net: add network priority cgroup infrastructure (v4)
[deliverable/linux.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/if.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_link.h>
32
33 #ifdef __KERNEL__
34 #include <linux/pm_qos.h>
35 #include <linux/timer.h>
36 #include <linux/delay.h>
37 #include <linux/atomic.h>
38 #include <asm/cache.h>
39 #include <asm/byteorder.h>
40
41 #include <linux/device.h>
42 #include <linux/percpu.h>
43 #include <linux/rculist.h>
44 #include <linux/dmaengine.h>
45 #include <linux/workqueue.h>
46
47 #include <linux/ethtool.h>
48 #include <net/net_namespace.h>
49 #include <net/dsa.h>
50 #ifdef CONFIG_DCB
51 #include <net/dcbnl.h>
52 #endif
53 #include <net/netprio_cgroup.h>
54
55 #include <linux/netdev_features.h>
56
57 struct vlan_group;
58 struct netpoll_info;
59 struct phy_device;
60 /* 802.11 specific */
61 struct wireless_dev;
62 /* source back-compat hooks */
63 #define SET_ETHTOOL_OPS(netdev,ops) \
64 ( (netdev)->ethtool_ops = (ops) )
65
66 /* hardware address assignment types */
67 #define NET_ADDR_PERM 0 /* address is permanent (default) */
68 #define NET_ADDR_RANDOM 1 /* address is generated randomly */
69 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */
70
71 /* Backlog congestion levels */
72 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
73 #define NET_RX_DROP 1 /* packet dropped */
74
75 /*
76 * Transmit return codes: transmit return codes originate from three different
77 * namespaces:
78 *
79 * - qdisc return codes
80 * - driver transmit return codes
81 * - errno values
82 *
83 * Drivers are allowed to return any one of those in their hard_start_xmit()
84 * function. Real network devices commonly used with qdiscs should only return
85 * the driver transmit return codes though - when qdiscs are used, the actual
86 * transmission happens asynchronously, so the value is not propagated to
87 * higher layers. Virtual network devices transmit synchronously, in this case
88 * the driver transmit return codes are consumed by dev_queue_xmit(), all
89 * others are propagated to higher layers.
90 */
91
92 /* qdisc ->enqueue() return codes. */
93 #define NET_XMIT_SUCCESS 0x00
94 #define NET_XMIT_DROP 0x01 /* skb dropped */
95 #define NET_XMIT_CN 0x02 /* congestion notification */
96 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
97 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
98
99 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
100 * indicates that the device will soon be dropping packets, or already drops
101 * some packets of the same priority; prompting us to send less aggressively. */
102 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
103 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
104
105 /* Driver transmit return codes */
106 #define NETDEV_TX_MASK 0xf0
107
108 enum netdev_tx {
109 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
110 NETDEV_TX_OK = 0x00, /* driver took care of packet */
111 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
112 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
113 };
114 typedef enum netdev_tx netdev_tx_t;
115
116 /*
117 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
118 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
119 */
120 static inline bool dev_xmit_complete(int rc)
121 {
122 /*
123 * Positive cases with an skb consumed by a driver:
124 * - successful transmission (rc == NETDEV_TX_OK)
125 * - error while transmitting (rc < 0)
126 * - error while queueing to a different device (rc & NET_XMIT_MASK)
127 */
128 if (likely(rc < NET_XMIT_MASK))
129 return true;
130
131 return false;
132 }
133
134 #endif
135
136 #define MAX_ADDR_LEN 32 /* Largest hardware address length */
137
138 /* Initial net device group. All devices belong to group 0 by default. */
139 #define INIT_NETDEV_GROUP 0
140
141 #ifdef __KERNEL__
142 /*
143 * Compute the worst case header length according to the protocols
144 * used.
145 */
146
147 #if defined(CONFIG_WLAN) || defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
148 # if defined(CONFIG_MAC80211_MESH)
149 # define LL_MAX_HEADER 128
150 # else
151 # define LL_MAX_HEADER 96
152 # endif
153 #elif defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
154 # define LL_MAX_HEADER 48
155 #else
156 # define LL_MAX_HEADER 32
157 #endif
158
159 #if !defined(CONFIG_NET_IPIP) && !defined(CONFIG_NET_IPIP_MODULE) && \
160 !defined(CONFIG_NET_IPGRE) && !defined(CONFIG_NET_IPGRE_MODULE) && \
161 !defined(CONFIG_IPV6_SIT) && !defined(CONFIG_IPV6_SIT_MODULE) && \
162 !defined(CONFIG_IPV6_TUNNEL) && !defined(CONFIG_IPV6_TUNNEL_MODULE)
163 #define MAX_HEADER LL_MAX_HEADER
164 #else
165 #define MAX_HEADER (LL_MAX_HEADER + 48)
166 #endif
167
168 /*
169 * Old network device statistics. Fields are native words
170 * (unsigned long) so they can be read and written atomically.
171 */
172
173 struct net_device_stats {
174 unsigned long rx_packets;
175 unsigned long tx_packets;
176 unsigned long rx_bytes;
177 unsigned long tx_bytes;
178 unsigned long rx_errors;
179 unsigned long tx_errors;
180 unsigned long rx_dropped;
181 unsigned long tx_dropped;
182 unsigned long multicast;
183 unsigned long collisions;
184 unsigned long rx_length_errors;
185 unsigned long rx_over_errors;
186 unsigned long rx_crc_errors;
187 unsigned long rx_frame_errors;
188 unsigned long rx_fifo_errors;
189 unsigned long rx_missed_errors;
190 unsigned long tx_aborted_errors;
191 unsigned long tx_carrier_errors;
192 unsigned long tx_fifo_errors;
193 unsigned long tx_heartbeat_errors;
194 unsigned long tx_window_errors;
195 unsigned long rx_compressed;
196 unsigned long tx_compressed;
197 };
198
199 #endif /* __KERNEL__ */
200
201
202 /* Media selection options. */
203 enum {
204 IF_PORT_UNKNOWN = 0,
205 IF_PORT_10BASE2,
206 IF_PORT_10BASET,
207 IF_PORT_AUI,
208 IF_PORT_100BASET,
209 IF_PORT_100BASETX,
210 IF_PORT_100BASEFX
211 };
212
213 #ifdef __KERNEL__
214
215 #include <linux/cache.h>
216 #include <linux/skbuff.h>
217
218 #ifdef CONFIG_RPS
219 #include <linux/jump_label.h>
220 extern struct jump_label_key rps_needed;
221 #endif
222
223 struct neighbour;
224 struct neigh_parms;
225 struct sk_buff;
226
227 struct netdev_hw_addr {
228 struct list_head list;
229 unsigned char addr[MAX_ADDR_LEN];
230 unsigned char type;
231 #define NETDEV_HW_ADDR_T_LAN 1
232 #define NETDEV_HW_ADDR_T_SAN 2
233 #define NETDEV_HW_ADDR_T_SLAVE 3
234 #define NETDEV_HW_ADDR_T_UNICAST 4
235 #define NETDEV_HW_ADDR_T_MULTICAST 5
236 bool synced;
237 bool global_use;
238 int refcount;
239 struct rcu_head rcu_head;
240 };
241
242 struct netdev_hw_addr_list {
243 struct list_head list;
244 int count;
245 };
246
247 #define netdev_hw_addr_list_count(l) ((l)->count)
248 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
249 #define netdev_hw_addr_list_for_each(ha, l) \
250 list_for_each_entry(ha, &(l)->list, list)
251
252 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
253 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
254 #define netdev_for_each_uc_addr(ha, dev) \
255 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
256
257 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
258 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
259 #define netdev_for_each_mc_addr(ha, dev) \
260 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
261
262 struct hh_cache {
263 u16 hh_len;
264 u16 __pad;
265 seqlock_t hh_lock;
266
267 /* cached hardware header; allow for machine alignment needs. */
268 #define HH_DATA_MOD 16
269 #define HH_DATA_OFF(__len) \
270 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
271 #define HH_DATA_ALIGN(__len) \
272 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
273 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
274 };
275
276 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
277 * Alternative is:
278 * dev->hard_header_len ? (dev->hard_header_len +
279 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
280 *
281 * We could use other alignment values, but we must maintain the
282 * relationship HH alignment <= LL alignment.
283 */
284 #define LL_RESERVED_SPACE(dev) \
285 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
286 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
287 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
288
289 struct header_ops {
290 int (*create) (struct sk_buff *skb, struct net_device *dev,
291 unsigned short type, const void *daddr,
292 const void *saddr, unsigned len);
293 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
294 int (*rebuild)(struct sk_buff *skb);
295 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
296 void (*cache_update)(struct hh_cache *hh,
297 const struct net_device *dev,
298 const unsigned char *haddr);
299 };
300
301 /* These flag bits are private to the generic network queueing
302 * layer, they may not be explicitly referenced by any other
303 * code.
304 */
305
306 enum netdev_state_t {
307 __LINK_STATE_START,
308 __LINK_STATE_PRESENT,
309 __LINK_STATE_NOCARRIER,
310 __LINK_STATE_LINKWATCH_PENDING,
311 __LINK_STATE_DORMANT,
312 };
313
314
315 /*
316 * This structure holds at boot time configured netdevice settings. They
317 * are then used in the device probing.
318 */
319 struct netdev_boot_setup {
320 char name[IFNAMSIZ];
321 struct ifmap map;
322 };
323 #define NETDEV_BOOT_SETUP_MAX 8
324
325 extern int __init netdev_boot_setup(char *str);
326
327 /*
328 * Structure for NAPI scheduling similar to tasklet but with weighting
329 */
330 struct napi_struct {
331 /* The poll_list must only be managed by the entity which
332 * changes the state of the NAPI_STATE_SCHED bit. This means
333 * whoever atomically sets that bit can add this napi_struct
334 * to the per-cpu poll_list, and whoever clears that bit
335 * can remove from the list right before clearing the bit.
336 */
337 struct list_head poll_list;
338
339 unsigned long state;
340 int weight;
341 int (*poll)(struct napi_struct *, int);
342 #ifdef CONFIG_NETPOLL
343 spinlock_t poll_lock;
344 int poll_owner;
345 #endif
346
347 unsigned int gro_count;
348
349 struct net_device *dev;
350 struct list_head dev_list;
351 struct sk_buff *gro_list;
352 struct sk_buff *skb;
353 };
354
355 enum {
356 NAPI_STATE_SCHED, /* Poll is scheduled */
357 NAPI_STATE_DISABLE, /* Disable pending */
358 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
359 };
360
361 enum gro_result {
362 GRO_MERGED,
363 GRO_MERGED_FREE,
364 GRO_HELD,
365 GRO_NORMAL,
366 GRO_DROP,
367 };
368 typedef enum gro_result gro_result_t;
369
370 /*
371 * enum rx_handler_result - Possible return values for rx_handlers.
372 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
373 * further.
374 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
375 * case skb->dev was changed by rx_handler.
376 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
377 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
378 *
379 * rx_handlers are functions called from inside __netif_receive_skb(), to do
380 * special processing of the skb, prior to delivery to protocol handlers.
381 *
382 * Currently, a net_device can only have a single rx_handler registered. Trying
383 * to register a second rx_handler will return -EBUSY.
384 *
385 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
386 * To unregister a rx_handler on a net_device, use
387 * netdev_rx_handler_unregister().
388 *
389 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
390 * do with the skb.
391 *
392 * If the rx_handler consumed to skb in some way, it should return
393 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
394 * the skb to be delivered in some other ways.
395 *
396 * If the rx_handler changed skb->dev, to divert the skb to another
397 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
398 * new device will be called if it exists.
399 *
400 * If the rx_handler consider the skb should be ignored, it should return
401 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
402 * are registred on exact device (ptype->dev == skb->dev).
403 *
404 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
405 * delivered, it should return RX_HANDLER_PASS.
406 *
407 * A device without a registered rx_handler will behave as if rx_handler
408 * returned RX_HANDLER_PASS.
409 */
410
411 enum rx_handler_result {
412 RX_HANDLER_CONSUMED,
413 RX_HANDLER_ANOTHER,
414 RX_HANDLER_EXACT,
415 RX_HANDLER_PASS,
416 };
417 typedef enum rx_handler_result rx_handler_result_t;
418 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
419
420 extern void __napi_schedule(struct napi_struct *n);
421
422 static inline int napi_disable_pending(struct napi_struct *n)
423 {
424 return test_bit(NAPI_STATE_DISABLE, &n->state);
425 }
426
427 /**
428 * napi_schedule_prep - check if napi can be scheduled
429 * @n: napi context
430 *
431 * Test if NAPI routine is already running, and if not mark
432 * it as running. This is used as a condition variable
433 * insure only one NAPI poll instance runs. We also make
434 * sure there is no pending NAPI disable.
435 */
436 static inline int napi_schedule_prep(struct napi_struct *n)
437 {
438 return !napi_disable_pending(n) &&
439 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
440 }
441
442 /**
443 * napi_schedule - schedule NAPI poll
444 * @n: napi context
445 *
446 * Schedule NAPI poll routine to be called if it is not already
447 * running.
448 */
449 static inline void napi_schedule(struct napi_struct *n)
450 {
451 if (napi_schedule_prep(n))
452 __napi_schedule(n);
453 }
454
455 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
456 static inline int napi_reschedule(struct napi_struct *napi)
457 {
458 if (napi_schedule_prep(napi)) {
459 __napi_schedule(napi);
460 return 1;
461 }
462 return 0;
463 }
464
465 /**
466 * napi_complete - NAPI processing complete
467 * @n: napi context
468 *
469 * Mark NAPI processing as complete.
470 */
471 extern void __napi_complete(struct napi_struct *n);
472 extern void napi_complete(struct napi_struct *n);
473
474 /**
475 * napi_disable - prevent NAPI from scheduling
476 * @n: napi context
477 *
478 * Stop NAPI from being scheduled on this context.
479 * Waits till any outstanding processing completes.
480 */
481 static inline void napi_disable(struct napi_struct *n)
482 {
483 set_bit(NAPI_STATE_DISABLE, &n->state);
484 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
485 msleep(1);
486 clear_bit(NAPI_STATE_DISABLE, &n->state);
487 }
488
489 /**
490 * napi_enable - enable NAPI scheduling
491 * @n: napi context
492 *
493 * Resume NAPI from being scheduled on this context.
494 * Must be paired with napi_disable.
495 */
496 static inline void napi_enable(struct napi_struct *n)
497 {
498 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
499 smp_mb__before_clear_bit();
500 clear_bit(NAPI_STATE_SCHED, &n->state);
501 }
502
503 #ifdef CONFIG_SMP
504 /**
505 * napi_synchronize - wait until NAPI is not running
506 * @n: napi context
507 *
508 * Wait until NAPI is done being scheduled on this context.
509 * Waits till any outstanding processing completes but
510 * does not disable future activations.
511 */
512 static inline void napi_synchronize(const struct napi_struct *n)
513 {
514 while (test_bit(NAPI_STATE_SCHED, &n->state))
515 msleep(1);
516 }
517 #else
518 # define napi_synchronize(n) barrier()
519 #endif
520
521 enum netdev_queue_state_t {
522 __QUEUE_STATE_XOFF,
523 __QUEUE_STATE_FROZEN,
524 #define QUEUE_STATE_XOFF_OR_FROZEN ((1 << __QUEUE_STATE_XOFF) | \
525 (1 << __QUEUE_STATE_FROZEN))
526 };
527
528 struct netdev_queue {
529 /*
530 * read mostly part
531 */
532 struct net_device *dev;
533 struct Qdisc *qdisc;
534 unsigned long state;
535 struct Qdisc *qdisc_sleeping;
536 #ifdef CONFIG_SYSFS
537 struct kobject kobj;
538 #endif
539 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
540 int numa_node;
541 #endif
542 /*
543 * write mostly part
544 */
545 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
546 int xmit_lock_owner;
547 /*
548 * please use this field instead of dev->trans_start
549 */
550 unsigned long trans_start;
551
552 /*
553 * Number of TX timeouts for this queue
554 * (/sys/class/net/DEV/Q/trans_timeout)
555 */
556 unsigned long trans_timeout;
557 } ____cacheline_aligned_in_smp;
558
559 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
560 {
561 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
562 return q->numa_node;
563 #else
564 return NUMA_NO_NODE;
565 #endif
566 }
567
568 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
569 {
570 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
571 q->numa_node = node;
572 #endif
573 }
574
575 #ifdef CONFIG_RPS
576 /*
577 * This structure holds an RPS map which can be of variable length. The
578 * map is an array of CPUs.
579 */
580 struct rps_map {
581 unsigned int len;
582 struct rcu_head rcu;
583 u16 cpus[0];
584 };
585 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + (_num * sizeof(u16)))
586
587 /*
588 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
589 * tail pointer for that CPU's input queue at the time of last enqueue, and
590 * a hardware filter index.
591 */
592 struct rps_dev_flow {
593 u16 cpu;
594 u16 filter;
595 unsigned int last_qtail;
596 };
597 #define RPS_NO_FILTER 0xffff
598
599 /*
600 * The rps_dev_flow_table structure contains a table of flow mappings.
601 */
602 struct rps_dev_flow_table {
603 unsigned int mask;
604 struct rcu_head rcu;
605 struct work_struct free_work;
606 struct rps_dev_flow flows[0];
607 };
608 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
609 (_num * sizeof(struct rps_dev_flow)))
610
611 /*
612 * The rps_sock_flow_table contains mappings of flows to the last CPU
613 * on which they were processed by the application (set in recvmsg).
614 */
615 struct rps_sock_flow_table {
616 unsigned int mask;
617 u16 ents[0];
618 };
619 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
620 (_num * sizeof(u16)))
621
622 #define RPS_NO_CPU 0xffff
623
624 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
625 u32 hash)
626 {
627 if (table && hash) {
628 unsigned int cpu, index = hash & table->mask;
629
630 /* We only give a hint, preemption can change cpu under us */
631 cpu = raw_smp_processor_id();
632
633 if (table->ents[index] != cpu)
634 table->ents[index] = cpu;
635 }
636 }
637
638 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
639 u32 hash)
640 {
641 if (table && hash)
642 table->ents[hash & table->mask] = RPS_NO_CPU;
643 }
644
645 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
646
647 #ifdef CONFIG_RFS_ACCEL
648 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
649 u32 flow_id, u16 filter_id);
650 #endif
651
652 /* This structure contains an instance of an RX queue. */
653 struct netdev_rx_queue {
654 struct rps_map __rcu *rps_map;
655 struct rps_dev_flow_table __rcu *rps_flow_table;
656 struct kobject kobj;
657 struct net_device *dev;
658 } ____cacheline_aligned_in_smp;
659 #endif /* CONFIG_RPS */
660
661 #ifdef CONFIG_XPS
662 /*
663 * This structure holds an XPS map which can be of variable length. The
664 * map is an array of queues.
665 */
666 struct xps_map {
667 unsigned int len;
668 unsigned int alloc_len;
669 struct rcu_head rcu;
670 u16 queues[0];
671 };
672 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + (_num * sizeof(u16)))
673 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
674 / sizeof(u16))
675
676 /*
677 * This structure holds all XPS maps for device. Maps are indexed by CPU.
678 */
679 struct xps_dev_maps {
680 struct rcu_head rcu;
681 struct xps_map __rcu *cpu_map[0];
682 };
683 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
684 (nr_cpu_ids * sizeof(struct xps_map *)))
685 #endif /* CONFIG_XPS */
686
687 #define TC_MAX_QUEUE 16
688 #define TC_BITMASK 15
689 /* HW offloaded queuing disciplines txq count and offset maps */
690 struct netdev_tc_txq {
691 u16 count;
692 u16 offset;
693 };
694
695 /*
696 * This structure defines the management hooks for network devices.
697 * The following hooks can be defined; unless noted otherwise, they are
698 * optional and can be filled with a null pointer.
699 *
700 * int (*ndo_init)(struct net_device *dev);
701 * This function is called once when network device is registered.
702 * The network device can use this to any late stage initializaton
703 * or semantic validattion. It can fail with an error code which will
704 * be propogated back to register_netdev
705 *
706 * void (*ndo_uninit)(struct net_device *dev);
707 * This function is called when device is unregistered or when registration
708 * fails. It is not called if init fails.
709 *
710 * int (*ndo_open)(struct net_device *dev);
711 * This function is called when network device transistions to the up
712 * state.
713 *
714 * int (*ndo_stop)(struct net_device *dev);
715 * This function is called when network device transistions to the down
716 * state.
717 *
718 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
719 * struct net_device *dev);
720 * Called when a packet needs to be transmitted.
721 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
722 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
723 * Required can not be NULL.
724 *
725 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
726 * Called to decide which queue to when device supports multiple
727 * transmit queues.
728 *
729 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
730 * This function is called to allow device receiver to make
731 * changes to configuration when multicast or promiscious is enabled.
732 *
733 * void (*ndo_set_rx_mode)(struct net_device *dev);
734 * This function is called device changes address list filtering.
735 * If driver handles unicast address filtering, it should set
736 * IFF_UNICAST_FLT to its priv_flags.
737 *
738 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
739 * This function is called when the Media Access Control address
740 * needs to be changed. If this interface is not defined, the
741 * mac address can not be changed.
742 *
743 * int (*ndo_validate_addr)(struct net_device *dev);
744 * Test if Media Access Control address is valid for the device.
745 *
746 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
747 * Called when a user request an ioctl which can't be handled by
748 * the generic interface code. If not defined ioctl's return
749 * not supported error code.
750 *
751 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
752 * Used to set network devices bus interface parameters. This interface
753 * is retained for legacy reason, new devices should use the bus
754 * interface (PCI) for low level management.
755 *
756 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
757 * Called when a user wants to change the Maximum Transfer Unit
758 * of a device. If not defined, any request to change MTU will
759 * will return an error.
760 *
761 * void (*ndo_tx_timeout)(struct net_device *dev);
762 * Callback uses when the transmitter has not made any progress
763 * for dev->watchdog ticks.
764 *
765 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
766 * struct rtnl_link_stats64 *storage);
767 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
768 * Called when a user wants to get the network device usage
769 * statistics. Drivers must do one of the following:
770 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
771 * rtnl_link_stats64 structure passed by the caller.
772 * 2. Define @ndo_get_stats to update a net_device_stats structure
773 * (which should normally be dev->stats) and return a pointer to
774 * it. The structure may be changed asynchronously only if each
775 * field is written atomically.
776 * 3. Update dev->stats asynchronously and atomically, and define
777 * neither operation.
778 *
779 * void (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
780 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
781 * this function is called when a VLAN id is registered.
782 *
783 * void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
784 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
785 * this function is called when a VLAN id is unregistered.
786 *
787 * void (*ndo_poll_controller)(struct net_device *dev);
788 *
789 * SR-IOV management functions.
790 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
791 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
792 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
793 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
794 * int (*ndo_get_vf_config)(struct net_device *dev,
795 * int vf, struct ifla_vf_info *ivf);
796 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
797 * struct nlattr *port[]);
798 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
799 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
800 * Called to setup 'tc' number of traffic classes in the net device. This
801 * is always called from the stack with the rtnl lock held and netif tx
802 * queues stopped. This allows the netdevice to perform queue management
803 * safely.
804 *
805 * Fiber Channel over Ethernet (FCoE) offload functions.
806 * int (*ndo_fcoe_enable)(struct net_device *dev);
807 * Called when the FCoE protocol stack wants to start using LLD for FCoE
808 * so the underlying device can perform whatever needed configuration or
809 * initialization to support acceleration of FCoE traffic.
810 *
811 * int (*ndo_fcoe_disable)(struct net_device *dev);
812 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
813 * so the underlying device can perform whatever needed clean-ups to
814 * stop supporting acceleration of FCoE traffic.
815 *
816 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
817 * struct scatterlist *sgl, unsigned int sgc);
818 * Called when the FCoE Initiator wants to initialize an I/O that
819 * is a possible candidate for Direct Data Placement (DDP). The LLD can
820 * perform necessary setup and returns 1 to indicate the device is set up
821 * successfully to perform DDP on this I/O, otherwise this returns 0.
822 *
823 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
824 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
825 * indicated by the FC exchange id 'xid', so the underlying device can
826 * clean up and reuse resources for later DDP requests.
827 *
828 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
829 * struct scatterlist *sgl, unsigned int sgc);
830 * Called when the FCoE Target wants to initialize an I/O that
831 * is a possible candidate for Direct Data Placement (DDP). The LLD can
832 * perform necessary setup and returns 1 to indicate the device is set up
833 * successfully to perform DDP on this I/O, otherwise this returns 0.
834 *
835 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
836 * Called when the underlying device wants to override default World Wide
837 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
838 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
839 * protocol stack to use.
840 *
841 * RFS acceleration.
842 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
843 * u16 rxq_index, u32 flow_id);
844 * Set hardware filter for RFS. rxq_index is the target queue index;
845 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
846 * Return the filter ID on success, or a negative error code.
847 *
848 * Slave management functions (for bridge, bonding, etc). User should
849 * call netdev_set_master() to set dev->master properly.
850 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
851 * Called to make another netdev an underling.
852 *
853 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
854 * Called to release previously enslaved netdev.
855 *
856 * Feature/offload setting functions.
857 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
858 * netdev_features_t features);
859 * Adjusts the requested feature flags according to device-specific
860 * constraints, and returns the resulting flags. Must not modify
861 * the device state.
862 *
863 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
864 * Called to update device configuration to new features. Passed
865 * feature set might be less than what was returned by ndo_fix_features()).
866 * Must return >0 or -errno if it changed dev->features itself.
867 *
868 */
869 struct net_device_ops {
870 int (*ndo_init)(struct net_device *dev);
871 void (*ndo_uninit)(struct net_device *dev);
872 int (*ndo_open)(struct net_device *dev);
873 int (*ndo_stop)(struct net_device *dev);
874 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
875 struct net_device *dev);
876 u16 (*ndo_select_queue)(struct net_device *dev,
877 struct sk_buff *skb);
878 void (*ndo_change_rx_flags)(struct net_device *dev,
879 int flags);
880 void (*ndo_set_rx_mode)(struct net_device *dev);
881 int (*ndo_set_mac_address)(struct net_device *dev,
882 void *addr);
883 int (*ndo_validate_addr)(struct net_device *dev);
884 int (*ndo_do_ioctl)(struct net_device *dev,
885 struct ifreq *ifr, int cmd);
886 int (*ndo_set_config)(struct net_device *dev,
887 struct ifmap *map);
888 int (*ndo_change_mtu)(struct net_device *dev,
889 int new_mtu);
890 int (*ndo_neigh_setup)(struct net_device *dev,
891 struct neigh_parms *);
892 void (*ndo_tx_timeout) (struct net_device *dev);
893
894 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
895 struct rtnl_link_stats64 *storage);
896 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
897
898 void (*ndo_vlan_rx_add_vid)(struct net_device *dev,
899 unsigned short vid);
900 void (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
901 unsigned short vid);
902 #ifdef CONFIG_NET_POLL_CONTROLLER
903 void (*ndo_poll_controller)(struct net_device *dev);
904 int (*ndo_netpoll_setup)(struct net_device *dev,
905 struct netpoll_info *info);
906 void (*ndo_netpoll_cleanup)(struct net_device *dev);
907 #endif
908 int (*ndo_set_vf_mac)(struct net_device *dev,
909 int queue, u8 *mac);
910 int (*ndo_set_vf_vlan)(struct net_device *dev,
911 int queue, u16 vlan, u8 qos);
912 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
913 int vf, int rate);
914 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
915 int vf, bool setting);
916 int (*ndo_get_vf_config)(struct net_device *dev,
917 int vf,
918 struct ifla_vf_info *ivf);
919 int (*ndo_set_vf_port)(struct net_device *dev,
920 int vf,
921 struct nlattr *port[]);
922 int (*ndo_get_vf_port)(struct net_device *dev,
923 int vf, struct sk_buff *skb);
924 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
925 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
926 int (*ndo_fcoe_enable)(struct net_device *dev);
927 int (*ndo_fcoe_disable)(struct net_device *dev);
928 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
929 u16 xid,
930 struct scatterlist *sgl,
931 unsigned int sgc);
932 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
933 u16 xid);
934 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
935 u16 xid,
936 struct scatterlist *sgl,
937 unsigned int sgc);
938 #endif
939
940 #if defined(CONFIG_LIBFCOE) || defined(CONFIG_LIBFCOE_MODULE)
941 #define NETDEV_FCOE_WWNN 0
942 #define NETDEV_FCOE_WWPN 1
943 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
944 u64 *wwn, int type);
945 #endif
946
947 #ifdef CONFIG_RFS_ACCEL
948 int (*ndo_rx_flow_steer)(struct net_device *dev,
949 const struct sk_buff *skb,
950 u16 rxq_index,
951 u32 flow_id);
952 #endif
953 int (*ndo_add_slave)(struct net_device *dev,
954 struct net_device *slave_dev);
955 int (*ndo_del_slave)(struct net_device *dev,
956 struct net_device *slave_dev);
957 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
958 netdev_features_t features);
959 int (*ndo_set_features)(struct net_device *dev,
960 netdev_features_t features);
961 };
962
963 /*
964 * The DEVICE structure.
965 * Actually, this whole structure is a big mistake. It mixes I/O
966 * data with strictly "high-level" data, and it has to know about
967 * almost every data structure used in the INET module.
968 *
969 * FIXME: cleanup struct net_device such that network protocol info
970 * moves out.
971 */
972
973 struct net_device {
974
975 /*
976 * This is the first field of the "visible" part of this structure
977 * (i.e. as seen by users in the "Space.c" file). It is the name
978 * of the interface.
979 */
980 char name[IFNAMSIZ];
981
982 struct pm_qos_request pm_qos_req;
983
984 /* device name hash chain */
985 struct hlist_node name_hlist;
986 /* snmp alias */
987 char *ifalias;
988
989 /*
990 * I/O specific fields
991 * FIXME: Merge these and struct ifmap into one
992 */
993 unsigned long mem_end; /* shared mem end */
994 unsigned long mem_start; /* shared mem start */
995 unsigned long base_addr; /* device I/O address */
996 unsigned int irq; /* device IRQ number */
997
998 /*
999 * Some hardware also needs these fields, but they are not
1000 * part of the usual set specified in Space.c.
1001 */
1002
1003 unsigned long state;
1004
1005 struct list_head dev_list;
1006 struct list_head napi_list;
1007 struct list_head unreg_list;
1008
1009 /* currently active device features */
1010 netdev_features_t features;
1011 /* user-changeable features */
1012 netdev_features_t hw_features;
1013 /* user-requested features */
1014 netdev_features_t wanted_features;
1015 /* mask of features inheritable by VLAN devices */
1016 netdev_features_t vlan_features;
1017
1018 /* Interface index. Unique device identifier */
1019 int ifindex;
1020 int iflink;
1021
1022 struct net_device_stats stats;
1023 atomic_long_t rx_dropped; /* dropped packets by core network
1024 * Do not use this in drivers.
1025 */
1026
1027 #ifdef CONFIG_WIRELESS_EXT
1028 /* List of functions to handle Wireless Extensions (instead of ioctl).
1029 * See <net/iw_handler.h> for details. Jean II */
1030 const struct iw_handler_def * wireless_handlers;
1031 /* Instance data managed by the core of Wireless Extensions. */
1032 struct iw_public_data * wireless_data;
1033 #endif
1034 /* Management operations */
1035 const struct net_device_ops *netdev_ops;
1036 const struct ethtool_ops *ethtool_ops;
1037
1038 /* Hardware header description */
1039 const struct header_ops *header_ops;
1040
1041 unsigned int flags; /* interface flags (a la BSD) */
1042 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. */
1043 unsigned short gflags;
1044 unsigned short padded; /* How much padding added by alloc_netdev() */
1045
1046 unsigned char operstate; /* RFC2863 operstate */
1047 unsigned char link_mode; /* mapping policy to operstate */
1048
1049 unsigned char if_port; /* Selectable AUI, TP,..*/
1050 unsigned char dma; /* DMA channel */
1051
1052 unsigned int mtu; /* interface MTU value */
1053 unsigned short type; /* interface hardware type */
1054 unsigned short hard_header_len; /* hardware hdr length */
1055
1056 /* extra head- and tailroom the hardware may need, but not in all cases
1057 * can this be guaranteed, especially tailroom. Some cases also use
1058 * LL_MAX_HEADER instead to allocate the skb.
1059 */
1060 unsigned short needed_headroom;
1061 unsigned short needed_tailroom;
1062
1063 /* Interface address info. */
1064 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1065 unsigned char addr_assign_type; /* hw address assignment type */
1066 unsigned char addr_len; /* hardware address length */
1067 unsigned short dev_id; /* for shared network cards */
1068
1069 spinlock_t addr_list_lock;
1070 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
1071 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
1072 bool uc_promisc;
1073 unsigned int promiscuity;
1074 unsigned int allmulti;
1075
1076
1077 /* Protocol specific pointers */
1078
1079 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1080 struct vlan_group __rcu *vlgrp; /* VLAN group */
1081 #endif
1082 #ifdef CONFIG_NET_DSA
1083 void *dsa_ptr; /* dsa specific data */
1084 #endif
1085 void *atalk_ptr; /* AppleTalk link */
1086 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1087 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1088 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1089 void *ec_ptr; /* Econet specific data */
1090 void *ax25_ptr; /* AX.25 specific data */
1091 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1092 assign before registering */
1093
1094 /*
1095 * Cache lines mostly used on receive path (including eth_type_trans())
1096 */
1097 unsigned long last_rx; /* Time of last Rx
1098 * This should not be set in
1099 * drivers, unless really needed,
1100 * because network stack (bonding)
1101 * use it if/when necessary, to
1102 * avoid dirtying this cache line.
1103 */
1104
1105 struct net_device *master; /* Pointer to master device of a group,
1106 * which this device is member of.
1107 */
1108
1109 /* Interface address info used in eth_type_trans() */
1110 unsigned char *dev_addr; /* hw address, (before bcast
1111 because most packets are
1112 unicast) */
1113
1114 struct netdev_hw_addr_list dev_addrs; /* list of device
1115 hw addresses */
1116
1117 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1118
1119 #ifdef CONFIG_SYSFS
1120 struct kset *queues_kset;
1121 #endif
1122
1123 #ifdef CONFIG_RPS
1124 struct netdev_rx_queue *_rx;
1125
1126 /* Number of RX queues allocated at register_netdev() time */
1127 unsigned int num_rx_queues;
1128
1129 /* Number of RX queues currently active in device */
1130 unsigned int real_num_rx_queues;
1131
1132 #ifdef CONFIG_RFS_ACCEL
1133 /* CPU reverse-mapping for RX completion interrupts, indexed
1134 * by RX queue number. Assigned by driver. This must only be
1135 * set if the ndo_rx_flow_steer operation is defined. */
1136 struct cpu_rmap *rx_cpu_rmap;
1137 #endif
1138 #endif
1139
1140 rx_handler_func_t __rcu *rx_handler;
1141 void __rcu *rx_handler_data;
1142
1143 struct netdev_queue __rcu *ingress_queue;
1144
1145 /*
1146 * Cache lines mostly used on transmit path
1147 */
1148 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1149
1150 /* Number of TX queues allocated at alloc_netdev_mq() time */
1151 unsigned int num_tx_queues;
1152
1153 /* Number of TX queues currently active in device */
1154 unsigned int real_num_tx_queues;
1155
1156 /* root qdisc from userspace point of view */
1157 struct Qdisc *qdisc;
1158
1159 unsigned long tx_queue_len; /* Max frames per queue allowed */
1160 spinlock_t tx_global_lock;
1161
1162 #ifdef CONFIG_XPS
1163 struct xps_dev_maps __rcu *xps_maps;
1164 #endif
1165
1166 /* These may be needed for future network-power-down code. */
1167
1168 /*
1169 * trans_start here is expensive for high speed devices on SMP,
1170 * please use netdev_queue->trans_start instead.
1171 */
1172 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1173
1174 int watchdog_timeo; /* used by dev_watchdog() */
1175 struct timer_list watchdog_timer;
1176
1177 /* Number of references to this device */
1178 int __percpu *pcpu_refcnt;
1179
1180 /* delayed register/unregister */
1181 struct list_head todo_list;
1182 /* device index hash chain */
1183 struct hlist_node index_hlist;
1184
1185 struct list_head link_watch_list;
1186
1187 /* register/unregister state machine */
1188 enum { NETREG_UNINITIALIZED=0,
1189 NETREG_REGISTERED, /* completed register_netdevice */
1190 NETREG_UNREGISTERING, /* called unregister_netdevice */
1191 NETREG_UNREGISTERED, /* completed unregister todo */
1192 NETREG_RELEASED, /* called free_netdev */
1193 NETREG_DUMMY, /* dummy device for NAPI poll */
1194 } reg_state:8;
1195
1196 bool dismantle; /* device is going do be freed */
1197
1198 enum {
1199 RTNL_LINK_INITIALIZED,
1200 RTNL_LINK_INITIALIZING,
1201 } rtnl_link_state:16;
1202
1203 /* Called from unregister, can be used to call free_netdev */
1204 void (*destructor)(struct net_device *dev);
1205
1206 #ifdef CONFIG_NETPOLL
1207 struct netpoll_info *npinfo;
1208 #endif
1209
1210 #ifdef CONFIG_NET_NS
1211 /* Network namespace this network device is inside */
1212 struct net *nd_net;
1213 #endif
1214
1215 /* mid-layer private */
1216 union {
1217 void *ml_priv;
1218 struct pcpu_lstats __percpu *lstats; /* loopback stats */
1219 struct pcpu_tstats __percpu *tstats; /* tunnel stats */
1220 struct pcpu_dstats __percpu *dstats; /* dummy stats */
1221 };
1222 /* GARP */
1223 struct garp_port __rcu *garp_port;
1224
1225 /* class/net/name entry */
1226 struct device dev;
1227 /* space for optional device, statistics, and wireless sysfs groups */
1228 const struct attribute_group *sysfs_groups[4];
1229
1230 /* rtnetlink link ops */
1231 const struct rtnl_link_ops *rtnl_link_ops;
1232
1233 /* for setting kernel sock attribute on TCP connection setup */
1234 #define GSO_MAX_SIZE 65536
1235 unsigned int gso_max_size;
1236
1237 #ifdef CONFIG_DCB
1238 /* Data Center Bridging netlink ops */
1239 const struct dcbnl_rtnl_ops *dcbnl_ops;
1240 #endif
1241 u8 num_tc;
1242 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1243 u8 prio_tc_map[TC_BITMASK + 1];
1244
1245 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
1246 /* max exchange id for FCoE LRO by ddp */
1247 unsigned int fcoe_ddp_xid;
1248 #endif
1249 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1250 struct netprio_map __rcu *priomap;
1251 #endif
1252 /* phy device may attach itself for hardware timestamping */
1253 struct phy_device *phydev;
1254
1255 /* group the device belongs to */
1256 int group;
1257 };
1258 #define to_net_dev(d) container_of(d, struct net_device, dev)
1259
1260 #define NETDEV_ALIGN 32
1261
1262 static inline
1263 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1264 {
1265 return dev->prio_tc_map[prio & TC_BITMASK];
1266 }
1267
1268 static inline
1269 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1270 {
1271 if (tc >= dev->num_tc)
1272 return -EINVAL;
1273
1274 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1275 return 0;
1276 }
1277
1278 static inline
1279 void netdev_reset_tc(struct net_device *dev)
1280 {
1281 dev->num_tc = 0;
1282 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1283 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1284 }
1285
1286 static inline
1287 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1288 {
1289 if (tc >= dev->num_tc)
1290 return -EINVAL;
1291
1292 dev->tc_to_txq[tc].count = count;
1293 dev->tc_to_txq[tc].offset = offset;
1294 return 0;
1295 }
1296
1297 static inline
1298 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1299 {
1300 if (num_tc > TC_MAX_QUEUE)
1301 return -EINVAL;
1302
1303 dev->num_tc = num_tc;
1304 return 0;
1305 }
1306
1307 static inline
1308 int netdev_get_num_tc(struct net_device *dev)
1309 {
1310 return dev->num_tc;
1311 }
1312
1313 static inline
1314 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1315 unsigned int index)
1316 {
1317 return &dev->_tx[index];
1318 }
1319
1320 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1321 void (*f)(struct net_device *,
1322 struct netdev_queue *,
1323 void *),
1324 void *arg)
1325 {
1326 unsigned int i;
1327
1328 for (i = 0; i < dev->num_tx_queues; i++)
1329 f(dev, &dev->_tx[i], arg);
1330 }
1331
1332 /*
1333 * Net namespace inlines
1334 */
1335 static inline
1336 struct net *dev_net(const struct net_device *dev)
1337 {
1338 return read_pnet(&dev->nd_net);
1339 }
1340
1341 static inline
1342 void dev_net_set(struct net_device *dev, struct net *net)
1343 {
1344 #ifdef CONFIG_NET_NS
1345 release_net(dev->nd_net);
1346 dev->nd_net = hold_net(net);
1347 #endif
1348 }
1349
1350 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1351 {
1352 #ifdef CONFIG_NET_DSA_TAG_DSA
1353 if (dev->dsa_ptr != NULL)
1354 return dsa_uses_dsa_tags(dev->dsa_ptr);
1355 #endif
1356
1357 return 0;
1358 }
1359
1360 #ifndef CONFIG_NET_NS
1361 static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1362 {
1363 skb->dev = dev;
1364 }
1365 #else /* CONFIG_NET_NS */
1366 void skb_set_dev(struct sk_buff *skb, struct net_device *dev);
1367 #endif
1368
1369 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1370 {
1371 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1372 if (dev->dsa_ptr != NULL)
1373 return dsa_uses_trailer_tags(dev->dsa_ptr);
1374 #endif
1375
1376 return 0;
1377 }
1378
1379 /**
1380 * netdev_priv - access network device private data
1381 * @dev: network device
1382 *
1383 * Get network device private data
1384 */
1385 static inline void *netdev_priv(const struct net_device *dev)
1386 {
1387 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1388 }
1389
1390 /* Set the sysfs physical device reference for the network logical device
1391 * if set prior to registration will cause a symlink during initialization.
1392 */
1393 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1394
1395 /* Set the sysfs device type for the network logical device to allow
1396 * fin grained indentification of different network device types. For
1397 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1398 */
1399 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1400
1401 /**
1402 * netif_napi_add - initialize a napi context
1403 * @dev: network device
1404 * @napi: napi context
1405 * @poll: polling function
1406 * @weight: default weight
1407 *
1408 * netif_napi_add() must be used to initialize a napi context prior to calling
1409 * *any* of the other napi related functions.
1410 */
1411 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1412 int (*poll)(struct napi_struct *, int), int weight);
1413
1414 /**
1415 * netif_napi_del - remove a napi context
1416 * @napi: napi context
1417 *
1418 * netif_napi_del() removes a napi context from the network device napi list
1419 */
1420 void netif_napi_del(struct napi_struct *napi);
1421
1422 struct napi_gro_cb {
1423 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1424 void *frag0;
1425
1426 /* Length of frag0. */
1427 unsigned int frag0_len;
1428
1429 /* This indicates where we are processing relative to skb->data. */
1430 int data_offset;
1431
1432 /* This is non-zero if the packet may be of the same flow. */
1433 int same_flow;
1434
1435 /* This is non-zero if the packet cannot be merged with the new skb. */
1436 int flush;
1437
1438 /* Number of segments aggregated. */
1439 int count;
1440
1441 /* Free the skb? */
1442 int free;
1443 };
1444
1445 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1446
1447 struct packet_type {
1448 __be16 type; /* This is really htons(ether_type). */
1449 struct net_device *dev; /* NULL is wildcarded here */
1450 int (*func) (struct sk_buff *,
1451 struct net_device *,
1452 struct packet_type *,
1453 struct net_device *);
1454 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1455 netdev_features_t features);
1456 int (*gso_send_check)(struct sk_buff *skb);
1457 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1458 struct sk_buff *skb);
1459 int (*gro_complete)(struct sk_buff *skb);
1460 void *af_packet_priv;
1461 struct list_head list;
1462 };
1463
1464 #include <linux/notifier.h>
1465
1466 /* netdevice notifier chain. Please remember to update the rtnetlink
1467 * notification exclusion list in rtnetlink_event() when adding new
1468 * types.
1469 */
1470 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
1471 #define NETDEV_DOWN 0x0002
1472 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
1473 detected a hardware crash and restarted
1474 - we can use this eg to kick tcp sessions
1475 once done */
1476 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
1477 #define NETDEV_REGISTER 0x0005
1478 #define NETDEV_UNREGISTER 0x0006
1479 #define NETDEV_CHANGEMTU 0x0007
1480 #define NETDEV_CHANGEADDR 0x0008
1481 #define NETDEV_GOING_DOWN 0x0009
1482 #define NETDEV_CHANGENAME 0x000A
1483 #define NETDEV_FEAT_CHANGE 0x000B
1484 #define NETDEV_BONDING_FAILOVER 0x000C
1485 #define NETDEV_PRE_UP 0x000D
1486 #define NETDEV_PRE_TYPE_CHANGE 0x000E
1487 #define NETDEV_POST_TYPE_CHANGE 0x000F
1488 #define NETDEV_POST_INIT 0x0010
1489 #define NETDEV_UNREGISTER_BATCH 0x0011
1490 #define NETDEV_RELEASE 0x0012
1491 #define NETDEV_NOTIFY_PEERS 0x0013
1492 #define NETDEV_JOIN 0x0014
1493
1494 extern int register_netdevice_notifier(struct notifier_block *nb);
1495 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1496 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1497
1498
1499 extern rwlock_t dev_base_lock; /* Device list lock */
1500
1501
1502 #define for_each_netdev(net, d) \
1503 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1504 #define for_each_netdev_reverse(net, d) \
1505 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1506 #define for_each_netdev_rcu(net, d) \
1507 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1508 #define for_each_netdev_safe(net, d, n) \
1509 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1510 #define for_each_netdev_continue(net, d) \
1511 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1512 #define for_each_netdev_continue_rcu(net, d) \
1513 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1514 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1515
1516 static inline struct net_device *next_net_device(struct net_device *dev)
1517 {
1518 struct list_head *lh;
1519 struct net *net;
1520
1521 net = dev_net(dev);
1522 lh = dev->dev_list.next;
1523 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1524 }
1525
1526 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1527 {
1528 struct list_head *lh;
1529 struct net *net;
1530
1531 net = dev_net(dev);
1532 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1533 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1534 }
1535
1536 static inline struct net_device *first_net_device(struct net *net)
1537 {
1538 return list_empty(&net->dev_base_head) ? NULL :
1539 net_device_entry(net->dev_base_head.next);
1540 }
1541
1542 static inline struct net_device *first_net_device_rcu(struct net *net)
1543 {
1544 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1545
1546 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1547 }
1548
1549 extern int netdev_boot_setup_check(struct net_device *dev);
1550 extern unsigned long netdev_boot_base(const char *prefix, int unit);
1551 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1552 const char *hwaddr);
1553 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1554 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1555 extern void dev_add_pack(struct packet_type *pt);
1556 extern void dev_remove_pack(struct packet_type *pt);
1557 extern void __dev_remove_pack(struct packet_type *pt);
1558
1559 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1560 unsigned short mask);
1561 extern struct net_device *dev_get_by_name(struct net *net, const char *name);
1562 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1563 extern struct net_device *__dev_get_by_name(struct net *net, const char *name);
1564 extern int dev_alloc_name(struct net_device *dev, const char *name);
1565 extern int dev_open(struct net_device *dev);
1566 extern int dev_close(struct net_device *dev);
1567 extern void dev_disable_lro(struct net_device *dev);
1568 extern int dev_queue_xmit(struct sk_buff *skb);
1569 extern int register_netdevice(struct net_device *dev);
1570 extern void unregister_netdevice_queue(struct net_device *dev,
1571 struct list_head *head);
1572 extern void unregister_netdevice_many(struct list_head *head);
1573 static inline void unregister_netdevice(struct net_device *dev)
1574 {
1575 unregister_netdevice_queue(dev, NULL);
1576 }
1577
1578 extern int netdev_refcnt_read(const struct net_device *dev);
1579 extern void free_netdev(struct net_device *dev);
1580 extern void synchronize_net(void);
1581 extern int init_dummy_netdev(struct net_device *dev);
1582 extern void netdev_resync_ops(struct net_device *dev);
1583
1584 extern struct net_device *dev_get_by_index(struct net *net, int ifindex);
1585 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1586 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1587 extern int dev_restart(struct net_device *dev);
1588 #ifdef CONFIG_NETPOLL_TRAP
1589 extern int netpoll_trap(void);
1590 #endif
1591 extern int skb_gro_receive(struct sk_buff **head,
1592 struct sk_buff *skb);
1593 extern void skb_gro_reset_offset(struct sk_buff *skb);
1594
1595 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1596 {
1597 return NAPI_GRO_CB(skb)->data_offset;
1598 }
1599
1600 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1601 {
1602 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1603 }
1604
1605 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1606 {
1607 NAPI_GRO_CB(skb)->data_offset += len;
1608 }
1609
1610 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1611 unsigned int offset)
1612 {
1613 return NAPI_GRO_CB(skb)->frag0 + offset;
1614 }
1615
1616 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1617 {
1618 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1619 }
1620
1621 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1622 unsigned int offset)
1623 {
1624 if (!pskb_may_pull(skb, hlen))
1625 return NULL;
1626
1627 NAPI_GRO_CB(skb)->frag0 = NULL;
1628 NAPI_GRO_CB(skb)->frag0_len = 0;
1629 return skb->data + offset;
1630 }
1631
1632 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1633 {
1634 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1635 }
1636
1637 static inline void *skb_gro_network_header(struct sk_buff *skb)
1638 {
1639 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1640 skb_network_offset(skb);
1641 }
1642
1643 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1644 unsigned short type,
1645 const void *daddr, const void *saddr,
1646 unsigned len)
1647 {
1648 if (!dev->header_ops || !dev->header_ops->create)
1649 return 0;
1650
1651 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1652 }
1653
1654 static inline int dev_parse_header(const struct sk_buff *skb,
1655 unsigned char *haddr)
1656 {
1657 const struct net_device *dev = skb->dev;
1658
1659 if (!dev->header_ops || !dev->header_ops->parse)
1660 return 0;
1661 return dev->header_ops->parse(skb, haddr);
1662 }
1663
1664 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1665 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1666 static inline int unregister_gifconf(unsigned int family)
1667 {
1668 return register_gifconf(family, NULL);
1669 }
1670
1671 /*
1672 * Incoming packets are placed on per-cpu queues
1673 */
1674 struct softnet_data {
1675 struct Qdisc *output_queue;
1676 struct Qdisc **output_queue_tailp;
1677 struct list_head poll_list;
1678 struct sk_buff *completion_queue;
1679 struct sk_buff_head process_queue;
1680
1681 /* stats */
1682 unsigned int processed;
1683 unsigned int time_squeeze;
1684 unsigned int cpu_collision;
1685 unsigned int received_rps;
1686
1687 #ifdef CONFIG_RPS
1688 struct softnet_data *rps_ipi_list;
1689
1690 /* Elements below can be accessed between CPUs for RPS */
1691 struct call_single_data csd ____cacheline_aligned_in_smp;
1692 struct softnet_data *rps_ipi_next;
1693 unsigned int cpu;
1694 unsigned int input_queue_head;
1695 unsigned int input_queue_tail;
1696 #endif
1697 unsigned dropped;
1698 struct sk_buff_head input_pkt_queue;
1699 struct napi_struct backlog;
1700 };
1701
1702 static inline void input_queue_head_incr(struct softnet_data *sd)
1703 {
1704 #ifdef CONFIG_RPS
1705 sd->input_queue_head++;
1706 #endif
1707 }
1708
1709 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1710 unsigned int *qtail)
1711 {
1712 #ifdef CONFIG_RPS
1713 *qtail = ++sd->input_queue_tail;
1714 #endif
1715 }
1716
1717 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1718
1719 extern void __netif_schedule(struct Qdisc *q);
1720
1721 static inline void netif_schedule_queue(struct netdev_queue *txq)
1722 {
1723 if (!test_bit(__QUEUE_STATE_XOFF, &txq->state))
1724 __netif_schedule(txq->qdisc);
1725 }
1726
1727 static inline void netif_tx_schedule_all(struct net_device *dev)
1728 {
1729 unsigned int i;
1730
1731 for (i = 0; i < dev->num_tx_queues; i++)
1732 netif_schedule_queue(netdev_get_tx_queue(dev, i));
1733 }
1734
1735 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1736 {
1737 clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1738 }
1739
1740 /**
1741 * netif_start_queue - allow transmit
1742 * @dev: network device
1743 *
1744 * Allow upper layers to call the device hard_start_xmit routine.
1745 */
1746 static inline void netif_start_queue(struct net_device *dev)
1747 {
1748 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1749 }
1750
1751 static inline void netif_tx_start_all_queues(struct net_device *dev)
1752 {
1753 unsigned int i;
1754
1755 for (i = 0; i < dev->num_tx_queues; i++) {
1756 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1757 netif_tx_start_queue(txq);
1758 }
1759 }
1760
1761 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1762 {
1763 #ifdef CONFIG_NETPOLL_TRAP
1764 if (netpoll_trap()) {
1765 netif_tx_start_queue(dev_queue);
1766 return;
1767 }
1768 #endif
1769 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state))
1770 __netif_schedule(dev_queue->qdisc);
1771 }
1772
1773 /**
1774 * netif_wake_queue - restart transmit
1775 * @dev: network device
1776 *
1777 * Allow upper layers to call the device hard_start_xmit routine.
1778 * Used for flow control when transmit resources are available.
1779 */
1780 static inline void netif_wake_queue(struct net_device *dev)
1781 {
1782 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1783 }
1784
1785 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1786 {
1787 unsigned int i;
1788
1789 for (i = 0; i < dev->num_tx_queues; i++) {
1790 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1791 netif_tx_wake_queue(txq);
1792 }
1793 }
1794
1795 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1796 {
1797 if (WARN_ON(!dev_queue)) {
1798 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1799 return;
1800 }
1801 set_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1802 }
1803
1804 /**
1805 * netif_stop_queue - stop transmitted packets
1806 * @dev: network device
1807 *
1808 * Stop upper layers calling the device hard_start_xmit routine.
1809 * Used for flow control when transmit resources are unavailable.
1810 */
1811 static inline void netif_stop_queue(struct net_device *dev)
1812 {
1813 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1814 }
1815
1816 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1817 {
1818 unsigned int i;
1819
1820 for (i = 0; i < dev->num_tx_queues; i++) {
1821 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1822 netif_tx_stop_queue(txq);
1823 }
1824 }
1825
1826 static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1827 {
1828 return test_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1829 }
1830
1831 /**
1832 * netif_queue_stopped - test if transmit queue is flowblocked
1833 * @dev: network device
1834 *
1835 * Test if transmit queue on device is currently unable to send.
1836 */
1837 static inline int netif_queue_stopped(const struct net_device *dev)
1838 {
1839 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1840 }
1841
1842 static inline int netif_tx_queue_frozen_or_stopped(const struct netdev_queue *dev_queue)
1843 {
1844 return dev_queue->state & QUEUE_STATE_XOFF_OR_FROZEN;
1845 }
1846
1847 /**
1848 * netif_running - test if up
1849 * @dev: network device
1850 *
1851 * Test if the device has been brought up.
1852 */
1853 static inline int netif_running(const struct net_device *dev)
1854 {
1855 return test_bit(__LINK_STATE_START, &dev->state);
1856 }
1857
1858 /*
1859 * Routines to manage the subqueues on a device. We only need start
1860 * stop, and a check if it's stopped. All other device management is
1861 * done at the overall netdevice level.
1862 * Also test the device if we're multiqueue.
1863 */
1864
1865 /**
1866 * netif_start_subqueue - allow sending packets on subqueue
1867 * @dev: network device
1868 * @queue_index: sub queue index
1869 *
1870 * Start individual transmit queue of a device with multiple transmit queues.
1871 */
1872 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
1873 {
1874 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1875
1876 netif_tx_start_queue(txq);
1877 }
1878
1879 /**
1880 * netif_stop_subqueue - stop sending packets on subqueue
1881 * @dev: network device
1882 * @queue_index: sub queue index
1883 *
1884 * Stop individual transmit queue of a device with multiple transmit queues.
1885 */
1886 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
1887 {
1888 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1889 #ifdef CONFIG_NETPOLL_TRAP
1890 if (netpoll_trap())
1891 return;
1892 #endif
1893 netif_tx_stop_queue(txq);
1894 }
1895
1896 /**
1897 * netif_subqueue_stopped - test status of subqueue
1898 * @dev: network device
1899 * @queue_index: sub queue index
1900 *
1901 * Check individual transmit queue of a device with multiple transmit queues.
1902 */
1903 static inline int __netif_subqueue_stopped(const struct net_device *dev,
1904 u16 queue_index)
1905 {
1906 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1907
1908 return netif_tx_queue_stopped(txq);
1909 }
1910
1911 static inline int netif_subqueue_stopped(const struct net_device *dev,
1912 struct sk_buff *skb)
1913 {
1914 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
1915 }
1916
1917 /**
1918 * netif_wake_subqueue - allow sending packets on subqueue
1919 * @dev: network device
1920 * @queue_index: sub queue index
1921 *
1922 * Resume individual transmit queue of a device with multiple transmit queues.
1923 */
1924 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
1925 {
1926 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1927 #ifdef CONFIG_NETPOLL_TRAP
1928 if (netpoll_trap())
1929 return;
1930 #endif
1931 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &txq->state))
1932 __netif_schedule(txq->qdisc);
1933 }
1934
1935 /*
1936 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
1937 * as a distribution range limit for the returned value.
1938 */
1939 static inline u16 skb_tx_hash(const struct net_device *dev,
1940 const struct sk_buff *skb)
1941 {
1942 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
1943 }
1944
1945 /**
1946 * netif_is_multiqueue - test if device has multiple transmit queues
1947 * @dev: network device
1948 *
1949 * Check if device has multiple transmit queues
1950 */
1951 static inline int netif_is_multiqueue(const struct net_device *dev)
1952 {
1953 return dev->num_tx_queues > 1;
1954 }
1955
1956 extern int netif_set_real_num_tx_queues(struct net_device *dev,
1957 unsigned int txq);
1958
1959 #ifdef CONFIG_RPS
1960 extern int netif_set_real_num_rx_queues(struct net_device *dev,
1961 unsigned int rxq);
1962 #else
1963 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
1964 unsigned int rxq)
1965 {
1966 return 0;
1967 }
1968 #endif
1969
1970 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
1971 const struct net_device *from_dev)
1972 {
1973 netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues);
1974 #ifdef CONFIG_RPS
1975 return netif_set_real_num_rx_queues(to_dev,
1976 from_dev->real_num_rx_queues);
1977 #else
1978 return 0;
1979 #endif
1980 }
1981
1982 /* Use this variant when it is known for sure that it
1983 * is executing from hardware interrupt context or with hardware interrupts
1984 * disabled.
1985 */
1986 extern void dev_kfree_skb_irq(struct sk_buff *skb);
1987
1988 /* Use this variant in places where it could be invoked
1989 * from either hardware interrupt or other context, with hardware interrupts
1990 * either disabled or enabled.
1991 */
1992 extern void dev_kfree_skb_any(struct sk_buff *skb);
1993
1994 extern int netif_rx(struct sk_buff *skb);
1995 extern int netif_rx_ni(struct sk_buff *skb);
1996 extern int netif_receive_skb(struct sk_buff *skb);
1997 extern gro_result_t dev_gro_receive(struct napi_struct *napi,
1998 struct sk_buff *skb);
1999 extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
2000 extern gro_result_t napi_gro_receive(struct napi_struct *napi,
2001 struct sk_buff *skb);
2002 extern void napi_gro_flush(struct napi_struct *napi);
2003 extern struct sk_buff * napi_get_frags(struct napi_struct *napi);
2004 extern gro_result_t napi_frags_finish(struct napi_struct *napi,
2005 struct sk_buff *skb,
2006 gro_result_t ret);
2007 extern struct sk_buff * napi_frags_skb(struct napi_struct *napi);
2008 extern gro_result_t napi_gro_frags(struct napi_struct *napi);
2009
2010 static inline void napi_free_frags(struct napi_struct *napi)
2011 {
2012 kfree_skb(napi->skb);
2013 napi->skb = NULL;
2014 }
2015
2016 extern int netdev_rx_handler_register(struct net_device *dev,
2017 rx_handler_func_t *rx_handler,
2018 void *rx_handler_data);
2019 extern void netdev_rx_handler_unregister(struct net_device *dev);
2020
2021 extern int dev_valid_name(const char *name);
2022 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2023 extern int dev_ethtool(struct net *net, struct ifreq *);
2024 extern unsigned dev_get_flags(const struct net_device *);
2025 extern int __dev_change_flags(struct net_device *, unsigned int flags);
2026 extern int dev_change_flags(struct net_device *, unsigned);
2027 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags);
2028 extern int dev_change_name(struct net_device *, const char *);
2029 extern int dev_set_alias(struct net_device *, const char *, size_t);
2030 extern int dev_change_net_namespace(struct net_device *,
2031 struct net *, const char *);
2032 extern int dev_set_mtu(struct net_device *, int);
2033 extern void dev_set_group(struct net_device *, int);
2034 extern int dev_set_mac_address(struct net_device *,
2035 struct sockaddr *);
2036 extern int dev_hard_start_xmit(struct sk_buff *skb,
2037 struct net_device *dev,
2038 struct netdev_queue *txq);
2039 extern int dev_forward_skb(struct net_device *dev,
2040 struct sk_buff *skb);
2041
2042 extern int netdev_budget;
2043
2044 /* Called by rtnetlink.c:rtnl_unlock() */
2045 extern void netdev_run_todo(void);
2046
2047 /**
2048 * dev_put - release reference to device
2049 * @dev: network device
2050 *
2051 * Release reference to device to allow it to be freed.
2052 */
2053 static inline void dev_put(struct net_device *dev)
2054 {
2055 irqsafe_cpu_dec(*dev->pcpu_refcnt);
2056 }
2057
2058 /**
2059 * dev_hold - get reference to device
2060 * @dev: network device
2061 *
2062 * Hold reference to device to keep it from being freed.
2063 */
2064 static inline void dev_hold(struct net_device *dev)
2065 {
2066 irqsafe_cpu_inc(*dev->pcpu_refcnt);
2067 }
2068
2069 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2070 * and _off may be called from IRQ context, but it is caller
2071 * who is responsible for serialization of these calls.
2072 *
2073 * The name carrier is inappropriate, these functions should really be
2074 * called netif_lowerlayer_*() because they represent the state of any
2075 * kind of lower layer not just hardware media.
2076 */
2077
2078 extern void linkwatch_fire_event(struct net_device *dev);
2079 extern void linkwatch_forget_dev(struct net_device *dev);
2080
2081 /**
2082 * netif_carrier_ok - test if carrier present
2083 * @dev: network device
2084 *
2085 * Check if carrier is present on device
2086 */
2087 static inline int netif_carrier_ok(const struct net_device *dev)
2088 {
2089 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2090 }
2091
2092 extern unsigned long dev_trans_start(struct net_device *dev);
2093
2094 extern void __netdev_watchdog_up(struct net_device *dev);
2095
2096 extern void netif_carrier_on(struct net_device *dev);
2097
2098 extern void netif_carrier_off(struct net_device *dev);
2099
2100 extern void netif_notify_peers(struct net_device *dev);
2101
2102 /**
2103 * netif_dormant_on - mark device as dormant.
2104 * @dev: network device
2105 *
2106 * Mark device as dormant (as per RFC2863).
2107 *
2108 * The dormant state indicates that the relevant interface is not
2109 * actually in a condition to pass packets (i.e., it is not 'up') but is
2110 * in a "pending" state, waiting for some external event. For "on-
2111 * demand" interfaces, this new state identifies the situation where the
2112 * interface is waiting for events to place it in the up state.
2113 *
2114 */
2115 static inline void netif_dormant_on(struct net_device *dev)
2116 {
2117 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2118 linkwatch_fire_event(dev);
2119 }
2120
2121 /**
2122 * netif_dormant_off - set device as not dormant.
2123 * @dev: network device
2124 *
2125 * Device is not in dormant state.
2126 */
2127 static inline void netif_dormant_off(struct net_device *dev)
2128 {
2129 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2130 linkwatch_fire_event(dev);
2131 }
2132
2133 /**
2134 * netif_dormant - test if carrier present
2135 * @dev: network device
2136 *
2137 * Check if carrier is present on device
2138 */
2139 static inline int netif_dormant(const struct net_device *dev)
2140 {
2141 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2142 }
2143
2144
2145 /**
2146 * netif_oper_up - test if device is operational
2147 * @dev: network device
2148 *
2149 * Check if carrier is operational
2150 */
2151 static inline int netif_oper_up(const struct net_device *dev)
2152 {
2153 return (dev->operstate == IF_OPER_UP ||
2154 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2155 }
2156
2157 /**
2158 * netif_device_present - is device available or removed
2159 * @dev: network device
2160 *
2161 * Check if device has not been removed from system.
2162 */
2163 static inline int netif_device_present(struct net_device *dev)
2164 {
2165 return test_bit(__LINK_STATE_PRESENT, &dev->state);
2166 }
2167
2168 extern void netif_device_detach(struct net_device *dev);
2169
2170 extern void netif_device_attach(struct net_device *dev);
2171
2172 /*
2173 * Network interface message level settings
2174 */
2175
2176 enum {
2177 NETIF_MSG_DRV = 0x0001,
2178 NETIF_MSG_PROBE = 0x0002,
2179 NETIF_MSG_LINK = 0x0004,
2180 NETIF_MSG_TIMER = 0x0008,
2181 NETIF_MSG_IFDOWN = 0x0010,
2182 NETIF_MSG_IFUP = 0x0020,
2183 NETIF_MSG_RX_ERR = 0x0040,
2184 NETIF_MSG_TX_ERR = 0x0080,
2185 NETIF_MSG_TX_QUEUED = 0x0100,
2186 NETIF_MSG_INTR = 0x0200,
2187 NETIF_MSG_TX_DONE = 0x0400,
2188 NETIF_MSG_RX_STATUS = 0x0800,
2189 NETIF_MSG_PKTDATA = 0x1000,
2190 NETIF_MSG_HW = 0x2000,
2191 NETIF_MSG_WOL = 0x4000,
2192 };
2193
2194 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2195 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2196 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2197 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2198 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2199 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2200 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2201 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2202 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2203 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2204 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2205 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2206 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2207 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2208 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2209
2210 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2211 {
2212 /* use default */
2213 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2214 return default_msg_enable_bits;
2215 if (debug_value == 0) /* no output */
2216 return 0;
2217 /* set low N bits */
2218 return (1 << debug_value) - 1;
2219 }
2220
2221 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2222 {
2223 spin_lock(&txq->_xmit_lock);
2224 txq->xmit_lock_owner = cpu;
2225 }
2226
2227 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2228 {
2229 spin_lock_bh(&txq->_xmit_lock);
2230 txq->xmit_lock_owner = smp_processor_id();
2231 }
2232
2233 static inline int __netif_tx_trylock(struct netdev_queue *txq)
2234 {
2235 int ok = spin_trylock(&txq->_xmit_lock);
2236 if (likely(ok))
2237 txq->xmit_lock_owner = smp_processor_id();
2238 return ok;
2239 }
2240
2241 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2242 {
2243 txq->xmit_lock_owner = -1;
2244 spin_unlock(&txq->_xmit_lock);
2245 }
2246
2247 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2248 {
2249 txq->xmit_lock_owner = -1;
2250 spin_unlock_bh(&txq->_xmit_lock);
2251 }
2252
2253 static inline void txq_trans_update(struct netdev_queue *txq)
2254 {
2255 if (txq->xmit_lock_owner != -1)
2256 txq->trans_start = jiffies;
2257 }
2258
2259 /**
2260 * netif_tx_lock - grab network device transmit lock
2261 * @dev: network device
2262 *
2263 * Get network device transmit lock
2264 */
2265 static inline void netif_tx_lock(struct net_device *dev)
2266 {
2267 unsigned int i;
2268 int cpu;
2269
2270 spin_lock(&dev->tx_global_lock);
2271 cpu = smp_processor_id();
2272 for (i = 0; i < dev->num_tx_queues; i++) {
2273 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2274
2275 /* We are the only thread of execution doing a
2276 * freeze, but we have to grab the _xmit_lock in
2277 * order to synchronize with threads which are in
2278 * the ->hard_start_xmit() handler and already
2279 * checked the frozen bit.
2280 */
2281 __netif_tx_lock(txq, cpu);
2282 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2283 __netif_tx_unlock(txq);
2284 }
2285 }
2286
2287 static inline void netif_tx_lock_bh(struct net_device *dev)
2288 {
2289 local_bh_disable();
2290 netif_tx_lock(dev);
2291 }
2292
2293 static inline void netif_tx_unlock(struct net_device *dev)
2294 {
2295 unsigned int i;
2296
2297 for (i = 0; i < dev->num_tx_queues; i++) {
2298 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2299
2300 /* No need to grab the _xmit_lock here. If the
2301 * queue is not stopped for another reason, we
2302 * force a schedule.
2303 */
2304 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2305 netif_schedule_queue(txq);
2306 }
2307 spin_unlock(&dev->tx_global_lock);
2308 }
2309
2310 static inline void netif_tx_unlock_bh(struct net_device *dev)
2311 {
2312 netif_tx_unlock(dev);
2313 local_bh_enable();
2314 }
2315
2316 #define HARD_TX_LOCK(dev, txq, cpu) { \
2317 if ((dev->features & NETIF_F_LLTX) == 0) { \
2318 __netif_tx_lock(txq, cpu); \
2319 } \
2320 }
2321
2322 #define HARD_TX_UNLOCK(dev, txq) { \
2323 if ((dev->features & NETIF_F_LLTX) == 0) { \
2324 __netif_tx_unlock(txq); \
2325 } \
2326 }
2327
2328 static inline void netif_tx_disable(struct net_device *dev)
2329 {
2330 unsigned int i;
2331 int cpu;
2332
2333 local_bh_disable();
2334 cpu = smp_processor_id();
2335 for (i = 0; i < dev->num_tx_queues; i++) {
2336 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2337
2338 __netif_tx_lock(txq, cpu);
2339 netif_tx_stop_queue(txq);
2340 __netif_tx_unlock(txq);
2341 }
2342 local_bh_enable();
2343 }
2344
2345 static inline void netif_addr_lock(struct net_device *dev)
2346 {
2347 spin_lock(&dev->addr_list_lock);
2348 }
2349
2350 static inline void netif_addr_lock_bh(struct net_device *dev)
2351 {
2352 spin_lock_bh(&dev->addr_list_lock);
2353 }
2354
2355 static inline void netif_addr_unlock(struct net_device *dev)
2356 {
2357 spin_unlock(&dev->addr_list_lock);
2358 }
2359
2360 static inline void netif_addr_unlock_bh(struct net_device *dev)
2361 {
2362 spin_unlock_bh(&dev->addr_list_lock);
2363 }
2364
2365 /*
2366 * dev_addrs walker. Should be used only for read access. Call with
2367 * rcu_read_lock held.
2368 */
2369 #define for_each_dev_addr(dev, ha) \
2370 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2371
2372 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2373
2374 extern void ether_setup(struct net_device *dev);
2375
2376 /* Support for loadable net-drivers */
2377 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2378 void (*setup)(struct net_device *),
2379 unsigned int txqs, unsigned int rxqs);
2380 #define alloc_netdev(sizeof_priv, name, setup) \
2381 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2382
2383 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2384 alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2385
2386 extern int register_netdev(struct net_device *dev);
2387 extern void unregister_netdev(struct net_device *dev);
2388
2389 /* General hardware address lists handling functions */
2390 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2391 struct netdev_hw_addr_list *from_list,
2392 int addr_len, unsigned char addr_type);
2393 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2394 struct netdev_hw_addr_list *from_list,
2395 int addr_len, unsigned char addr_type);
2396 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2397 struct netdev_hw_addr_list *from_list,
2398 int addr_len);
2399 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2400 struct netdev_hw_addr_list *from_list,
2401 int addr_len);
2402 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2403 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2404
2405 /* Functions used for device addresses handling */
2406 extern int dev_addr_add(struct net_device *dev, unsigned char *addr,
2407 unsigned char addr_type);
2408 extern int dev_addr_del(struct net_device *dev, unsigned char *addr,
2409 unsigned char addr_type);
2410 extern int dev_addr_add_multiple(struct net_device *to_dev,
2411 struct net_device *from_dev,
2412 unsigned char addr_type);
2413 extern int dev_addr_del_multiple(struct net_device *to_dev,
2414 struct net_device *from_dev,
2415 unsigned char addr_type);
2416 extern void dev_addr_flush(struct net_device *dev);
2417 extern int dev_addr_init(struct net_device *dev);
2418
2419 /* Functions used for unicast addresses handling */
2420 extern int dev_uc_add(struct net_device *dev, unsigned char *addr);
2421 extern int dev_uc_del(struct net_device *dev, unsigned char *addr);
2422 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2423 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2424 extern void dev_uc_flush(struct net_device *dev);
2425 extern void dev_uc_init(struct net_device *dev);
2426
2427 /* Functions used for multicast addresses handling */
2428 extern int dev_mc_add(struct net_device *dev, unsigned char *addr);
2429 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr);
2430 extern int dev_mc_del(struct net_device *dev, unsigned char *addr);
2431 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr);
2432 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2433 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2434 extern void dev_mc_flush(struct net_device *dev);
2435 extern void dev_mc_init(struct net_device *dev);
2436
2437 /* Functions used for secondary unicast and multicast support */
2438 extern void dev_set_rx_mode(struct net_device *dev);
2439 extern void __dev_set_rx_mode(struct net_device *dev);
2440 extern int dev_set_promiscuity(struct net_device *dev, int inc);
2441 extern int dev_set_allmulti(struct net_device *dev, int inc);
2442 extern void netdev_state_change(struct net_device *dev);
2443 extern int netdev_bonding_change(struct net_device *dev,
2444 unsigned long event);
2445 extern void netdev_features_change(struct net_device *dev);
2446 /* Load a device via the kmod */
2447 extern void dev_load(struct net *net, const char *name);
2448 extern void dev_mcast_init(void);
2449 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2450 struct rtnl_link_stats64 *storage);
2451
2452 extern int netdev_max_backlog;
2453 extern int netdev_tstamp_prequeue;
2454 extern int weight_p;
2455 extern int bpf_jit_enable;
2456 extern int netdev_set_master(struct net_device *dev, struct net_device *master);
2457 extern int netdev_set_bond_master(struct net_device *dev,
2458 struct net_device *master);
2459 extern int skb_checksum_help(struct sk_buff *skb);
2460 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb,
2461 netdev_features_t features);
2462 #ifdef CONFIG_BUG
2463 extern void netdev_rx_csum_fault(struct net_device *dev);
2464 #else
2465 static inline void netdev_rx_csum_fault(struct net_device *dev)
2466 {
2467 }
2468 #endif
2469 /* rx skb timestamps */
2470 extern void net_enable_timestamp(void);
2471 extern void net_disable_timestamp(void);
2472
2473 #ifdef CONFIG_PROC_FS
2474 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2475 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2476 extern void dev_seq_stop(struct seq_file *seq, void *v);
2477 #endif
2478
2479 extern int netdev_class_create_file(struct class_attribute *class_attr);
2480 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2481
2482 extern struct kobj_ns_type_operations net_ns_type_operations;
2483
2484 extern const char *netdev_drivername(const struct net_device *dev);
2485
2486 extern void linkwatch_run_queue(void);
2487
2488 static inline netdev_features_t netdev_get_wanted_features(
2489 struct net_device *dev)
2490 {
2491 return (dev->features & ~dev->hw_features) | dev->wanted_features;
2492 }
2493 netdev_features_t netdev_increment_features(netdev_features_t all,
2494 netdev_features_t one, netdev_features_t mask);
2495 int __netdev_update_features(struct net_device *dev);
2496 void netdev_update_features(struct net_device *dev);
2497 void netdev_change_features(struct net_device *dev);
2498
2499 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2500 struct net_device *dev);
2501
2502 netdev_features_t netif_skb_features(struct sk_buff *skb);
2503
2504 static inline int net_gso_ok(netdev_features_t features, int gso_type)
2505 {
2506 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2507
2508 /* check flags correspondence */
2509 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2510 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2511 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2512 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2513 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2514 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2515
2516 return (features & feature) == feature;
2517 }
2518
2519 static inline int skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2520 {
2521 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2522 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2523 }
2524
2525 static inline int netif_needs_gso(struct sk_buff *skb,
2526 netdev_features_t features)
2527 {
2528 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2529 unlikely(skb->ip_summed != CHECKSUM_PARTIAL));
2530 }
2531
2532 static inline void netif_set_gso_max_size(struct net_device *dev,
2533 unsigned int size)
2534 {
2535 dev->gso_max_size = size;
2536 }
2537
2538 static inline int netif_is_bond_slave(struct net_device *dev)
2539 {
2540 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2541 }
2542
2543 extern struct pernet_operations __net_initdata loopback_net_ops;
2544
2545 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2546
2547 /* netdev_printk helpers, similar to dev_printk */
2548
2549 static inline const char *netdev_name(const struct net_device *dev)
2550 {
2551 if (dev->reg_state != NETREG_REGISTERED)
2552 return "(unregistered net_device)";
2553 return dev->name;
2554 }
2555
2556 extern int __netdev_printk(const char *level, const struct net_device *dev,
2557 struct va_format *vaf);
2558
2559 extern __printf(3, 4)
2560 int netdev_printk(const char *level, const struct net_device *dev,
2561 const char *format, ...);
2562 extern __printf(2, 3)
2563 int netdev_emerg(const struct net_device *dev, const char *format, ...);
2564 extern __printf(2, 3)
2565 int netdev_alert(const struct net_device *dev, const char *format, ...);
2566 extern __printf(2, 3)
2567 int netdev_crit(const struct net_device *dev, const char *format, ...);
2568 extern __printf(2, 3)
2569 int netdev_err(const struct net_device *dev, const char *format, ...);
2570 extern __printf(2, 3)
2571 int netdev_warn(const struct net_device *dev, const char *format, ...);
2572 extern __printf(2, 3)
2573 int netdev_notice(const struct net_device *dev, const char *format, ...);
2574 extern __printf(2, 3)
2575 int netdev_info(const struct net_device *dev, const char *format, ...);
2576
2577 #define MODULE_ALIAS_NETDEV(device) \
2578 MODULE_ALIAS("netdev-" device)
2579
2580 #if defined(DEBUG)
2581 #define netdev_dbg(__dev, format, args...) \
2582 netdev_printk(KERN_DEBUG, __dev, format, ##args)
2583 #elif defined(CONFIG_DYNAMIC_DEBUG)
2584 #define netdev_dbg(__dev, format, args...) \
2585 do { \
2586 dynamic_netdev_dbg(__dev, format, ##args); \
2587 } while (0)
2588 #else
2589 #define netdev_dbg(__dev, format, args...) \
2590 ({ \
2591 if (0) \
2592 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2593 0; \
2594 })
2595 #endif
2596
2597 #if defined(VERBOSE_DEBUG)
2598 #define netdev_vdbg netdev_dbg
2599 #else
2600
2601 #define netdev_vdbg(dev, format, args...) \
2602 ({ \
2603 if (0) \
2604 netdev_printk(KERN_DEBUG, dev, format, ##args); \
2605 0; \
2606 })
2607 #endif
2608
2609 /*
2610 * netdev_WARN() acts like dev_printk(), but with the key difference
2611 * of using a WARN/WARN_ON to get the message out, including the
2612 * file/line information and a backtrace.
2613 */
2614 #define netdev_WARN(dev, format, args...) \
2615 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2616
2617 /* netif printk helpers, similar to netdev_printk */
2618
2619 #define netif_printk(priv, type, level, dev, fmt, args...) \
2620 do { \
2621 if (netif_msg_##type(priv)) \
2622 netdev_printk(level, (dev), fmt, ##args); \
2623 } while (0)
2624
2625 #define netif_level(level, priv, type, dev, fmt, args...) \
2626 do { \
2627 if (netif_msg_##type(priv)) \
2628 netdev_##level(dev, fmt, ##args); \
2629 } while (0)
2630
2631 #define netif_emerg(priv, type, dev, fmt, args...) \
2632 netif_level(emerg, priv, type, dev, fmt, ##args)
2633 #define netif_alert(priv, type, dev, fmt, args...) \
2634 netif_level(alert, priv, type, dev, fmt, ##args)
2635 #define netif_crit(priv, type, dev, fmt, args...) \
2636 netif_level(crit, priv, type, dev, fmt, ##args)
2637 #define netif_err(priv, type, dev, fmt, args...) \
2638 netif_level(err, priv, type, dev, fmt, ##args)
2639 #define netif_warn(priv, type, dev, fmt, args...) \
2640 netif_level(warn, priv, type, dev, fmt, ##args)
2641 #define netif_notice(priv, type, dev, fmt, args...) \
2642 netif_level(notice, priv, type, dev, fmt, ##args)
2643 #define netif_info(priv, type, dev, fmt, args...) \
2644 netif_level(info, priv, type, dev, fmt, ##args)
2645
2646 #if defined(DEBUG)
2647 #define netif_dbg(priv, type, dev, format, args...) \
2648 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2649 #elif defined(CONFIG_DYNAMIC_DEBUG)
2650 #define netif_dbg(priv, type, netdev, format, args...) \
2651 do { \
2652 if (netif_msg_##type(priv)) \
2653 dynamic_netdev_dbg(netdev, format, ##args); \
2654 } while (0)
2655 #else
2656 #define netif_dbg(priv, type, dev, format, args...) \
2657 ({ \
2658 if (0) \
2659 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2660 0; \
2661 })
2662 #endif
2663
2664 #if defined(VERBOSE_DEBUG)
2665 #define netif_vdbg netif_dbg
2666 #else
2667 #define netif_vdbg(priv, type, dev, format, args...) \
2668 ({ \
2669 if (0) \
2670 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2671 0; \
2672 })
2673 #endif
2674
2675 #endif /* __KERNEL__ */
2676
2677 #endif /* _LINUX_NETDEVICE_H */
This page took 0.086234 seconds and 5 git commands to generate.