and foo-over-udp */
2099 u16 proto;
2100
2101 /* This is non-zero if the packet may be of the same flow. */
2102 u8 same_flow:1;
2103
2104 /* Used in tunnel GRO receive */
2105 u8 encap_mark:1;
2106
2107 /* GRO checksum is valid */
2108 u8 csum_valid:1;
2109
2110 /* Number of checksums via CHECKSUM_UNNECESSARY */
2111 u8 csum_cnt:3;
2112
2113 /* Free the skb? */
2114 u8 free:2;
2115 #define NAPI_GRO_FREE 1
2116 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2117
2118 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2119 u8 is_ipv6:1;
2120
2121 /* Used in GRE, set in fou/gue_gro_receive */
2122 u8 is_fou:1;
2123
2124 /* 6 bit hole */
2125
2126 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2127 __wsum csum;
2128
2129 /* used in skb_gro_receive() slow path */
2130 struct sk_buff *last;
2131 };
2132
2133 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2134
2135 struct packet_type {
2136 __be16 type; /* This is really htons(ether_type). */
2137 struct net_device *dev; /* NULL is wildcarded here */
2138 int (*func) (struct sk_buff *,
2139 struct net_device *,
2140 struct packet_type *,
2141 struct net_device *);
2142 bool (*id_match)(struct packet_type *ptype,
2143 struct sock *sk);
2144 void *af_packet_priv;
2145 struct list_head list;
2146 };
2147
2148 struct offload_callbacks {
2149 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2150 netdev_features_t features);
2151 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2152 struct sk_buff *skb);
2153 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2154 };
2155
2156 struct packet_offload {
2157 __be16 type; /* This is really htons(ether_type). */
2158 u16 priority;
2159 struct offload_callbacks callbacks;
2160 struct list_head list;
2161 };
2162
2163 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2164 struct pcpu_sw_netstats {
2165 u64 rx_packets;
2166 u64 rx_bytes;
2167 u64 tx_packets;
2168 u64 tx_bytes;
2169 struct u64_stats_sync syncp;
2170 };
2171
2172 #define __netdev_alloc_pcpu_stats(type, gfp) \
2173 ({ \
2174 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2175 if (pcpu_stats) { \
2176 int __cpu; \
2177 for_each_possible_cpu(__cpu) { \
2178 typeof(type) *stat; \
2179 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2180 u64_stats_init(&stat->syncp); \
2181 } \
2182 } \
2183 pcpu_stats; \
2184 })
2185
2186 #define netdev_alloc_pcpu_stats(type) \
2187 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2188
2189 enum netdev_lag_tx_type {
2190 NETDEV_LAG_TX_TYPE_UNKNOWN,
2191 NETDEV_LAG_TX_TYPE_RANDOM,
2192 NETDEV_LAG_TX_TYPE_BROADCAST,
2193 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2194 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2195 NETDEV_LAG_TX_TYPE_HASH,
2196 };
2197
2198 struct netdev_lag_upper_info {
2199 enum netdev_lag_tx_type tx_type;
2200 };
2201
2202 struct netdev_lag_lower_state_info {
2203 u8 link_up : 1,
2204 tx_enabled : 1;
2205 };
2206
2207 #include <linux/notifier.h>
2208
2209 /* netdevice notifier chain. Please remember to update the rtnetlink
2210 * notification exclusion list in rtnetlink_event() when adding new
2211 * types.
2212 */
2213 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
2214 #define NETDEV_DOWN 0x0002
2215 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
2216 detected a hardware crash and restarted
2217 - we can use this eg to kick tcp sessions
2218 once done */
2219 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
2220 #define NETDEV_REGISTER 0x0005
2221 #define NETDEV_UNREGISTER 0x0006
2222 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
2223 #define NETDEV_CHANGEADDR 0x0008
2224 #define NETDEV_GOING_DOWN 0x0009
2225 #define NETDEV_CHANGENAME 0x000A
2226 #define NETDEV_FEAT_CHANGE 0x000B
2227 #define NETDEV_BONDING_FAILOVER 0x000C
2228 #define NETDEV_PRE_UP 0x000D
2229 #define NETDEV_PRE_TYPE_CHANGE 0x000E
2230 #define NETDEV_POST_TYPE_CHANGE 0x000F
2231 #define NETDEV_POST_INIT 0x0010
2232 #define NETDEV_UNREGISTER_FINAL 0x0011
2233 #define NETDEV_RELEASE 0x0012
2234 #define NETDEV_NOTIFY_PEERS 0x0013
2235 #define NETDEV_JOIN 0x0014
2236 #define NETDEV_CHANGEUPPER 0x0015
2237 #define NETDEV_RESEND_IGMP 0x0016
2238 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
2239 #define NETDEV_CHANGEINFODATA 0x0018
2240 #define NETDEV_BONDING_INFO 0x0019
2241 #define NETDEV_PRECHANGEUPPER 0x001A
2242 #define NETDEV_CHANGELOWERSTATE 0x001B
2243
2244 int register_netdevice_notifier(struct notifier_block *nb);
2245 int unregister_netdevice_notifier(struct notifier_block *nb);
2246
2247 struct netdev_notifier_info {
2248 struct net_device *dev;
2249 };
2250
2251 struct netdev_notifier_change_info {
2252 struct netdev_notifier_info info; /* must be first */
2253 unsigned int flags_changed;
2254 };
2255
2256 struct netdev_notifier_changeupper_info {
2257 struct netdev_notifier_info info; /* must be first */
2258 struct net_device *upper_dev; /* new upper dev */
2259 bool master; /* is upper dev master */
2260 bool linking; /* is the notification for link or unlink */
2261 void *upper_info; /* upper dev info */
2262 };
2263
2264 struct netdev_notifier_changelowerstate_info {
2265 struct netdev_notifier_info info; /* must be first */
2266 void *lower_state_info; /* is lower dev state */
2267 };
2268
2269 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2270 struct net_device *dev)
2271 {
2272 info->dev = dev;
2273 }
2274
2275 static inline struct net_device *
2276 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2277 {
2278 return info->dev;
2279 }
2280
2281 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2282
2283
2284 extern rwlock_t dev_base_lock; /* Device list lock */
2285
2286 #define for_each_netdev(net, d) \
2287 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2288 #define for_each_netdev_reverse(net, d) \
2289 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2290 #define for_each_netdev_rcu(net, d) \
2291 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2292 #define for_each_netdev_safe(net, d, n) \
2293 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2294 #define for_each_netdev_continue(net, d) \
2295 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2296 #define for_each_netdev_continue_rcu(net, d) \
2297 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2298 #define for_each_netdev_in_bond_rcu(bond, slave) \
2299 for_each_netdev_rcu(&init_net, slave) \
2300 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2301 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2302
2303 static inline struct net_device *next_net_device(struct net_device *dev)
2304 {
2305 struct list_head *lh;
2306 struct net *net;
2307
2308 net = dev_net(dev);
2309 lh = dev->dev_list.next;
2310 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2311 }
2312
2313 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2314 {
2315 struct list_head *lh;
2316 struct net *net;
2317
2318 net = dev_net(dev);
2319 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2320 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2321 }
2322
2323 static inline struct net_device *first_net_device(struct net *net)
2324 {
2325 return list_empty(&net->dev_base_head) ? NULL :
2326 net_device_entry(net->dev_base_head.next);
2327 }
2328
2329 static inline struct net_device *first_net_device_rcu(struct net *net)
2330 {
2331 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2332
2333 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2334 }
2335
2336 int netdev_boot_setup_check(struct net_device *dev);
2337 unsigned long netdev_boot_base(const char *prefix, int unit);
2338 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2339 const char *hwaddr);
2340 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2341 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2342 void dev_add_pack(struct packet_type *pt);
2343 void dev_remove_pack(struct packet_type *pt);
2344 void __dev_remove_pack(struct packet_type *pt);
2345 void dev_add_offload(struct packet_offload *po);
2346 void dev_remove_offload(struct packet_offload *po);
2347
2348 int dev_get_iflink(const struct net_device *dev);
2349 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2350 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2351 unsigned short mask);
2352 struct net_device *dev_get_by_name(struct net *net, const char *name);
2353 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2354 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2355 int dev_alloc_name(struct net_device *dev, const char *name);
2356 int dev_open(struct net_device *dev);
2357 int dev_close(struct net_device *dev);
2358 int dev_close_many(struct list_head *head, bool unlink);
2359 void dev_disable_lro(struct net_device *dev);
2360 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2361 int dev_queue_xmit(struct sk_buff *skb);
2362 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2363 int register_netdevice(struct net_device *dev);
2364 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2365 void unregister_netdevice_many(struct list_head *head);
2366 static inline void unregister_netdevice(struct net_device *dev)
2367 {
2368 unregister_netdevice_queue(dev, NULL);
2369 }
2370
2371 int netdev_refcnt_read(const struct net_device *dev);
2372 void free_netdev(struct net_device *dev);
2373 void netdev_freemem(struct net_device *dev);
2374 void synchronize_net(void);
2375 int init_dummy_netdev(struct net_device *dev);
2376
2377 DECLARE_PER_CPU(int, xmit_recursion);
2378 static inline int dev_recursion_level(void)
2379 {
2380 return this_cpu_read(xmit_recursion);
2381 }
2382
2383 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2384 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2385 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2386 int netdev_get_name(struct net *net, char *name, int ifindex);
2387 int dev_restart(struct net_device *dev);
2388 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2389
2390 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2391 {
2392 return NAPI_GRO_CB(skb)->data_offset;
2393 }
2394
2395 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2396 {
2397 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2398 }
2399
2400 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2401 {
2402 NAPI_GRO_CB(skb)->data_offset += len;
2403 }
2404
2405 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2406 unsigned int offset)
2407 {
2408 return NAPI_GRO_CB(skb)->frag0 + offset;
2409 }
2410
2411 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2412 {
2413 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2414 }
2415
2416 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2417 unsigned int offset)
2418 {
2419 if (!pskb_may_pull(skb, hlen))
2420 return NULL;
2421
2422 NAPI_GRO_CB(skb)->frag0 = NULL;
2423 NAPI_GRO_CB(skb)->frag0_len = 0;
2424 return skb->data + offset;
2425 }
2426
2427 static inline void *skb_gro_network_header(struct sk_buff *skb)
2428 {
2429 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2430 skb_network_offset(skb);
2431 }
2432
2433 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2434 const void *start, unsigned int len)
2435 {
2436 if (NAPI_GRO_CB(skb)->csum_valid)
2437 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2438 csum_partial(start, len, 0));
2439 }
2440
2441 /* GRO checksum functions. These are logical equivalents of the normal
2442 * checksum functions (in skbuff.h) except that they operate on the GRO
2443 * offsets and fields in sk_buff.
2444 */
2445
2446 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2447
2448 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2449 {
2450 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2451 }
2452
2453 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2454 bool zero_okay,
2455 __sum16 check)
2456 {
2457 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2458 skb_checksum_start_offset(skb) <
2459 skb_gro_offset(skb)) &&
2460 !skb_at_gro_remcsum_start(skb) &&
2461 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2462 (!zero_okay || check));
2463 }
2464
2465 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2466 __wsum psum)
2467 {
2468 if (NAPI_GRO_CB(skb)->csum_valid &&
2469 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2470 return 0;
2471
2472 NAPI_GRO_CB(skb)->csum = psum;
2473
2474 return __skb_gro_checksum_complete(skb);
2475 }
2476
2477 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2478 {
2479 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2480 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2481 NAPI_GRO_CB(skb)->csum_cnt--;
2482 } else {
2483 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2484 * verified a new top level checksum or an encapsulated one
2485 * during GRO. This saves work if we fallback to normal path.
2486 */
2487 __skb_incr_checksum_unnecessary(skb);
2488 }
2489 }
2490
2491 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2492 compute_pseudo) \
2493 ({ \
2494 __sum16 __ret = 0; \
2495 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2496 __ret = __skb_gro_checksum_validate_complete(skb, \
2497 compute_pseudo(skb, proto)); \
2498 if (__ret) \
2499 __skb_mark_checksum_bad(skb); \
2500 else \
2501 skb_gro_incr_csum_unnecessary(skb); \
2502 __ret; \
2503 })
2504
2505 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2506 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2507
2508 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2509 compute_pseudo) \
2510 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2511
2512 #define skb_gro_checksum_simple_validate(skb) \
2513 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2514
2515 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2516 {
2517 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2518 !NAPI_GRO_CB(skb)->csum_valid);
2519 }
2520
2521 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2522 __sum16 check, __wsum pseudo)
2523 {
2524 NAPI_GRO_CB(skb)->csum = ~pseudo;
2525 NAPI_GRO_CB(skb)->csum_valid = 1;
2526 }
2527
2528 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2529 do { \
2530 if (__skb_gro_checksum_convert_check(skb)) \
2531 __skb_gro_checksum_convert(skb, check, \
2532 compute_pseudo(skb, proto)); \
2533 } while (0)
2534
2535 struct gro_remcsum {
2536 int offset;
2537 __wsum delta;
2538 };
2539
2540 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2541 {
2542 grc->offset = 0;
2543 grc->delta = 0;
2544 }
2545
2546 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2547 unsigned int off, size_t hdrlen,
2548 int start, int offset,
2549 struct gro_remcsum *grc,
2550 bool nopartial)
2551 {
2552 __wsum delta;
2553 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2554
2555 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2556
2557 if (!nopartial) {
2558 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2559 return ptr;
2560 }
2561
2562 ptr = skb_gro_header_fast(skb, off);
2563 if (skb_gro_header_hard(skb, off + plen)) {
2564 ptr = skb_gro_header_slow(skb, off + plen, off);
2565 if (!ptr)
2566 return NULL;
2567 }
2568
2569 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2570 start, offset);
2571
2572 /* Adjust skb->csum since we changed the packet */
2573 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2574
2575 grc->offset = off + hdrlen + offset;
2576 grc->delta = delta;
2577
2578 return ptr;
2579 }
2580
2581 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2582 struct gro_remcsum *grc)
2583 {
2584 void *ptr;
2585 size_t plen = grc->offset + sizeof(u16);
2586
2587 if (!grc->delta)
2588 return;
2589
2590 ptr = skb_gro_header_fast(skb, grc->offset);
2591 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2592 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2593 if (!ptr)
2594 return;
2595 }
2596
2597 remcsum_unadjust((__sum16 *)ptr, grc->delta);
2598 }
2599
2600 struct skb_csum_offl_spec {
2601 __u16 ipv4_okay:1,
2602 ipv6_okay:1,
2603 encap_okay:1,
2604 ip_options_okay:1,
2605 ext_hdrs_okay:1,
2606 tcp_okay:1,
2607 udp_okay:1,
2608 sctp_okay:1,
2609 vlan_okay:1,
2610 no_encapped_ipv6:1,
2611 no_not_encapped:1;
2612 };
2613
2614 bool __skb_csum_offload_chk(struct sk_buff *skb,
2615 const struct skb_csum_offl_spec *spec,
2616 bool *csum_encapped,
2617 bool csum_help);
2618
2619 static inline bool skb_csum_offload_chk(struct sk_buff *skb,
2620 const struct skb_csum_offl_spec *spec,
2621 bool *csum_encapped,
2622 bool csum_help)
2623 {
2624 if (skb->ip_summed != CHECKSUM_PARTIAL)
2625 return false;
2626
2627 return __skb_csum_offload_chk(skb, spec, csum_encapped, csum_help);
2628 }
2629
2630 static inline bool skb_csum_offload_chk_help(struct sk_buff *skb,
2631 const struct skb_csum_offl_spec *spec)
2632 {
2633 bool csum_encapped;
2634
2635 return skb_csum_offload_chk(skb, spec, &csum_encapped, true);
2636 }
2637
2638 static inline bool skb_csum_off_chk_help_cmn(struct sk_buff *skb)
2639 {
2640 static const struct skb_csum_offl_spec csum_offl_spec = {
2641 .ipv4_okay = 1,
2642 .ip_options_okay = 1,
2643 .ipv6_okay = 1,
2644 .vlan_okay = 1,
2645 .tcp_okay = 1,
2646 .udp_okay = 1,
2647 };
2648
2649 return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2650 }
2651
2652 static inline bool skb_csum_off_chk_help_cmn_v4_only(struct sk_buff *skb)
2653 {
2654 static const struct skb_csum_offl_spec csum_offl_spec = {
2655 .ipv4_okay = 1,
2656 .ip_options_okay = 1,
2657 .tcp_okay = 1,
2658 .udp_okay = 1,
2659 .vlan_okay = 1,
2660 };
2661
2662 return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2663 }
2664
2665 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2666 unsigned short type,
2667 const void *daddr, const void *saddr,
2668 unsigned int len)
2669 {
2670 if (!dev->header_ops || !dev->header_ops->create)
2671 return 0;
2672
2673 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2674 }
2675
2676 static inline int dev_parse_header(const struct sk_buff *skb,
2677 unsigned char *haddr)
2678 {
2679 const struct net_device *dev = skb->dev;
2680
2681 if (!dev->header_ops || !dev->header_ops->parse)
2682 return 0;
2683 return dev->header_ops->parse(skb, haddr);
2684 }
2685
2686 /* ll_header must have at least hard_header_len allocated */
2687 static inline bool dev_validate_header(const struct net_device *dev,
2688 char *ll_header, int len)
2689 {
2690 if (likely(len >= dev->hard_header_len))
2691 return true;
2692
2693 if (capable(CAP_SYS_RAWIO)) {
2694 memset(ll_header + len, 0, dev->hard_header_len - len);
2695 return true;
2696 }
2697
2698 if (dev->header_ops && dev->header_ops->validate)
2699 return dev->header_ops->validate(ll_header, len);
2700
2701 return false;
2702 }
2703
2704 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2705 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2706 static inline int unregister_gifconf(unsigned int family)
2707 {
2708 return register_gifconf(family, NULL);
2709 }
2710
2711 #ifdef CONFIG_NET_FLOW_LIMIT
2712 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2713 struct sd_flow_limit {
2714 u64 count;
2715 unsigned int num_buckets;
2716 unsigned int history_head;
2717 u16 history[FLOW_LIMIT_HISTORY];
2718 u8 buckets[];
2719 };
2720
2721 extern int netdev_flow_limit_table_len;
2722 #endif /* CONFIG_NET_FLOW_LIMIT */
2723
2724 /*
2725 * Incoming packets are placed on per-CPU queues
2726 */
2727 struct softnet_data {
2728 struct list_head poll_list;
2729 struct sk_buff_head process_queue;
2730
2731 /* stats */
2732 unsigned int processed;
2733 unsigned int time_squeeze;
2734 unsigned int cpu_collision;
2735 unsigned int received_rps;
2736 #ifdef CONFIG_RPS
2737 struct softnet_data *rps_ipi_list;
2738 #endif
2739 #ifdef CONFIG_NET_FLOW_LIMIT
2740 struct sd_flow_limit __rcu *flow_limit;
2741 #endif
2742 struct Qdisc *output_queue;
2743 struct Qdisc **output_queue_tailp;
2744 struct sk_buff *completion_queue;
2745
2746 #ifdef CONFIG_RPS
2747 /* Elements below can be accessed between CPUs for RPS */
2748 struct call_single_data csd ____cacheline_aligned_in_smp;
2749 struct softnet_data *rps_ipi_next;
2750 unsigned int cpu;
2751 unsigned int input_queue_head;
2752 unsigned int input_queue_tail;
2753 #endif
2754 unsigned int dropped;
2755 struct sk_buff_head input_pkt_queue;
2756 struct napi_struct backlog;
2757
2758 };
2759
2760 static inline void input_queue_head_incr(struct softnet_data *sd)
2761 {
2762 #ifdef CONFIG_RPS
2763 sd->input_queue_head++;
2764 #endif
2765 }
2766
2767 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2768 unsigned int *qtail)
2769 {
2770 #ifdef CONFIG_RPS
2771 *qtail = ++sd->input_queue_tail;
2772 #endif
2773 }
2774
2775 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2776
2777 void __netif_schedule(struct Qdisc *q);
2778 void netif_schedule_queue(struct netdev_queue *txq);
2779
2780 static inline void netif_tx_schedule_all(struct net_device *dev)
2781 {
2782 unsigned int i;
2783
2784 for (i = 0; i < dev->num_tx_queues; i++)
2785 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2786 }
2787
2788 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2789 {
2790 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2791 }
2792
2793 /**
2794 * netif_start_queue - allow transmit
2795 * @dev: network device
2796 *
2797 * Allow upper layers to call the device hard_start_xmit routine.
2798 */
2799 static inline void netif_start_queue(struct net_device *dev)
2800 {
2801 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2802 }
2803
2804 static inline void netif_tx_start_all_queues(struct net_device *dev)
2805 {
2806 unsigned int i;
2807
2808 for (i = 0; i < dev->num_tx_queues; i++) {
2809 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2810 netif_tx_start_queue(txq);
2811 }
2812 }
2813
2814 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2815
2816 /**
2817 * netif_wake_queue - restart transmit
2818 * @dev: network device
2819 *
2820 * Allow upper layers to call the device hard_start_xmit routine.
2821 * Used for flow control when transmit resources are available.
2822 */
2823 static inline void netif_wake_queue(struct net_device *dev)
2824 {
2825 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2826 }
2827
2828 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2829 {
2830 unsigned int i;
2831
2832 for (i = 0; i < dev->num_tx_queues; i++) {
2833 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2834 netif_tx_wake_queue(txq);
2835 }
2836 }
2837
2838 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2839 {
2840 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2841 }
2842
2843 /**
2844 * netif_stop_queue - stop transmitted packets
2845 * @dev: network device
2846 *
2847 * Stop upper layers calling the device hard_start_xmit routine.
2848 * Used for flow control when transmit resources are unavailable.
2849 */
2850 static inline void netif_stop_queue(struct net_device *dev)
2851 {
2852 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2853 }
2854
2855 void netif_tx_stop_all_queues(struct net_device *dev);
2856
2857 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2858 {
2859 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2860 }
2861
2862 /**
2863 * netif_queue_stopped - test if transmit queue is flowblocked
2864 * @dev: network device
2865 *
2866 * Test if transmit queue on device is currently unable to send.
2867 */
2868 static inline bool netif_queue_stopped(const struct net_device *dev)
2869 {
2870 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2871 }
2872
2873 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2874 {
2875 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2876 }
2877
2878 static inline bool
2879 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2880 {
2881 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2882 }
2883
2884 static inline bool
2885 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2886 {
2887 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2888 }
2889
2890 /**
2891 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2892 * @dev_queue: pointer to transmit queue
2893 *
2894 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2895 * to give appropriate hint to the CPU.
2896 */
2897 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2898 {
2899 #ifdef CONFIG_BQL
2900 prefetchw(&dev_queue->dql.num_queued);
2901 #endif
2902 }
2903
2904 /**
2905 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2906 * @dev_queue: pointer to transmit queue
2907 *
2908 * BQL enabled drivers might use this helper in their TX completion path,
2909 * to give appropriate hint to the CPU.
2910 */
2911 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2912 {
2913 #ifdef CONFIG_BQL
2914 prefetchw(&dev_queue->dql.limit);
2915 #endif
2916 }
2917
2918 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2919 unsigned int bytes)
2920 {
2921 #ifdef CONFIG_BQL
2922 dql_queued(&dev_queue->dql, bytes);
2923
2924 if (likely(dql_avail(&dev_queue->dql) >= 0))
2925 return;
2926
2927 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2928
2929 /*
2930 * The XOFF flag must be set before checking the dql_avail below,
2931 * because in netdev_tx_completed_queue we update the dql_completed
2932 * before checking the XOFF flag.
2933 */
2934 smp_mb();
2935
2936 /* check again in case another CPU has just made room avail */
2937 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2938 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2939 #endif
2940 }
2941
2942 /**
2943 * netdev_sent_queue - report the number of bytes queued to hardware
2944 * @dev: network device
2945 * @bytes: number of bytes queued to the hardware device queue
2946 *
2947 * Report the number of bytes queued for sending/completion to the network
2948 * device hardware queue. @bytes should be a good approximation and should
2949 * exactly match netdev_completed_queue() @bytes
2950 */
2951 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2952 {
2953 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2954 }
2955
2956 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2957 unsigned int pkts, unsigned int bytes)
2958 {
2959 #ifdef CONFIG_BQL
2960 if (unlikely(!bytes))
2961 return;
2962
2963 dql_completed(&dev_queue->dql, bytes);
2964
2965 /*
2966 * Without the memory barrier there is a small possiblity that
2967 * netdev_tx_sent_queue will miss the update and cause the queue to
2968 * be stopped forever
2969 */
2970 smp_mb();
2971
2972 if (dql_avail(&dev_queue->dql) < 0)
2973 return;
2974
2975 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2976 netif_schedule_queue(dev_queue);
2977 #endif
2978 }
2979
2980 /**
2981 * netdev_completed_queue - report bytes and packets completed by device
2982 * @dev: network device
2983 * @pkts: actual number of packets sent over the medium
2984 * @bytes: actual number of bytes sent over the medium
2985 *
2986 * Report the number of bytes and packets transmitted by the network device
2987 * hardware queue over the physical medium, @bytes must exactly match the
2988 * @bytes amount passed to netdev_sent_queue()
2989 */
2990 static inline void netdev_completed_queue(struct net_device *dev,
2991 unsigned int pkts, unsigned int bytes)
2992 {
2993 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2994 }
2995
2996 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2997 {
2998 #ifdef CONFIG_BQL
2999 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3000 dql_reset(&q->dql);
3001 #endif
3002 }
3003
3004 /**
3005 * netdev_reset_queue - reset the packets and bytes count of a network device
3006 * @dev_queue: network device
3007 *
3008 * Reset the bytes and packet count of a network device and clear the
3009 * software flow control OFF bit for this network device
3010 */
3011 static inline void netdev_reset_queue(struct net_device *dev_queue)
3012 {
3013 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3014 }
3015
3016 /**
3017 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3018 * @dev: network device
3019 * @queue_index: given tx queue index
3020 *
3021 * Returns 0 if given tx queue index >= number of device tx queues,
3022 * otherwise returns the originally passed tx queue index.
3023 */
3024 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3025 {
3026 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3027 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3028 dev->name, queue_index,
3029 dev->real_num_tx_queues);
3030 return 0;
3031 }
3032
3033 return queue_index;
3034 }
3035
3036 /**
3037 * netif_running - test if up
3038 * @dev: network device
3039 *
3040 * Test if the device has been brought up.
3041 */
3042 static inline bool netif_running(const struct net_device *dev)
3043 {
3044 return test_bit(__LINK_STATE_START, &dev->state);
3045 }
3046
3047 /*
3048 * Routines to manage the subqueues on a device. We only need start,
3049 * stop, and a check if it's stopped. All other device management is
3050 * done at the overall netdevice level.
3051 * Also test the device if we're multiqueue.
3052 */
3053
3054 /**
3055 * netif_start_subqueue - allow sending packets on subqueue
3056 * @dev: network device
3057 * @queue_index: sub queue index
3058 *
3059 * Start individual transmit queue of a device with multiple transmit queues.
3060 */
3061 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3062 {
3063 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3064
3065 netif_tx_start_queue(txq);
3066 }
3067
3068 /**
3069 * netif_stop_subqueue - stop sending packets on subqueue
3070 * @dev: network device
3071 * @queue_index: sub queue index
3072 *
3073 * Stop individual transmit queue of a device with multiple transmit queues.
3074 */
3075 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3076 {
3077 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3078 netif_tx_stop_queue(txq);
3079 }
3080
3081 /**
3082 * netif_subqueue_stopped - test status of subqueue
3083 * @dev: network device
3084 * @queue_index: sub queue index
3085 *
3086 * Check individual transmit queue of a device with multiple transmit queues.
3087 */
3088 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3089 u16 queue_index)
3090 {
3091 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3092
3093 return netif_tx_queue_stopped(txq);
3094 }
3095
3096 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3097 struct sk_buff *skb)
3098 {
3099 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3100 }
3101
3102 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
3103
3104 #ifdef CONFIG_XPS
3105 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3106 u16 index);
3107 #else
3108 static inline int netif_set_xps_queue(struct net_device *dev,
3109 const struct cpumask *mask,
3110 u16 index)
3111 {
3112 return 0;
3113 }
3114 #endif
3115
3116 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3117 unsigned int num_tx_queues);
3118
3119 /*
3120 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3121 * as a distribution range limit for the returned value.
3122 */
3123 static inline u16 skb_tx_hash(const struct net_device *dev,
3124 struct sk_buff *skb)
3125 {
3126 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3127 }
3128
3129 /**
3130 * netif_is_multiqueue - test if device has multiple transmit queues
3131 * @dev: network device
3132 *
3133 * Check if device has multiple transmit queues
3134 */
3135 static inline bool netif_is_multiqueue(const struct net_device *dev)
3136 {
3137 return dev->num_tx_queues > 1;
3138 }
3139
3140 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3141
3142 #ifdef CONFIG_SYSFS
3143 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3144 #else
3145 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3146 unsigned int rxq)
3147 {
3148 return 0;
3149 }
3150 #endif
3151
3152 #ifdef CONFIG_SYSFS
3153 static inline unsigned int get_netdev_rx_queue_index(
3154 struct netdev_rx_queue *queue)
3155 {
3156 struct net_device *dev = queue->dev;
3157 int index = queue - dev->_rx;
3158
3159 BUG_ON(index >= dev->num_rx_queues);
3160 return index;
3161 }
3162 #endif
3163
3164 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3165 int netif_get_num_default_rss_queues(void);
3166
3167 enum skb_free_reason {
3168 SKB_REASON_CONSUMED,
3169 SKB_REASON_DROPPED,
3170 };
3171
3172 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3173 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3174
3175 /*
3176 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3177 * interrupt context or with hardware interrupts being disabled.
3178 * (in_irq() || irqs_disabled())
3179 *
3180 * We provide four helpers that can be used in following contexts :
3181 *
3182 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3183 * replacing kfree_skb(skb)
3184 *
3185 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3186 * Typically used in place of consume_skb(skb) in TX completion path
3187 *
3188 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3189 * replacing kfree_skb(skb)
3190 *
3191 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3192 * and consumed a packet. Used in place of consume_skb(skb)
3193 */
3194 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3195 {
3196 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3197 }
3198
3199 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3200 {
3201 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3202 }
3203
3204 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3205 {
3206 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3207 }
3208
3209 static inline void dev_consume_skb_any(struct sk_buff *skb)
3210 {
3211 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3212 }
3213
3214 int netif_rx(struct sk_buff *skb);
3215 int netif_rx_ni(struct sk_buff *skb);
3216 int netif_receive_skb(struct sk_buff *skb);
3217 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3218 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3219 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3220 gro_result_t napi_gro_frags(struct napi_struct *napi);
3221 struct packet_offload *gro_find_receive_by_type(__be16 type);
3222 struct packet_offload *gro_find_complete_by_type(__be16 type);
3223
3224 static inline void napi_free_frags(struct napi_struct *napi)
3225 {
3226 kfree_skb(napi->skb);
3227 napi->skb = NULL;
3228 }
3229
3230 int netdev_rx_handler_register(struct net_device *dev,
3231 rx_handler_func_t *rx_handler,
3232 void *rx_handler_data);
3233 void netdev_rx_handler_unregister(struct net_device *dev);
3234
3235 bool dev_valid_name(const char *name);
3236 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3237 int dev_ethtool(struct net *net, struct ifreq *);
3238 unsigned int dev_get_flags(const struct net_device *);
3239 int __dev_change_flags(struct net_device *, unsigned int flags);
3240 int dev_change_flags(struct net_device *, unsigned int);
3241 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3242 unsigned int gchanges);
3243 int dev_change_name(struct net_device *, const char *);
3244 int dev_set_alias(struct net_device *, const char *, size_t);
3245 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3246 int dev_set_mtu(struct net_device *, int);
3247 void dev_set_group(struct net_device *, int);
3248 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3249 int dev_change_carrier(struct net_device *, bool new_carrier);
3250 int dev_get_phys_port_id(struct net_device *dev,
3251 struct netdev_phys_item_id *ppid);
3252 int dev_get_phys_port_name(struct net_device *dev,
3253 char *name, size_t len);
3254 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3255 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3256 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3257 struct netdev_queue *txq, int *ret);
3258 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3259 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3260 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
3261
3262 extern int netdev_budget;
3263
3264 /* Called by rtnetlink.c:rtnl_unlock() */
3265 void netdev_run_todo(void);
3266
3267 /**
3268 * dev_put - release reference to device
3269 * @dev: network device
3270 *
3271 * Release reference to device to allow it to be freed.
3272 */
3273 static inline void dev_put(struct net_device *dev)
3274 {
3275 this_cpu_dec(*dev->pcpu_refcnt);
3276 }
3277
3278 /**
3279 * dev_hold - get reference to device
3280 * @dev: network device
3281 *
3282 * Hold reference to device to keep it from being freed.
3283 */
3284 static inline void dev_hold(struct net_device *dev)
3285 {
3286 this_cpu_inc(*dev->pcpu_refcnt);
3287 }
3288
3289 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3290 * and _off may be called from IRQ context, but it is caller
3291 * who is responsible for serialization of these calls.
3292 *
3293 * The name carrier is inappropriate, these functions should really be
3294 * called netif_lowerlayer_*() because they represent the state of any
3295 * kind of lower layer not just hardware media.
3296 */
3297
3298 void linkwatch_init_dev(struct net_device *dev);
3299 void linkwatch_fire_event(struct net_device *dev);
3300 void linkwatch_forget_dev(struct net_device *dev);
3301
3302 /**
3303 * netif_carrier_ok - test if carrier present
3304 * @dev: network device
3305 *
3306 * Check if carrier is present on device
3307 */
3308 static inline bool netif_carrier_ok(const struct net_device *dev)
3309 {
3310 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3311 }
3312
3313 unsigned long dev_trans_start(struct net_device *dev);
3314
3315 void __netdev_watchdog_up(struct net_device *dev);
3316
3317 void netif_carrier_on(struct net_device *dev);
3318
3319 void netif_carrier_off(struct net_device *dev);
3320
3321 /**
3322 * netif_dormant_on - mark device as dormant.
3323 * @dev: network device
3324 *
3325 * Mark device as dormant (as per RFC2863).
3326 *
3327 * The dormant state indicates that the relevant interface is not
3328 * actually in a condition to pass packets (i.e., it is not 'up') but is
3329 * in a "pending" state, waiting for some external event. For "on-
3330 * demand" interfaces, this new state identifies the situation where the
3331 * interface is waiting for events to place it in the up state.
3332 */
3333 static inline void netif_dormant_on(struct net_device *dev)
3334 {
3335 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3336 linkwatch_fire_event(dev);
3337 }
3338
3339 /**
3340 * netif_dormant_off - set device as not dormant.
3341 * @dev: network device
3342 *
3343 * Device is not in dormant state.
3344 */
3345 static inline void netif_dormant_off(struct net_device *dev)
3346 {
3347 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3348 linkwatch_fire_event(dev);
3349 }
3350
3351 /**
3352 * netif_dormant - test if carrier present
3353 * @dev: network device
3354 *
3355 * Check if carrier is present on device
3356 */
3357 static inline bool netif_dormant(const struct net_device *dev)
3358 {
3359 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3360 }
3361
3362
3363 /**
3364 * netif_oper_up - test if device is operational
3365 * @dev: network device
3366 *
3367 * Check if carrier is operational
3368 */
3369 static inline bool netif_oper_up(const struct net_device *dev)
3370 {
3371 return (dev->operstate == IF_OPER_UP ||
3372 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3373 }
3374
3375 /**
3376 * netif_device_present - is device available or removed
3377 * @dev: network device
3378 *
3379 * Check if device has not been removed from system.
3380 */
3381 static inline bool netif_device_present(struct net_device *dev)
3382 {
3383 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3384 }
3385
3386 void netif_device_detach(struct net_device *dev);
3387
3388 void netif_device_attach(struct net_device *dev);
3389
3390 /*
3391 * Network interface message level settings
3392 */
3393
3394 enum {
3395 NETIF_MSG_DRV = 0x0001,
3396 NETIF_MSG_PROBE = 0x0002,
3397 NETIF_MSG_LINK = 0x0004,
3398 NETIF_MSG_TIMER = 0x0008,
3399 NETIF_MSG_IFDOWN = 0x0010,
3400 NETIF_MSG_IFUP = 0x0020,
3401 NETIF_MSG_RX_ERR = 0x0040,
3402 NETIF_MSG_TX_ERR = 0x0080,
3403 NETIF_MSG_TX_QUEUED = 0x0100,
3404 NETIF_MSG_INTR = 0x0200,
3405 NETIF_MSG_TX_DONE = 0x0400,
3406 NETIF_MSG_RX_STATUS = 0x0800,
3407 NETIF_MSG_PKTDATA = 0x1000,
3408 NETIF_MSG_HW = 0x2000,
3409 NETIF_MSG_WOL = 0x4000,
3410 };
3411
3412 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3413 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3414 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3415 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3416 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3417 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3418 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3419 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3420 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3421 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3422 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3423 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3424 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3425 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3426 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3427
3428 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3429 {
3430 /* use default */
3431 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3432 return default_msg_enable_bits;
3433 if (debug_value == 0) /* no output */
3434 return 0;
3435 /* set low N bits */
3436 return (1 << debug_value) - 1;
3437 }
3438
3439 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3440 {
3441 spin_lock(&txq->_xmit_lock);
3442 txq->xmit_lock_owner = cpu;
3443 }
3444
3445 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3446 {
3447 spin_lock_bh(&txq->_xmit_lock);
3448 txq->xmit_lock_owner = smp_processor_id();
3449 }
3450
3451 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3452 {
3453 bool ok = spin_trylock(&txq->_xmit_lock);
3454 if (likely(ok))
3455 txq->xmit_lock_owner = smp_processor_id();
3456 return ok;
3457 }
3458
3459 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3460 {
3461 txq->xmit_lock_owner = -1;
3462 spin_unlock(&txq->_xmit_lock);
3463 }
3464
3465 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3466 {
3467 txq->xmit_lock_owner = -1;
3468 spin_unlock_bh(&txq->_xmit_lock);
3469 }
3470
3471 static inline void txq_trans_update(struct netdev_queue *txq)
3472 {
3473 if (txq->xmit_lock_owner != -1)
3474 txq->trans_start = jiffies;
3475 }
3476
3477 /**
3478 * netif_tx_lock - grab network device transmit lock
3479 * @dev: network device
3480 *
3481 * Get network device transmit lock
3482 */
3483 static inline void netif_tx_lock(struct net_device *dev)
3484 {
3485 unsigned int i;
3486 int cpu;
3487
3488 spin_lock(&dev->tx_global_lock);
3489 cpu = smp_processor_id();
3490 for (i = 0; i < dev->num_tx_queues; i++) {
3491 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3492
3493 /* We are the only thread of execution doing a
3494 * freeze, but we have to grab the _xmit_lock in
3495 * order to synchronize with threads which are in
3496 * the ->hard_start_xmit() handler and already
3497 * checked the frozen bit.
3498 */
3499 __netif_tx_lock(txq, cpu);
3500 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3501 __netif_tx_unlock(txq);
3502 }
3503 }
3504
3505 static inline void netif_tx_lock_bh(struct net_device *dev)
3506 {
3507 local_bh_disable();
3508 netif_tx_lock(dev);
3509 }
3510
3511 static inline void netif_tx_unlock(struct net_device *dev)
3512 {
3513 unsigned int i;
3514
3515 for (i = 0; i < dev->num_tx_queues; i++) {
3516 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3517
3518 /* No need to grab the _xmit_lock here. If the
3519 * queue is not stopped for another reason, we
3520 * force a schedule.
3521 */
3522 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3523 netif_schedule_queue(txq);
3524 }
3525 spin_unlock(&dev->tx_global_lock);
3526 }
3527
3528 static inline void netif_tx_unlock_bh(struct net_device *dev)
3529 {
3530 netif_tx_unlock(dev);
3531 local_bh_enable();
3532 }
3533
3534 #define HARD_TX_LOCK(dev, txq, cpu) { \
3535 if ((dev->features & NETIF_F_LLTX) == 0) { \
3536 __netif_tx_lock(txq, cpu); \
3537 } \
3538 }
3539
3540 #define HARD_TX_TRYLOCK(dev, txq) \
3541 (((dev->features & NETIF_F_LLTX) == 0) ? \
3542 __netif_tx_trylock(txq) : \
3543 true )
3544
3545 #define HARD_TX_UNLOCK(dev, txq) { \
3546 if ((dev->features & NETIF_F_LLTX) == 0) { \
3547 __netif_tx_unlock(txq); \
3548 } \
3549 }
3550
3551 static inline void netif_tx_disable(struct net_device *dev)
3552 {
3553 unsigned int i;
3554 int cpu;
3555
3556 local_bh_disable();
3557 cpu = smp_processor_id();
3558 for (i = 0; i < dev->num_tx_queues; i++) {
3559 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3560
3561 __netif_tx_lock(txq, cpu);
3562 netif_tx_stop_queue(txq);
3563 __netif_tx_unlock(txq);
3564 }
3565 local_bh_enable();
3566 }
3567
3568 static inline void netif_addr_lock(struct net_device *dev)
3569 {
3570 spin_lock(&dev->addr_list_lock);
3571 }
3572
3573 static inline void netif_addr_lock_nested(struct net_device *dev)
3574 {
3575 int subclass = SINGLE_DEPTH_NESTING;
3576
3577 if (dev->netdev_ops->ndo_get_lock_subclass)
3578 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3579
3580 spin_lock_nested(&dev->addr_list_lock, subclass);
3581 }
3582
3583 static inline void netif_addr_lock_bh(struct net_device *dev)
3584 {
3585 spin_lock_bh(&dev->addr_list_lock);
3586 }
3587
3588 static inline void netif_addr_unlock(struct net_device *dev)
3589 {
3590 spin_unlock(&dev->addr_list_lock);
3591 }
3592
3593 static inline void netif_addr_unlock_bh(struct net_device *dev)
3594 {
3595 spin_unlock_bh(&dev->addr_list_lock);
3596 }
3597
3598 /*
3599 * dev_addrs walker. Should be used only for read access. Call with
3600 * rcu_read_lock held.
3601 */
3602 #define for_each_dev_addr(dev, ha) \
3603 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3604
3605 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3606
3607 void ether_setup(struct net_device *dev);
3608
3609 /* Support for loadable net-drivers */
3610 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3611 unsigned char name_assign_type,
3612 void (*setup)(struct net_device *),
3613 unsigned int txqs, unsigned int rxqs);
3614 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3615 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3616
3617 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3618 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3619 count)
3620
3621 int register_netdev(struct net_device *dev);
3622 void unregister_netdev(struct net_device *dev);
3623
3624 /* General hardware address lists handling functions */
3625 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3626 struct netdev_hw_addr_list *from_list, int addr_len);
3627 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3628 struct netdev_hw_addr_list *from_list, int addr_len);
3629 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3630 struct net_device *dev,
3631 int (*sync)(struct net_device *, const unsigned char *),
3632 int (*unsync)(struct net_device *,
3633 const unsigned char *));
3634 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3635 struct net_device *dev,
3636 int (*unsync)(struct net_device *,
3637 const unsigned char *));
3638 void __hw_addr_init(struct netdev_hw_addr_list *list);
3639
3640 /* Functions used for device addresses handling */
3641 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3642 unsigned char addr_type);
3643 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3644 unsigned char addr_type);
3645 void dev_addr_flush(struct net_device *dev);
3646 int dev_addr_init(struct net_device *dev);
3647
3648 /* Functions used for unicast addresses handling */
3649 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3650 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3651 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3652 int dev_uc_sync(struct net_device *to, struct net_device *from);
3653 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3654 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3655 void dev_uc_flush(struct net_device *dev);
3656 void dev_uc_init(struct net_device *dev);
3657
3658 /**
3659 * __dev_uc_sync - Synchonize device's unicast list
3660 * @dev: device to sync
3661 * @sync: function to call if address should be added
3662 * @unsync: function to call if address should be removed
3663 *
3664 * Add newly added addresses to the interface, and release
3665 * addresses that have been deleted.
3666 */
3667 static inline int __dev_uc_sync(struct net_device *dev,
3668 int (*sync)(struct net_device *,
3669 const unsigned char *),
3670 int (*unsync)(struct net_device *,
3671 const unsigned char *))
3672 {
3673 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3674 }
3675
3676 /**
3677 * __dev_uc_unsync - Remove synchronized addresses from device
3678 * @dev: device to sync
3679 * @unsync: function to call if address should be removed
3680 *
3681 * Remove all addresses that were added to the device by dev_uc_sync().
3682 */
3683 static inline void __dev_uc_unsync(struct net_device *dev,
3684 int (*unsync)(struct net_device *,
3685 const unsigned char *))
3686 {
3687 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3688 }
3689
3690 /* Functions used for multicast addresses handling */
3691 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3692 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3693 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3694 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3695 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3696 int dev_mc_sync(struct net_device *to, struct net_device *from);
3697 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3698 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3699 void dev_mc_flush(struct net_device *dev);
3700 void dev_mc_init(struct net_device *dev);
3701
3702 /**
3703 * __dev_mc_sync - Synchonize device's multicast list
3704 * @dev: device to sync
3705 * @sync: function to call if address should be added
3706 * @unsync: function to call if address should be removed
3707 *
3708 * Add newly added addresses to the interface, and release
3709 * addresses that have been deleted.
3710 */
3711 static inline int __dev_mc_sync(struct net_device *dev,
3712 int (*sync)(struct net_device *,
3713 const unsigned char *),
3714 int (*unsync)(struct net_device *,
3715 const unsigned char *))
3716 {
3717 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3718 }
3719
3720 /**
3721 * __dev_mc_unsync - Remove synchronized addresses from device
3722 * @dev: device to sync
3723 * @unsync: function to call if address should be removed
3724 *
3725 * Remove all addresses that were added to the device by dev_mc_sync().
3726 */
3727 static inline void __dev_mc_unsync(struct net_device *dev,
3728 int (*unsync)(struct net_device *,
3729 const unsigned char *))
3730 {
3731 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3732 }
3733
3734 /* Functions used for secondary unicast and multicast support */
3735 void dev_set_rx_mode(struct net_device *dev);
3736 void __dev_set_rx_mode(struct net_device *dev);
3737 int dev_set_promiscuity(struct net_device *dev, int inc);
3738 int dev_set_allmulti(struct net_device *dev, int inc);
3739 void netdev_state_change(struct net_device *dev);
3740 void netdev_notify_peers(struct net_device *dev);
3741 void netdev_features_change(struct net_device *dev);
3742 /* Load a device via the kmod */
3743 void dev_load(struct net *net, const char *name);
3744 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3745 struct rtnl_link_stats64 *storage);
3746 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3747 const struct net_device_stats *netdev_stats);
3748
3749 extern int netdev_max_backlog;
3750 extern int netdev_tstamp_prequeue;
3751 extern int weight_p;
3752 extern int bpf_jit_enable;
3753
3754 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3755 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3756 struct list_head **iter);
3757 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3758 struct list_head **iter);
3759
3760 /* iterate through upper list, must be called under RCU read lock */
3761 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3762 for (iter = &(dev)->adj_list.upper, \
3763 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3764 updev; \
3765 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3766
3767 /* iterate through upper list, must be called under RCU read lock */
3768 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3769 for (iter = &(dev)->all_adj_list.upper, \
3770 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3771 updev; \
3772 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3773
3774 void *netdev_lower_get_next_private(struct net_device *dev,
3775 struct list_head **iter);
3776 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3777 struct list_head **iter);
3778
3779 #define netdev_for_each_lower_private(dev, priv, iter) \
3780 for (iter = (dev)->adj_list.lower.next, \
3781 priv = netdev_lower_get_next_private(dev, &(iter)); \
3782 priv; \
3783 priv = netdev_lower_get_next_private(dev, &(iter)))
3784
3785 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3786 for (iter = &(dev)->adj_list.lower, \
3787 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3788 priv; \
3789 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3790
3791 void *netdev_lower_get_next(struct net_device *dev,
3792 struct list_head **iter);
3793 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3794 for (iter = (dev)->adj_list.lower.next, \
3795 ldev = netdev_lower_get_next(dev, &(iter)); \
3796 ldev; \
3797 ldev = netdev_lower_get_next(dev, &(iter)))
3798
3799 void *netdev_adjacent_get_private(struct list_head *adj_list);
3800 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3801 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3802 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3803 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3804 int netdev_master_upper_dev_link(struct net_device *dev,
3805 struct net_device *upper_dev,
3806 void *upper_priv, void *upper_info);
3807 void netdev_upper_dev_unlink(struct net_device *dev,
3808 struct net_device *upper_dev);
3809 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3810 void *netdev_lower_dev_get_private(struct net_device *dev,
3811 struct net_device *lower_dev);
3812 void netdev_lower_state_changed(struct net_device *lower_dev,
3813 void *lower_state_info);
3814
3815 /* RSS keys are 40 or 52 bytes long */
3816 #define NETDEV_RSS_KEY_LEN 52
3817 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3818 void netdev_rss_key_fill(void *buffer, size_t len);
3819
3820 int dev_get_nest_level(struct net_device *dev,
3821 bool (*type_check)(const struct net_device *dev));
3822 int skb_checksum_help(struct sk_buff *skb);
3823 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3824 netdev_features_t features, bool tx_path);
3825 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3826 netdev_features_t features);
3827
3828 struct netdev_bonding_info {
3829 ifslave slave;
3830 ifbond master;
3831 };
3832
3833 struct netdev_notifier_bonding_info {
3834 struct netdev_notifier_info info; /* must be first */
3835 struct netdev_bonding_info bonding_info;
3836 };
3837
3838 void netdev_bonding_info_change(struct net_device *dev,
3839 struct netdev_bonding_info *bonding_info);
3840
3841 static inline
3842 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3843 {
3844 return __skb_gso_segment(skb, features, true);
3845 }
3846 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3847
3848 static inline bool can_checksum_protocol(netdev_features_t features,
3849 __be16 protocol)
3850 {
3851 if (protocol == htons(ETH_P_FCOE))
3852 return !!(features & NETIF_F_FCOE_CRC);
3853
3854 /* Assume this is an IP checksum (not SCTP CRC) */
3855
3856 if (features & NETIF_F_HW_CSUM) {
3857 /* Can checksum everything */
3858 return true;
3859 }
3860
3861 switch (protocol) {
3862 case htons(ETH_P_IP):
3863 return !!(features & NETIF_F_IP_CSUM);
3864 case htons(ETH_P_IPV6):
3865 return !!(features & NETIF_F_IPV6_CSUM);
3866 default:
3867 return false;
3868 }
3869 }
3870
3871 /* Map an ethertype into IP protocol if possible */
3872 static inline int eproto_to_ipproto(int eproto)
3873 {
3874 switch (eproto) {
3875 case htons(ETH_P_IP):
3876 return IPPROTO_IP;
3877 case htons(ETH_P_IPV6):
3878 return IPPROTO_IPV6;
3879 default:
3880 return -1;
3881 }
3882 }
3883
3884 #ifdef CONFIG_BUG
3885 void netdev_rx_csum_fault(struct net_device *dev);
3886 #else
3887 static inline void netdev_rx_csum_fault(struct net_device *dev)
3888 {
3889 }
3890 #endif
3891 /* rx skb timestamps */
3892 void net_enable_timestamp(void);
3893 void net_disable_timestamp(void);
3894
3895 #ifdef CONFIG_PROC_FS
3896 int __init dev_proc_init(void);
3897 #else
3898 #define dev_proc_init() 0
3899 #endif
3900
3901 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3902 struct sk_buff *skb, struct net_device *dev,
3903 bool more)
3904 {
3905 skb->xmit_more = more ? 1 : 0;
3906 return ops->ndo_start_xmit(skb, dev);
3907 }
3908
3909 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3910 struct netdev_queue *txq, bool more)
3911 {
3912 const struct net_device_ops *ops = dev->netdev_ops;
3913 int rc;
3914
3915 rc = __netdev_start_xmit(ops, skb, dev, more);
3916 if (rc == NETDEV_TX_OK)
3917 txq_trans_update(txq);
3918
3919 return rc;
3920 }
3921
3922 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3923 const void *ns);
3924 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3925 const void *ns);
3926
3927 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3928 {
3929 return netdev_class_create_file_ns(class_attr, NULL);
3930 }
3931
3932 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3933 {
3934 netdev_class_remove_file_ns(class_attr, NULL);
3935 }
3936
3937 extern struct kobj_ns_type_operations net_ns_type_operations;
3938
3939 const char *netdev_drivername(const struct net_device *dev);
3940
3941 void linkwatch_run_queue(void);
3942
3943 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3944 netdev_features_t f2)
3945 {
3946 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
3947 if (f1 & NETIF_F_HW_CSUM)
3948 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3949 else
3950 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3951 }
3952
3953 return f1 & f2;
3954 }
3955
3956 static inline netdev_features_t netdev_get_wanted_features(
3957 struct net_device *dev)
3958 {
3959 return (dev->features & ~dev->hw_features) | dev->wanted_features;
3960 }
3961 netdev_features_t netdev_increment_features(netdev_features_t all,
3962 netdev_features_t one, netdev_features_t mask);
3963
3964 /* Allow TSO being used on stacked device :
3965 * Performing the GSO segmentation before last device
3966 * is a performance improvement.
3967 */
3968 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3969 netdev_features_t mask)
3970 {
3971 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3972 }
3973
3974 int __netdev_update_features(struct net_device *dev);
3975 void netdev_update_features(struct net_device *dev);
3976 void netdev_change_features(struct net_device *dev);
3977
3978 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3979 struct net_device *dev);
3980
3981 netdev_features_t passthru_features_check(struct sk_buff *skb,
3982 struct net_device *dev,
3983 netdev_features_t features);
3984 netdev_features_t netif_skb_features(struct sk_buff *skb);
3985
3986 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3987 {
3988 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3989
3990 /* check flags correspondence */
3991 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3992 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3993 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3994 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3995 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3996 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3997 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3998 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3999 BUILD_BUG_ON(SKB_GSO_IPIP != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
4000 BUILD_BUG_ON(SKB_GSO_SIT != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
4001 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4002 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4003 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4004
4005 return (features & feature) == feature;
4006 }
4007
4008 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4009 {
4010 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4011 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4012 }
4013
4014 static inline bool netif_needs_gso(struct sk_buff *skb,
4015 netdev_features_t features)
4016 {
4017 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4018 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4019 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4020 }
4021
4022 static inline void netif_set_gso_max_size(struct net_device *dev,
4023 unsigned int size)
4024 {
4025 dev->gso_max_size = size;
4026 }
4027
4028 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4029 int pulled_hlen, u16 mac_offset,
4030 int mac_len)
4031 {
4032 skb->protocol = protocol;
4033 skb->encapsulation = 1;
4034 skb_push(skb, pulled_hlen);
4035 skb_reset_transport_header(skb);
4036 skb->mac_header = mac_offset;
4037 skb->network_header = skb->mac_header + mac_len;
4038 skb->mac_len = mac_len;
4039 }
4040
4041 static inline bool netif_is_macsec(const struct net_device *dev)
4042 {
4043 return dev->priv_flags & IFF_MACSEC;
4044 }
4045
4046 static inline bool netif_is_macvlan(const struct net_device *dev)
4047 {
4048 return dev->priv_flags & IFF_MACVLAN;
4049 }
4050
4051 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4052 {
4053 return dev->priv_flags & IFF_MACVLAN_PORT;
4054 }
4055
4056 static inline bool netif_is_ipvlan(const struct net_device *dev)
4057 {
4058 return dev->priv_flags & IFF_IPVLAN_SLAVE;
4059 }
4060
4061 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4062 {
4063 return dev->priv_flags & IFF_IPVLAN_MASTER;
4064 }
4065
4066 static inline bool netif_is_bond_master(const struct net_device *dev)
4067 {
4068 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4069 }
4070
4071 static inline bool netif_is_bond_slave(const struct net_device *dev)
4072 {
4073 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4074 }
4075
4076 static inline bool netif_supports_nofcs(struct net_device *dev)
4077 {
4078 return dev->priv_flags & IFF_SUPP_NOFCS;
4079 }
4080
4081 static inline bool netif_is_l3_master(const struct net_device *dev)
4082 {
4083 return dev->priv_flags & IFF_L3MDEV_MASTER;
4084 }
4085
4086 static inline bool netif_is_l3_slave(const struct net_device *dev)
4087 {
4088 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4089 }
4090
4091 static inline bool netif_is_bridge_master(const struct net_device *dev)
4092 {
4093 return dev->priv_flags & IFF_EBRIDGE;
4094 }
4095
4096 static inline bool netif_is_bridge_port(const struct net_device *dev)
4097 {
4098 return dev->priv_flags & IFF_BRIDGE_PORT;
4099 }
4100
4101 static inline bool netif_is_ovs_master(const struct net_device *dev)
4102 {
4103 return dev->priv_flags & IFF_OPENVSWITCH;
4104 }
4105
4106 static inline bool netif_is_team_master(const struct net_device *dev)
4107 {
4108 return dev->priv_flags & IFF_TEAM;
4109 }
4110
4111 static inline bool netif_is_team_port(const struct net_device *dev)
4112 {
4113 return dev->priv_flags & IFF_TEAM_PORT;
4114 }
4115
4116 static inline bool netif_is_lag_master(const struct net_device *dev)
4117 {
4118 return netif_is_bond_master(dev) || netif_is_team_master(dev);
4119 }
4120
4121 static inline bool netif_is_lag_port(const struct net_device *dev)
4122 {
4123 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4124 }
4125
4126 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4127 {
4128 return dev->priv_flags & IFF_RXFH_CONFIGURED;
4129 }
4130
4131 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4132 static inline void netif_keep_dst(struct net_device *dev)
4133 {
4134 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4135 }
4136
4137 extern struct pernet_operations __net_initdata loopback_net_ops;
4138
4139 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4140
4141 /* netdev_printk helpers, similar to dev_printk */
4142
4143 static inline const char *netdev_name(const struct net_device *dev)
4144 {
4145 if (!dev->name[0] || strchr(dev->name, '%'))
4146 return "(unnamed net_device)";
4147 return dev->name;
4148 }
4149
4150 static inline const char *netdev_reg_state(const struct net_device *dev)
4151 {
4152 switch (dev->reg_state) {
4153 case NETREG_UNINITIALIZED: return " (uninitialized)";
4154 case NETREG_REGISTERED: return "";
4155 case NETREG_UNREGISTERING: return " (unregistering)";
4156 case NETREG_UNREGISTERED: return " (unregistered)";
4157 case NETREG_RELEASED: return " (released)";
4158 case NETREG_DUMMY: return " (dummy)";
4159 }
4160
4161 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4162 return " (unknown)";
4163 }
4164
4165 __printf(3, 4)
4166 void netdev_printk(const char *level, const struct net_device *dev,
4167 const char *format, ...);
4168 __printf(2, 3)
4169 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4170 __printf(2, 3)
4171 void netdev_alert(const struct net_device *dev, const char *format, ...);
4172 __printf(2, 3)
4173 void netdev_crit(const struct net_device *dev, const char *format, ...);
4174 __printf(2, 3)
4175 void netdev_err(const struct net_device *dev, const char *format, ...);
4176 __printf(2, 3)
4177 void netdev_warn(const struct net_device *dev, const char *format, ...);
4178 __printf(2, 3)
4179 void netdev_notice(const struct net_device *dev, const char *format, ...);
4180 __printf(2, 3)
4181 void netdev_info(const struct net_device *dev, const char *format, ...);
4182
4183 #define MODULE_ALIAS_NETDEV(device) \
4184 MODULE_ALIAS("netdev-" device)
4185
4186 #if defined(CONFIG_DYNAMIC_DEBUG)
4187 #define netdev_dbg(__dev, format, args...) \
4188 do { \
4189 dynamic_netdev_dbg(__dev, format, ##args); \
4190 } while (0)
4191 #elif defined(DEBUG)
4192 #define netdev_dbg(__dev, format, args...) \
4193 netdev_printk(KERN_DEBUG, __dev, format, ##args)
4194 #else
4195 #define netdev_dbg(__dev, format, args...) \
4196 ({ \
4197 if (0) \
4198 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4199 })
4200 #endif
4201
4202 #if defined(VERBOSE_DEBUG)
4203 #define netdev_vdbg netdev_dbg
4204 #else
4205
4206 #define netdev_vdbg(dev, format, args...) \
4207 ({ \
4208 if (0) \
4209 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4210 0; \
4211 })
4212 #endif
4213
4214 /*
4215 * netdev_WARN() acts like dev_printk(), but with the key difference
4216 * of using a WARN/WARN_ON to get the message out, including the
4217 * file/line information and a backtrace.
4218 */
4219 #define netdev_WARN(dev, format, args...) \
4220 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \
4221 netdev_reg_state(dev), ##args)
4222
4223 /* netif printk helpers, similar to netdev_printk */
4224
4225 #define netif_printk(priv, type, level, dev, fmt, args...) \
4226 do { \
4227 if (netif_msg_##type(priv)) \
4228 netdev_printk(level, (dev), fmt, ##args); \
4229 } while (0)
4230
4231 #define netif_level(level, priv, type, dev, fmt, args...) \
4232 do { \
4233 if (netif_msg_##type(priv)) \
4234 netdev_##level(dev, fmt, ##args); \
4235 } while (0)
4236
4237 #define netif_emerg(priv, type, dev, fmt, args...) \
4238 netif_level(emerg, priv, type, dev, fmt, ##args)
4239 #define netif_alert(priv, type, dev, fmt, args...) \
4240 netif_level(alert, priv, type, dev, fmt, ##args)
4241 #define netif_crit(priv, type, dev, fmt, args...) \
4242 netif_level(crit, priv, type, dev, fmt, ##args)
4243 #define netif_err(priv, type, dev, fmt, args...) \
4244 netif_level(err, priv, type, dev, fmt, ##args)
4245 #define netif_warn(priv, type, dev, fmt, args...) \
4246 netif_level(warn, priv, type, dev, fmt, ##args)
4247 #define netif_notice(priv, type, dev, fmt, args...) \
4248 netif_level(notice, priv, type, dev, fmt, ##args)
4249 #define netif_info(priv, type, dev, fmt, args...) \
4250 netif_level(info, priv, type, dev, fmt, ##args)
4251
4252 #if defined(CONFIG_DYNAMIC_DEBUG)
4253 #define netif_dbg(priv, type, netdev, format, args...) \
4254 do { \
4255 if (netif_msg_##type(priv)) \
4256 dynamic_netdev_dbg(netdev, format, ##args); \
4257 } while (0)
4258 #elif defined(DEBUG)
4259 #define netif_dbg(priv, type, dev, format, args...) \
4260 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4261 #else
4262 #define netif_dbg(priv, type, dev, format, args...) \
4263 ({ \
4264 if (0) \
4265 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4266 0; \
4267 })
4268 #endif
4269
4270 #if defined(VERBOSE_DEBUG)
4271 #define netif_vdbg netif_dbg
4272 #else
4273 #define netif_vdbg(priv, type, dev, format, args...) \
4274 ({ \
4275 if (0) \
4276 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4277 0; \
4278 })
4279 #endif
4280
4281 /*
4282 * The list of packet types we will receive (as opposed to discard)
4283 * and the routines to invoke.
4284 *
4285 * Why 16. Because with 16 the only overlap we get on a hash of the
4286 * low nibble of the protocol value is RARP/SNAP/X.25.
4287 *
4288 * NOTE: That is no longer true with the addition of VLAN tags. Not
4289 * sure which should go first, but I bet it won't make much
4290 * difference if we are running VLANs. The good news is that
4291 * this protocol won't be in the list unless compiled in, so
4292 * the average user (w/out VLANs) will not be adversely affected.
4293 * --BLG
4294 *
4295 * 0800 IP
4296 * 8100 802.1Q VLAN
4297 * 0001 802.3
4298 * 0002 AX.25
4299 * 0004 802.2
4300 * 8035 RARP
4301 * 0005 SNAP
4302 * 0805 X.25
4303 * 0806 ARP
4304 * 8137 IPX
4305 * 0009 Localtalk
4306 * 86DD IPv6
4307 */
4308 #define PTYPE_HASH_SIZE (16)
4309 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4310
4311 #endif /* _LINUX_NETDEVICE_H */
This page took 0.127392 seconds and 5 git commands to generate.