b3374402c1ea1d2c0df80d3b5c6a38a1cf1b4156
[deliverable/linux.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54
55 struct netpoll_info;
56 struct device;
57 struct phy_device;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* 802.15.4 specific */
61 struct wpan_dev;
62 struct mpls_dev;
63
64 void netdev_set_default_ethtool_ops(struct net_device *dev,
65 const struct ethtool_ops *ops);
66
67 /* Backlog congestion levels */
68 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
69 #define NET_RX_DROP 1 /* packet dropped */
70
71 /*
72 * Transmit return codes: transmit return codes originate from three different
73 * namespaces:
74 *
75 * - qdisc return codes
76 * - driver transmit return codes
77 * - errno values
78 *
79 * Drivers are allowed to return any one of those in their hard_start_xmit()
80 * function. Real network devices commonly used with qdiscs should only return
81 * the driver transmit return codes though - when qdiscs are used, the actual
82 * transmission happens asynchronously, so the value is not propagated to
83 * higher layers. Virtual network devices transmit synchronously, in this case
84 * the driver transmit return codes are consumed by dev_queue_xmit(), all
85 * others are propagated to higher layers.
86 */
87
88 /* qdisc ->enqueue() return codes. */
89 #define NET_XMIT_SUCCESS 0x00
90 #define NET_XMIT_DROP 0x01 /* skb dropped */
91 #define NET_XMIT_CN 0x02 /* congestion notification */
92 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
93 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
94
95 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
96 * indicates that the device will soon be dropping packets, or already drops
97 * some packets of the same priority; prompting us to send less aggressively. */
98 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
99 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
100
101 /* Driver transmit return codes */
102 #define NETDEV_TX_MASK 0xf0
103
104 enum netdev_tx {
105 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
106 NETDEV_TX_OK = 0x00, /* driver took care of packet */
107 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
108 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
109 };
110 typedef enum netdev_tx netdev_tx_t;
111
112 /*
113 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
114 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
115 */
116 static inline bool dev_xmit_complete(int rc)
117 {
118 /*
119 * Positive cases with an skb consumed by a driver:
120 * - successful transmission (rc == NETDEV_TX_OK)
121 * - error while transmitting (rc < 0)
122 * - error while queueing to a different device (rc & NET_XMIT_MASK)
123 */
124 if (likely(rc < NET_XMIT_MASK))
125 return true;
126
127 return false;
128 }
129
130 /*
131 * Compute the worst case header length according to the protocols
132 * used.
133 */
134
135 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
136 # if defined(CONFIG_MAC80211_MESH)
137 # define LL_MAX_HEADER 128
138 # else
139 # define LL_MAX_HEADER 96
140 # endif
141 #else
142 # define LL_MAX_HEADER 32
143 #endif
144
145 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
146 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
147 #define MAX_HEADER LL_MAX_HEADER
148 #else
149 #define MAX_HEADER (LL_MAX_HEADER + 48)
150 #endif
151
152 /*
153 * Old network device statistics. Fields are native words
154 * (unsigned long) so they can be read and written atomically.
155 */
156
157 struct net_device_stats {
158 unsigned long rx_packets;
159 unsigned long tx_packets;
160 unsigned long rx_bytes;
161 unsigned long tx_bytes;
162 unsigned long rx_errors;
163 unsigned long tx_errors;
164 unsigned long rx_dropped;
165 unsigned long tx_dropped;
166 unsigned long multicast;
167 unsigned long collisions;
168 unsigned long rx_length_errors;
169 unsigned long rx_over_errors;
170 unsigned long rx_crc_errors;
171 unsigned long rx_frame_errors;
172 unsigned long rx_fifo_errors;
173 unsigned long rx_missed_errors;
174 unsigned long tx_aborted_errors;
175 unsigned long tx_carrier_errors;
176 unsigned long tx_fifo_errors;
177 unsigned long tx_heartbeat_errors;
178 unsigned long tx_window_errors;
179 unsigned long rx_compressed;
180 unsigned long tx_compressed;
181 };
182
183
184 #include <linux/cache.h>
185 #include <linux/skbuff.h>
186
187 #ifdef CONFIG_RPS
188 #include <linux/static_key.h>
189 extern struct static_key rps_needed;
190 #endif
191
192 struct neighbour;
193 struct neigh_parms;
194 struct sk_buff;
195
196 struct netdev_hw_addr {
197 struct list_head list;
198 unsigned char addr[MAX_ADDR_LEN];
199 unsigned char type;
200 #define NETDEV_HW_ADDR_T_LAN 1
201 #define NETDEV_HW_ADDR_T_SAN 2
202 #define NETDEV_HW_ADDR_T_SLAVE 3
203 #define NETDEV_HW_ADDR_T_UNICAST 4
204 #define NETDEV_HW_ADDR_T_MULTICAST 5
205 bool global_use;
206 int sync_cnt;
207 int refcount;
208 int synced;
209 struct rcu_head rcu_head;
210 };
211
212 struct netdev_hw_addr_list {
213 struct list_head list;
214 int count;
215 };
216
217 #define netdev_hw_addr_list_count(l) ((l)->count)
218 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
219 #define netdev_hw_addr_list_for_each(ha, l) \
220 list_for_each_entry(ha, &(l)->list, list)
221
222 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
223 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
224 #define netdev_for_each_uc_addr(ha, dev) \
225 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
226
227 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
228 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
229 #define netdev_for_each_mc_addr(ha, dev) \
230 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
231
232 struct hh_cache {
233 u16 hh_len;
234 u16 __pad;
235 seqlock_t hh_lock;
236
237 /* cached hardware header; allow for machine alignment needs. */
238 #define HH_DATA_MOD 16
239 #define HH_DATA_OFF(__len) \
240 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
241 #define HH_DATA_ALIGN(__len) \
242 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
243 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
244 };
245
246 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
247 * Alternative is:
248 * dev->hard_header_len ? (dev->hard_header_len +
249 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
250 *
251 * We could use other alignment values, but we must maintain the
252 * relationship HH alignment <= LL alignment.
253 */
254 #define LL_RESERVED_SPACE(dev) \
255 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
256 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
257 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258
259 struct header_ops {
260 int (*create) (struct sk_buff *skb, struct net_device *dev,
261 unsigned short type, const void *daddr,
262 const void *saddr, unsigned int len);
263 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
264 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
265 void (*cache_update)(struct hh_cache *hh,
266 const struct net_device *dev,
267 const unsigned char *haddr);
268 };
269
270 /* These flag bits are private to the generic network queueing
271 * layer, they may not be explicitly referenced by any other
272 * code.
273 */
274
275 enum netdev_state_t {
276 __LINK_STATE_START,
277 __LINK_STATE_PRESENT,
278 __LINK_STATE_NOCARRIER,
279 __LINK_STATE_LINKWATCH_PENDING,
280 __LINK_STATE_DORMANT,
281 };
282
283
284 /*
285 * This structure holds at boot time configured netdevice settings. They
286 * are then used in the device probing.
287 */
288 struct netdev_boot_setup {
289 char name[IFNAMSIZ];
290 struct ifmap map;
291 };
292 #define NETDEV_BOOT_SETUP_MAX 8
293
294 int __init netdev_boot_setup(char *str);
295
296 /*
297 * Structure for NAPI scheduling similar to tasklet but with weighting
298 */
299 struct napi_struct {
300 /* The poll_list must only be managed by the entity which
301 * changes the state of the NAPI_STATE_SCHED bit. This means
302 * whoever atomically sets that bit can add this napi_struct
303 * to the per-cpu poll_list, and whoever clears that bit
304 * can remove from the list right before clearing the bit.
305 */
306 struct list_head poll_list;
307
308 unsigned long state;
309 int weight;
310 unsigned int gro_count;
311 int (*poll)(struct napi_struct *, int);
312 #ifdef CONFIG_NETPOLL
313 spinlock_t poll_lock;
314 int poll_owner;
315 #endif
316 struct net_device *dev;
317 struct sk_buff *gro_list;
318 struct sk_buff *skb;
319 struct hrtimer timer;
320 struct list_head dev_list;
321 struct hlist_node napi_hash_node;
322 unsigned int napi_id;
323 };
324
325 enum {
326 NAPI_STATE_SCHED, /* Poll is scheduled */
327 NAPI_STATE_DISABLE, /* Disable pending */
328 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
329 NAPI_STATE_HASHED, /* In NAPI hash */
330 };
331
332 enum gro_result {
333 GRO_MERGED,
334 GRO_MERGED_FREE,
335 GRO_HELD,
336 GRO_NORMAL,
337 GRO_DROP,
338 };
339 typedef enum gro_result gro_result_t;
340
341 /*
342 * enum rx_handler_result - Possible return values for rx_handlers.
343 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
344 * further.
345 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
346 * case skb->dev was changed by rx_handler.
347 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
348 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
349 *
350 * rx_handlers are functions called from inside __netif_receive_skb(), to do
351 * special processing of the skb, prior to delivery to protocol handlers.
352 *
353 * Currently, a net_device can only have a single rx_handler registered. Trying
354 * to register a second rx_handler will return -EBUSY.
355 *
356 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
357 * To unregister a rx_handler on a net_device, use
358 * netdev_rx_handler_unregister().
359 *
360 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
361 * do with the skb.
362 *
363 * If the rx_handler consumed to skb in some way, it should return
364 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
365 * the skb to be delivered in some other ways.
366 *
367 * If the rx_handler changed skb->dev, to divert the skb to another
368 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
369 * new device will be called if it exists.
370 *
371 * If the rx_handler consider the skb should be ignored, it should return
372 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
373 * are registered on exact device (ptype->dev == skb->dev).
374 *
375 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
376 * delivered, it should return RX_HANDLER_PASS.
377 *
378 * A device without a registered rx_handler will behave as if rx_handler
379 * returned RX_HANDLER_PASS.
380 */
381
382 enum rx_handler_result {
383 RX_HANDLER_CONSUMED,
384 RX_HANDLER_ANOTHER,
385 RX_HANDLER_EXACT,
386 RX_HANDLER_PASS,
387 };
388 typedef enum rx_handler_result rx_handler_result_t;
389 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
390
391 void __napi_schedule(struct napi_struct *n);
392 void __napi_schedule_irqoff(struct napi_struct *n);
393
394 static inline bool napi_disable_pending(struct napi_struct *n)
395 {
396 return test_bit(NAPI_STATE_DISABLE, &n->state);
397 }
398
399 /**
400 * napi_schedule_prep - check if napi can be scheduled
401 * @n: napi context
402 *
403 * Test if NAPI routine is already running, and if not mark
404 * it as running. This is used as a condition variable
405 * insure only one NAPI poll instance runs. We also make
406 * sure there is no pending NAPI disable.
407 */
408 static inline bool napi_schedule_prep(struct napi_struct *n)
409 {
410 return !napi_disable_pending(n) &&
411 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
412 }
413
414 /**
415 * napi_schedule - schedule NAPI poll
416 * @n: napi context
417 *
418 * Schedule NAPI poll routine to be called if it is not already
419 * running.
420 */
421 static inline void napi_schedule(struct napi_struct *n)
422 {
423 if (napi_schedule_prep(n))
424 __napi_schedule(n);
425 }
426
427 /**
428 * napi_schedule_irqoff - schedule NAPI poll
429 * @n: napi context
430 *
431 * Variant of napi_schedule(), assuming hard irqs are masked.
432 */
433 static inline void napi_schedule_irqoff(struct napi_struct *n)
434 {
435 if (napi_schedule_prep(n))
436 __napi_schedule_irqoff(n);
437 }
438
439 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
440 static inline bool napi_reschedule(struct napi_struct *napi)
441 {
442 if (napi_schedule_prep(napi)) {
443 __napi_schedule(napi);
444 return true;
445 }
446 return false;
447 }
448
449 void __napi_complete(struct napi_struct *n);
450 void napi_complete_done(struct napi_struct *n, int work_done);
451 /**
452 * napi_complete - NAPI processing complete
453 * @n: napi context
454 *
455 * Mark NAPI processing as complete.
456 * Consider using napi_complete_done() instead.
457 */
458 static inline void napi_complete(struct napi_struct *n)
459 {
460 return napi_complete_done(n, 0);
461 }
462
463 /**
464 * napi_by_id - lookup a NAPI by napi_id
465 * @napi_id: hashed napi_id
466 *
467 * lookup @napi_id in napi_hash table
468 * must be called under rcu_read_lock()
469 */
470 struct napi_struct *napi_by_id(unsigned int napi_id);
471
472 /**
473 * napi_hash_add - add a NAPI to global hashtable
474 * @napi: napi context
475 *
476 * generate a new napi_id and store a @napi under it in napi_hash
477 */
478 void napi_hash_add(struct napi_struct *napi);
479
480 /**
481 * napi_hash_del - remove a NAPI from global table
482 * @napi: napi context
483 *
484 * Warning: caller must observe rcu grace period
485 * before freeing memory containing @napi
486 */
487 void napi_hash_del(struct napi_struct *napi);
488
489 /**
490 * napi_disable - prevent NAPI from scheduling
491 * @n: napi context
492 *
493 * Stop NAPI from being scheduled on this context.
494 * Waits till any outstanding processing completes.
495 */
496 void napi_disable(struct napi_struct *n);
497
498 /**
499 * napi_enable - enable NAPI scheduling
500 * @n: napi context
501 *
502 * Resume NAPI from being scheduled on this context.
503 * Must be paired with napi_disable.
504 */
505 static inline void napi_enable(struct napi_struct *n)
506 {
507 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
508 smp_mb__before_atomic();
509 clear_bit(NAPI_STATE_SCHED, &n->state);
510 clear_bit(NAPI_STATE_NPSVC, &n->state);
511 }
512
513 #ifdef CONFIG_SMP
514 /**
515 * napi_synchronize - wait until NAPI is not running
516 * @n: napi context
517 *
518 * Wait until NAPI is done being scheduled on this context.
519 * Waits till any outstanding processing completes but
520 * does not disable future activations.
521 */
522 static inline void napi_synchronize(const struct napi_struct *n)
523 {
524 while (test_bit(NAPI_STATE_SCHED, &n->state))
525 msleep(1);
526 }
527 #else
528 # define napi_synchronize(n) barrier()
529 #endif
530
531 enum netdev_queue_state_t {
532 __QUEUE_STATE_DRV_XOFF,
533 __QUEUE_STATE_STACK_XOFF,
534 __QUEUE_STATE_FROZEN,
535 };
536
537 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
538 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
539 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
540
541 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
542 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
543 QUEUE_STATE_FROZEN)
544 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
545 QUEUE_STATE_FROZEN)
546
547 /*
548 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
549 * netif_tx_* functions below are used to manipulate this flag. The
550 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
551 * queue independently. The netif_xmit_*stopped functions below are called
552 * to check if the queue has been stopped by the driver or stack (either
553 * of the XOFF bits are set in the state). Drivers should not need to call
554 * netif_xmit*stopped functions, they should only be using netif_tx_*.
555 */
556
557 struct netdev_queue {
558 /*
559 * read mostly part
560 */
561 struct net_device *dev;
562 struct Qdisc __rcu *qdisc;
563 struct Qdisc *qdisc_sleeping;
564 #ifdef CONFIG_SYSFS
565 struct kobject kobj;
566 #endif
567 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
568 int numa_node;
569 #endif
570 /*
571 * write mostly part
572 */
573 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
574 int xmit_lock_owner;
575 /*
576 * please use this field instead of dev->trans_start
577 */
578 unsigned long trans_start;
579
580 /*
581 * Number of TX timeouts for this queue
582 * (/sys/class/net/DEV/Q/trans_timeout)
583 */
584 unsigned long trans_timeout;
585
586 unsigned long state;
587
588 #ifdef CONFIG_BQL
589 struct dql dql;
590 #endif
591 unsigned long tx_maxrate;
592 } ____cacheline_aligned_in_smp;
593
594 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
595 {
596 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
597 return q->numa_node;
598 #else
599 return NUMA_NO_NODE;
600 #endif
601 }
602
603 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
604 {
605 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
606 q->numa_node = node;
607 #endif
608 }
609
610 #ifdef CONFIG_RPS
611 /*
612 * This structure holds an RPS map which can be of variable length. The
613 * map is an array of CPUs.
614 */
615 struct rps_map {
616 unsigned int len;
617 struct rcu_head rcu;
618 u16 cpus[0];
619 };
620 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
621
622 /*
623 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
624 * tail pointer for that CPU's input queue at the time of last enqueue, and
625 * a hardware filter index.
626 */
627 struct rps_dev_flow {
628 u16 cpu;
629 u16 filter;
630 unsigned int last_qtail;
631 };
632 #define RPS_NO_FILTER 0xffff
633
634 /*
635 * The rps_dev_flow_table structure contains a table of flow mappings.
636 */
637 struct rps_dev_flow_table {
638 unsigned int mask;
639 struct rcu_head rcu;
640 struct rps_dev_flow flows[0];
641 };
642 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
643 ((_num) * sizeof(struct rps_dev_flow)))
644
645 /*
646 * The rps_sock_flow_table contains mappings of flows to the last CPU
647 * on which they were processed by the application (set in recvmsg).
648 * Each entry is a 32bit value. Upper part is the high order bits
649 * of flow hash, lower part is cpu number.
650 * rps_cpu_mask is used to partition the space, depending on number of
651 * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
652 * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
653 * meaning we use 32-6=26 bits for the hash.
654 */
655 struct rps_sock_flow_table {
656 u32 mask;
657
658 u32 ents[0] ____cacheline_aligned_in_smp;
659 };
660 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
661
662 #define RPS_NO_CPU 0xffff
663
664 extern u32 rps_cpu_mask;
665 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
666
667 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
668 u32 hash)
669 {
670 if (table && hash) {
671 unsigned int index = hash & table->mask;
672 u32 val = hash & ~rps_cpu_mask;
673
674 /* We only give a hint, preemption can change cpu under us */
675 val |= raw_smp_processor_id();
676
677 if (table->ents[index] != val)
678 table->ents[index] = val;
679 }
680 }
681
682 #ifdef CONFIG_RFS_ACCEL
683 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
684 u16 filter_id);
685 #endif
686 #endif /* CONFIG_RPS */
687
688 /* This structure contains an instance of an RX queue. */
689 struct netdev_rx_queue {
690 #ifdef CONFIG_RPS
691 struct rps_map __rcu *rps_map;
692 struct rps_dev_flow_table __rcu *rps_flow_table;
693 #endif
694 struct kobject kobj;
695 struct net_device *dev;
696 } ____cacheline_aligned_in_smp;
697
698 /*
699 * RX queue sysfs structures and functions.
700 */
701 struct rx_queue_attribute {
702 struct attribute attr;
703 ssize_t (*show)(struct netdev_rx_queue *queue,
704 struct rx_queue_attribute *attr, char *buf);
705 ssize_t (*store)(struct netdev_rx_queue *queue,
706 struct rx_queue_attribute *attr, const char *buf, size_t len);
707 };
708
709 #ifdef CONFIG_XPS
710 /*
711 * This structure holds an XPS map which can be of variable length. The
712 * map is an array of queues.
713 */
714 struct xps_map {
715 unsigned int len;
716 unsigned int alloc_len;
717 struct rcu_head rcu;
718 u16 queues[0];
719 };
720 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
721 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
722 / sizeof(u16))
723
724 /*
725 * This structure holds all XPS maps for device. Maps are indexed by CPU.
726 */
727 struct xps_dev_maps {
728 struct rcu_head rcu;
729 struct xps_map __rcu *cpu_map[0];
730 };
731 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
732 (nr_cpu_ids * sizeof(struct xps_map *)))
733 #endif /* CONFIG_XPS */
734
735 #define TC_MAX_QUEUE 16
736 #define TC_BITMASK 15
737 /* HW offloaded queuing disciplines txq count and offset maps */
738 struct netdev_tc_txq {
739 u16 count;
740 u16 offset;
741 };
742
743 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
744 /*
745 * This structure is to hold information about the device
746 * configured to run FCoE protocol stack.
747 */
748 struct netdev_fcoe_hbainfo {
749 char manufacturer[64];
750 char serial_number[64];
751 char hardware_version[64];
752 char driver_version[64];
753 char optionrom_version[64];
754 char firmware_version[64];
755 char model[256];
756 char model_description[256];
757 };
758 #endif
759
760 #define MAX_PHYS_ITEM_ID_LEN 32
761
762 /* This structure holds a unique identifier to identify some
763 * physical item (port for example) used by a netdevice.
764 */
765 struct netdev_phys_item_id {
766 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
767 unsigned char id_len;
768 };
769
770 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
771 struct netdev_phys_item_id *b)
772 {
773 return a->id_len == b->id_len &&
774 memcmp(a->id, b->id, a->id_len) == 0;
775 }
776
777 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
778 struct sk_buff *skb);
779
780 /*
781 * This structure defines the management hooks for network devices.
782 * The following hooks can be defined; unless noted otherwise, they are
783 * optional and can be filled with a null pointer.
784 *
785 * int (*ndo_init)(struct net_device *dev);
786 * This function is called once when network device is registered.
787 * The network device can use this to any late stage initializaton
788 * or semantic validattion. It can fail with an error code which will
789 * be propogated back to register_netdev
790 *
791 * void (*ndo_uninit)(struct net_device *dev);
792 * This function is called when device is unregistered or when registration
793 * fails. It is not called if init fails.
794 *
795 * int (*ndo_open)(struct net_device *dev);
796 * This function is called when network device transistions to the up
797 * state.
798 *
799 * int (*ndo_stop)(struct net_device *dev);
800 * This function is called when network device transistions to the down
801 * state.
802 *
803 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
804 * struct net_device *dev);
805 * Called when a packet needs to be transmitted.
806 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
807 * the queue before that can happen; it's for obsolete devices and weird
808 * corner cases, but the stack really does a non-trivial amount
809 * of useless work if you return NETDEV_TX_BUSY.
810 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
811 * Required can not be NULL.
812 *
813 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
814 * void *accel_priv, select_queue_fallback_t fallback);
815 * Called to decide which queue to when device supports multiple
816 * transmit queues.
817 *
818 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
819 * This function is called to allow device receiver to make
820 * changes to configuration when multicast or promiscious is enabled.
821 *
822 * void (*ndo_set_rx_mode)(struct net_device *dev);
823 * This function is called device changes address list filtering.
824 * If driver handles unicast address filtering, it should set
825 * IFF_UNICAST_FLT to its priv_flags.
826 *
827 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
828 * This function is called when the Media Access Control address
829 * needs to be changed. If this interface is not defined, the
830 * mac address can not be changed.
831 *
832 * int (*ndo_validate_addr)(struct net_device *dev);
833 * Test if Media Access Control address is valid for the device.
834 *
835 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
836 * Called when a user request an ioctl which can't be handled by
837 * the generic interface code. If not defined ioctl's return
838 * not supported error code.
839 *
840 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
841 * Used to set network devices bus interface parameters. This interface
842 * is retained for legacy reason, new devices should use the bus
843 * interface (PCI) for low level management.
844 *
845 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
846 * Called when a user wants to change the Maximum Transfer Unit
847 * of a device. If not defined, any request to change MTU will
848 * will return an error.
849 *
850 * void (*ndo_tx_timeout)(struct net_device *dev);
851 * Callback uses when the transmitter has not made any progress
852 * for dev->watchdog ticks.
853 *
854 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
855 * struct rtnl_link_stats64 *storage);
856 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
857 * Called when a user wants to get the network device usage
858 * statistics. Drivers must do one of the following:
859 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
860 * rtnl_link_stats64 structure passed by the caller.
861 * 2. Define @ndo_get_stats to update a net_device_stats structure
862 * (which should normally be dev->stats) and return a pointer to
863 * it. The structure may be changed asynchronously only if each
864 * field is written atomically.
865 * 3. Update dev->stats asynchronously and atomically, and define
866 * neither operation.
867 *
868 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
869 * If device support VLAN filtering this function is called when a
870 * VLAN id is registered.
871 *
872 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
873 * If device support VLAN filtering this function is called when a
874 * VLAN id is unregistered.
875 *
876 * void (*ndo_poll_controller)(struct net_device *dev);
877 *
878 * SR-IOV management functions.
879 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
880 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
881 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
882 * int max_tx_rate);
883 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
884 * int (*ndo_get_vf_config)(struct net_device *dev,
885 * int vf, struct ifla_vf_info *ivf);
886 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
887 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
888 * struct nlattr *port[]);
889 *
890 * Enable or disable the VF ability to query its RSS Redirection Table and
891 * Hash Key. This is needed since on some devices VF share this information
892 * with PF and querying it may adduce a theoretical security risk.
893 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
894 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
895 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
896 * Called to setup 'tc' number of traffic classes in the net device. This
897 * is always called from the stack with the rtnl lock held and netif tx
898 * queues stopped. This allows the netdevice to perform queue management
899 * safely.
900 *
901 * Fiber Channel over Ethernet (FCoE) offload functions.
902 * int (*ndo_fcoe_enable)(struct net_device *dev);
903 * Called when the FCoE protocol stack wants to start using LLD for FCoE
904 * so the underlying device can perform whatever needed configuration or
905 * initialization to support acceleration of FCoE traffic.
906 *
907 * int (*ndo_fcoe_disable)(struct net_device *dev);
908 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
909 * so the underlying device can perform whatever needed clean-ups to
910 * stop supporting acceleration of FCoE traffic.
911 *
912 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
913 * struct scatterlist *sgl, unsigned int sgc);
914 * Called when the FCoE Initiator wants to initialize an I/O that
915 * is a possible candidate for Direct Data Placement (DDP). The LLD can
916 * perform necessary setup and returns 1 to indicate the device is set up
917 * successfully to perform DDP on this I/O, otherwise this returns 0.
918 *
919 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
920 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
921 * indicated by the FC exchange id 'xid', so the underlying device can
922 * clean up and reuse resources for later DDP requests.
923 *
924 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
925 * struct scatterlist *sgl, unsigned int sgc);
926 * Called when the FCoE Target wants to initialize an I/O that
927 * is a possible candidate for Direct Data Placement (DDP). The LLD can
928 * perform necessary setup and returns 1 to indicate the device is set up
929 * successfully to perform DDP on this I/O, otherwise this returns 0.
930 *
931 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
932 * struct netdev_fcoe_hbainfo *hbainfo);
933 * Called when the FCoE Protocol stack wants information on the underlying
934 * device. This information is utilized by the FCoE protocol stack to
935 * register attributes with Fiber Channel management service as per the
936 * FC-GS Fabric Device Management Information(FDMI) specification.
937 *
938 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
939 * Called when the underlying device wants to override default World Wide
940 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
941 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
942 * protocol stack to use.
943 *
944 * RFS acceleration.
945 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
946 * u16 rxq_index, u32 flow_id);
947 * Set hardware filter for RFS. rxq_index is the target queue index;
948 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
949 * Return the filter ID on success, or a negative error code.
950 *
951 * Slave management functions (for bridge, bonding, etc).
952 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
953 * Called to make another netdev an underling.
954 *
955 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
956 * Called to release previously enslaved netdev.
957 *
958 * Feature/offload setting functions.
959 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
960 * netdev_features_t features);
961 * Adjusts the requested feature flags according to device-specific
962 * constraints, and returns the resulting flags. Must not modify
963 * the device state.
964 *
965 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
966 * Called to update device configuration to new features. Passed
967 * feature set might be less than what was returned by ndo_fix_features()).
968 * Must return >0 or -errno if it changed dev->features itself.
969 *
970 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
971 * struct net_device *dev,
972 * const unsigned char *addr, u16 vid, u16 flags)
973 * Adds an FDB entry to dev for addr.
974 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
975 * struct net_device *dev,
976 * const unsigned char *addr, u16 vid)
977 * Deletes the FDB entry from dev coresponding to addr.
978 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
979 * struct net_device *dev, struct net_device *filter_dev,
980 * int idx)
981 * Used to add FDB entries to dump requests. Implementers should add
982 * entries to skb and update idx with the number of entries.
983 *
984 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
985 * u16 flags)
986 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
987 * struct net_device *dev, u32 filter_mask,
988 * int nlflags)
989 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
990 * u16 flags);
991 *
992 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
993 * Called to change device carrier. Soft-devices (like dummy, team, etc)
994 * which do not represent real hardware may define this to allow their
995 * userspace components to manage their virtual carrier state. Devices
996 * that determine carrier state from physical hardware properties (eg
997 * network cables) or protocol-dependent mechanisms (eg
998 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
999 *
1000 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1001 * struct netdev_phys_item_id *ppid);
1002 * Called to get ID of physical port of this device. If driver does
1003 * not implement this, it is assumed that the hw is not able to have
1004 * multiple net devices on single physical port.
1005 *
1006 * void (*ndo_add_vxlan_port)(struct net_device *dev,
1007 * sa_family_t sa_family, __be16 port);
1008 * Called by vxlan to notiy a driver about the UDP port and socket
1009 * address family that vxlan is listnening to. It is called only when
1010 * a new port starts listening. The operation is protected by the
1011 * vxlan_net->sock_lock.
1012 *
1013 * void (*ndo_del_vxlan_port)(struct net_device *dev,
1014 * sa_family_t sa_family, __be16 port);
1015 * Called by vxlan to notify the driver about a UDP port and socket
1016 * address family that vxlan is not listening to anymore. The operation
1017 * is protected by the vxlan_net->sock_lock.
1018 *
1019 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1020 * struct net_device *dev)
1021 * Called by upper layer devices to accelerate switching or other
1022 * station functionality into hardware. 'pdev is the lowerdev
1023 * to use for the offload and 'dev' is the net device that will
1024 * back the offload. Returns a pointer to the private structure
1025 * the upper layer will maintain.
1026 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1027 * Called by upper layer device to delete the station created
1028 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1029 * the station and priv is the structure returned by the add
1030 * operation.
1031 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1032 * struct net_device *dev,
1033 * void *priv);
1034 * Callback to use for xmit over the accelerated station. This
1035 * is used in place of ndo_start_xmit on accelerated net
1036 * devices.
1037 * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1038 * struct net_device *dev
1039 * netdev_features_t features);
1040 * Called by core transmit path to determine if device is capable of
1041 * performing offload operations on a given packet. This is to give
1042 * the device an opportunity to implement any restrictions that cannot
1043 * be otherwise expressed by feature flags. The check is called with
1044 * the set of features that the stack has calculated and it returns
1045 * those the driver believes to be appropriate.
1046 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1047 * int queue_index, u32 maxrate);
1048 * Called when a user wants to set a max-rate limitation of specific
1049 * TX queue.
1050 * int (*ndo_get_iflink)(const struct net_device *dev);
1051 * Called to get the iflink value of this device.
1052 * void (*ndo_change_proto_down)(struct net_device *dev,
1053 * bool proto_down);
1054 * This function is used to pass protocol port error state information
1055 * to the switch driver. The switch driver can react to the proto_down
1056 * by doing a phys down on the associated switch port.
1057 *
1058 */
1059 struct net_device_ops {
1060 int (*ndo_init)(struct net_device *dev);
1061 void (*ndo_uninit)(struct net_device *dev);
1062 int (*ndo_open)(struct net_device *dev);
1063 int (*ndo_stop)(struct net_device *dev);
1064 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
1065 struct net_device *dev);
1066 u16 (*ndo_select_queue)(struct net_device *dev,
1067 struct sk_buff *skb,
1068 void *accel_priv,
1069 select_queue_fallback_t fallback);
1070 void (*ndo_change_rx_flags)(struct net_device *dev,
1071 int flags);
1072 void (*ndo_set_rx_mode)(struct net_device *dev);
1073 int (*ndo_set_mac_address)(struct net_device *dev,
1074 void *addr);
1075 int (*ndo_validate_addr)(struct net_device *dev);
1076 int (*ndo_do_ioctl)(struct net_device *dev,
1077 struct ifreq *ifr, int cmd);
1078 int (*ndo_set_config)(struct net_device *dev,
1079 struct ifmap *map);
1080 int (*ndo_change_mtu)(struct net_device *dev,
1081 int new_mtu);
1082 int (*ndo_neigh_setup)(struct net_device *dev,
1083 struct neigh_parms *);
1084 void (*ndo_tx_timeout) (struct net_device *dev);
1085
1086 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1087 struct rtnl_link_stats64 *storage);
1088 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1089
1090 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1091 __be16 proto, u16 vid);
1092 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1093 __be16 proto, u16 vid);
1094 #ifdef CONFIG_NET_POLL_CONTROLLER
1095 void (*ndo_poll_controller)(struct net_device *dev);
1096 int (*ndo_netpoll_setup)(struct net_device *dev,
1097 struct netpoll_info *info);
1098 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1099 #endif
1100 #ifdef CONFIG_NET_RX_BUSY_POLL
1101 int (*ndo_busy_poll)(struct napi_struct *dev);
1102 #endif
1103 int (*ndo_set_vf_mac)(struct net_device *dev,
1104 int queue, u8 *mac);
1105 int (*ndo_set_vf_vlan)(struct net_device *dev,
1106 int queue, u16 vlan, u8 qos);
1107 int (*ndo_set_vf_rate)(struct net_device *dev,
1108 int vf, int min_tx_rate,
1109 int max_tx_rate);
1110 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1111 int vf, bool setting);
1112 int (*ndo_get_vf_config)(struct net_device *dev,
1113 int vf,
1114 struct ifla_vf_info *ivf);
1115 int (*ndo_set_vf_link_state)(struct net_device *dev,
1116 int vf, int link_state);
1117 int (*ndo_get_vf_stats)(struct net_device *dev,
1118 int vf,
1119 struct ifla_vf_stats
1120 *vf_stats);
1121 int (*ndo_set_vf_port)(struct net_device *dev,
1122 int vf,
1123 struct nlattr *port[]);
1124 int (*ndo_get_vf_port)(struct net_device *dev,
1125 int vf, struct sk_buff *skb);
1126 int (*ndo_set_vf_rss_query_en)(
1127 struct net_device *dev,
1128 int vf, bool setting);
1129 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1130 #if IS_ENABLED(CONFIG_FCOE)
1131 int (*ndo_fcoe_enable)(struct net_device *dev);
1132 int (*ndo_fcoe_disable)(struct net_device *dev);
1133 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1134 u16 xid,
1135 struct scatterlist *sgl,
1136 unsigned int sgc);
1137 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1138 u16 xid);
1139 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1140 u16 xid,
1141 struct scatterlist *sgl,
1142 unsigned int sgc);
1143 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1144 struct netdev_fcoe_hbainfo *hbainfo);
1145 #endif
1146
1147 #if IS_ENABLED(CONFIG_LIBFCOE)
1148 #define NETDEV_FCOE_WWNN 0
1149 #define NETDEV_FCOE_WWPN 1
1150 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1151 u64 *wwn, int type);
1152 #endif
1153
1154 #ifdef CONFIG_RFS_ACCEL
1155 int (*ndo_rx_flow_steer)(struct net_device *dev,
1156 const struct sk_buff *skb,
1157 u16 rxq_index,
1158 u32 flow_id);
1159 #endif
1160 int (*ndo_add_slave)(struct net_device *dev,
1161 struct net_device *slave_dev);
1162 int (*ndo_del_slave)(struct net_device *dev,
1163 struct net_device *slave_dev);
1164 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1165 netdev_features_t features);
1166 int (*ndo_set_features)(struct net_device *dev,
1167 netdev_features_t features);
1168 int (*ndo_neigh_construct)(struct neighbour *n);
1169 void (*ndo_neigh_destroy)(struct neighbour *n);
1170
1171 int (*ndo_fdb_add)(struct ndmsg *ndm,
1172 struct nlattr *tb[],
1173 struct net_device *dev,
1174 const unsigned char *addr,
1175 u16 vid,
1176 u16 flags);
1177 int (*ndo_fdb_del)(struct ndmsg *ndm,
1178 struct nlattr *tb[],
1179 struct net_device *dev,
1180 const unsigned char *addr,
1181 u16 vid);
1182 int (*ndo_fdb_dump)(struct sk_buff *skb,
1183 struct netlink_callback *cb,
1184 struct net_device *dev,
1185 struct net_device *filter_dev,
1186 int idx);
1187
1188 int (*ndo_bridge_setlink)(struct net_device *dev,
1189 struct nlmsghdr *nlh,
1190 u16 flags);
1191 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1192 u32 pid, u32 seq,
1193 struct net_device *dev,
1194 u32 filter_mask,
1195 int nlflags);
1196 int (*ndo_bridge_dellink)(struct net_device *dev,
1197 struct nlmsghdr *nlh,
1198 u16 flags);
1199 int (*ndo_change_carrier)(struct net_device *dev,
1200 bool new_carrier);
1201 int (*ndo_get_phys_port_id)(struct net_device *dev,
1202 struct netdev_phys_item_id *ppid);
1203 int (*ndo_get_phys_port_name)(struct net_device *dev,
1204 char *name, size_t len);
1205 void (*ndo_add_vxlan_port)(struct net_device *dev,
1206 sa_family_t sa_family,
1207 __be16 port);
1208 void (*ndo_del_vxlan_port)(struct net_device *dev,
1209 sa_family_t sa_family,
1210 __be16 port);
1211
1212 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1213 struct net_device *dev);
1214 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1215 void *priv);
1216
1217 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1218 struct net_device *dev,
1219 void *priv);
1220 int (*ndo_get_lock_subclass)(struct net_device *dev);
1221 netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1222 struct net_device *dev,
1223 netdev_features_t features);
1224 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1225 int queue_index,
1226 u32 maxrate);
1227 int (*ndo_get_iflink)(const struct net_device *dev);
1228 int (*ndo_change_proto_down)(struct net_device *dev,
1229 bool proto_down);
1230 };
1231
1232 /**
1233 * enum net_device_priv_flags - &struct net_device priv_flags
1234 *
1235 * These are the &struct net_device, they are only set internally
1236 * by drivers and used in the kernel. These flags are invisible to
1237 * userspace, this means that the order of these flags can change
1238 * during any kernel release.
1239 *
1240 * You should have a pretty good reason to be extending these flags.
1241 *
1242 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1243 * @IFF_EBRIDGE: Ethernet bridging device
1244 * @IFF_BONDING: bonding master or slave
1245 * @IFF_ISATAP: ISATAP interface (RFC4214)
1246 * @IFF_WAN_HDLC: WAN HDLC device
1247 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1248 * release skb->dst
1249 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1250 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1251 * @IFF_MACVLAN_PORT: device used as macvlan port
1252 * @IFF_BRIDGE_PORT: device used as bridge port
1253 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1254 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1255 * @IFF_UNICAST_FLT: Supports unicast filtering
1256 * @IFF_TEAM_PORT: device used as team port
1257 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1258 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1259 * change when it's running
1260 * @IFF_MACVLAN: Macvlan device
1261 * @IFF_L3MDEV_MASTER: device is an L3 master device
1262 * @IFF_NO_QUEUE: device can run without qdisc attached
1263 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1264 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1265 */
1266 enum netdev_priv_flags {
1267 IFF_802_1Q_VLAN = 1<<0,
1268 IFF_EBRIDGE = 1<<1,
1269 IFF_BONDING = 1<<2,
1270 IFF_ISATAP = 1<<3,
1271 IFF_WAN_HDLC = 1<<4,
1272 IFF_XMIT_DST_RELEASE = 1<<5,
1273 IFF_DONT_BRIDGE = 1<<6,
1274 IFF_DISABLE_NETPOLL = 1<<7,
1275 IFF_MACVLAN_PORT = 1<<8,
1276 IFF_BRIDGE_PORT = 1<<9,
1277 IFF_OVS_DATAPATH = 1<<10,
1278 IFF_TX_SKB_SHARING = 1<<11,
1279 IFF_UNICAST_FLT = 1<<12,
1280 IFF_TEAM_PORT = 1<<13,
1281 IFF_SUPP_NOFCS = 1<<14,
1282 IFF_LIVE_ADDR_CHANGE = 1<<15,
1283 IFF_MACVLAN = 1<<16,
1284 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1285 IFF_IPVLAN_MASTER = 1<<18,
1286 IFF_IPVLAN_SLAVE = 1<<19,
1287 IFF_L3MDEV_MASTER = 1<<20,
1288 IFF_NO_QUEUE = 1<<21,
1289 IFF_OPENVSWITCH = 1<<22,
1290 IFF_L3MDEV_SLAVE = 1<<23,
1291 };
1292
1293 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1294 #define IFF_EBRIDGE IFF_EBRIDGE
1295 #define IFF_BONDING IFF_BONDING
1296 #define IFF_ISATAP IFF_ISATAP
1297 #define IFF_WAN_HDLC IFF_WAN_HDLC
1298 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1299 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1300 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1301 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1302 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1303 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1304 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1305 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1306 #define IFF_TEAM_PORT IFF_TEAM_PORT
1307 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1308 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1309 #define IFF_MACVLAN IFF_MACVLAN
1310 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1311 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER
1312 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE
1313 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1314 #define IFF_NO_QUEUE IFF_NO_QUEUE
1315 #define IFF_OPENVSWITCH IFF_OPENVSWITCH
1316
1317 /**
1318 * struct net_device - The DEVICE structure.
1319 * Actually, this whole structure is a big mistake. It mixes I/O
1320 * data with strictly "high-level" data, and it has to know about
1321 * almost every data structure used in the INET module.
1322 *
1323 * @name: This is the first field of the "visible" part of this structure
1324 * (i.e. as seen by users in the "Space.c" file). It is the name
1325 * of the interface.
1326 *
1327 * @name_hlist: Device name hash chain, please keep it close to name[]
1328 * @ifalias: SNMP alias
1329 * @mem_end: Shared memory end
1330 * @mem_start: Shared memory start
1331 * @base_addr: Device I/O address
1332 * @irq: Device IRQ number
1333 *
1334 * @carrier_changes: Stats to monitor carrier on<->off transitions
1335 *
1336 * @state: Generic network queuing layer state, see netdev_state_t
1337 * @dev_list: The global list of network devices
1338 * @napi_list: List entry, that is used for polling napi devices
1339 * @unreg_list: List entry, that is used, when we are unregistering the
1340 * device, see the function unregister_netdev
1341 * @close_list: List entry, that is used, when we are closing the device
1342 *
1343 * @adj_list: Directly linked devices, like slaves for bonding
1344 * @all_adj_list: All linked devices, *including* neighbours
1345 * @features: Currently active device features
1346 * @hw_features: User-changeable features
1347 *
1348 * @wanted_features: User-requested features
1349 * @vlan_features: Mask of features inheritable by VLAN devices
1350 *
1351 * @hw_enc_features: Mask of features inherited by encapsulating devices
1352 * This field indicates what encapsulation
1353 * offloads the hardware is capable of doing,
1354 * and drivers will need to set them appropriately.
1355 *
1356 * @mpls_features: Mask of features inheritable by MPLS
1357 *
1358 * @ifindex: interface index
1359 * @group: The group, that the device belongs to
1360 *
1361 * @stats: Statistics struct, which was left as a legacy, use
1362 * rtnl_link_stats64 instead
1363 *
1364 * @rx_dropped: Dropped packets by core network,
1365 * do not use this in drivers
1366 * @tx_dropped: Dropped packets by core network,
1367 * do not use this in drivers
1368 *
1369 * @wireless_handlers: List of functions to handle Wireless Extensions,
1370 * instead of ioctl,
1371 * see <net/iw_handler.h> for details.
1372 * @wireless_data: Instance data managed by the core of wireless extensions
1373 *
1374 * @netdev_ops: Includes several pointers to callbacks,
1375 * if one wants to override the ndo_*() functions
1376 * @ethtool_ops: Management operations
1377 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1378 * of Layer 2 headers.
1379 *
1380 * @flags: Interface flags (a la BSD)
1381 * @priv_flags: Like 'flags' but invisible to userspace,
1382 * see if.h for the definitions
1383 * @gflags: Global flags ( kept as legacy )
1384 * @padded: How much padding added by alloc_netdev()
1385 * @operstate: RFC2863 operstate
1386 * @link_mode: Mapping policy to operstate
1387 * @if_port: Selectable AUI, TP, ...
1388 * @dma: DMA channel
1389 * @mtu: Interface MTU value
1390 * @type: Interface hardware type
1391 * @hard_header_len: Hardware header length
1392 *
1393 * @needed_headroom: Extra headroom the hardware may need, but not in all
1394 * cases can this be guaranteed
1395 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1396 * cases can this be guaranteed. Some cases also use
1397 * LL_MAX_HEADER instead to allocate the skb
1398 *
1399 * interface address info:
1400 *
1401 * @perm_addr: Permanent hw address
1402 * @addr_assign_type: Hw address assignment type
1403 * @addr_len: Hardware address length
1404 * @neigh_priv_len; Used in neigh_alloc(),
1405 * initialized only in atm/clip.c
1406 * @dev_id: Used to differentiate devices that share
1407 * the same link layer address
1408 * @dev_port: Used to differentiate devices that share
1409 * the same function
1410 * @addr_list_lock: XXX: need comments on this one
1411 * @uc_promisc: Counter, that indicates, that promiscuous mode
1412 * has been enabled due to the need to listen to
1413 * additional unicast addresses in a device that
1414 * does not implement ndo_set_rx_mode()
1415 * @uc: unicast mac addresses
1416 * @mc: multicast mac addresses
1417 * @dev_addrs: list of device hw addresses
1418 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1419 * @promiscuity: Number of times, the NIC is told to work in
1420 * Promiscuous mode, if it becomes 0 the NIC will
1421 * exit from working in Promiscuous mode
1422 * @allmulti: Counter, enables or disables allmulticast mode
1423 *
1424 * @vlan_info: VLAN info
1425 * @dsa_ptr: dsa specific data
1426 * @tipc_ptr: TIPC specific data
1427 * @atalk_ptr: AppleTalk link
1428 * @ip_ptr: IPv4 specific data
1429 * @dn_ptr: DECnet specific data
1430 * @ip6_ptr: IPv6 specific data
1431 * @ax25_ptr: AX.25 specific data
1432 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1433 *
1434 * @last_rx: Time of last Rx
1435 * @dev_addr: Hw address (before bcast,
1436 * because most packets are unicast)
1437 *
1438 * @_rx: Array of RX queues
1439 * @num_rx_queues: Number of RX queues
1440 * allocated at register_netdev() time
1441 * @real_num_rx_queues: Number of RX queues currently active in device
1442 *
1443 * @rx_handler: handler for received packets
1444 * @rx_handler_data: XXX: need comments on this one
1445 * @ingress_queue: XXX: need comments on this one
1446 * @broadcast: hw bcast address
1447 *
1448 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1449 * indexed by RX queue number. Assigned by driver.
1450 * This must only be set if the ndo_rx_flow_steer
1451 * operation is defined
1452 * @index_hlist: Device index hash chain
1453 *
1454 * @_tx: Array of TX queues
1455 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1456 * @real_num_tx_queues: Number of TX queues currently active in device
1457 * @qdisc: Root qdisc from userspace point of view
1458 * @tx_queue_len: Max frames per queue allowed
1459 * @tx_global_lock: XXX: need comments on this one
1460 *
1461 * @xps_maps: XXX: need comments on this one
1462 *
1463 * @offload_fwd_mark: Offload device fwding mark
1464 *
1465 * @trans_start: Time (in jiffies) of last Tx
1466 * @watchdog_timeo: Represents the timeout that is used by
1467 * the watchdog ( see dev_watchdog() )
1468 * @watchdog_timer: List of timers
1469 *
1470 * @pcpu_refcnt: Number of references to this device
1471 * @todo_list: Delayed register/unregister
1472 * @link_watch_list: XXX: need comments on this one
1473 *
1474 * @reg_state: Register/unregister state machine
1475 * @dismantle: Device is going to be freed
1476 * @rtnl_link_state: This enum represents the phases of creating
1477 * a new link
1478 *
1479 * @destructor: Called from unregister,
1480 * can be used to call free_netdev
1481 * @npinfo: XXX: need comments on this one
1482 * @nd_net: Network namespace this network device is inside
1483 *
1484 * @ml_priv: Mid-layer private
1485 * @lstats: Loopback statistics
1486 * @tstats: Tunnel statistics
1487 * @dstats: Dummy statistics
1488 * @vstats: Virtual ethernet statistics
1489 *
1490 * @garp_port: GARP
1491 * @mrp_port: MRP
1492 *
1493 * @dev: Class/net/name entry
1494 * @sysfs_groups: Space for optional device, statistics and wireless
1495 * sysfs groups
1496 *
1497 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1498 * @rtnl_link_ops: Rtnl_link_ops
1499 *
1500 * @gso_max_size: Maximum size of generic segmentation offload
1501 * @gso_max_segs: Maximum number of segments that can be passed to the
1502 * NIC for GSO
1503 * @gso_min_segs: Minimum number of segments that can be passed to the
1504 * NIC for GSO
1505 *
1506 * @dcbnl_ops: Data Center Bridging netlink ops
1507 * @num_tc: Number of traffic classes in the net device
1508 * @tc_to_txq: XXX: need comments on this one
1509 * @prio_tc_map XXX: need comments on this one
1510 *
1511 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1512 *
1513 * @priomap: XXX: need comments on this one
1514 * @phydev: Physical device may attach itself
1515 * for hardware timestamping
1516 *
1517 * @qdisc_tx_busylock: XXX: need comments on this one
1518 *
1519 * @proto_down: protocol port state information can be sent to the
1520 * switch driver and used to set the phys state of the
1521 * switch port.
1522 *
1523 * FIXME: cleanup struct net_device such that network protocol info
1524 * moves out.
1525 */
1526
1527 struct net_device {
1528 char name[IFNAMSIZ];
1529 struct hlist_node name_hlist;
1530 char *ifalias;
1531 /*
1532 * I/O specific fields
1533 * FIXME: Merge these and struct ifmap into one
1534 */
1535 unsigned long mem_end;
1536 unsigned long mem_start;
1537 unsigned long base_addr;
1538 int irq;
1539
1540 atomic_t carrier_changes;
1541
1542 /*
1543 * Some hardware also needs these fields (state,dev_list,
1544 * napi_list,unreg_list,close_list) but they are not
1545 * part of the usual set specified in Space.c.
1546 */
1547
1548 unsigned long state;
1549
1550 struct list_head dev_list;
1551 struct list_head napi_list;
1552 struct list_head unreg_list;
1553 struct list_head close_list;
1554 struct list_head ptype_all;
1555 struct list_head ptype_specific;
1556
1557 struct {
1558 struct list_head upper;
1559 struct list_head lower;
1560 } adj_list;
1561
1562 struct {
1563 struct list_head upper;
1564 struct list_head lower;
1565 } all_adj_list;
1566
1567 netdev_features_t features;
1568 netdev_features_t hw_features;
1569 netdev_features_t wanted_features;
1570 netdev_features_t vlan_features;
1571 netdev_features_t hw_enc_features;
1572 netdev_features_t mpls_features;
1573
1574 int ifindex;
1575 int group;
1576
1577 struct net_device_stats stats;
1578
1579 atomic_long_t rx_dropped;
1580 atomic_long_t tx_dropped;
1581
1582 #ifdef CONFIG_WIRELESS_EXT
1583 const struct iw_handler_def * wireless_handlers;
1584 struct iw_public_data * wireless_data;
1585 #endif
1586 const struct net_device_ops *netdev_ops;
1587 const struct ethtool_ops *ethtool_ops;
1588 #ifdef CONFIG_NET_SWITCHDEV
1589 const struct switchdev_ops *switchdev_ops;
1590 #endif
1591 #ifdef CONFIG_NET_L3_MASTER_DEV
1592 const struct l3mdev_ops *l3mdev_ops;
1593 #endif
1594
1595 const struct header_ops *header_ops;
1596
1597 unsigned int flags;
1598 unsigned int priv_flags;
1599
1600 unsigned short gflags;
1601 unsigned short padded;
1602
1603 unsigned char operstate;
1604 unsigned char link_mode;
1605
1606 unsigned char if_port;
1607 unsigned char dma;
1608
1609 unsigned int mtu;
1610 unsigned short type;
1611 unsigned short hard_header_len;
1612
1613 unsigned short needed_headroom;
1614 unsigned short needed_tailroom;
1615
1616 /* Interface address info. */
1617 unsigned char perm_addr[MAX_ADDR_LEN];
1618 unsigned char addr_assign_type;
1619 unsigned char addr_len;
1620 unsigned short neigh_priv_len;
1621 unsigned short dev_id;
1622 unsigned short dev_port;
1623 spinlock_t addr_list_lock;
1624 unsigned char name_assign_type;
1625 bool uc_promisc;
1626 struct netdev_hw_addr_list uc;
1627 struct netdev_hw_addr_list mc;
1628 struct netdev_hw_addr_list dev_addrs;
1629
1630 #ifdef CONFIG_SYSFS
1631 struct kset *queues_kset;
1632 #endif
1633 unsigned int promiscuity;
1634 unsigned int allmulti;
1635
1636
1637 /* Protocol specific pointers */
1638
1639 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1640 struct vlan_info __rcu *vlan_info;
1641 #endif
1642 #if IS_ENABLED(CONFIG_NET_DSA)
1643 struct dsa_switch_tree *dsa_ptr;
1644 #endif
1645 #if IS_ENABLED(CONFIG_TIPC)
1646 struct tipc_bearer __rcu *tipc_ptr;
1647 #endif
1648 void *atalk_ptr;
1649 struct in_device __rcu *ip_ptr;
1650 struct dn_dev __rcu *dn_ptr;
1651 struct inet6_dev __rcu *ip6_ptr;
1652 void *ax25_ptr;
1653 struct wireless_dev *ieee80211_ptr;
1654 struct wpan_dev *ieee802154_ptr;
1655 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1656 struct mpls_dev __rcu *mpls_ptr;
1657 #endif
1658
1659 /*
1660 * Cache lines mostly used on receive path (including eth_type_trans())
1661 */
1662 unsigned long last_rx;
1663
1664 /* Interface address info used in eth_type_trans() */
1665 unsigned char *dev_addr;
1666
1667
1668 #ifdef CONFIG_SYSFS
1669 struct netdev_rx_queue *_rx;
1670
1671 unsigned int num_rx_queues;
1672 unsigned int real_num_rx_queues;
1673
1674 #endif
1675
1676 unsigned long gro_flush_timeout;
1677 rx_handler_func_t __rcu *rx_handler;
1678 void __rcu *rx_handler_data;
1679
1680 #ifdef CONFIG_NET_CLS_ACT
1681 struct tcf_proto __rcu *ingress_cl_list;
1682 #endif
1683 struct netdev_queue __rcu *ingress_queue;
1684 #ifdef CONFIG_NETFILTER_INGRESS
1685 struct list_head nf_hooks_ingress;
1686 #endif
1687
1688 unsigned char broadcast[MAX_ADDR_LEN];
1689 #ifdef CONFIG_RFS_ACCEL
1690 struct cpu_rmap *rx_cpu_rmap;
1691 #endif
1692 struct hlist_node index_hlist;
1693
1694 /*
1695 * Cache lines mostly used on transmit path
1696 */
1697 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1698 unsigned int num_tx_queues;
1699 unsigned int real_num_tx_queues;
1700 struct Qdisc *qdisc;
1701 unsigned long tx_queue_len;
1702 spinlock_t tx_global_lock;
1703 int watchdog_timeo;
1704
1705 #ifdef CONFIG_XPS
1706 struct xps_dev_maps __rcu *xps_maps;
1707 #endif
1708
1709 #ifdef CONFIG_NET_SWITCHDEV
1710 u32 offload_fwd_mark;
1711 #endif
1712
1713 /* These may be needed for future network-power-down code. */
1714
1715 /*
1716 * trans_start here is expensive for high speed devices on SMP,
1717 * please use netdev_queue->trans_start instead.
1718 */
1719 unsigned long trans_start;
1720
1721 struct timer_list watchdog_timer;
1722
1723 int __percpu *pcpu_refcnt;
1724 struct list_head todo_list;
1725
1726 struct list_head link_watch_list;
1727
1728 enum { NETREG_UNINITIALIZED=0,
1729 NETREG_REGISTERED, /* completed register_netdevice */
1730 NETREG_UNREGISTERING, /* called unregister_netdevice */
1731 NETREG_UNREGISTERED, /* completed unregister todo */
1732 NETREG_RELEASED, /* called free_netdev */
1733 NETREG_DUMMY, /* dummy device for NAPI poll */
1734 } reg_state:8;
1735
1736 bool dismantle;
1737
1738 enum {
1739 RTNL_LINK_INITIALIZED,
1740 RTNL_LINK_INITIALIZING,
1741 } rtnl_link_state:16;
1742
1743 void (*destructor)(struct net_device *dev);
1744
1745 #ifdef CONFIG_NETPOLL
1746 struct netpoll_info __rcu *npinfo;
1747 #endif
1748
1749 possible_net_t nd_net;
1750
1751 /* mid-layer private */
1752 union {
1753 void *ml_priv;
1754 struct pcpu_lstats __percpu *lstats;
1755 struct pcpu_sw_netstats __percpu *tstats;
1756 struct pcpu_dstats __percpu *dstats;
1757 struct pcpu_vstats __percpu *vstats;
1758 };
1759
1760 struct garp_port __rcu *garp_port;
1761 struct mrp_port __rcu *mrp_port;
1762
1763 struct device dev;
1764 const struct attribute_group *sysfs_groups[4];
1765 const struct attribute_group *sysfs_rx_queue_group;
1766
1767 const struct rtnl_link_ops *rtnl_link_ops;
1768
1769 /* for setting kernel sock attribute on TCP connection setup */
1770 #define GSO_MAX_SIZE 65536
1771 unsigned int gso_max_size;
1772 #define GSO_MAX_SEGS 65535
1773 u16 gso_max_segs;
1774 u16 gso_min_segs;
1775 #ifdef CONFIG_DCB
1776 const struct dcbnl_rtnl_ops *dcbnl_ops;
1777 #endif
1778 u8 num_tc;
1779 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1780 u8 prio_tc_map[TC_BITMASK + 1];
1781
1782 #if IS_ENABLED(CONFIG_FCOE)
1783 unsigned int fcoe_ddp_xid;
1784 #endif
1785 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1786 struct netprio_map __rcu *priomap;
1787 #endif
1788 struct phy_device *phydev;
1789 struct lock_class_key *qdisc_tx_busylock;
1790 bool proto_down;
1791 };
1792 #define to_net_dev(d) container_of(d, struct net_device, dev)
1793
1794 #define NETDEV_ALIGN 32
1795
1796 static inline
1797 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1798 {
1799 return dev->prio_tc_map[prio & TC_BITMASK];
1800 }
1801
1802 static inline
1803 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1804 {
1805 if (tc >= dev->num_tc)
1806 return -EINVAL;
1807
1808 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1809 return 0;
1810 }
1811
1812 static inline
1813 void netdev_reset_tc(struct net_device *dev)
1814 {
1815 dev->num_tc = 0;
1816 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1817 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1818 }
1819
1820 static inline
1821 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1822 {
1823 if (tc >= dev->num_tc)
1824 return -EINVAL;
1825
1826 dev->tc_to_txq[tc].count = count;
1827 dev->tc_to_txq[tc].offset = offset;
1828 return 0;
1829 }
1830
1831 static inline
1832 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1833 {
1834 if (num_tc > TC_MAX_QUEUE)
1835 return -EINVAL;
1836
1837 dev->num_tc = num_tc;
1838 return 0;
1839 }
1840
1841 static inline
1842 int netdev_get_num_tc(struct net_device *dev)
1843 {
1844 return dev->num_tc;
1845 }
1846
1847 static inline
1848 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1849 unsigned int index)
1850 {
1851 return &dev->_tx[index];
1852 }
1853
1854 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1855 const struct sk_buff *skb)
1856 {
1857 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1858 }
1859
1860 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1861 void (*f)(struct net_device *,
1862 struct netdev_queue *,
1863 void *),
1864 void *arg)
1865 {
1866 unsigned int i;
1867
1868 for (i = 0; i < dev->num_tx_queues; i++)
1869 f(dev, &dev->_tx[i], arg);
1870 }
1871
1872 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1873 struct sk_buff *skb,
1874 void *accel_priv);
1875
1876 /*
1877 * Net namespace inlines
1878 */
1879 static inline
1880 struct net *dev_net(const struct net_device *dev)
1881 {
1882 return read_pnet(&dev->nd_net);
1883 }
1884
1885 static inline
1886 void dev_net_set(struct net_device *dev, struct net *net)
1887 {
1888 write_pnet(&dev->nd_net, net);
1889 }
1890
1891 static inline bool netdev_uses_dsa(struct net_device *dev)
1892 {
1893 #if IS_ENABLED(CONFIG_NET_DSA)
1894 if (dev->dsa_ptr != NULL)
1895 return dsa_uses_tagged_protocol(dev->dsa_ptr);
1896 #endif
1897 return false;
1898 }
1899
1900 /**
1901 * netdev_priv - access network device private data
1902 * @dev: network device
1903 *
1904 * Get network device private data
1905 */
1906 static inline void *netdev_priv(const struct net_device *dev)
1907 {
1908 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1909 }
1910
1911 /* Set the sysfs physical device reference for the network logical device
1912 * if set prior to registration will cause a symlink during initialization.
1913 */
1914 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1915
1916 /* Set the sysfs device type for the network logical device to allow
1917 * fine-grained identification of different network device types. For
1918 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1919 */
1920 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1921
1922 /* Default NAPI poll() weight
1923 * Device drivers are strongly advised to not use bigger value
1924 */
1925 #define NAPI_POLL_WEIGHT 64
1926
1927 /**
1928 * netif_napi_add - initialize a napi context
1929 * @dev: network device
1930 * @napi: napi context
1931 * @poll: polling function
1932 * @weight: default weight
1933 *
1934 * netif_napi_add() must be used to initialize a napi context prior to calling
1935 * *any* of the other napi related functions.
1936 */
1937 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1938 int (*poll)(struct napi_struct *, int), int weight);
1939
1940 /**
1941 * netif_napi_del - remove a napi context
1942 * @napi: napi context
1943 *
1944 * netif_napi_del() removes a napi context from the network device napi list
1945 */
1946 void netif_napi_del(struct napi_struct *napi);
1947
1948 struct napi_gro_cb {
1949 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1950 void *frag0;
1951
1952 /* Length of frag0. */
1953 unsigned int frag0_len;
1954
1955 /* This indicates where we are processing relative to skb->data. */
1956 int data_offset;
1957
1958 /* This is non-zero if the packet cannot be merged with the new skb. */
1959 u16 flush;
1960
1961 /* Save the IP ID here and check when we get to the transport layer */
1962 u16 flush_id;
1963
1964 /* Number of segments aggregated. */
1965 u16 count;
1966
1967 /* Start offset for remote checksum offload */
1968 u16 gro_remcsum_start;
1969
1970 /* jiffies when first packet was created/queued */
1971 unsigned long age;
1972
1973 /* Used in ipv6_gro_receive() and foo-over-udp */
1974 u16 proto;
1975
1976 /* This is non-zero if the packet may be of the same flow. */
1977 u8 same_flow:1;
1978
1979 /* Used in udp_gro_receive */
1980 u8 udp_mark:1;
1981
1982 /* GRO checksum is valid */
1983 u8 csum_valid:1;
1984
1985 /* Number of checksums via CHECKSUM_UNNECESSARY */
1986 u8 csum_cnt:3;
1987
1988 /* Free the skb? */
1989 u8 free:2;
1990 #define NAPI_GRO_FREE 1
1991 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1992
1993 /* Used in foo-over-udp, set in udp[46]_gro_receive */
1994 u8 is_ipv6:1;
1995
1996 /* 7 bit hole */
1997
1998 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
1999 __wsum csum;
2000
2001 /* used in skb_gro_receive() slow path */
2002 struct sk_buff *last;
2003 };
2004
2005 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2006
2007 struct packet_type {
2008 __be16 type; /* This is really htons(ether_type). */
2009 struct net_device *dev; /* NULL is wildcarded here */
2010 int (*func) (struct sk_buff *,
2011 struct net_device *,
2012 struct packet_type *,
2013 struct net_device *);
2014 bool (*id_match)(struct packet_type *ptype,
2015 struct sock *sk);
2016 void *af_packet_priv;
2017 struct list_head list;
2018 };
2019
2020 struct offload_callbacks {
2021 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2022 netdev_features_t features);
2023 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2024 struct sk_buff *skb);
2025 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2026 };
2027
2028 struct packet_offload {
2029 __be16 type; /* This is really htons(ether_type). */
2030 u16 priority;
2031 struct offload_callbacks callbacks;
2032 struct list_head list;
2033 };
2034
2035 struct udp_offload;
2036
2037 struct udp_offload_callbacks {
2038 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2039 struct sk_buff *skb,
2040 struct udp_offload *uoff);
2041 int (*gro_complete)(struct sk_buff *skb,
2042 int nhoff,
2043 struct udp_offload *uoff);
2044 };
2045
2046 struct udp_offload {
2047 __be16 port;
2048 u8 ipproto;
2049 struct udp_offload_callbacks callbacks;
2050 };
2051
2052 /* often modified stats are per cpu, other are shared (netdev->stats) */
2053 struct pcpu_sw_netstats {
2054 u64 rx_packets;
2055 u64 rx_bytes;
2056 u64 tx_packets;
2057 u64 tx_bytes;
2058 struct u64_stats_sync syncp;
2059 };
2060
2061 #define netdev_alloc_pcpu_stats(type) \
2062 ({ \
2063 typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
2064 if (pcpu_stats) { \
2065 int __cpu; \
2066 for_each_possible_cpu(__cpu) { \
2067 typeof(type) *stat; \
2068 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2069 u64_stats_init(&stat->syncp); \
2070 } \
2071 } \
2072 pcpu_stats; \
2073 })
2074
2075 #include <linux/notifier.h>
2076
2077 /* netdevice notifier chain. Please remember to update the rtnetlink
2078 * notification exclusion list in rtnetlink_event() when adding new
2079 * types.
2080 */
2081 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
2082 #define NETDEV_DOWN 0x0002
2083 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
2084 detected a hardware crash and restarted
2085 - we can use this eg to kick tcp sessions
2086 once done */
2087 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
2088 #define NETDEV_REGISTER 0x0005
2089 #define NETDEV_UNREGISTER 0x0006
2090 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
2091 #define NETDEV_CHANGEADDR 0x0008
2092 #define NETDEV_GOING_DOWN 0x0009
2093 #define NETDEV_CHANGENAME 0x000A
2094 #define NETDEV_FEAT_CHANGE 0x000B
2095 #define NETDEV_BONDING_FAILOVER 0x000C
2096 #define NETDEV_PRE_UP 0x000D
2097 #define NETDEV_PRE_TYPE_CHANGE 0x000E
2098 #define NETDEV_POST_TYPE_CHANGE 0x000F
2099 #define NETDEV_POST_INIT 0x0010
2100 #define NETDEV_UNREGISTER_FINAL 0x0011
2101 #define NETDEV_RELEASE 0x0012
2102 #define NETDEV_NOTIFY_PEERS 0x0013
2103 #define NETDEV_JOIN 0x0014
2104 #define NETDEV_CHANGEUPPER 0x0015
2105 #define NETDEV_RESEND_IGMP 0x0016
2106 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
2107 #define NETDEV_CHANGEINFODATA 0x0018
2108 #define NETDEV_BONDING_INFO 0x0019
2109
2110 int register_netdevice_notifier(struct notifier_block *nb);
2111 int unregister_netdevice_notifier(struct notifier_block *nb);
2112
2113 struct netdev_notifier_info {
2114 struct net_device *dev;
2115 };
2116
2117 struct netdev_notifier_change_info {
2118 struct netdev_notifier_info info; /* must be first */
2119 unsigned int flags_changed;
2120 };
2121
2122 struct netdev_notifier_changeupper_info {
2123 struct netdev_notifier_info info; /* must be first */
2124 struct net_device *upper_dev; /* new upper dev */
2125 bool master; /* is upper dev master */
2126 bool linking; /* is the nofication for link or unlink */
2127 };
2128
2129 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2130 struct net_device *dev)
2131 {
2132 info->dev = dev;
2133 }
2134
2135 static inline struct net_device *
2136 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2137 {
2138 return info->dev;
2139 }
2140
2141 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2142
2143
2144 extern rwlock_t dev_base_lock; /* Device list lock */
2145
2146 #define for_each_netdev(net, d) \
2147 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2148 #define for_each_netdev_reverse(net, d) \
2149 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2150 #define for_each_netdev_rcu(net, d) \
2151 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2152 #define for_each_netdev_safe(net, d, n) \
2153 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2154 #define for_each_netdev_continue(net, d) \
2155 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2156 #define for_each_netdev_continue_rcu(net, d) \
2157 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2158 #define for_each_netdev_in_bond_rcu(bond, slave) \
2159 for_each_netdev_rcu(&init_net, slave) \
2160 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2161 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2162
2163 static inline struct net_device *next_net_device(struct net_device *dev)
2164 {
2165 struct list_head *lh;
2166 struct net *net;
2167
2168 net = dev_net(dev);
2169 lh = dev->dev_list.next;
2170 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2171 }
2172
2173 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2174 {
2175 struct list_head *lh;
2176 struct net *net;
2177
2178 net = dev_net(dev);
2179 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2180 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2181 }
2182
2183 static inline struct net_device *first_net_device(struct net *net)
2184 {
2185 return list_empty(&net->dev_base_head) ? NULL :
2186 net_device_entry(net->dev_base_head.next);
2187 }
2188
2189 static inline struct net_device *first_net_device_rcu(struct net *net)
2190 {
2191 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2192
2193 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2194 }
2195
2196 int netdev_boot_setup_check(struct net_device *dev);
2197 unsigned long netdev_boot_base(const char *prefix, int unit);
2198 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2199 const char *hwaddr);
2200 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2201 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2202 void dev_add_pack(struct packet_type *pt);
2203 void dev_remove_pack(struct packet_type *pt);
2204 void __dev_remove_pack(struct packet_type *pt);
2205 void dev_add_offload(struct packet_offload *po);
2206 void dev_remove_offload(struct packet_offload *po);
2207
2208 int dev_get_iflink(const struct net_device *dev);
2209 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2210 unsigned short mask);
2211 struct net_device *dev_get_by_name(struct net *net, const char *name);
2212 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2213 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2214 int dev_alloc_name(struct net_device *dev, const char *name);
2215 int dev_open(struct net_device *dev);
2216 int dev_close(struct net_device *dev);
2217 int dev_close_many(struct list_head *head, bool unlink);
2218 void dev_disable_lro(struct net_device *dev);
2219 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2220 int dev_queue_xmit(struct sk_buff *skb);
2221 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2222 int register_netdevice(struct net_device *dev);
2223 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2224 void unregister_netdevice_many(struct list_head *head);
2225 static inline void unregister_netdevice(struct net_device *dev)
2226 {
2227 unregister_netdevice_queue(dev, NULL);
2228 }
2229
2230 int netdev_refcnt_read(const struct net_device *dev);
2231 void free_netdev(struct net_device *dev);
2232 void netdev_freemem(struct net_device *dev);
2233 void synchronize_net(void);
2234 int init_dummy_netdev(struct net_device *dev);
2235
2236 DECLARE_PER_CPU(int, xmit_recursion);
2237 static inline int dev_recursion_level(void)
2238 {
2239 return this_cpu_read(xmit_recursion);
2240 }
2241
2242 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2243 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2244 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2245 int netdev_get_name(struct net *net, char *name, int ifindex);
2246 int dev_restart(struct net_device *dev);
2247 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2248
2249 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2250 {
2251 return NAPI_GRO_CB(skb)->data_offset;
2252 }
2253
2254 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2255 {
2256 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2257 }
2258
2259 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2260 {
2261 NAPI_GRO_CB(skb)->data_offset += len;
2262 }
2263
2264 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2265 unsigned int offset)
2266 {
2267 return NAPI_GRO_CB(skb)->frag0 + offset;
2268 }
2269
2270 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2271 {
2272 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2273 }
2274
2275 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2276 unsigned int offset)
2277 {
2278 if (!pskb_may_pull(skb, hlen))
2279 return NULL;
2280
2281 NAPI_GRO_CB(skb)->frag0 = NULL;
2282 NAPI_GRO_CB(skb)->frag0_len = 0;
2283 return skb->data + offset;
2284 }
2285
2286 static inline void *skb_gro_network_header(struct sk_buff *skb)
2287 {
2288 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2289 skb_network_offset(skb);
2290 }
2291
2292 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2293 const void *start, unsigned int len)
2294 {
2295 if (NAPI_GRO_CB(skb)->csum_valid)
2296 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2297 csum_partial(start, len, 0));
2298 }
2299
2300 /* GRO checksum functions. These are logical equivalents of the normal
2301 * checksum functions (in skbuff.h) except that they operate on the GRO
2302 * offsets and fields in sk_buff.
2303 */
2304
2305 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2306
2307 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2308 {
2309 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2310 }
2311
2312 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2313 bool zero_okay,
2314 __sum16 check)
2315 {
2316 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2317 skb_checksum_start_offset(skb) <
2318 skb_gro_offset(skb)) &&
2319 !skb_at_gro_remcsum_start(skb) &&
2320 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2321 (!zero_okay || check));
2322 }
2323
2324 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2325 __wsum psum)
2326 {
2327 if (NAPI_GRO_CB(skb)->csum_valid &&
2328 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2329 return 0;
2330
2331 NAPI_GRO_CB(skb)->csum = psum;
2332
2333 return __skb_gro_checksum_complete(skb);
2334 }
2335
2336 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2337 {
2338 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2339 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2340 NAPI_GRO_CB(skb)->csum_cnt--;
2341 } else {
2342 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2343 * verified a new top level checksum or an encapsulated one
2344 * during GRO. This saves work if we fallback to normal path.
2345 */
2346 __skb_incr_checksum_unnecessary(skb);
2347 }
2348 }
2349
2350 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2351 compute_pseudo) \
2352 ({ \
2353 __sum16 __ret = 0; \
2354 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2355 __ret = __skb_gro_checksum_validate_complete(skb, \
2356 compute_pseudo(skb, proto)); \
2357 if (__ret) \
2358 __skb_mark_checksum_bad(skb); \
2359 else \
2360 skb_gro_incr_csum_unnecessary(skb); \
2361 __ret; \
2362 })
2363
2364 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2365 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2366
2367 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2368 compute_pseudo) \
2369 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2370
2371 #define skb_gro_checksum_simple_validate(skb) \
2372 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2373
2374 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2375 {
2376 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2377 !NAPI_GRO_CB(skb)->csum_valid);
2378 }
2379
2380 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2381 __sum16 check, __wsum pseudo)
2382 {
2383 NAPI_GRO_CB(skb)->csum = ~pseudo;
2384 NAPI_GRO_CB(skb)->csum_valid = 1;
2385 }
2386
2387 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2388 do { \
2389 if (__skb_gro_checksum_convert_check(skb)) \
2390 __skb_gro_checksum_convert(skb, check, \
2391 compute_pseudo(skb, proto)); \
2392 } while (0)
2393
2394 struct gro_remcsum {
2395 int offset;
2396 __wsum delta;
2397 };
2398
2399 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2400 {
2401 grc->offset = 0;
2402 grc->delta = 0;
2403 }
2404
2405 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2406 unsigned int off, size_t hdrlen,
2407 int start, int offset,
2408 struct gro_remcsum *grc,
2409 bool nopartial)
2410 {
2411 __wsum delta;
2412 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2413
2414 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2415
2416 if (!nopartial) {
2417 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2418 return ptr;
2419 }
2420
2421 ptr = skb_gro_header_fast(skb, off);
2422 if (skb_gro_header_hard(skb, off + plen)) {
2423 ptr = skb_gro_header_slow(skb, off + plen, off);
2424 if (!ptr)
2425 return NULL;
2426 }
2427
2428 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2429 start, offset);
2430
2431 /* Adjust skb->csum since we changed the packet */
2432 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2433
2434 grc->offset = off + hdrlen + offset;
2435 grc->delta = delta;
2436
2437 return ptr;
2438 }
2439
2440 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2441 struct gro_remcsum *grc)
2442 {
2443 void *ptr;
2444 size_t plen = grc->offset + sizeof(u16);
2445
2446 if (!grc->delta)
2447 return;
2448
2449 ptr = skb_gro_header_fast(skb, grc->offset);
2450 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2451 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2452 if (!ptr)
2453 return;
2454 }
2455
2456 remcsum_unadjust((__sum16 *)ptr, grc->delta);
2457 }
2458
2459 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2460 unsigned short type,
2461 const void *daddr, const void *saddr,
2462 unsigned int len)
2463 {
2464 if (!dev->header_ops || !dev->header_ops->create)
2465 return 0;
2466
2467 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2468 }
2469
2470 static inline int dev_parse_header(const struct sk_buff *skb,
2471 unsigned char *haddr)
2472 {
2473 const struct net_device *dev = skb->dev;
2474
2475 if (!dev->header_ops || !dev->header_ops->parse)
2476 return 0;
2477 return dev->header_ops->parse(skb, haddr);
2478 }
2479
2480 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2481 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2482 static inline int unregister_gifconf(unsigned int family)
2483 {
2484 return register_gifconf(family, NULL);
2485 }
2486
2487 #ifdef CONFIG_NET_FLOW_LIMIT
2488 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2489 struct sd_flow_limit {
2490 u64 count;
2491 unsigned int num_buckets;
2492 unsigned int history_head;
2493 u16 history[FLOW_LIMIT_HISTORY];
2494 u8 buckets[];
2495 };
2496
2497 extern int netdev_flow_limit_table_len;
2498 #endif /* CONFIG_NET_FLOW_LIMIT */
2499
2500 /*
2501 * Incoming packets are placed on per-cpu queues
2502 */
2503 struct softnet_data {
2504 struct list_head poll_list;
2505 struct sk_buff_head process_queue;
2506
2507 /* stats */
2508 unsigned int processed;
2509 unsigned int time_squeeze;
2510 unsigned int cpu_collision;
2511 unsigned int received_rps;
2512 #ifdef CONFIG_RPS
2513 struct softnet_data *rps_ipi_list;
2514 #endif
2515 #ifdef CONFIG_NET_FLOW_LIMIT
2516 struct sd_flow_limit __rcu *flow_limit;
2517 #endif
2518 struct Qdisc *output_queue;
2519 struct Qdisc **output_queue_tailp;
2520 struct sk_buff *completion_queue;
2521
2522 #ifdef CONFIG_RPS
2523 /* Elements below can be accessed between CPUs for RPS */
2524 struct call_single_data csd ____cacheline_aligned_in_smp;
2525 struct softnet_data *rps_ipi_next;
2526 unsigned int cpu;
2527 unsigned int input_queue_head;
2528 unsigned int input_queue_tail;
2529 #endif
2530 unsigned int dropped;
2531 struct sk_buff_head input_pkt_queue;
2532 struct napi_struct backlog;
2533
2534 };
2535
2536 static inline void input_queue_head_incr(struct softnet_data *sd)
2537 {
2538 #ifdef CONFIG_RPS
2539 sd->input_queue_head++;
2540 #endif
2541 }
2542
2543 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2544 unsigned int *qtail)
2545 {
2546 #ifdef CONFIG_RPS
2547 *qtail = ++sd->input_queue_tail;
2548 #endif
2549 }
2550
2551 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2552
2553 void __netif_schedule(struct Qdisc *q);
2554 void netif_schedule_queue(struct netdev_queue *txq);
2555
2556 static inline void netif_tx_schedule_all(struct net_device *dev)
2557 {
2558 unsigned int i;
2559
2560 for (i = 0; i < dev->num_tx_queues; i++)
2561 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2562 }
2563
2564 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2565 {
2566 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2567 }
2568
2569 /**
2570 * netif_start_queue - allow transmit
2571 * @dev: network device
2572 *
2573 * Allow upper layers to call the device hard_start_xmit routine.
2574 */
2575 static inline void netif_start_queue(struct net_device *dev)
2576 {
2577 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2578 }
2579
2580 static inline void netif_tx_start_all_queues(struct net_device *dev)
2581 {
2582 unsigned int i;
2583
2584 for (i = 0; i < dev->num_tx_queues; i++) {
2585 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2586 netif_tx_start_queue(txq);
2587 }
2588 }
2589
2590 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2591
2592 /**
2593 * netif_wake_queue - restart transmit
2594 * @dev: network device
2595 *
2596 * Allow upper layers to call the device hard_start_xmit routine.
2597 * Used for flow control when transmit resources are available.
2598 */
2599 static inline void netif_wake_queue(struct net_device *dev)
2600 {
2601 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2602 }
2603
2604 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2605 {
2606 unsigned int i;
2607
2608 for (i = 0; i < dev->num_tx_queues; i++) {
2609 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2610 netif_tx_wake_queue(txq);
2611 }
2612 }
2613
2614 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2615 {
2616 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2617 }
2618
2619 /**
2620 * netif_stop_queue - stop transmitted packets
2621 * @dev: network device
2622 *
2623 * Stop upper layers calling the device hard_start_xmit routine.
2624 * Used for flow control when transmit resources are unavailable.
2625 */
2626 static inline void netif_stop_queue(struct net_device *dev)
2627 {
2628 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2629 }
2630
2631 void netif_tx_stop_all_queues(struct net_device *dev);
2632
2633 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2634 {
2635 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2636 }
2637
2638 /**
2639 * netif_queue_stopped - test if transmit queue is flowblocked
2640 * @dev: network device
2641 *
2642 * Test if transmit queue on device is currently unable to send.
2643 */
2644 static inline bool netif_queue_stopped(const struct net_device *dev)
2645 {
2646 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2647 }
2648
2649 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2650 {
2651 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2652 }
2653
2654 static inline bool
2655 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2656 {
2657 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2658 }
2659
2660 static inline bool
2661 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2662 {
2663 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2664 }
2665
2666 /**
2667 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2668 * @dev_queue: pointer to transmit queue
2669 *
2670 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2671 * to give appropriate hint to the cpu.
2672 */
2673 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2674 {
2675 #ifdef CONFIG_BQL
2676 prefetchw(&dev_queue->dql.num_queued);
2677 #endif
2678 }
2679
2680 /**
2681 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2682 * @dev_queue: pointer to transmit queue
2683 *
2684 * BQL enabled drivers might use this helper in their TX completion path,
2685 * to give appropriate hint to the cpu.
2686 */
2687 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2688 {
2689 #ifdef CONFIG_BQL
2690 prefetchw(&dev_queue->dql.limit);
2691 #endif
2692 }
2693
2694 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2695 unsigned int bytes)
2696 {
2697 #ifdef CONFIG_BQL
2698 dql_queued(&dev_queue->dql, bytes);
2699
2700 if (likely(dql_avail(&dev_queue->dql) >= 0))
2701 return;
2702
2703 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2704
2705 /*
2706 * The XOFF flag must be set before checking the dql_avail below,
2707 * because in netdev_tx_completed_queue we update the dql_completed
2708 * before checking the XOFF flag.
2709 */
2710 smp_mb();
2711
2712 /* check again in case another CPU has just made room avail */
2713 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2714 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2715 #endif
2716 }
2717
2718 /**
2719 * netdev_sent_queue - report the number of bytes queued to hardware
2720 * @dev: network device
2721 * @bytes: number of bytes queued to the hardware device queue
2722 *
2723 * Report the number of bytes queued for sending/completion to the network
2724 * device hardware queue. @bytes should be a good approximation and should
2725 * exactly match netdev_completed_queue() @bytes
2726 */
2727 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2728 {
2729 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2730 }
2731
2732 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2733 unsigned int pkts, unsigned int bytes)
2734 {
2735 #ifdef CONFIG_BQL
2736 if (unlikely(!bytes))
2737 return;
2738
2739 dql_completed(&dev_queue->dql, bytes);
2740
2741 /*
2742 * Without the memory barrier there is a small possiblity that
2743 * netdev_tx_sent_queue will miss the update and cause the queue to
2744 * be stopped forever
2745 */
2746 smp_mb();
2747
2748 if (dql_avail(&dev_queue->dql) < 0)
2749 return;
2750
2751 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2752 netif_schedule_queue(dev_queue);
2753 #endif
2754 }
2755
2756 /**
2757 * netdev_completed_queue - report bytes and packets completed by device
2758 * @dev: network device
2759 * @pkts: actual number of packets sent over the medium
2760 * @bytes: actual number of bytes sent over the medium
2761 *
2762 * Report the number of bytes and packets transmitted by the network device
2763 * hardware queue over the physical medium, @bytes must exactly match the
2764 * @bytes amount passed to netdev_sent_queue()
2765 */
2766 static inline void netdev_completed_queue(struct net_device *dev,
2767 unsigned int pkts, unsigned int bytes)
2768 {
2769 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2770 }
2771
2772 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2773 {
2774 #ifdef CONFIG_BQL
2775 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2776 dql_reset(&q->dql);
2777 #endif
2778 }
2779
2780 /**
2781 * netdev_reset_queue - reset the packets and bytes count of a network device
2782 * @dev_queue: network device
2783 *
2784 * Reset the bytes and packet count of a network device and clear the
2785 * software flow control OFF bit for this network device
2786 */
2787 static inline void netdev_reset_queue(struct net_device *dev_queue)
2788 {
2789 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2790 }
2791
2792 /**
2793 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
2794 * @dev: network device
2795 * @queue_index: given tx queue index
2796 *
2797 * Returns 0 if given tx queue index >= number of device tx queues,
2798 * otherwise returns the originally passed tx queue index.
2799 */
2800 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2801 {
2802 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2803 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2804 dev->name, queue_index,
2805 dev->real_num_tx_queues);
2806 return 0;
2807 }
2808
2809 return queue_index;
2810 }
2811
2812 /**
2813 * netif_running - test if up
2814 * @dev: network device
2815 *
2816 * Test if the device has been brought up.
2817 */
2818 static inline bool netif_running(const struct net_device *dev)
2819 {
2820 return test_bit(__LINK_STATE_START, &dev->state);
2821 }
2822
2823 /*
2824 * Routines to manage the subqueues on a device. We only need start
2825 * stop, and a check if it's stopped. All other device management is
2826 * done at the overall netdevice level.
2827 * Also test the device if we're multiqueue.
2828 */
2829
2830 /**
2831 * netif_start_subqueue - allow sending packets on subqueue
2832 * @dev: network device
2833 * @queue_index: sub queue index
2834 *
2835 * Start individual transmit queue of a device with multiple transmit queues.
2836 */
2837 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2838 {
2839 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2840
2841 netif_tx_start_queue(txq);
2842 }
2843
2844 /**
2845 * netif_stop_subqueue - stop sending packets on subqueue
2846 * @dev: network device
2847 * @queue_index: sub queue index
2848 *
2849 * Stop individual transmit queue of a device with multiple transmit queues.
2850 */
2851 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2852 {
2853 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2854 netif_tx_stop_queue(txq);
2855 }
2856
2857 /**
2858 * netif_subqueue_stopped - test status of subqueue
2859 * @dev: network device
2860 * @queue_index: sub queue index
2861 *
2862 * Check individual transmit queue of a device with multiple transmit queues.
2863 */
2864 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2865 u16 queue_index)
2866 {
2867 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2868
2869 return netif_tx_queue_stopped(txq);
2870 }
2871
2872 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2873 struct sk_buff *skb)
2874 {
2875 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2876 }
2877
2878 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2879
2880 #ifdef CONFIG_XPS
2881 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2882 u16 index);
2883 #else
2884 static inline int netif_set_xps_queue(struct net_device *dev,
2885 const struct cpumask *mask,
2886 u16 index)
2887 {
2888 return 0;
2889 }
2890 #endif
2891
2892 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2893 unsigned int num_tx_queues);
2894
2895 /*
2896 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2897 * as a distribution range limit for the returned value.
2898 */
2899 static inline u16 skb_tx_hash(const struct net_device *dev,
2900 struct sk_buff *skb)
2901 {
2902 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2903 }
2904
2905 /**
2906 * netif_is_multiqueue - test if device has multiple transmit queues
2907 * @dev: network device
2908 *
2909 * Check if device has multiple transmit queues
2910 */
2911 static inline bool netif_is_multiqueue(const struct net_device *dev)
2912 {
2913 return dev->num_tx_queues > 1;
2914 }
2915
2916 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2917
2918 #ifdef CONFIG_SYSFS
2919 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2920 #else
2921 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2922 unsigned int rxq)
2923 {
2924 return 0;
2925 }
2926 #endif
2927
2928 #ifdef CONFIG_SYSFS
2929 static inline unsigned int get_netdev_rx_queue_index(
2930 struct netdev_rx_queue *queue)
2931 {
2932 struct net_device *dev = queue->dev;
2933 int index = queue - dev->_rx;
2934
2935 BUG_ON(index >= dev->num_rx_queues);
2936 return index;
2937 }
2938 #endif
2939
2940 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
2941 int netif_get_num_default_rss_queues(void);
2942
2943 enum skb_free_reason {
2944 SKB_REASON_CONSUMED,
2945 SKB_REASON_DROPPED,
2946 };
2947
2948 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2949 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2950
2951 /*
2952 * It is not allowed to call kfree_skb() or consume_skb() from hardware
2953 * interrupt context or with hardware interrupts being disabled.
2954 * (in_irq() || irqs_disabled())
2955 *
2956 * We provide four helpers that can be used in following contexts :
2957 *
2958 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2959 * replacing kfree_skb(skb)
2960 *
2961 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2962 * Typically used in place of consume_skb(skb) in TX completion path
2963 *
2964 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2965 * replacing kfree_skb(skb)
2966 *
2967 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2968 * and consumed a packet. Used in place of consume_skb(skb)
2969 */
2970 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2971 {
2972 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2973 }
2974
2975 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2976 {
2977 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2978 }
2979
2980 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2981 {
2982 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2983 }
2984
2985 static inline void dev_consume_skb_any(struct sk_buff *skb)
2986 {
2987 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2988 }
2989
2990 int netif_rx(struct sk_buff *skb);
2991 int netif_rx_ni(struct sk_buff *skb);
2992 int netif_receive_skb(struct sk_buff *skb);
2993 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2994 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2995 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2996 gro_result_t napi_gro_frags(struct napi_struct *napi);
2997 struct packet_offload *gro_find_receive_by_type(__be16 type);
2998 struct packet_offload *gro_find_complete_by_type(__be16 type);
2999
3000 static inline void napi_free_frags(struct napi_struct *napi)
3001 {
3002 kfree_skb(napi->skb);
3003 napi->skb = NULL;
3004 }
3005
3006 int netdev_rx_handler_register(struct net_device *dev,
3007 rx_handler_func_t *rx_handler,
3008 void *rx_handler_data);
3009 void netdev_rx_handler_unregister(struct net_device *dev);
3010
3011 bool dev_valid_name(const char *name);
3012 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3013 int dev_ethtool(struct net *net, struct ifreq *);
3014 unsigned int dev_get_flags(const struct net_device *);
3015 int __dev_change_flags(struct net_device *, unsigned int flags);
3016 int dev_change_flags(struct net_device *, unsigned int);
3017 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3018 unsigned int gchanges);
3019 int dev_change_name(struct net_device *, const char *);
3020 int dev_set_alias(struct net_device *, const char *, size_t);
3021 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3022 int dev_set_mtu(struct net_device *, int);
3023 void dev_set_group(struct net_device *, int);
3024 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3025 int dev_change_carrier(struct net_device *, bool new_carrier);
3026 int dev_get_phys_port_id(struct net_device *dev,
3027 struct netdev_phys_item_id *ppid);
3028 int dev_get_phys_port_name(struct net_device *dev,
3029 char *name, size_t len);
3030 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3031 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3032 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3033 struct netdev_queue *txq, int *ret);
3034 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3035 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3036 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
3037
3038 extern int netdev_budget;
3039
3040 /* Called by rtnetlink.c:rtnl_unlock() */
3041 void netdev_run_todo(void);
3042
3043 /**
3044 * dev_put - release reference to device
3045 * @dev: network device
3046 *
3047 * Release reference to device to allow it to be freed.
3048 */
3049 static inline void dev_put(struct net_device *dev)
3050 {
3051 this_cpu_dec(*dev->pcpu_refcnt);
3052 }
3053
3054 /**
3055 * dev_hold - get reference to device
3056 * @dev: network device
3057 *
3058 * Hold reference to device to keep it from being freed.
3059 */
3060 static inline void dev_hold(struct net_device *dev)
3061 {
3062 this_cpu_inc(*dev->pcpu_refcnt);
3063 }
3064
3065 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3066 * and _off may be called from IRQ context, but it is caller
3067 * who is responsible for serialization of these calls.
3068 *
3069 * The name carrier is inappropriate, these functions should really be
3070 * called netif_lowerlayer_*() because they represent the state of any
3071 * kind of lower layer not just hardware media.
3072 */
3073
3074 void linkwatch_init_dev(struct net_device *dev);
3075 void linkwatch_fire_event(struct net_device *dev);
3076 void linkwatch_forget_dev(struct net_device *dev);
3077
3078 /**
3079 * netif_carrier_ok - test if carrier present
3080 * @dev: network device
3081 *
3082 * Check if carrier is present on device
3083 */
3084 static inline bool netif_carrier_ok(const struct net_device *dev)
3085 {
3086 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3087 }
3088
3089 unsigned long dev_trans_start(struct net_device *dev);
3090
3091 void __netdev_watchdog_up(struct net_device *dev);
3092
3093 void netif_carrier_on(struct net_device *dev);
3094
3095 void netif_carrier_off(struct net_device *dev);
3096
3097 /**
3098 * netif_dormant_on - mark device as dormant.
3099 * @dev: network device
3100 *
3101 * Mark device as dormant (as per RFC2863).
3102 *
3103 * The dormant state indicates that the relevant interface is not
3104 * actually in a condition to pass packets (i.e., it is not 'up') but is
3105 * in a "pending" state, waiting for some external event. For "on-
3106 * demand" interfaces, this new state identifies the situation where the
3107 * interface is waiting for events to place it in the up state.
3108 *
3109 */
3110 static inline void netif_dormant_on(struct net_device *dev)
3111 {
3112 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3113 linkwatch_fire_event(dev);
3114 }
3115
3116 /**
3117 * netif_dormant_off - set device as not dormant.
3118 * @dev: network device
3119 *
3120 * Device is not in dormant state.
3121 */
3122 static inline void netif_dormant_off(struct net_device *dev)
3123 {
3124 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3125 linkwatch_fire_event(dev);
3126 }
3127
3128 /**
3129 * netif_dormant - test if carrier present
3130 * @dev: network device
3131 *
3132 * Check if carrier is present on device
3133 */
3134 static inline bool netif_dormant(const struct net_device *dev)
3135 {
3136 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3137 }
3138
3139
3140 /**
3141 * netif_oper_up - test if device is operational
3142 * @dev: network device
3143 *
3144 * Check if carrier is operational
3145 */
3146 static inline bool netif_oper_up(const struct net_device *dev)
3147 {
3148 return (dev->operstate == IF_OPER_UP ||
3149 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3150 }
3151
3152 /**
3153 * netif_device_present - is device available or removed
3154 * @dev: network device
3155 *
3156 * Check if device has not been removed from system.
3157 */
3158 static inline bool netif_device_present(struct net_device *dev)
3159 {
3160 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3161 }
3162
3163 void netif_device_detach(struct net_device *dev);
3164
3165 void netif_device_attach(struct net_device *dev);
3166
3167 /*
3168 * Network interface message level settings
3169 */
3170
3171 enum {
3172 NETIF_MSG_DRV = 0x0001,
3173 NETIF_MSG_PROBE = 0x0002,
3174 NETIF_MSG_LINK = 0x0004,
3175 NETIF_MSG_TIMER = 0x0008,
3176 NETIF_MSG_IFDOWN = 0x0010,
3177 NETIF_MSG_IFUP = 0x0020,
3178 NETIF_MSG_RX_ERR = 0x0040,
3179 NETIF_MSG_TX_ERR = 0x0080,
3180 NETIF_MSG_TX_QUEUED = 0x0100,
3181 NETIF_MSG_INTR = 0x0200,
3182 NETIF_MSG_TX_DONE = 0x0400,
3183 NETIF_MSG_RX_STATUS = 0x0800,
3184 NETIF_MSG_PKTDATA = 0x1000,
3185 NETIF_MSG_HW = 0x2000,
3186 NETIF_MSG_WOL = 0x4000,
3187 };
3188
3189 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3190 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3191 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3192 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3193 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3194 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3195 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3196 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3197 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3198 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3199 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3200 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3201 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3202 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3203 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3204
3205 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3206 {
3207 /* use default */
3208 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3209 return default_msg_enable_bits;
3210 if (debug_value == 0) /* no output */
3211 return 0;
3212 /* set low N bits */
3213 return (1 << debug_value) - 1;
3214 }
3215
3216 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3217 {
3218 spin_lock(&txq->_xmit_lock);
3219 txq->xmit_lock_owner = cpu;
3220 }
3221
3222 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3223 {
3224 spin_lock_bh(&txq->_xmit_lock);
3225 txq->xmit_lock_owner = smp_processor_id();
3226 }
3227
3228 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3229 {
3230 bool ok = spin_trylock(&txq->_xmit_lock);
3231 if (likely(ok))
3232 txq->xmit_lock_owner = smp_processor_id();
3233 return ok;
3234 }
3235
3236 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3237 {
3238 txq->xmit_lock_owner = -1;
3239 spin_unlock(&txq->_xmit_lock);
3240 }
3241
3242 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3243 {
3244 txq->xmit_lock_owner = -1;
3245 spin_unlock_bh(&txq->_xmit_lock);
3246 }
3247
3248 static inline void txq_trans_update(struct netdev_queue *txq)
3249 {
3250 if (txq->xmit_lock_owner != -1)
3251 txq->trans_start = jiffies;
3252 }
3253
3254 /**
3255 * netif_tx_lock - grab network device transmit lock
3256 * @dev: network device
3257 *
3258 * Get network device transmit lock
3259 */
3260 static inline void netif_tx_lock(struct net_device *dev)
3261 {
3262 unsigned int i;
3263 int cpu;
3264
3265 spin_lock(&dev->tx_global_lock);
3266 cpu = smp_processor_id();
3267 for (i = 0; i < dev->num_tx_queues; i++) {
3268 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3269
3270 /* We are the only thread of execution doing a
3271 * freeze, but we have to grab the _xmit_lock in
3272 * order to synchronize with threads which are in
3273 * the ->hard_start_xmit() handler and already
3274 * checked the frozen bit.
3275 */
3276 __netif_tx_lock(txq, cpu);
3277 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3278 __netif_tx_unlock(txq);
3279 }
3280 }
3281
3282 static inline void netif_tx_lock_bh(struct net_device *dev)
3283 {
3284 local_bh_disable();
3285 netif_tx_lock(dev);
3286 }
3287
3288 static inline void netif_tx_unlock(struct net_device *dev)
3289 {
3290 unsigned int i;
3291
3292 for (i = 0; i < dev->num_tx_queues; i++) {
3293 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3294
3295 /* No need to grab the _xmit_lock here. If the
3296 * queue is not stopped for another reason, we
3297 * force a schedule.
3298 */
3299 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3300 netif_schedule_queue(txq);
3301 }
3302 spin_unlock(&dev->tx_global_lock);
3303 }
3304
3305 static inline void netif_tx_unlock_bh(struct net_device *dev)
3306 {
3307 netif_tx_unlock(dev);
3308 local_bh_enable();
3309 }
3310
3311 #define HARD_TX_LOCK(dev, txq, cpu) { \
3312 if ((dev->features & NETIF_F_LLTX) == 0) { \
3313 __netif_tx_lock(txq, cpu); \
3314 } \
3315 }
3316
3317 #define HARD_TX_TRYLOCK(dev, txq) \
3318 (((dev->features & NETIF_F_LLTX) == 0) ? \
3319 __netif_tx_trylock(txq) : \
3320 true )
3321
3322 #define HARD_TX_UNLOCK(dev, txq) { \
3323 if ((dev->features & NETIF_F_LLTX) == 0) { \
3324 __netif_tx_unlock(txq); \
3325 } \
3326 }
3327
3328 static inline void netif_tx_disable(struct net_device *dev)
3329 {
3330 unsigned int i;
3331 int cpu;
3332
3333 local_bh_disable();
3334 cpu = smp_processor_id();
3335 for (i = 0; i < dev->num_tx_queues; i++) {
3336 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3337
3338 __netif_tx_lock(txq, cpu);
3339 netif_tx_stop_queue(txq);
3340 __netif_tx_unlock(txq);
3341 }
3342 local_bh_enable();
3343 }
3344
3345 static inline void netif_addr_lock(struct net_device *dev)
3346 {
3347 spin_lock(&dev->addr_list_lock);
3348 }
3349
3350 static inline void netif_addr_lock_nested(struct net_device *dev)
3351 {
3352 int subclass = SINGLE_DEPTH_NESTING;
3353
3354 if (dev->netdev_ops->ndo_get_lock_subclass)
3355 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3356
3357 spin_lock_nested(&dev->addr_list_lock, subclass);
3358 }
3359
3360 static inline void netif_addr_lock_bh(struct net_device *dev)
3361 {
3362 spin_lock_bh(&dev->addr_list_lock);
3363 }
3364
3365 static inline void netif_addr_unlock(struct net_device *dev)
3366 {
3367 spin_unlock(&dev->addr_list_lock);
3368 }
3369
3370 static inline void netif_addr_unlock_bh(struct net_device *dev)
3371 {
3372 spin_unlock_bh(&dev->addr_list_lock);
3373 }
3374
3375 /*
3376 * dev_addrs walker. Should be used only for read access. Call with
3377 * rcu_read_lock held.
3378 */
3379 #define for_each_dev_addr(dev, ha) \
3380 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3381
3382 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3383
3384 void ether_setup(struct net_device *dev);
3385
3386 /* Support for loadable net-drivers */
3387 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3388 unsigned char name_assign_type,
3389 void (*setup)(struct net_device *),
3390 unsigned int txqs, unsigned int rxqs);
3391 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3392 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3393
3394 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3395 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3396 count)
3397
3398 int register_netdev(struct net_device *dev);
3399 void unregister_netdev(struct net_device *dev);
3400
3401 /* General hardware address lists handling functions */
3402 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3403 struct netdev_hw_addr_list *from_list, int addr_len);
3404 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3405 struct netdev_hw_addr_list *from_list, int addr_len);
3406 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3407 struct net_device *dev,
3408 int (*sync)(struct net_device *, const unsigned char *),
3409 int (*unsync)(struct net_device *,
3410 const unsigned char *));
3411 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3412 struct net_device *dev,
3413 int (*unsync)(struct net_device *,
3414 const unsigned char *));
3415 void __hw_addr_init(struct netdev_hw_addr_list *list);
3416
3417 /* Functions used for device addresses handling */
3418 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3419 unsigned char addr_type);
3420 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3421 unsigned char addr_type);
3422 void dev_addr_flush(struct net_device *dev);
3423 int dev_addr_init(struct net_device *dev);
3424
3425 /* Functions used for unicast addresses handling */
3426 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3427 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3428 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3429 int dev_uc_sync(struct net_device *to, struct net_device *from);
3430 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3431 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3432 void dev_uc_flush(struct net_device *dev);
3433 void dev_uc_init(struct net_device *dev);
3434
3435 /**
3436 * __dev_uc_sync - Synchonize device's unicast list
3437 * @dev: device to sync
3438 * @sync: function to call if address should be added
3439 * @unsync: function to call if address should be removed
3440 *
3441 * Add newly added addresses to the interface, and release
3442 * addresses that have been deleted.
3443 **/
3444 static inline int __dev_uc_sync(struct net_device *dev,
3445 int (*sync)(struct net_device *,
3446 const unsigned char *),
3447 int (*unsync)(struct net_device *,
3448 const unsigned char *))
3449 {
3450 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3451 }
3452
3453 /**
3454 * __dev_uc_unsync - Remove synchronized addresses from device
3455 * @dev: device to sync
3456 * @unsync: function to call if address should be removed
3457 *
3458 * Remove all addresses that were added to the device by dev_uc_sync().
3459 **/
3460 static inline void __dev_uc_unsync(struct net_device *dev,
3461 int (*unsync)(struct net_device *,
3462 const unsigned char *))
3463 {
3464 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3465 }
3466
3467 /* Functions used for multicast addresses handling */
3468 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3469 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3470 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3471 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3472 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3473 int dev_mc_sync(struct net_device *to, struct net_device *from);
3474 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3475 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3476 void dev_mc_flush(struct net_device *dev);
3477 void dev_mc_init(struct net_device *dev);
3478
3479 /**
3480 * __dev_mc_sync - Synchonize device's multicast list
3481 * @dev: device to sync
3482 * @sync: function to call if address should be added
3483 * @unsync: function to call if address should be removed
3484 *
3485 * Add newly added addresses to the interface, and release
3486 * addresses that have been deleted.
3487 **/
3488 static inline int __dev_mc_sync(struct net_device *dev,
3489 int (*sync)(struct net_device *,
3490 const unsigned char *),
3491 int (*unsync)(struct net_device *,
3492 const unsigned char *))
3493 {
3494 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3495 }
3496
3497 /**
3498 * __dev_mc_unsync - Remove synchronized addresses from device
3499 * @dev: device to sync
3500 * @unsync: function to call if address should be removed
3501 *
3502 * Remove all addresses that were added to the device by dev_mc_sync().
3503 **/
3504 static inline void __dev_mc_unsync(struct net_device *dev,
3505 int (*unsync)(struct net_device *,
3506 const unsigned char *))
3507 {
3508 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3509 }
3510
3511 /* Functions used for secondary unicast and multicast support */
3512 void dev_set_rx_mode(struct net_device *dev);
3513 void __dev_set_rx_mode(struct net_device *dev);
3514 int dev_set_promiscuity(struct net_device *dev, int inc);
3515 int dev_set_allmulti(struct net_device *dev, int inc);
3516 void netdev_state_change(struct net_device *dev);
3517 void netdev_notify_peers(struct net_device *dev);
3518 void netdev_features_change(struct net_device *dev);
3519 /* Load a device via the kmod */
3520 void dev_load(struct net *net, const char *name);
3521 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3522 struct rtnl_link_stats64 *storage);
3523 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3524 const struct net_device_stats *netdev_stats);
3525
3526 extern int netdev_max_backlog;
3527 extern int netdev_tstamp_prequeue;
3528 extern int weight_p;
3529 extern int bpf_jit_enable;
3530
3531 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3532 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3533 struct list_head **iter);
3534 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3535 struct list_head **iter);
3536
3537 /* iterate through upper list, must be called under RCU read lock */
3538 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3539 for (iter = &(dev)->adj_list.upper, \
3540 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3541 updev; \
3542 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3543
3544 /* iterate through upper list, must be called under RCU read lock */
3545 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3546 for (iter = &(dev)->all_adj_list.upper, \
3547 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3548 updev; \
3549 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3550
3551 void *netdev_lower_get_next_private(struct net_device *dev,
3552 struct list_head **iter);
3553 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3554 struct list_head **iter);
3555
3556 #define netdev_for_each_lower_private(dev, priv, iter) \
3557 for (iter = (dev)->adj_list.lower.next, \
3558 priv = netdev_lower_get_next_private(dev, &(iter)); \
3559 priv; \
3560 priv = netdev_lower_get_next_private(dev, &(iter)))
3561
3562 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3563 for (iter = &(dev)->adj_list.lower, \
3564 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3565 priv; \
3566 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3567
3568 void *netdev_lower_get_next(struct net_device *dev,
3569 struct list_head **iter);
3570 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3571 for (iter = &(dev)->adj_list.lower, \
3572 ldev = netdev_lower_get_next(dev, &(iter)); \
3573 ldev; \
3574 ldev = netdev_lower_get_next(dev, &(iter)))
3575
3576 void *netdev_adjacent_get_private(struct list_head *adj_list);
3577 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3578 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3579 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3580 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3581 int netdev_master_upper_dev_link(struct net_device *dev,
3582 struct net_device *upper_dev);
3583 int netdev_master_upper_dev_link_private(struct net_device *dev,
3584 struct net_device *upper_dev,
3585 void *private);
3586 void netdev_upper_dev_unlink(struct net_device *dev,
3587 struct net_device *upper_dev);
3588 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3589 void *netdev_lower_dev_get_private(struct net_device *dev,
3590 struct net_device *lower_dev);
3591
3592 /* RSS keys are 40 or 52 bytes long */
3593 #define NETDEV_RSS_KEY_LEN 52
3594 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3595 void netdev_rss_key_fill(void *buffer, size_t len);
3596
3597 int dev_get_nest_level(struct net_device *dev,
3598 bool (*type_check)(struct net_device *dev));
3599 int skb_checksum_help(struct sk_buff *skb);
3600 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3601 netdev_features_t features, bool tx_path);
3602 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3603 netdev_features_t features);
3604
3605 struct netdev_bonding_info {
3606 ifslave slave;
3607 ifbond master;
3608 };
3609
3610 struct netdev_notifier_bonding_info {
3611 struct netdev_notifier_info info; /* must be first */
3612 struct netdev_bonding_info bonding_info;
3613 };
3614
3615 void netdev_bonding_info_change(struct net_device *dev,
3616 struct netdev_bonding_info *bonding_info);
3617
3618 static inline
3619 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3620 {
3621 return __skb_gso_segment(skb, features, true);
3622 }
3623 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3624
3625 static inline bool can_checksum_protocol(netdev_features_t features,
3626 __be16 protocol)
3627 {
3628 return ((features & NETIF_F_GEN_CSUM) ||
3629 ((features & NETIF_F_V4_CSUM) &&
3630 protocol == htons(ETH_P_IP)) ||
3631 ((features & NETIF_F_V6_CSUM) &&
3632 protocol == htons(ETH_P_IPV6)) ||
3633 ((features & NETIF_F_FCOE_CRC) &&
3634 protocol == htons(ETH_P_FCOE)));
3635 }
3636
3637 #ifdef CONFIG_BUG
3638 void netdev_rx_csum_fault(struct net_device *dev);
3639 #else
3640 static inline void netdev_rx_csum_fault(struct net_device *dev)
3641 {
3642 }
3643 #endif
3644 /* rx skb timestamps */
3645 void net_enable_timestamp(void);
3646 void net_disable_timestamp(void);
3647
3648 #ifdef CONFIG_PROC_FS
3649 int __init dev_proc_init(void);
3650 #else
3651 #define dev_proc_init() 0
3652 #endif
3653
3654 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3655 struct sk_buff *skb, struct net_device *dev,
3656 bool more)
3657 {
3658 skb->xmit_more = more ? 1 : 0;
3659 return ops->ndo_start_xmit(skb, dev);
3660 }
3661
3662 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3663 struct netdev_queue *txq, bool more)
3664 {
3665 const struct net_device_ops *ops = dev->netdev_ops;
3666 int rc;
3667
3668 rc = __netdev_start_xmit(ops, skb, dev, more);
3669 if (rc == NETDEV_TX_OK)
3670 txq_trans_update(txq);
3671
3672 return rc;
3673 }
3674
3675 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3676 const void *ns);
3677 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3678 const void *ns);
3679
3680 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3681 {
3682 return netdev_class_create_file_ns(class_attr, NULL);
3683 }
3684
3685 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3686 {
3687 netdev_class_remove_file_ns(class_attr, NULL);
3688 }
3689
3690 extern struct kobj_ns_type_operations net_ns_type_operations;
3691
3692 const char *netdev_drivername(const struct net_device *dev);
3693
3694 void linkwatch_run_queue(void);
3695
3696 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3697 netdev_features_t f2)
3698 {
3699 if (f1 & NETIF_F_GEN_CSUM)
3700 f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3701 if (f2 & NETIF_F_GEN_CSUM)
3702 f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3703 f1 &= f2;
3704 if (f1 & NETIF_F_GEN_CSUM)
3705 f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3706
3707 return f1;
3708 }
3709
3710 static inline netdev_features_t netdev_get_wanted_features(
3711 struct net_device *dev)
3712 {
3713 return (dev->features & ~dev->hw_features) | dev->wanted_features;
3714 }
3715 netdev_features_t netdev_increment_features(netdev_features_t all,
3716 netdev_features_t one, netdev_features_t mask);
3717
3718 /* Allow TSO being used on stacked device :
3719 * Performing the GSO segmentation before last device
3720 * is a performance improvement.
3721 */
3722 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3723 netdev_features_t mask)
3724 {
3725 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3726 }
3727
3728 int __netdev_update_features(struct net_device *dev);
3729 void netdev_update_features(struct net_device *dev);
3730 void netdev_change_features(struct net_device *dev);
3731
3732 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3733 struct net_device *dev);
3734
3735 netdev_features_t passthru_features_check(struct sk_buff *skb,
3736 struct net_device *dev,
3737 netdev_features_t features);
3738 netdev_features_t netif_skb_features(struct sk_buff *skb);
3739
3740 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3741 {
3742 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3743
3744 /* check flags correspondence */
3745 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3746 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3747 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3748 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3749 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3750 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3751 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3752 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3753 BUILD_BUG_ON(SKB_GSO_IPIP != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3754 BUILD_BUG_ON(SKB_GSO_SIT != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3755 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3756 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3757 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3758
3759 return (features & feature) == feature;
3760 }
3761
3762 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3763 {
3764 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3765 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3766 }
3767
3768 static inline bool netif_needs_gso(struct sk_buff *skb,
3769 netdev_features_t features)
3770 {
3771 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3772 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3773 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3774 }
3775
3776 static inline void netif_set_gso_max_size(struct net_device *dev,
3777 unsigned int size)
3778 {
3779 dev->gso_max_size = size;
3780 }
3781
3782 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3783 int pulled_hlen, u16 mac_offset,
3784 int mac_len)
3785 {
3786 skb->protocol = protocol;
3787 skb->encapsulation = 1;
3788 skb_push(skb, pulled_hlen);
3789 skb_reset_transport_header(skb);
3790 skb->mac_header = mac_offset;
3791 skb->network_header = skb->mac_header + mac_len;
3792 skb->mac_len = mac_len;
3793 }
3794
3795 static inline bool netif_is_macvlan(struct net_device *dev)
3796 {
3797 return dev->priv_flags & IFF_MACVLAN;
3798 }
3799
3800 static inline bool netif_is_macvlan_port(struct net_device *dev)
3801 {
3802 return dev->priv_flags & IFF_MACVLAN_PORT;
3803 }
3804
3805 static inline bool netif_is_ipvlan(struct net_device *dev)
3806 {
3807 return dev->priv_flags & IFF_IPVLAN_SLAVE;
3808 }
3809
3810 static inline bool netif_is_ipvlan_port(struct net_device *dev)
3811 {
3812 return dev->priv_flags & IFF_IPVLAN_MASTER;
3813 }
3814
3815 static inline bool netif_is_bond_master(struct net_device *dev)
3816 {
3817 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3818 }
3819
3820 static inline bool netif_is_bond_slave(struct net_device *dev)
3821 {
3822 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3823 }
3824
3825 static inline bool netif_supports_nofcs(struct net_device *dev)
3826 {
3827 return dev->priv_flags & IFF_SUPP_NOFCS;
3828 }
3829
3830 static inline bool netif_is_l3_master(const struct net_device *dev)
3831 {
3832 return dev->priv_flags & IFF_L3MDEV_MASTER;
3833 }
3834
3835 static inline bool netif_is_l3_slave(const struct net_device *dev)
3836 {
3837 return dev->priv_flags & IFF_L3MDEV_SLAVE;
3838 }
3839
3840 static inline bool netif_is_bridge_master(const struct net_device *dev)
3841 {
3842 return dev->priv_flags & IFF_EBRIDGE;
3843 }
3844
3845 static inline bool netif_is_ovs_master(const struct net_device *dev)
3846 {
3847 return dev->priv_flags & IFF_OPENVSWITCH;
3848 }
3849
3850 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3851 static inline void netif_keep_dst(struct net_device *dev)
3852 {
3853 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3854 }
3855
3856 extern struct pernet_operations __net_initdata loopback_net_ops;
3857
3858 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3859
3860 /* netdev_printk helpers, similar to dev_printk */
3861
3862 static inline const char *netdev_name(const struct net_device *dev)
3863 {
3864 if (!dev->name[0] || strchr(dev->name, '%'))
3865 return "(unnamed net_device)";
3866 return dev->name;
3867 }
3868
3869 static inline const char *netdev_reg_state(const struct net_device *dev)
3870 {
3871 switch (dev->reg_state) {
3872 case NETREG_UNINITIALIZED: return " (uninitialized)";
3873 case NETREG_REGISTERED: return "";
3874 case NETREG_UNREGISTERING: return " (unregistering)";
3875 case NETREG_UNREGISTERED: return " (unregistered)";
3876 case NETREG_RELEASED: return " (released)";
3877 case NETREG_DUMMY: return " (dummy)";
3878 }
3879
3880 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3881 return " (unknown)";
3882 }
3883
3884 __printf(3, 4)
3885 void netdev_printk(const char *level, const struct net_device *dev,
3886 const char *format, ...);
3887 __printf(2, 3)
3888 void netdev_emerg(const struct net_device *dev, const char *format, ...);
3889 __printf(2, 3)
3890 void netdev_alert(const struct net_device *dev, const char *format, ...);
3891 __printf(2, 3)
3892 void netdev_crit(const struct net_device *dev, const char *format, ...);
3893 __printf(2, 3)
3894 void netdev_err(const struct net_device *dev, const char *format, ...);
3895 __printf(2, 3)
3896 void netdev_warn(const struct net_device *dev, const char *format, ...);
3897 __printf(2, 3)
3898 void netdev_notice(const struct net_device *dev, const char *format, ...);
3899 __printf(2, 3)
3900 void netdev_info(const struct net_device *dev, const char *format, ...);
3901
3902 #define MODULE_ALIAS_NETDEV(device) \
3903 MODULE_ALIAS("netdev-" device)
3904
3905 #if defined(CONFIG_DYNAMIC_DEBUG)
3906 #define netdev_dbg(__dev, format, args...) \
3907 do { \
3908 dynamic_netdev_dbg(__dev, format, ##args); \
3909 } while (0)
3910 #elif defined(DEBUG)
3911 #define netdev_dbg(__dev, format, args...) \
3912 netdev_printk(KERN_DEBUG, __dev, format, ##args)
3913 #else
3914 #define netdev_dbg(__dev, format, args...) \
3915 ({ \
3916 if (0) \
3917 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3918 })
3919 #endif
3920
3921 #if defined(VERBOSE_DEBUG)
3922 #define netdev_vdbg netdev_dbg
3923 #else
3924
3925 #define netdev_vdbg(dev, format, args...) \
3926 ({ \
3927 if (0) \
3928 netdev_printk(KERN_DEBUG, dev, format, ##args); \
3929 0; \
3930 })
3931 #endif
3932
3933 /*
3934 * netdev_WARN() acts like dev_printk(), but with the key difference
3935 * of using a WARN/WARN_ON to get the message out, including the
3936 * file/line information and a backtrace.
3937 */
3938 #define netdev_WARN(dev, format, args...) \
3939 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \
3940 netdev_reg_state(dev), ##args)
3941
3942 /* netif printk helpers, similar to netdev_printk */
3943
3944 #define netif_printk(priv, type, level, dev, fmt, args...) \
3945 do { \
3946 if (netif_msg_##type(priv)) \
3947 netdev_printk(level, (dev), fmt, ##args); \
3948 } while (0)
3949
3950 #define netif_level(level, priv, type, dev, fmt, args...) \
3951 do { \
3952 if (netif_msg_##type(priv)) \
3953 netdev_##level(dev, fmt, ##args); \
3954 } while (0)
3955
3956 #define netif_emerg(priv, type, dev, fmt, args...) \
3957 netif_level(emerg, priv, type, dev, fmt, ##args)
3958 #define netif_alert(priv, type, dev, fmt, args...) \
3959 netif_level(alert, priv, type, dev, fmt, ##args)
3960 #define netif_crit(priv, type, dev, fmt, args...) \
3961 netif_level(crit, priv, type, dev, fmt, ##args)
3962 #define netif_err(priv, type, dev, fmt, args...) \
3963 netif_level(err, priv, type, dev, fmt, ##args)
3964 #define netif_warn(priv, type, dev, fmt, args...) \
3965 netif_level(warn, priv, type, dev, fmt, ##args)
3966 #define netif_notice(priv, type, dev, fmt, args...) \
3967 netif_level(notice, priv, type, dev, fmt, ##args)
3968 #define netif_info(priv, type, dev, fmt, args...) \
3969 netif_level(info, priv, type, dev, fmt, ##args)
3970
3971 #if defined(CONFIG_DYNAMIC_DEBUG)
3972 #define netif_dbg(priv, type, netdev, format, args...) \
3973 do { \
3974 if (netif_msg_##type(priv)) \
3975 dynamic_netdev_dbg(netdev, format, ##args); \
3976 } while (0)
3977 #elif defined(DEBUG)
3978 #define netif_dbg(priv, type, dev, format, args...) \
3979 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3980 #else
3981 #define netif_dbg(priv, type, dev, format, args...) \
3982 ({ \
3983 if (0) \
3984 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3985 0; \
3986 })
3987 #endif
3988
3989 #if defined(VERBOSE_DEBUG)
3990 #define netif_vdbg netif_dbg
3991 #else
3992 #define netif_vdbg(priv, type, dev, format, args...) \
3993 ({ \
3994 if (0) \
3995 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3996 0; \
3997 })
3998 #endif
3999
4000 /*
4001 * The list of packet types we will receive (as opposed to discard)
4002 * and the routines to invoke.
4003 *
4004 * Why 16. Because with 16 the only overlap we get on a hash of the
4005 * low nibble of the protocol value is RARP/SNAP/X.25.
4006 *
4007 * NOTE: That is no longer true with the addition of VLAN tags. Not
4008 * sure which should go first, but I bet it won't make much
4009 * difference if we are running VLANs. The good news is that
4010 * this protocol won't be in the list unless compiled in, so
4011 * the average user (w/out VLANs) will not be adversely affected.
4012 * --BLG
4013 *
4014 * 0800 IP
4015 * 8100 802.1Q VLAN
4016 * 0001 802.3
4017 * 0002 AX.25
4018 * 0004 802.2
4019 * 8035 RARP
4020 * 0005 SNAP
4021 * 0805 X.25
4022 * 0806 ARP
4023 * 8137 IPX
4024 * 0009 Localtalk
4025 * 86DD IPv6
4026 */
4027 #define PTYPE_HASH_SIZE (16)
4028 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4029
4030 #endif /* _LINUX_NETDEVICE_H */
This page took 0.132973 seconds and 4 git commands to generate.