kernel.h: define u8, s8, u32, etc. limits
[deliverable/linux.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/pm_qos.h>
29 #include <linux/timer.h>
30 #include <linux/bug.h>
31 #include <linux/delay.h>
32 #include <linux/atomic.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53
54 struct netpoll_info;
55 struct device;
56 struct phy_device;
57 /* 802.11 specific */
58 struct wireless_dev;
59 /* source back-compat hooks */
60 #define SET_ETHTOOL_OPS(netdev,ops) \
61 ( (netdev)->ethtool_ops = (ops) )
62
63 void netdev_set_default_ethtool_ops(struct net_device *dev,
64 const struct ethtool_ops *ops);
65
66 /* hardware address assignment types */
67 #define NET_ADDR_PERM 0 /* address is permanent (default) */
68 #define NET_ADDR_RANDOM 1 /* address is generated randomly */
69 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */
70 #define NET_ADDR_SET 3 /* address is set using
71 * dev_set_mac_address() */
72
73 /* Backlog congestion levels */
74 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
75 #define NET_RX_DROP 1 /* packet dropped */
76
77 /*
78 * Transmit return codes: transmit return codes originate from three different
79 * namespaces:
80 *
81 * - qdisc return codes
82 * - driver transmit return codes
83 * - errno values
84 *
85 * Drivers are allowed to return any one of those in their hard_start_xmit()
86 * function. Real network devices commonly used with qdiscs should only return
87 * the driver transmit return codes though - when qdiscs are used, the actual
88 * transmission happens asynchronously, so the value is not propagated to
89 * higher layers. Virtual network devices transmit synchronously, in this case
90 * the driver transmit return codes are consumed by dev_queue_xmit(), all
91 * others are propagated to higher layers.
92 */
93
94 /* qdisc ->enqueue() return codes. */
95 #define NET_XMIT_SUCCESS 0x00
96 #define NET_XMIT_DROP 0x01 /* skb dropped */
97 #define NET_XMIT_CN 0x02 /* congestion notification */
98 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
99 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
100
101 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
102 * indicates that the device will soon be dropping packets, or already drops
103 * some packets of the same priority; prompting us to send less aggressively. */
104 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
105 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
106
107 /* Driver transmit return codes */
108 #define NETDEV_TX_MASK 0xf0
109
110 enum netdev_tx {
111 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
112 NETDEV_TX_OK = 0x00, /* driver took care of packet */
113 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
114 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
115 };
116 typedef enum netdev_tx netdev_tx_t;
117
118 /*
119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121 */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 /*
125 * Positive cases with an skb consumed by a driver:
126 * - successful transmission (rc == NETDEV_TX_OK)
127 * - error while transmitting (rc < 0)
128 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 */
130 if (likely(rc < NET_XMIT_MASK))
131 return true;
132
133 return false;
134 }
135
136 /*
137 * Compute the worst case header length according to the protocols
138 * used.
139 */
140
141 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
142 # if defined(CONFIG_MAC80211_MESH)
143 # define LL_MAX_HEADER 128
144 # else
145 # define LL_MAX_HEADER 96
146 # endif
147 #else
148 # define LL_MAX_HEADER 32
149 #endif
150
151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
152 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
153 #define MAX_HEADER LL_MAX_HEADER
154 #else
155 #define MAX_HEADER (LL_MAX_HEADER + 48)
156 #endif
157
158 /*
159 * Old network device statistics. Fields are native words
160 * (unsigned long) so they can be read and written atomically.
161 */
162
163 struct net_device_stats {
164 unsigned long rx_packets;
165 unsigned long tx_packets;
166 unsigned long rx_bytes;
167 unsigned long tx_bytes;
168 unsigned long rx_errors;
169 unsigned long tx_errors;
170 unsigned long rx_dropped;
171 unsigned long tx_dropped;
172 unsigned long multicast;
173 unsigned long collisions;
174 unsigned long rx_length_errors;
175 unsigned long rx_over_errors;
176 unsigned long rx_crc_errors;
177 unsigned long rx_frame_errors;
178 unsigned long rx_fifo_errors;
179 unsigned long rx_missed_errors;
180 unsigned long tx_aborted_errors;
181 unsigned long tx_carrier_errors;
182 unsigned long tx_fifo_errors;
183 unsigned long tx_heartbeat_errors;
184 unsigned long tx_window_errors;
185 unsigned long rx_compressed;
186 unsigned long tx_compressed;
187 };
188
189
190 #include <linux/cache.h>
191 #include <linux/skbuff.h>
192
193 #ifdef CONFIG_RPS
194 #include <linux/static_key.h>
195 extern struct static_key rps_needed;
196 #endif
197
198 struct neighbour;
199 struct neigh_parms;
200 struct sk_buff;
201
202 struct netdev_hw_addr {
203 struct list_head list;
204 unsigned char addr[MAX_ADDR_LEN];
205 unsigned char type;
206 #define NETDEV_HW_ADDR_T_LAN 1
207 #define NETDEV_HW_ADDR_T_SAN 2
208 #define NETDEV_HW_ADDR_T_SLAVE 3
209 #define NETDEV_HW_ADDR_T_UNICAST 4
210 #define NETDEV_HW_ADDR_T_MULTICAST 5
211 bool global_use;
212 int sync_cnt;
213 int refcount;
214 int synced;
215 struct rcu_head rcu_head;
216 };
217
218 struct netdev_hw_addr_list {
219 struct list_head list;
220 int count;
221 };
222
223 #define netdev_hw_addr_list_count(l) ((l)->count)
224 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
225 #define netdev_hw_addr_list_for_each(ha, l) \
226 list_for_each_entry(ha, &(l)->list, list)
227
228 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
229 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
230 #define netdev_for_each_uc_addr(ha, dev) \
231 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
232
233 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
234 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
235 #define netdev_for_each_mc_addr(ha, dev) \
236 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
237
238 struct hh_cache {
239 u16 hh_len;
240 u16 __pad;
241 seqlock_t hh_lock;
242
243 /* cached hardware header; allow for machine alignment needs. */
244 #define HH_DATA_MOD 16
245 #define HH_DATA_OFF(__len) \
246 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247 #define HH_DATA_ALIGN(__len) \
248 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250 };
251
252 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
253 * Alternative is:
254 * dev->hard_header_len ? (dev->hard_header_len +
255 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256 *
257 * We could use other alignment values, but we must maintain the
258 * relationship HH alignment <= LL alignment.
259 */
260 #define LL_RESERVED_SPACE(dev) \
261 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264
265 struct header_ops {
266 int (*create) (struct sk_buff *skb, struct net_device *dev,
267 unsigned short type, const void *daddr,
268 const void *saddr, unsigned int len);
269 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
270 int (*rebuild)(struct sk_buff *skb);
271 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
272 void (*cache_update)(struct hh_cache *hh,
273 const struct net_device *dev,
274 const unsigned char *haddr);
275 };
276
277 /* These flag bits are private to the generic network queueing
278 * layer, they may not be explicitly referenced by any other
279 * code.
280 */
281
282 enum netdev_state_t {
283 __LINK_STATE_START,
284 __LINK_STATE_PRESENT,
285 __LINK_STATE_NOCARRIER,
286 __LINK_STATE_LINKWATCH_PENDING,
287 __LINK_STATE_DORMANT,
288 };
289
290
291 /*
292 * This structure holds at boot time configured netdevice settings. They
293 * are then used in the device probing.
294 */
295 struct netdev_boot_setup {
296 char name[IFNAMSIZ];
297 struct ifmap map;
298 };
299 #define NETDEV_BOOT_SETUP_MAX 8
300
301 int __init netdev_boot_setup(char *str);
302
303 /*
304 * Structure for NAPI scheduling similar to tasklet but with weighting
305 */
306 struct napi_struct {
307 /* The poll_list must only be managed by the entity which
308 * changes the state of the NAPI_STATE_SCHED bit. This means
309 * whoever atomically sets that bit can add this napi_struct
310 * to the per-cpu poll_list, and whoever clears that bit
311 * can remove from the list right before clearing the bit.
312 */
313 struct list_head poll_list;
314
315 unsigned long state;
316 int weight;
317 unsigned int gro_count;
318 int (*poll)(struct napi_struct *, int);
319 #ifdef CONFIG_NETPOLL
320 spinlock_t poll_lock;
321 int poll_owner;
322 #endif
323 struct net_device *dev;
324 struct sk_buff *gro_list;
325 struct sk_buff *skb;
326 struct list_head dev_list;
327 struct hlist_node napi_hash_node;
328 unsigned int napi_id;
329 };
330
331 enum {
332 NAPI_STATE_SCHED, /* Poll is scheduled */
333 NAPI_STATE_DISABLE, /* Disable pending */
334 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
335 NAPI_STATE_HASHED, /* In NAPI hash */
336 };
337
338 enum gro_result {
339 GRO_MERGED,
340 GRO_MERGED_FREE,
341 GRO_HELD,
342 GRO_NORMAL,
343 GRO_DROP,
344 };
345 typedef enum gro_result gro_result_t;
346
347 /*
348 * enum rx_handler_result - Possible return values for rx_handlers.
349 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
350 * further.
351 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
352 * case skb->dev was changed by rx_handler.
353 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
354 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
355 *
356 * rx_handlers are functions called from inside __netif_receive_skb(), to do
357 * special processing of the skb, prior to delivery to protocol handlers.
358 *
359 * Currently, a net_device can only have a single rx_handler registered. Trying
360 * to register a second rx_handler will return -EBUSY.
361 *
362 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
363 * To unregister a rx_handler on a net_device, use
364 * netdev_rx_handler_unregister().
365 *
366 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
367 * do with the skb.
368 *
369 * If the rx_handler consumed to skb in some way, it should return
370 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
371 * the skb to be delivered in some other ways.
372 *
373 * If the rx_handler changed skb->dev, to divert the skb to another
374 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
375 * new device will be called if it exists.
376 *
377 * If the rx_handler consider the skb should be ignored, it should return
378 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
379 * are registered on exact device (ptype->dev == skb->dev).
380 *
381 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
382 * delivered, it should return RX_HANDLER_PASS.
383 *
384 * A device without a registered rx_handler will behave as if rx_handler
385 * returned RX_HANDLER_PASS.
386 */
387
388 enum rx_handler_result {
389 RX_HANDLER_CONSUMED,
390 RX_HANDLER_ANOTHER,
391 RX_HANDLER_EXACT,
392 RX_HANDLER_PASS,
393 };
394 typedef enum rx_handler_result rx_handler_result_t;
395 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
396
397 void __napi_schedule(struct napi_struct *n);
398
399 static inline bool napi_disable_pending(struct napi_struct *n)
400 {
401 return test_bit(NAPI_STATE_DISABLE, &n->state);
402 }
403
404 /**
405 * napi_schedule_prep - check if napi can be scheduled
406 * @n: napi context
407 *
408 * Test if NAPI routine is already running, and if not mark
409 * it as running. This is used as a condition variable
410 * insure only one NAPI poll instance runs. We also make
411 * sure there is no pending NAPI disable.
412 */
413 static inline bool napi_schedule_prep(struct napi_struct *n)
414 {
415 return !napi_disable_pending(n) &&
416 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
417 }
418
419 /**
420 * napi_schedule - schedule NAPI poll
421 * @n: napi context
422 *
423 * Schedule NAPI poll routine to be called if it is not already
424 * running.
425 */
426 static inline void napi_schedule(struct napi_struct *n)
427 {
428 if (napi_schedule_prep(n))
429 __napi_schedule(n);
430 }
431
432 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
433 static inline bool napi_reschedule(struct napi_struct *napi)
434 {
435 if (napi_schedule_prep(napi)) {
436 __napi_schedule(napi);
437 return true;
438 }
439 return false;
440 }
441
442 /**
443 * napi_complete - NAPI processing complete
444 * @n: napi context
445 *
446 * Mark NAPI processing as complete.
447 */
448 void __napi_complete(struct napi_struct *n);
449 void napi_complete(struct napi_struct *n);
450
451 /**
452 * napi_by_id - lookup a NAPI by napi_id
453 * @napi_id: hashed napi_id
454 *
455 * lookup @napi_id in napi_hash table
456 * must be called under rcu_read_lock()
457 */
458 struct napi_struct *napi_by_id(unsigned int napi_id);
459
460 /**
461 * napi_hash_add - add a NAPI to global hashtable
462 * @napi: napi context
463 *
464 * generate a new napi_id and store a @napi under it in napi_hash
465 */
466 void napi_hash_add(struct napi_struct *napi);
467
468 /**
469 * napi_hash_del - remove a NAPI from global table
470 * @napi: napi context
471 *
472 * Warning: caller must observe rcu grace period
473 * before freeing memory containing @napi
474 */
475 void napi_hash_del(struct napi_struct *napi);
476
477 /**
478 * napi_disable - prevent NAPI from scheduling
479 * @n: napi context
480 *
481 * Stop NAPI from being scheduled on this context.
482 * Waits till any outstanding processing completes.
483 */
484 static inline void napi_disable(struct napi_struct *n)
485 {
486 might_sleep();
487 set_bit(NAPI_STATE_DISABLE, &n->state);
488 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
489 msleep(1);
490 clear_bit(NAPI_STATE_DISABLE, &n->state);
491 }
492
493 /**
494 * napi_enable - enable NAPI scheduling
495 * @n: napi context
496 *
497 * Resume NAPI from being scheduled on this context.
498 * Must be paired with napi_disable.
499 */
500 static inline void napi_enable(struct napi_struct *n)
501 {
502 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
503 smp_mb__before_clear_bit();
504 clear_bit(NAPI_STATE_SCHED, &n->state);
505 }
506
507 #ifdef CONFIG_SMP
508 /**
509 * napi_synchronize - wait until NAPI is not running
510 * @n: napi context
511 *
512 * Wait until NAPI is done being scheduled on this context.
513 * Waits till any outstanding processing completes but
514 * does not disable future activations.
515 */
516 static inline void napi_synchronize(const struct napi_struct *n)
517 {
518 while (test_bit(NAPI_STATE_SCHED, &n->state))
519 msleep(1);
520 }
521 #else
522 # define napi_synchronize(n) barrier()
523 #endif
524
525 enum netdev_queue_state_t {
526 __QUEUE_STATE_DRV_XOFF,
527 __QUEUE_STATE_STACK_XOFF,
528 __QUEUE_STATE_FROZEN,
529 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \
530 (1 << __QUEUE_STATE_STACK_XOFF))
531 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
532 (1 << __QUEUE_STATE_FROZEN))
533 };
534 /*
535 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
536 * netif_tx_* functions below are used to manipulate this flag. The
537 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
538 * queue independently. The netif_xmit_*stopped functions below are called
539 * to check if the queue has been stopped by the driver or stack (either
540 * of the XOFF bits are set in the state). Drivers should not need to call
541 * netif_xmit*stopped functions, they should only be using netif_tx_*.
542 */
543
544 struct netdev_queue {
545 /*
546 * read mostly part
547 */
548 struct net_device *dev;
549 struct Qdisc *qdisc;
550 struct Qdisc *qdisc_sleeping;
551 #ifdef CONFIG_SYSFS
552 struct kobject kobj;
553 #endif
554 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
555 int numa_node;
556 #endif
557 /*
558 * write mostly part
559 */
560 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
561 int xmit_lock_owner;
562 /*
563 * please use this field instead of dev->trans_start
564 */
565 unsigned long trans_start;
566
567 /*
568 * Number of TX timeouts for this queue
569 * (/sys/class/net/DEV/Q/trans_timeout)
570 */
571 unsigned long trans_timeout;
572
573 unsigned long state;
574
575 #ifdef CONFIG_BQL
576 struct dql dql;
577 #endif
578 } ____cacheline_aligned_in_smp;
579
580 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
581 {
582 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
583 return q->numa_node;
584 #else
585 return NUMA_NO_NODE;
586 #endif
587 }
588
589 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
590 {
591 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
592 q->numa_node = node;
593 #endif
594 }
595
596 #ifdef CONFIG_RPS
597 /*
598 * This structure holds an RPS map which can be of variable length. The
599 * map is an array of CPUs.
600 */
601 struct rps_map {
602 unsigned int len;
603 struct rcu_head rcu;
604 u16 cpus[0];
605 };
606 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
607
608 /*
609 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
610 * tail pointer for that CPU's input queue at the time of last enqueue, and
611 * a hardware filter index.
612 */
613 struct rps_dev_flow {
614 u16 cpu;
615 u16 filter;
616 unsigned int last_qtail;
617 };
618 #define RPS_NO_FILTER 0xffff
619
620 /*
621 * The rps_dev_flow_table structure contains a table of flow mappings.
622 */
623 struct rps_dev_flow_table {
624 unsigned int mask;
625 struct rcu_head rcu;
626 struct rps_dev_flow flows[0];
627 };
628 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
629 ((_num) * sizeof(struct rps_dev_flow)))
630
631 /*
632 * The rps_sock_flow_table contains mappings of flows to the last CPU
633 * on which they were processed by the application (set in recvmsg).
634 */
635 struct rps_sock_flow_table {
636 unsigned int mask;
637 u16 ents[0];
638 };
639 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
640 ((_num) * sizeof(u16)))
641
642 #define RPS_NO_CPU 0xffff
643
644 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
645 u32 hash)
646 {
647 if (table && hash) {
648 unsigned int cpu, index = hash & table->mask;
649
650 /* We only give a hint, preemption can change cpu under us */
651 cpu = raw_smp_processor_id();
652
653 if (table->ents[index] != cpu)
654 table->ents[index] = cpu;
655 }
656 }
657
658 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
659 u32 hash)
660 {
661 if (table && hash)
662 table->ents[hash & table->mask] = RPS_NO_CPU;
663 }
664
665 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
666
667 #ifdef CONFIG_RFS_ACCEL
668 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
669 u16 filter_id);
670 #endif
671
672 /* This structure contains an instance of an RX queue. */
673 struct netdev_rx_queue {
674 struct rps_map __rcu *rps_map;
675 struct rps_dev_flow_table __rcu *rps_flow_table;
676 struct kobject kobj;
677 struct net_device *dev;
678 } ____cacheline_aligned_in_smp;
679 #endif /* CONFIG_RPS */
680
681 #ifdef CONFIG_XPS
682 /*
683 * This structure holds an XPS map which can be of variable length. The
684 * map is an array of queues.
685 */
686 struct xps_map {
687 unsigned int len;
688 unsigned int alloc_len;
689 struct rcu_head rcu;
690 u16 queues[0];
691 };
692 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
693 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
694 / sizeof(u16))
695
696 /*
697 * This structure holds all XPS maps for device. Maps are indexed by CPU.
698 */
699 struct xps_dev_maps {
700 struct rcu_head rcu;
701 struct xps_map __rcu *cpu_map[0];
702 };
703 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
704 (nr_cpu_ids * sizeof(struct xps_map *)))
705 #endif /* CONFIG_XPS */
706
707 #define TC_MAX_QUEUE 16
708 #define TC_BITMASK 15
709 /* HW offloaded queuing disciplines txq count and offset maps */
710 struct netdev_tc_txq {
711 u16 count;
712 u16 offset;
713 };
714
715 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
716 /*
717 * This structure is to hold information about the device
718 * configured to run FCoE protocol stack.
719 */
720 struct netdev_fcoe_hbainfo {
721 char manufacturer[64];
722 char serial_number[64];
723 char hardware_version[64];
724 char driver_version[64];
725 char optionrom_version[64];
726 char firmware_version[64];
727 char model[256];
728 char model_description[256];
729 };
730 #endif
731
732 #define MAX_PHYS_PORT_ID_LEN 32
733
734 /* This structure holds a unique identifier to identify the
735 * physical port used by a netdevice.
736 */
737 struct netdev_phys_port_id {
738 unsigned char id[MAX_PHYS_PORT_ID_LEN];
739 unsigned char id_len;
740 };
741
742 /*
743 * This structure defines the management hooks for network devices.
744 * The following hooks can be defined; unless noted otherwise, they are
745 * optional and can be filled with a null pointer.
746 *
747 * int (*ndo_init)(struct net_device *dev);
748 * This function is called once when network device is registered.
749 * The network device can use this to any late stage initializaton
750 * or semantic validattion. It can fail with an error code which will
751 * be propogated back to register_netdev
752 *
753 * void (*ndo_uninit)(struct net_device *dev);
754 * This function is called when device is unregistered or when registration
755 * fails. It is not called if init fails.
756 *
757 * int (*ndo_open)(struct net_device *dev);
758 * This function is called when network device transistions to the up
759 * state.
760 *
761 * int (*ndo_stop)(struct net_device *dev);
762 * This function is called when network device transistions to the down
763 * state.
764 *
765 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
766 * struct net_device *dev);
767 * Called when a packet needs to be transmitted.
768 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
769 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
770 * Required can not be NULL.
771 *
772 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
773 * void *accel_priv);
774 * Called to decide which queue to when device supports multiple
775 * transmit queues.
776 *
777 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
778 * This function is called to allow device receiver to make
779 * changes to configuration when multicast or promiscious is enabled.
780 *
781 * void (*ndo_set_rx_mode)(struct net_device *dev);
782 * This function is called device changes address list filtering.
783 * If driver handles unicast address filtering, it should set
784 * IFF_UNICAST_FLT to its priv_flags.
785 *
786 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
787 * This function is called when the Media Access Control address
788 * needs to be changed. If this interface is not defined, the
789 * mac address can not be changed.
790 *
791 * int (*ndo_validate_addr)(struct net_device *dev);
792 * Test if Media Access Control address is valid for the device.
793 *
794 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
795 * Called when a user request an ioctl which can't be handled by
796 * the generic interface code. If not defined ioctl's return
797 * not supported error code.
798 *
799 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
800 * Used to set network devices bus interface parameters. This interface
801 * is retained for legacy reason, new devices should use the bus
802 * interface (PCI) for low level management.
803 *
804 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
805 * Called when a user wants to change the Maximum Transfer Unit
806 * of a device. If not defined, any request to change MTU will
807 * will return an error.
808 *
809 * void (*ndo_tx_timeout)(struct net_device *dev);
810 * Callback uses when the transmitter has not made any progress
811 * for dev->watchdog ticks.
812 *
813 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
814 * struct rtnl_link_stats64 *storage);
815 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
816 * Called when a user wants to get the network device usage
817 * statistics. Drivers must do one of the following:
818 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
819 * rtnl_link_stats64 structure passed by the caller.
820 * 2. Define @ndo_get_stats to update a net_device_stats structure
821 * (which should normally be dev->stats) and return a pointer to
822 * it. The structure may be changed asynchronously only if each
823 * field is written atomically.
824 * 3. Update dev->stats asynchronously and atomically, and define
825 * neither operation.
826 *
827 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16t vid);
828 * If device support VLAN filtering this function is called when a
829 * VLAN id is registered.
830 *
831 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
832 * If device support VLAN filtering this function is called when a
833 * VLAN id is unregistered.
834 *
835 * void (*ndo_poll_controller)(struct net_device *dev);
836 *
837 * SR-IOV management functions.
838 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
839 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
840 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
841 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
842 * int (*ndo_get_vf_config)(struct net_device *dev,
843 * int vf, struct ifla_vf_info *ivf);
844 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
845 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
846 * struct nlattr *port[]);
847 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
848 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
849 * Called to setup 'tc' number of traffic classes in the net device. This
850 * is always called from the stack with the rtnl lock held and netif tx
851 * queues stopped. This allows the netdevice to perform queue management
852 * safely.
853 *
854 * Fiber Channel over Ethernet (FCoE) offload functions.
855 * int (*ndo_fcoe_enable)(struct net_device *dev);
856 * Called when the FCoE protocol stack wants to start using LLD for FCoE
857 * so the underlying device can perform whatever needed configuration or
858 * initialization to support acceleration of FCoE traffic.
859 *
860 * int (*ndo_fcoe_disable)(struct net_device *dev);
861 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
862 * so the underlying device can perform whatever needed clean-ups to
863 * stop supporting acceleration of FCoE traffic.
864 *
865 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
866 * struct scatterlist *sgl, unsigned int sgc);
867 * Called when the FCoE Initiator wants to initialize an I/O that
868 * is a possible candidate for Direct Data Placement (DDP). The LLD can
869 * perform necessary setup and returns 1 to indicate the device is set up
870 * successfully to perform DDP on this I/O, otherwise this returns 0.
871 *
872 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
873 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
874 * indicated by the FC exchange id 'xid', so the underlying device can
875 * clean up and reuse resources for later DDP requests.
876 *
877 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
878 * struct scatterlist *sgl, unsigned int sgc);
879 * Called when the FCoE Target wants to initialize an I/O that
880 * is a possible candidate for Direct Data Placement (DDP). The LLD can
881 * perform necessary setup and returns 1 to indicate the device is set up
882 * successfully to perform DDP on this I/O, otherwise this returns 0.
883 *
884 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
885 * struct netdev_fcoe_hbainfo *hbainfo);
886 * Called when the FCoE Protocol stack wants information on the underlying
887 * device. This information is utilized by the FCoE protocol stack to
888 * register attributes with Fiber Channel management service as per the
889 * FC-GS Fabric Device Management Information(FDMI) specification.
890 *
891 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
892 * Called when the underlying device wants to override default World Wide
893 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
894 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
895 * protocol stack to use.
896 *
897 * RFS acceleration.
898 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
899 * u16 rxq_index, u32 flow_id);
900 * Set hardware filter for RFS. rxq_index is the target queue index;
901 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
902 * Return the filter ID on success, or a negative error code.
903 *
904 * Slave management functions (for bridge, bonding, etc).
905 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
906 * Called to make another netdev an underling.
907 *
908 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
909 * Called to release previously enslaved netdev.
910 *
911 * Feature/offload setting functions.
912 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
913 * netdev_features_t features);
914 * Adjusts the requested feature flags according to device-specific
915 * constraints, and returns the resulting flags. Must not modify
916 * the device state.
917 *
918 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
919 * Called to update device configuration to new features. Passed
920 * feature set might be less than what was returned by ndo_fix_features()).
921 * Must return >0 or -errno if it changed dev->features itself.
922 *
923 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
924 * struct net_device *dev,
925 * const unsigned char *addr, u16 flags)
926 * Adds an FDB entry to dev for addr.
927 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
928 * struct net_device *dev,
929 * const unsigned char *addr)
930 * Deletes the FDB entry from dev coresponding to addr.
931 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
932 * struct net_device *dev, int idx)
933 * Used to add FDB entries to dump requests. Implementers should add
934 * entries to skb and update idx with the number of entries.
935 *
936 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
937 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
938 * struct net_device *dev, u32 filter_mask)
939 *
940 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
941 * Called to change device carrier. Soft-devices (like dummy, team, etc)
942 * which do not represent real hardware may define this to allow their
943 * userspace components to manage their virtual carrier state. Devices
944 * that determine carrier state from physical hardware properties (eg
945 * network cables) or protocol-dependent mechanisms (eg
946 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
947 *
948 * int (*ndo_get_phys_port_id)(struct net_device *dev,
949 * struct netdev_phys_port_id *ppid);
950 * Called to get ID of physical port of this device. If driver does
951 * not implement this, it is assumed that the hw is not able to have
952 * multiple net devices on single physical port.
953 *
954 * void (*ndo_add_vxlan_port)(struct net_device *dev,
955 * sa_family_t sa_family, __be16 port);
956 * Called by vxlan to notiy a driver about the UDP port and socket
957 * address family that vxlan is listnening to. It is called only when
958 * a new port starts listening. The operation is protected by the
959 * vxlan_net->sock_lock.
960 *
961 * void (*ndo_del_vxlan_port)(struct net_device *dev,
962 * sa_family_t sa_family, __be16 port);
963 * Called by vxlan to notify the driver about a UDP port and socket
964 * address family that vxlan is not listening to anymore. The operation
965 * is protected by the vxlan_net->sock_lock.
966 *
967 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
968 * struct net_device *dev)
969 * Called by upper layer devices to accelerate switching or other
970 * station functionality into hardware. 'pdev is the lowerdev
971 * to use for the offload and 'dev' is the net device that will
972 * back the offload. Returns a pointer to the private structure
973 * the upper layer will maintain.
974 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
975 * Called by upper layer device to delete the station created
976 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
977 * the station and priv is the structure returned by the add
978 * operation.
979 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
980 * struct net_device *dev,
981 * void *priv);
982 * Callback to use for xmit over the accelerated station. This
983 * is used in place of ndo_start_xmit on accelerated net
984 * devices.
985 */
986 struct net_device_ops {
987 int (*ndo_init)(struct net_device *dev);
988 void (*ndo_uninit)(struct net_device *dev);
989 int (*ndo_open)(struct net_device *dev);
990 int (*ndo_stop)(struct net_device *dev);
991 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
992 struct net_device *dev);
993 u16 (*ndo_select_queue)(struct net_device *dev,
994 struct sk_buff *skb,
995 void *accel_priv);
996 void (*ndo_change_rx_flags)(struct net_device *dev,
997 int flags);
998 void (*ndo_set_rx_mode)(struct net_device *dev);
999 int (*ndo_set_mac_address)(struct net_device *dev,
1000 void *addr);
1001 int (*ndo_validate_addr)(struct net_device *dev);
1002 int (*ndo_do_ioctl)(struct net_device *dev,
1003 struct ifreq *ifr, int cmd);
1004 int (*ndo_set_config)(struct net_device *dev,
1005 struct ifmap *map);
1006 int (*ndo_change_mtu)(struct net_device *dev,
1007 int new_mtu);
1008 int (*ndo_neigh_setup)(struct net_device *dev,
1009 struct neigh_parms *);
1010 void (*ndo_tx_timeout) (struct net_device *dev);
1011
1012 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1013 struct rtnl_link_stats64 *storage);
1014 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1015
1016 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1017 __be16 proto, u16 vid);
1018 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1019 __be16 proto, u16 vid);
1020 #ifdef CONFIG_NET_POLL_CONTROLLER
1021 void (*ndo_poll_controller)(struct net_device *dev);
1022 int (*ndo_netpoll_setup)(struct net_device *dev,
1023 struct netpoll_info *info,
1024 gfp_t gfp);
1025 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1026 #endif
1027 #ifdef CONFIG_NET_RX_BUSY_POLL
1028 int (*ndo_busy_poll)(struct napi_struct *dev);
1029 #endif
1030 int (*ndo_set_vf_mac)(struct net_device *dev,
1031 int queue, u8 *mac);
1032 int (*ndo_set_vf_vlan)(struct net_device *dev,
1033 int queue, u16 vlan, u8 qos);
1034 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
1035 int vf, int rate);
1036 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1037 int vf, bool setting);
1038 int (*ndo_get_vf_config)(struct net_device *dev,
1039 int vf,
1040 struct ifla_vf_info *ivf);
1041 int (*ndo_set_vf_link_state)(struct net_device *dev,
1042 int vf, int link_state);
1043 int (*ndo_set_vf_port)(struct net_device *dev,
1044 int vf,
1045 struct nlattr *port[]);
1046 int (*ndo_get_vf_port)(struct net_device *dev,
1047 int vf, struct sk_buff *skb);
1048 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1049 #if IS_ENABLED(CONFIG_FCOE)
1050 int (*ndo_fcoe_enable)(struct net_device *dev);
1051 int (*ndo_fcoe_disable)(struct net_device *dev);
1052 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1053 u16 xid,
1054 struct scatterlist *sgl,
1055 unsigned int sgc);
1056 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1057 u16 xid);
1058 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1059 u16 xid,
1060 struct scatterlist *sgl,
1061 unsigned int sgc);
1062 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1063 struct netdev_fcoe_hbainfo *hbainfo);
1064 #endif
1065
1066 #if IS_ENABLED(CONFIG_LIBFCOE)
1067 #define NETDEV_FCOE_WWNN 0
1068 #define NETDEV_FCOE_WWPN 1
1069 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1070 u64 *wwn, int type);
1071 #endif
1072
1073 #ifdef CONFIG_RFS_ACCEL
1074 int (*ndo_rx_flow_steer)(struct net_device *dev,
1075 const struct sk_buff *skb,
1076 u16 rxq_index,
1077 u32 flow_id);
1078 #endif
1079 int (*ndo_add_slave)(struct net_device *dev,
1080 struct net_device *slave_dev);
1081 int (*ndo_del_slave)(struct net_device *dev,
1082 struct net_device *slave_dev);
1083 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1084 netdev_features_t features);
1085 int (*ndo_set_features)(struct net_device *dev,
1086 netdev_features_t features);
1087 int (*ndo_neigh_construct)(struct neighbour *n);
1088 void (*ndo_neigh_destroy)(struct neighbour *n);
1089
1090 int (*ndo_fdb_add)(struct ndmsg *ndm,
1091 struct nlattr *tb[],
1092 struct net_device *dev,
1093 const unsigned char *addr,
1094 u16 flags);
1095 int (*ndo_fdb_del)(struct ndmsg *ndm,
1096 struct nlattr *tb[],
1097 struct net_device *dev,
1098 const unsigned char *addr);
1099 int (*ndo_fdb_dump)(struct sk_buff *skb,
1100 struct netlink_callback *cb,
1101 struct net_device *dev,
1102 int idx);
1103
1104 int (*ndo_bridge_setlink)(struct net_device *dev,
1105 struct nlmsghdr *nlh);
1106 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1107 u32 pid, u32 seq,
1108 struct net_device *dev,
1109 u32 filter_mask);
1110 int (*ndo_bridge_dellink)(struct net_device *dev,
1111 struct nlmsghdr *nlh);
1112 int (*ndo_change_carrier)(struct net_device *dev,
1113 bool new_carrier);
1114 int (*ndo_get_phys_port_id)(struct net_device *dev,
1115 struct netdev_phys_port_id *ppid);
1116 void (*ndo_add_vxlan_port)(struct net_device *dev,
1117 sa_family_t sa_family,
1118 __be16 port);
1119 void (*ndo_del_vxlan_port)(struct net_device *dev,
1120 sa_family_t sa_family,
1121 __be16 port);
1122
1123 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1124 struct net_device *dev);
1125 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1126 void *priv);
1127
1128 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1129 struct net_device *dev,
1130 void *priv);
1131 };
1132
1133 /*
1134 * The DEVICE structure.
1135 * Actually, this whole structure is a big mistake. It mixes I/O
1136 * data with strictly "high-level" data, and it has to know about
1137 * almost every data structure used in the INET module.
1138 *
1139 * FIXME: cleanup struct net_device such that network protocol info
1140 * moves out.
1141 */
1142
1143 struct net_device {
1144
1145 /*
1146 * This is the first field of the "visible" part of this structure
1147 * (i.e. as seen by users in the "Space.c" file). It is the name
1148 * of the interface.
1149 */
1150 char name[IFNAMSIZ];
1151
1152 /* device name hash chain, please keep it close to name[] */
1153 struct hlist_node name_hlist;
1154
1155 /* snmp alias */
1156 char *ifalias;
1157
1158 /*
1159 * I/O specific fields
1160 * FIXME: Merge these and struct ifmap into one
1161 */
1162 unsigned long mem_end; /* shared mem end */
1163 unsigned long mem_start; /* shared mem start */
1164 unsigned long base_addr; /* device I/O address */
1165 int irq; /* device IRQ number */
1166
1167 /*
1168 * Some hardware also needs these fields, but they are not
1169 * part of the usual set specified in Space.c.
1170 */
1171
1172 unsigned long state;
1173
1174 struct list_head dev_list;
1175 struct list_head napi_list;
1176 struct list_head unreg_list;
1177 struct list_head close_list;
1178
1179 /* directly linked devices, like slaves for bonding */
1180 struct {
1181 struct list_head upper;
1182 struct list_head lower;
1183 } adj_list;
1184
1185 /* all linked devices, *including* neighbours */
1186 struct {
1187 struct list_head upper;
1188 struct list_head lower;
1189 } all_adj_list;
1190
1191
1192 /* currently active device features */
1193 netdev_features_t features;
1194 /* user-changeable features */
1195 netdev_features_t hw_features;
1196 /* user-requested features */
1197 netdev_features_t wanted_features;
1198 /* mask of features inheritable by VLAN devices */
1199 netdev_features_t vlan_features;
1200 /* mask of features inherited by encapsulating devices
1201 * This field indicates what encapsulation offloads
1202 * the hardware is capable of doing, and drivers will
1203 * need to set them appropriately.
1204 */
1205 netdev_features_t hw_enc_features;
1206 /* mask of fetures inheritable by MPLS */
1207 netdev_features_t mpls_features;
1208
1209 /* Interface index. Unique device identifier */
1210 int ifindex;
1211 int iflink;
1212
1213 struct net_device_stats stats;
1214 atomic_long_t rx_dropped; /* dropped packets by core network
1215 * Do not use this in drivers.
1216 */
1217
1218 #ifdef CONFIG_WIRELESS_EXT
1219 /* List of functions to handle Wireless Extensions (instead of ioctl).
1220 * See <net/iw_handler.h> for details. Jean II */
1221 const struct iw_handler_def * wireless_handlers;
1222 /* Instance data managed by the core of Wireless Extensions. */
1223 struct iw_public_data * wireless_data;
1224 #endif
1225 /* Management operations */
1226 const struct net_device_ops *netdev_ops;
1227 const struct ethtool_ops *ethtool_ops;
1228 const struct forwarding_accel_ops *fwd_ops;
1229
1230 /* Hardware header description */
1231 const struct header_ops *header_ops;
1232
1233 unsigned int flags; /* interface flags (a la BSD) */
1234 unsigned int priv_flags; /* Like 'flags' but invisible to userspace.
1235 * See if.h for definitions. */
1236 unsigned short gflags;
1237 unsigned short padded; /* How much padding added by alloc_netdev() */
1238
1239 unsigned char operstate; /* RFC2863 operstate */
1240 unsigned char link_mode; /* mapping policy to operstate */
1241
1242 unsigned char if_port; /* Selectable AUI, TP,..*/
1243 unsigned char dma; /* DMA channel */
1244
1245 unsigned int mtu; /* interface MTU value */
1246 unsigned short type; /* interface hardware type */
1247 unsigned short hard_header_len; /* hardware hdr length */
1248
1249 /* extra head- and tailroom the hardware may need, but not in all cases
1250 * can this be guaranteed, especially tailroom. Some cases also use
1251 * LL_MAX_HEADER instead to allocate the skb.
1252 */
1253 unsigned short needed_headroom;
1254 unsigned short needed_tailroom;
1255
1256 /* Interface address info. */
1257 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1258 unsigned char addr_assign_type; /* hw address assignment type */
1259 unsigned char addr_len; /* hardware address length */
1260 unsigned short neigh_priv_len;
1261 unsigned short dev_id; /* Used to differentiate devices
1262 * that share the same link
1263 * layer address
1264 */
1265 spinlock_t addr_list_lock;
1266 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
1267 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
1268 struct netdev_hw_addr_list dev_addrs; /* list of device
1269 * hw addresses
1270 */
1271 #ifdef CONFIG_SYSFS
1272 struct kset *queues_kset;
1273 #endif
1274
1275 bool uc_promisc;
1276 unsigned int promiscuity;
1277 unsigned int allmulti;
1278
1279
1280 /* Protocol specific pointers */
1281
1282 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1283 struct vlan_info __rcu *vlan_info; /* VLAN info */
1284 #endif
1285 #if IS_ENABLED(CONFIG_NET_DSA)
1286 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */
1287 #endif
1288 void *atalk_ptr; /* AppleTalk link */
1289 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1290 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1291 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1292 void *ax25_ptr; /* AX.25 specific data */
1293 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1294 assign before registering */
1295
1296 /*
1297 * Cache lines mostly used on receive path (including eth_type_trans())
1298 */
1299 unsigned long last_rx; /* Time of last Rx
1300 * This should not be set in
1301 * drivers, unless really needed,
1302 * because network stack (bonding)
1303 * use it if/when necessary, to
1304 * avoid dirtying this cache line.
1305 */
1306
1307 /* Interface address info used in eth_type_trans() */
1308 unsigned char *dev_addr; /* hw address, (before bcast
1309 because most packets are
1310 unicast) */
1311
1312
1313 #ifdef CONFIG_RPS
1314 struct netdev_rx_queue *_rx;
1315
1316 /* Number of RX queues allocated at register_netdev() time */
1317 unsigned int num_rx_queues;
1318
1319 /* Number of RX queues currently active in device */
1320 unsigned int real_num_rx_queues;
1321
1322 #endif
1323
1324 rx_handler_func_t __rcu *rx_handler;
1325 void __rcu *rx_handler_data;
1326
1327 struct netdev_queue __rcu *ingress_queue;
1328 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1329
1330
1331 /*
1332 * Cache lines mostly used on transmit path
1333 */
1334 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1335
1336 /* Number of TX queues allocated at alloc_netdev_mq() time */
1337 unsigned int num_tx_queues;
1338
1339 /* Number of TX queues currently active in device */
1340 unsigned int real_num_tx_queues;
1341
1342 /* root qdisc from userspace point of view */
1343 struct Qdisc *qdisc;
1344
1345 unsigned long tx_queue_len; /* Max frames per queue allowed */
1346 spinlock_t tx_global_lock;
1347
1348 #ifdef CONFIG_XPS
1349 struct xps_dev_maps __rcu *xps_maps;
1350 #endif
1351 #ifdef CONFIG_RFS_ACCEL
1352 /* CPU reverse-mapping for RX completion interrupts, indexed
1353 * by RX queue number. Assigned by driver. This must only be
1354 * set if the ndo_rx_flow_steer operation is defined. */
1355 struct cpu_rmap *rx_cpu_rmap;
1356 #endif
1357
1358 /* These may be needed for future network-power-down code. */
1359
1360 /*
1361 * trans_start here is expensive for high speed devices on SMP,
1362 * please use netdev_queue->trans_start instead.
1363 */
1364 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1365
1366 int watchdog_timeo; /* used by dev_watchdog() */
1367 struct timer_list watchdog_timer;
1368
1369 /* Number of references to this device */
1370 int __percpu *pcpu_refcnt;
1371
1372 /* delayed register/unregister */
1373 struct list_head todo_list;
1374 /* device index hash chain */
1375 struct hlist_node index_hlist;
1376
1377 struct list_head link_watch_list;
1378
1379 /* register/unregister state machine */
1380 enum { NETREG_UNINITIALIZED=0,
1381 NETREG_REGISTERED, /* completed register_netdevice */
1382 NETREG_UNREGISTERING, /* called unregister_netdevice */
1383 NETREG_UNREGISTERED, /* completed unregister todo */
1384 NETREG_RELEASED, /* called free_netdev */
1385 NETREG_DUMMY, /* dummy device for NAPI poll */
1386 } reg_state:8;
1387
1388 bool dismantle; /* device is going do be freed */
1389
1390 enum {
1391 RTNL_LINK_INITIALIZED,
1392 RTNL_LINK_INITIALIZING,
1393 } rtnl_link_state:16;
1394
1395 /* Called from unregister, can be used to call free_netdev */
1396 void (*destructor)(struct net_device *dev);
1397
1398 #ifdef CONFIG_NETPOLL
1399 struct netpoll_info __rcu *npinfo;
1400 #endif
1401
1402 #ifdef CONFIG_NET_NS
1403 /* Network namespace this network device is inside */
1404 struct net *nd_net;
1405 #endif
1406
1407 /* mid-layer private */
1408 union {
1409 void *ml_priv;
1410 struct pcpu_lstats __percpu *lstats; /* loopback stats */
1411 struct pcpu_tstats __percpu *tstats; /* tunnel stats */
1412 struct pcpu_dstats __percpu *dstats; /* dummy stats */
1413 struct pcpu_vstats __percpu *vstats; /* veth stats */
1414 };
1415 /* GARP */
1416 struct garp_port __rcu *garp_port;
1417 /* MRP */
1418 struct mrp_port __rcu *mrp_port;
1419
1420 /* class/net/name entry */
1421 struct device dev;
1422 /* space for optional device, statistics, and wireless sysfs groups */
1423 const struct attribute_group *sysfs_groups[4];
1424
1425 /* rtnetlink link ops */
1426 const struct rtnl_link_ops *rtnl_link_ops;
1427
1428 /* for setting kernel sock attribute on TCP connection setup */
1429 #define GSO_MAX_SIZE 65536
1430 unsigned int gso_max_size;
1431 #define GSO_MAX_SEGS 65535
1432 u16 gso_max_segs;
1433
1434 #ifdef CONFIG_DCB
1435 /* Data Center Bridging netlink ops */
1436 const struct dcbnl_rtnl_ops *dcbnl_ops;
1437 #endif
1438 u8 num_tc;
1439 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1440 u8 prio_tc_map[TC_BITMASK + 1];
1441
1442 #if IS_ENABLED(CONFIG_FCOE)
1443 /* max exchange id for FCoE LRO by ddp */
1444 unsigned int fcoe_ddp_xid;
1445 #endif
1446 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1447 struct netprio_map __rcu *priomap;
1448 #endif
1449 /* phy device may attach itself for hardware timestamping */
1450 struct phy_device *phydev;
1451
1452 struct lock_class_key *qdisc_tx_busylock;
1453
1454 /* group the device belongs to */
1455 int group;
1456
1457 struct pm_qos_request pm_qos_req;
1458 };
1459 #define to_net_dev(d) container_of(d, struct net_device, dev)
1460
1461 #define NETDEV_ALIGN 32
1462
1463 static inline
1464 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1465 {
1466 return dev->prio_tc_map[prio & TC_BITMASK];
1467 }
1468
1469 static inline
1470 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1471 {
1472 if (tc >= dev->num_tc)
1473 return -EINVAL;
1474
1475 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1476 return 0;
1477 }
1478
1479 static inline
1480 void netdev_reset_tc(struct net_device *dev)
1481 {
1482 dev->num_tc = 0;
1483 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1484 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1485 }
1486
1487 static inline
1488 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1489 {
1490 if (tc >= dev->num_tc)
1491 return -EINVAL;
1492
1493 dev->tc_to_txq[tc].count = count;
1494 dev->tc_to_txq[tc].offset = offset;
1495 return 0;
1496 }
1497
1498 static inline
1499 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1500 {
1501 if (num_tc > TC_MAX_QUEUE)
1502 return -EINVAL;
1503
1504 dev->num_tc = num_tc;
1505 return 0;
1506 }
1507
1508 static inline
1509 int netdev_get_num_tc(struct net_device *dev)
1510 {
1511 return dev->num_tc;
1512 }
1513
1514 static inline
1515 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1516 unsigned int index)
1517 {
1518 return &dev->_tx[index];
1519 }
1520
1521 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1522 void (*f)(struct net_device *,
1523 struct netdev_queue *,
1524 void *),
1525 void *arg)
1526 {
1527 unsigned int i;
1528
1529 for (i = 0; i < dev->num_tx_queues; i++)
1530 f(dev, &dev->_tx[i], arg);
1531 }
1532
1533 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1534 struct sk_buff *skb,
1535 void *accel_priv);
1536 u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb);
1537
1538 /*
1539 * Net namespace inlines
1540 */
1541 static inline
1542 struct net *dev_net(const struct net_device *dev)
1543 {
1544 return read_pnet(&dev->nd_net);
1545 }
1546
1547 static inline
1548 void dev_net_set(struct net_device *dev, struct net *net)
1549 {
1550 #ifdef CONFIG_NET_NS
1551 release_net(dev->nd_net);
1552 dev->nd_net = hold_net(net);
1553 #endif
1554 }
1555
1556 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1557 {
1558 #ifdef CONFIG_NET_DSA_TAG_DSA
1559 if (dev->dsa_ptr != NULL)
1560 return dsa_uses_dsa_tags(dev->dsa_ptr);
1561 #endif
1562
1563 return 0;
1564 }
1565
1566 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1567 {
1568 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1569 if (dev->dsa_ptr != NULL)
1570 return dsa_uses_trailer_tags(dev->dsa_ptr);
1571 #endif
1572
1573 return 0;
1574 }
1575
1576 /**
1577 * netdev_priv - access network device private data
1578 * @dev: network device
1579 *
1580 * Get network device private data
1581 */
1582 static inline void *netdev_priv(const struct net_device *dev)
1583 {
1584 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1585 }
1586
1587 /* Set the sysfs physical device reference for the network logical device
1588 * if set prior to registration will cause a symlink during initialization.
1589 */
1590 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1591
1592 /* Set the sysfs device type for the network logical device to allow
1593 * fine-grained identification of different network device types. For
1594 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1595 */
1596 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1597
1598 /* Default NAPI poll() weight
1599 * Device drivers are strongly advised to not use bigger value
1600 */
1601 #define NAPI_POLL_WEIGHT 64
1602
1603 /**
1604 * netif_napi_add - initialize a napi context
1605 * @dev: network device
1606 * @napi: napi context
1607 * @poll: polling function
1608 * @weight: default weight
1609 *
1610 * netif_napi_add() must be used to initialize a napi context prior to calling
1611 * *any* of the other napi related functions.
1612 */
1613 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1614 int (*poll)(struct napi_struct *, int), int weight);
1615
1616 /**
1617 * netif_napi_del - remove a napi context
1618 * @napi: napi context
1619 *
1620 * netif_napi_del() removes a napi context from the network device napi list
1621 */
1622 void netif_napi_del(struct napi_struct *napi);
1623
1624 struct napi_gro_cb {
1625 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1626 void *frag0;
1627
1628 /* Length of frag0. */
1629 unsigned int frag0_len;
1630
1631 /* This indicates where we are processing relative to skb->data. */
1632 int data_offset;
1633
1634 /* This is non-zero if the packet cannot be merged with the new skb. */
1635 int flush;
1636
1637 /* Number of segments aggregated. */
1638 u16 count;
1639
1640 /* This is non-zero if the packet may be of the same flow. */
1641 u8 same_flow;
1642
1643 /* Free the skb? */
1644 u8 free;
1645 #define NAPI_GRO_FREE 1
1646 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1647
1648 /* jiffies when first packet was created/queued */
1649 unsigned long age;
1650
1651 /* Used in ipv6_gro_receive() */
1652 int proto;
1653
1654 /* used in skb_gro_receive() slow path */
1655 struct sk_buff *last;
1656 };
1657
1658 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1659
1660 struct packet_type {
1661 __be16 type; /* This is really htons(ether_type). */
1662 struct net_device *dev; /* NULL is wildcarded here */
1663 int (*func) (struct sk_buff *,
1664 struct net_device *,
1665 struct packet_type *,
1666 struct net_device *);
1667 bool (*id_match)(struct packet_type *ptype,
1668 struct sock *sk);
1669 void *af_packet_priv;
1670 struct list_head list;
1671 };
1672
1673 struct offload_callbacks {
1674 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1675 netdev_features_t features);
1676 int (*gso_send_check)(struct sk_buff *skb);
1677 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1678 struct sk_buff *skb);
1679 int (*gro_complete)(struct sk_buff *skb);
1680 };
1681
1682 struct packet_offload {
1683 __be16 type; /* This is really htons(ether_type). */
1684 struct offload_callbacks callbacks;
1685 struct list_head list;
1686 };
1687
1688 #include <linux/notifier.h>
1689
1690 /* netdevice notifier chain. Please remember to update the rtnetlink
1691 * notification exclusion list in rtnetlink_event() when adding new
1692 * types.
1693 */
1694 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
1695 #define NETDEV_DOWN 0x0002
1696 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
1697 detected a hardware crash and restarted
1698 - we can use this eg to kick tcp sessions
1699 once done */
1700 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
1701 #define NETDEV_REGISTER 0x0005
1702 #define NETDEV_UNREGISTER 0x0006
1703 #define NETDEV_CHANGEMTU 0x0007
1704 #define NETDEV_CHANGEADDR 0x0008
1705 #define NETDEV_GOING_DOWN 0x0009
1706 #define NETDEV_CHANGENAME 0x000A
1707 #define NETDEV_FEAT_CHANGE 0x000B
1708 #define NETDEV_BONDING_FAILOVER 0x000C
1709 #define NETDEV_PRE_UP 0x000D
1710 #define NETDEV_PRE_TYPE_CHANGE 0x000E
1711 #define NETDEV_POST_TYPE_CHANGE 0x000F
1712 #define NETDEV_POST_INIT 0x0010
1713 #define NETDEV_UNREGISTER_FINAL 0x0011
1714 #define NETDEV_RELEASE 0x0012
1715 #define NETDEV_NOTIFY_PEERS 0x0013
1716 #define NETDEV_JOIN 0x0014
1717 #define NETDEV_CHANGEUPPER 0x0015
1718 #define NETDEV_RESEND_IGMP 0x0016
1719
1720 int register_netdevice_notifier(struct notifier_block *nb);
1721 int unregister_netdevice_notifier(struct notifier_block *nb);
1722
1723 struct netdev_notifier_info {
1724 struct net_device *dev;
1725 };
1726
1727 struct netdev_notifier_change_info {
1728 struct netdev_notifier_info info; /* must be first */
1729 unsigned int flags_changed;
1730 };
1731
1732 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
1733 struct net_device *dev)
1734 {
1735 info->dev = dev;
1736 }
1737
1738 static inline struct net_device *
1739 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
1740 {
1741 return info->dev;
1742 }
1743
1744 int call_netdevice_notifiers_info(unsigned long val, struct net_device *dev,
1745 struct netdev_notifier_info *info);
1746 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1747
1748
1749 extern rwlock_t dev_base_lock; /* Device list lock */
1750
1751 #define for_each_netdev(net, d) \
1752 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1753 #define for_each_netdev_reverse(net, d) \
1754 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1755 #define for_each_netdev_rcu(net, d) \
1756 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1757 #define for_each_netdev_safe(net, d, n) \
1758 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1759 #define for_each_netdev_continue(net, d) \
1760 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1761 #define for_each_netdev_continue_rcu(net, d) \
1762 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1763 #define for_each_netdev_in_bond_rcu(bond, slave) \
1764 for_each_netdev_rcu(&init_net, slave) \
1765 if (netdev_master_upper_dev_get_rcu(slave) == bond)
1766 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1767
1768 static inline struct net_device *next_net_device(struct net_device *dev)
1769 {
1770 struct list_head *lh;
1771 struct net *net;
1772
1773 net = dev_net(dev);
1774 lh = dev->dev_list.next;
1775 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1776 }
1777
1778 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1779 {
1780 struct list_head *lh;
1781 struct net *net;
1782
1783 net = dev_net(dev);
1784 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1785 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1786 }
1787
1788 static inline struct net_device *first_net_device(struct net *net)
1789 {
1790 return list_empty(&net->dev_base_head) ? NULL :
1791 net_device_entry(net->dev_base_head.next);
1792 }
1793
1794 static inline struct net_device *first_net_device_rcu(struct net *net)
1795 {
1796 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1797
1798 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1799 }
1800
1801 int netdev_boot_setup_check(struct net_device *dev);
1802 unsigned long netdev_boot_base(const char *prefix, int unit);
1803 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1804 const char *hwaddr);
1805 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1806 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1807 void dev_add_pack(struct packet_type *pt);
1808 void dev_remove_pack(struct packet_type *pt);
1809 void __dev_remove_pack(struct packet_type *pt);
1810 void dev_add_offload(struct packet_offload *po);
1811 void dev_remove_offload(struct packet_offload *po);
1812 void __dev_remove_offload(struct packet_offload *po);
1813
1814 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1815 unsigned short mask);
1816 struct net_device *dev_get_by_name(struct net *net, const char *name);
1817 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1818 struct net_device *__dev_get_by_name(struct net *net, const char *name);
1819 int dev_alloc_name(struct net_device *dev, const char *name);
1820 int dev_open(struct net_device *dev);
1821 int dev_close(struct net_device *dev);
1822 void dev_disable_lro(struct net_device *dev);
1823 int dev_loopback_xmit(struct sk_buff *newskb);
1824 int dev_queue_xmit(struct sk_buff *skb);
1825 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
1826 int register_netdevice(struct net_device *dev);
1827 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
1828 void unregister_netdevice_many(struct list_head *head);
1829 static inline void unregister_netdevice(struct net_device *dev)
1830 {
1831 unregister_netdevice_queue(dev, NULL);
1832 }
1833
1834 int netdev_refcnt_read(const struct net_device *dev);
1835 void free_netdev(struct net_device *dev);
1836 void netdev_freemem(struct net_device *dev);
1837 void synchronize_net(void);
1838 int init_dummy_netdev(struct net_device *dev);
1839
1840 struct net_device *dev_get_by_index(struct net *net, int ifindex);
1841 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1842 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1843 int netdev_get_name(struct net *net, char *name, int ifindex);
1844 int dev_restart(struct net_device *dev);
1845 #ifdef CONFIG_NETPOLL_TRAP
1846 int netpoll_trap(void);
1847 #endif
1848 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1849
1850 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1851 {
1852 return NAPI_GRO_CB(skb)->data_offset;
1853 }
1854
1855 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1856 {
1857 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1858 }
1859
1860 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1861 {
1862 NAPI_GRO_CB(skb)->data_offset += len;
1863 }
1864
1865 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1866 unsigned int offset)
1867 {
1868 return NAPI_GRO_CB(skb)->frag0 + offset;
1869 }
1870
1871 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1872 {
1873 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1874 }
1875
1876 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1877 unsigned int offset)
1878 {
1879 if (!pskb_may_pull(skb, hlen))
1880 return NULL;
1881
1882 NAPI_GRO_CB(skb)->frag0 = NULL;
1883 NAPI_GRO_CB(skb)->frag0_len = 0;
1884 return skb->data + offset;
1885 }
1886
1887 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1888 {
1889 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1890 }
1891
1892 static inline void *skb_gro_network_header(struct sk_buff *skb)
1893 {
1894 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1895 skb_network_offset(skb);
1896 }
1897
1898 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1899 unsigned short type,
1900 const void *daddr, const void *saddr,
1901 unsigned int len)
1902 {
1903 if (!dev->header_ops || !dev->header_ops->create)
1904 return 0;
1905
1906 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1907 }
1908
1909 static inline int dev_parse_header(const struct sk_buff *skb,
1910 unsigned char *haddr)
1911 {
1912 const struct net_device *dev = skb->dev;
1913
1914 if (!dev->header_ops || !dev->header_ops->parse)
1915 return 0;
1916 return dev->header_ops->parse(skb, haddr);
1917 }
1918
1919 static inline int dev_rebuild_header(struct sk_buff *skb)
1920 {
1921 const struct net_device *dev = skb->dev;
1922
1923 if (!dev->header_ops || !dev->header_ops->rebuild)
1924 return 0;
1925 return dev->header_ops->rebuild(skb);
1926 }
1927
1928 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1929 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
1930 static inline int unregister_gifconf(unsigned int family)
1931 {
1932 return register_gifconf(family, NULL);
1933 }
1934
1935 #ifdef CONFIG_NET_FLOW_LIMIT
1936 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
1937 struct sd_flow_limit {
1938 u64 count;
1939 unsigned int num_buckets;
1940 unsigned int history_head;
1941 u16 history[FLOW_LIMIT_HISTORY];
1942 u8 buckets[];
1943 };
1944
1945 extern int netdev_flow_limit_table_len;
1946 #endif /* CONFIG_NET_FLOW_LIMIT */
1947
1948 /*
1949 * Incoming packets are placed on per-cpu queues
1950 */
1951 struct softnet_data {
1952 struct Qdisc *output_queue;
1953 struct Qdisc **output_queue_tailp;
1954 struct list_head poll_list;
1955 struct sk_buff *completion_queue;
1956 struct sk_buff_head process_queue;
1957
1958 /* stats */
1959 unsigned int processed;
1960 unsigned int time_squeeze;
1961 unsigned int cpu_collision;
1962 unsigned int received_rps;
1963
1964 #ifdef CONFIG_RPS
1965 struct softnet_data *rps_ipi_list;
1966
1967 /* Elements below can be accessed between CPUs for RPS */
1968 struct call_single_data csd ____cacheline_aligned_in_smp;
1969 struct softnet_data *rps_ipi_next;
1970 unsigned int cpu;
1971 unsigned int input_queue_head;
1972 unsigned int input_queue_tail;
1973 #endif
1974 unsigned int dropped;
1975 struct sk_buff_head input_pkt_queue;
1976 struct napi_struct backlog;
1977
1978 #ifdef CONFIG_NET_FLOW_LIMIT
1979 struct sd_flow_limit __rcu *flow_limit;
1980 #endif
1981 };
1982
1983 static inline void input_queue_head_incr(struct softnet_data *sd)
1984 {
1985 #ifdef CONFIG_RPS
1986 sd->input_queue_head++;
1987 #endif
1988 }
1989
1990 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1991 unsigned int *qtail)
1992 {
1993 #ifdef CONFIG_RPS
1994 *qtail = ++sd->input_queue_tail;
1995 #endif
1996 }
1997
1998 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1999
2000 void __netif_schedule(struct Qdisc *q);
2001
2002 static inline void netif_schedule_queue(struct netdev_queue *txq)
2003 {
2004 if (!(txq->state & QUEUE_STATE_ANY_XOFF))
2005 __netif_schedule(txq->qdisc);
2006 }
2007
2008 static inline void netif_tx_schedule_all(struct net_device *dev)
2009 {
2010 unsigned int i;
2011
2012 for (i = 0; i < dev->num_tx_queues; i++)
2013 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2014 }
2015
2016 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2017 {
2018 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2019 }
2020
2021 /**
2022 * netif_start_queue - allow transmit
2023 * @dev: network device
2024 *
2025 * Allow upper layers to call the device hard_start_xmit routine.
2026 */
2027 static inline void netif_start_queue(struct net_device *dev)
2028 {
2029 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2030 }
2031
2032 static inline void netif_tx_start_all_queues(struct net_device *dev)
2033 {
2034 unsigned int i;
2035
2036 for (i = 0; i < dev->num_tx_queues; i++) {
2037 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2038 netif_tx_start_queue(txq);
2039 }
2040 }
2041
2042 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2043 {
2044 #ifdef CONFIG_NETPOLL_TRAP
2045 if (netpoll_trap()) {
2046 netif_tx_start_queue(dev_queue);
2047 return;
2048 }
2049 #endif
2050 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
2051 __netif_schedule(dev_queue->qdisc);
2052 }
2053
2054 /**
2055 * netif_wake_queue - restart transmit
2056 * @dev: network device
2057 *
2058 * Allow upper layers to call the device hard_start_xmit routine.
2059 * Used for flow control when transmit resources are available.
2060 */
2061 static inline void netif_wake_queue(struct net_device *dev)
2062 {
2063 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2064 }
2065
2066 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2067 {
2068 unsigned int i;
2069
2070 for (i = 0; i < dev->num_tx_queues; i++) {
2071 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2072 netif_tx_wake_queue(txq);
2073 }
2074 }
2075
2076 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2077 {
2078 if (WARN_ON(!dev_queue)) {
2079 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2080 return;
2081 }
2082 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2083 }
2084
2085 /**
2086 * netif_stop_queue - stop transmitted packets
2087 * @dev: network device
2088 *
2089 * Stop upper layers calling the device hard_start_xmit routine.
2090 * Used for flow control when transmit resources are unavailable.
2091 */
2092 static inline void netif_stop_queue(struct net_device *dev)
2093 {
2094 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2095 }
2096
2097 static inline void netif_tx_stop_all_queues(struct net_device *dev)
2098 {
2099 unsigned int i;
2100
2101 for (i = 0; i < dev->num_tx_queues; i++) {
2102 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2103 netif_tx_stop_queue(txq);
2104 }
2105 }
2106
2107 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2108 {
2109 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2110 }
2111
2112 /**
2113 * netif_queue_stopped - test if transmit queue is flowblocked
2114 * @dev: network device
2115 *
2116 * Test if transmit queue on device is currently unable to send.
2117 */
2118 static inline bool netif_queue_stopped(const struct net_device *dev)
2119 {
2120 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2121 }
2122
2123 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2124 {
2125 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2126 }
2127
2128 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2129 {
2130 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2131 }
2132
2133 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2134 unsigned int bytes)
2135 {
2136 #ifdef CONFIG_BQL
2137 dql_queued(&dev_queue->dql, bytes);
2138
2139 if (likely(dql_avail(&dev_queue->dql) >= 0))
2140 return;
2141
2142 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2143
2144 /*
2145 * The XOFF flag must be set before checking the dql_avail below,
2146 * because in netdev_tx_completed_queue we update the dql_completed
2147 * before checking the XOFF flag.
2148 */
2149 smp_mb();
2150
2151 /* check again in case another CPU has just made room avail */
2152 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2153 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2154 #endif
2155 }
2156
2157 /**
2158 * netdev_sent_queue - report the number of bytes queued to hardware
2159 * @dev: network device
2160 * @bytes: number of bytes queued to the hardware device queue
2161 *
2162 * Report the number of bytes queued for sending/completion to the network
2163 * device hardware queue. @bytes should be a good approximation and should
2164 * exactly match netdev_completed_queue() @bytes
2165 */
2166 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2167 {
2168 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2169 }
2170
2171 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2172 unsigned int pkts, unsigned int bytes)
2173 {
2174 #ifdef CONFIG_BQL
2175 if (unlikely(!bytes))
2176 return;
2177
2178 dql_completed(&dev_queue->dql, bytes);
2179
2180 /*
2181 * Without the memory barrier there is a small possiblity that
2182 * netdev_tx_sent_queue will miss the update and cause the queue to
2183 * be stopped forever
2184 */
2185 smp_mb();
2186
2187 if (dql_avail(&dev_queue->dql) < 0)
2188 return;
2189
2190 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2191 netif_schedule_queue(dev_queue);
2192 #endif
2193 }
2194
2195 /**
2196 * netdev_completed_queue - report bytes and packets completed by device
2197 * @dev: network device
2198 * @pkts: actual number of packets sent over the medium
2199 * @bytes: actual number of bytes sent over the medium
2200 *
2201 * Report the number of bytes and packets transmitted by the network device
2202 * hardware queue over the physical medium, @bytes must exactly match the
2203 * @bytes amount passed to netdev_sent_queue()
2204 */
2205 static inline void netdev_completed_queue(struct net_device *dev,
2206 unsigned int pkts, unsigned int bytes)
2207 {
2208 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2209 }
2210
2211 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2212 {
2213 #ifdef CONFIG_BQL
2214 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2215 dql_reset(&q->dql);
2216 #endif
2217 }
2218
2219 /**
2220 * netdev_reset_queue - reset the packets and bytes count of a network device
2221 * @dev_queue: network device
2222 *
2223 * Reset the bytes and packet count of a network device and clear the
2224 * software flow control OFF bit for this network device
2225 */
2226 static inline void netdev_reset_queue(struct net_device *dev_queue)
2227 {
2228 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2229 }
2230
2231 /**
2232 * netif_running - test if up
2233 * @dev: network device
2234 *
2235 * Test if the device has been brought up.
2236 */
2237 static inline bool netif_running(const struct net_device *dev)
2238 {
2239 return test_bit(__LINK_STATE_START, &dev->state);
2240 }
2241
2242 /*
2243 * Routines to manage the subqueues on a device. We only need start
2244 * stop, and a check if it's stopped. All other device management is
2245 * done at the overall netdevice level.
2246 * Also test the device if we're multiqueue.
2247 */
2248
2249 /**
2250 * netif_start_subqueue - allow sending packets on subqueue
2251 * @dev: network device
2252 * @queue_index: sub queue index
2253 *
2254 * Start individual transmit queue of a device with multiple transmit queues.
2255 */
2256 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2257 {
2258 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2259
2260 netif_tx_start_queue(txq);
2261 }
2262
2263 /**
2264 * netif_stop_subqueue - stop sending packets on subqueue
2265 * @dev: network device
2266 * @queue_index: sub queue index
2267 *
2268 * Stop individual transmit queue of a device with multiple transmit queues.
2269 */
2270 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2271 {
2272 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2273 #ifdef CONFIG_NETPOLL_TRAP
2274 if (netpoll_trap())
2275 return;
2276 #endif
2277 netif_tx_stop_queue(txq);
2278 }
2279
2280 /**
2281 * netif_subqueue_stopped - test status of subqueue
2282 * @dev: network device
2283 * @queue_index: sub queue index
2284 *
2285 * Check individual transmit queue of a device with multiple transmit queues.
2286 */
2287 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2288 u16 queue_index)
2289 {
2290 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2291
2292 return netif_tx_queue_stopped(txq);
2293 }
2294
2295 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2296 struct sk_buff *skb)
2297 {
2298 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2299 }
2300
2301 /**
2302 * netif_wake_subqueue - allow sending packets on subqueue
2303 * @dev: network device
2304 * @queue_index: sub queue index
2305 *
2306 * Resume individual transmit queue of a device with multiple transmit queues.
2307 */
2308 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2309 {
2310 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2311 #ifdef CONFIG_NETPOLL_TRAP
2312 if (netpoll_trap())
2313 return;
2314 #endif
2315 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2316 __netif_schedule(txq->qdisc);
2317 }
2318
2319 #ifdef CONFIG_XPS
2320 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2321 u16 index);
2322 #else
2323 static inline int netif_set_xps_queue(struct net_device *dev,
2324 const struct cpumask *mask,
2325 u16 index)
2326 {
2327 return 0;
2328 }
2329 #endif
2330
2331 /*
2332 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2333 * as a distribution range limit for the returned value.
2334 */
2335 static inline u16 skb_tx_hash(const struct net_device *dev,
2336 const struct sk_buff *skb)
2337 {
2338 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2339 }
2340
2341 /**
2342 * netif_is_multiqueue - test if device has multiple transmit queues
2343 * @dev: network device
2344 *
2345 * Check if device has multiple transmit queues
2346 */
2347 static inline bool netif_is_multiqueue(const struct net_device *dev)
2348 {
2349 return dev->num_tx_queues > 1;
2350 }
2351
2352 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2353
2354 #ifdef CONFIG_RPS
2355 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2356 #else
2357 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2358 unsigned int rxq)
2359 {
2360 return 0;
2361 }
2362 #endif
2363
2364 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2365 const struct net_device *from_dev)
2366 {
2367 int err;
2368
2369 err = netif_set_real_num_tx_queues(to_dev,
2370 from_dev->real_num_tx_queues);
2371 if (err)
2372 return err;
2373 #ifdef CONFIG_RPS
2374 return netif_set_real_num_rx_queues(to_dev,
2375 from_dev->real_num_rx_queues);
2376 #else
2377 return 0;
2378 #endif
2379 }
2380
2381 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
2382 int netif_get_num_default_rss_queues(void);
2383
2384 /* Use this variant when it is known for sure that it
2385 * is executing from hardware interrupt context or with hardware interrupts
2386 * disabled.
2387 */
2388 void dev_kfree_skb_irq(struct sk_buff *skb);
2389
2390 /* Use this variant in places where it could be invoked
2391 * from either hardware interrupt or other context, with hardware interrupts
2392 * either disabled or enabled.
2393 */
2394 void dev_kfree_skb_any(struct sk_buff *skb);
2395
2396 int netif_rx(struct sk_buff *skb);
2397 int netif_rx_ni(struct sk_buff *skb);
2398 int netif_receive_skb(struct sk_buff *skb);
2399 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2400 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2401 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2402 gro_result_t napi_gro_frags(struct napi_struct *napi);
2403
2404 static inline void napi_free_frags(struct napi_struct *napi)
2405 {
2406 kfree_skb(napi->skb);
2407 napi->skb = NULL;
2408 }
2409
2410 int netdev_rx_handler_register(struct net_device *dev,
2411 rx_handler_func_t *rx_handler,
2412 void *rx_handler_data);
2413 void netdev_rx_handler_unregister(struct net_device *dev);
2414
2415 bool dev_valid_name(const char *name);
2416 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2417 int dev_ethtool(struct net *net, struct ifreq *);
2418 unsigned int dev_get_flags(const struct net_device *);
2419 int __dev_change_flags(struct net_device *, unsigned int flags);
2420 int dev_change_flags(struct net_device *, unsigned int);
2421 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2422 unsigned int gchanges);
2423 int dev_change_name(struct net_device *, const char *);
2424 int dev_set_alias(struct net_device *, const char *, size_t);
2425 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2426 int dev_set_mtu(struct net_device *, int);
2427 void dev_set_group(struct net_device *, int);
2428 int dev_set_mac_address(struct net_device *, struct sockaddr *);
2429 int dev_change_carrier(struct net_device *, bool new_carrier);
2430 int dev_get_phys_port_id(struct net_device *dev,
2431 struct netdev_phys_port_id *ppid);
2432 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2433 struct netdev_queue *txq);
2434 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2435
2436 extern int netdev_budget;
2437
2438 /* Called by rtnetlink.c:rtnl_unlock() */
2439 void netdev_run_todo(void);
2440
2441 /**
2442 * dev_put - release reference to device
2443 * @dev: network device
2444 *
2445 * Release reference to device to allow it to be freed.
2446 */
2447 static inline void dev_put(struct net_device *dev)
2448 {
2449 this_cpu_dec(*dev->pcpu_refcnt);
2450 }
2451
2452 /**
2453 * dev_hold - get reference to device
2454 * @dev: network device
2455 *
2456 * Hold reference to device to keep it from being freed.
2457 */
2458 static inline void dev_hold(struct net_device *dev)
2459 {
2460 this_cpu_inc(*dev->pcpu_refcnt);
2461 }
2462
2463 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2464 * and _off may be called from IRQ context, but it is caller
2465 * who is responsible for serialization of these calls.
2466 *
2467 * The name carrier is inappropriate, these functions should really be
2468 * called netif_lowerlayer_*() because they represent the state of any
2469 * kind of lower layer not just hardware media.
2470 */
2471
2472 void linkwatch_init_dev(struct net_device *dev);
2473 void linkwatch_fire_event(struct net_device *dev);
2474 void linkwatch_forget_dev(struct net_device *dev);
2475
2476 /**
2477 * netif_carrier_ok - test if carrier present
2478 * @dev: network device
2479 *
2480 * Check if carrier is present on device
2481 */
2482 static inline bool netif_carrier_ok(const struct net_device *dev)
2483 {
2484 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2485 }
2486
2487 unsigned long dev_trans_start(struct net_device *dev);
2488
2489 void __netdev_watchdog_up(struct net_device *dev);
2490
2491 void netif_carrier_on(struct net_device *dev);
2492
2493 void netif_carrier_off(struct net_device *dev);
2494
2495 /**
2496 * netif_dormant_on - mark device as dormant.
2497 * @dev: network device
2498 *
2499 * Mark device as dormant (as per RFC2863).
2500 *
2501 * The dormant state indicates that the relevant interface is not
2502 * actually in a condition to pass packets (i.e., it is not 'up') but is
2503 * in a "pending" state, waiting for some external event. For "on-
2504 * demand" interfaces, this new state identifies the situation where the
2505 * interface is waiting for events to place it in the up state.
2506 *
2507 */
2508 static inline void netif_dormant_on(struct net_device *dev)
2509 {
2510 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2511 linkwatch_fire_event(dev);
2512 }
2513
2514 /**
2515 * netif_dormant_off - set device as not dormant.
2516 * @dev: network device
2517 *
2518 * Device is not in dormant state.
2519 */
2520 static inline void netif_dormant_off(struct net_device *dev)
2521 {
2522 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2523 linkwatch_fire_event(dev);
2524 }
2525
2526 /**
2527 * netif_dormant - test if carrier present
2528 * @dev: network device
2529 *
2530 * Check if carrier is present on device
2531 */
2532 static inline bool netif_dormant(const struct net_device *dev)
2533 {
2534 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2535 }
2536
2537
2538 /**
2539 * netif_oper_up - test if device is operational
2540 * @dev: network device
2541 *
2542 * Check if carrier is operational
2543 */
2544 static inline bool netif_oper_up(const struct net_device *dev)
2545 {
2546 return (dev->operstate == IF_OPER_UP ||
2547 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2548 }
2549
2550 /**
2551 * netif_device_present - is device available or removed
2552 * @dev: network device
2553 *
2554 * Check if device has not been removed from system.
2555 */
2556 static inline bool netif_device_present(struct net_device *dev)
2557 {
2558 return test_bit(__LINK_STATE_PRESENT, &dev->state);
2559 }
2560
2561 void netif_device_detach(struct net_device *dev);
2562
2563 void netif_device_attach(struct net_device *dev);
2564
2565 /*
2566 * Network interface message level settings
2567 */
2568
2569 enum {
2570 NETIF_MSG_DRV = 0x0001,
2571 NETIF_MSG_PROBE = 0x0002,
2572 NETIF_MSG_LINK = 0x0004,
2573 NETIF_MSG_TIMER = 0x0008,
2574 NETIF_MSG_IFDOWN = 0x0010,
2575 NETIF_MSG_IFUP = 0x0020,
2576 NETIF_MSG_RX_ERR = 0x0040,
2577 NETIF_MSG_TX_ERR = 0x0080,
2578 NETIF_MSG_TX_QUEUED = 0x0100,
2579 NETIF_MSG_INTR = 0x0200,
2580 NETIF_MSG_TX_DONE = 0x0400,
2581 NETIF_MSG_RX_STATUS = 0x0800,
2582 NETIF_MSG_PKTDATA = 0x1000,
2583 NETIF_MSG_HW = 0x2000,
2584 NETIF_MSG_WOL = 0x4000,
2585 };
2586
2587 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2588 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2589 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2590 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2591 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2592 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2593 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2594 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2595 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2596 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2597 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2598 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2599 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2600 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2601 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2602
2603 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2604 {
2605 /* use default */
2606 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2607 return default_msg_enable_bits;
2608 if (debug_value == 0) /* no output */
2609 return 0;
2610 /* set low N bits */
2611 return (1 << debug_value) - 1;
2612 }
2613
2614 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2615 {
2616 spin_lock(&txq->_xmit_lock);
2617 txq->xmit_lock_owner = cpu;
2618 }
2619
2620 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2621 {
2622 spin_lock_bh(&txq->_xmit_lock);
2623 txq->xmit_lock_owner = smp_processor_id();
2624 }
2625
2626 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2627 {
2628 bool ok = spin_trylock(&txq->_xmit_lock);
2629 if (likely(ok))
2630 txq->xmit_lock_owner = smp_processor_id();
2631 return ok;
2632 }
2633
2634 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2635 {
2636 txq->xmit_lock_owner = -1;
2637 spin_unlock(&txq->_xmit_lock);
2638 }
2639
2640 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2641 {
2642 txq->xmit_lock_owner = -1;
2643 spin_unlock_bh(&txq->_xmit_lock);
2644 }
2645
2646 static inline void txq_trans_update(struct netdev_queue *txq)
2647 {
2648 if (txq->xmit_lock_owner != -1)
2649 txq->trans_start = jiffies;
2650 }
2651
2652 /**
2653 * netif_tx_lock - grab network device transmit lock
2654 * @dev: network device
2655 *
2656 * Get network device transmit lock
2657 */
2658 static inline void netif_tx_lock(struct net_device *dev)
2659 {
2660 unsigned int i;
2661 int cpu;
2662
2663 spin_lock(&dev->tx_global_lock);
2664 cpu = smp_processor_id();
2665 for (i = 0; i < dev->num_tx_queues; i++) {
2666 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2667
2668 /* We are the only thread of execution doing a
2669 * freeze, but we have to grab the _xmit_lock in
2670 * order to synchronize with threads which are in
2671 * the ->hard_start_xmit() handler and already
2672 * checked the frozen bit.
2673 */
2674 __netif_tx_lock(txq, cpu);
2675 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2676 __netif_tx_unlock(txq);
2677 }
2678 }
2679
2680 static inline void netif_tx_lock_bh(struct net_device *dev)
2681 {
2682 local_bh_disable();
2683 netif_tx_lock(dev);
2684 }
2685
2686 static inline void netif_tx_unlock(struct net_device *dev)
2687 {
2688 unsigned int i;
2689
2690 for (i = 0; i < dev->num_tx_queues; i++) {
2691 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2692
2693 /* No need to grab the _xmit_lock here. If the
2694 * queue is not stopped for another reason, we
2695 * force a schedule.
2696 */
2697 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2698 netif_schedule_queue(txq);
2699 }
2700 spin_unlock(&dev->tx_global_lock);
2701 }
2702
2703 static inline void netif_tx_unlock_bh(struct net_device *dev)
2704 {
2705 netif_tx_unlock(dev);
2706 local_bh_enable();
2707 }
2708
2709 #define HARD_TX_LOCK(dev, txq, cpu) { \
2710 if ((dev->features & NETIF_F_LLTX) == 0) { \
2711 __netif_tx_lock(txq, cpu); \
2712 } \
2713 }
2714
2715 #define HARD_TX_UNLOCK(dev, txq) { \
2716 if ((dev->features & NETIF_F_LLTX) == 0) { \
2717 __netif_tx_unlock(txq); \
2718 } \
2719 }
2720
2721 static inline void netif_tx_disable(struct net_device *dev)
2722 {
2723 unsigned int i;
2724 int cpu;
2725
2726 local_bh_disable();
2727 cpu = smp_processor_id();
2728 for (i = 0; i < dev->num_tx_queues; i++) {
2729 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2730
2731 __netif_tx_lock(txq, cpu);
2732 netif_tx_stop_queue(txq);
2733 __netif_tx_unlock(txq);
2734 }
2735 local_bh_enable();
2736 }
2737
2738 static inline void netif_addr_lock(struct net_device *dev)
2739 {
2740 spin_lock(&dev->addr_list_lock);
2741 }
2742
2743 static inline void netif_addr_lock_nested(struct net_device *dev)
2744 {
2745 spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2746 }
2747
2748 static inline void netif_addr_lock_bh(struct net_device *dev)
2749 {
2750 spin_lock_bh(&dev->addr_list_lock);
2751 }
2752
2753 static inline void netif_addr_unlock(struct net_device *dev)
2754 {
2755 spin_unlock(&dev->addr_list_lock);
2756 }
2757
2758 static inline void netif_addr_unlock_bh(struct net_device *dev)
2759 {
2760 spin_unlock_bh(&dev->addr_list_lock);
2761 }
2762
2763 /*
2764 * dev_addrs walker. Should be used only for read access. Call with
2765 * rcu_read_lock held.
2766 */
2767 #define for_each_dev_addr(dev, ha) \
2768 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2769
2770 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2771
2772 void ether_setup(struct net_device *dev);
2773
2774 /* Support for loadable net-drivers */
2775 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2776 void (*setup)(struct net_device *),
2777 unsigned int txqs, unsigned int rxqs);
2778 #define alloc_netdev(sizeof_priv, name, setup) \
2779 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2780
2781 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2782 alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2783
2784 int register_netdev(struct net_device *dev);
2785 void unregister_netdev(struct net_device *dev);
2786
2787 /* General hardware address lists handling functions */
2788 int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2789 struct netdev_hw_addr_list *from_list,
2790 int addr_len, unsigned char addr_type);
2791 void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2792 struct netdev_hw_addr_list *from_list,
2793 int addr_len, unsigned char addr_type);
2794 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2795 struct netdev_hw_addr_list *from_list, int addr_len);
2796 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2797 struct netdev_hw_addr_list *from_list, int addr_len);
2798 void __hw_addr_flush(struct netdev_hw_addr_list *list);
2799 void __hw_addr_init(struct netdev_hw_addr_list *list);
2800
2801 /* Functions used for device addresses handling */
2802 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
2803 unsigned char addr_type);
2804 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
2805 unsigned char addr_type);
2806 int dev_addr_add_multiple(struct net_device *to_dev,
2807 struct net_device *from_dev, unsigned char addr_type);
2808 int dev_addr_del_multiple(struct net_device *to_dev,
2809 struct net_device *from_dev, unsigned char addr_type);
2810 void dev_addr_flush(struct net_device *dev);
2811 int dev_addr_init(struct net_device *dev);
2812
2813 /* Functions used for unicast addresses handling */
2814 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
2815 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
2816 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
2817 int dev_uc_sync(struct net_device *to, struct net_device *from);
2818 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
2819 void dev_uc_unsync(struct net_device *to, struct net_device *from);
2820 void dev_uc_flush(struct net_device *dev);
2821 void dev_uc_init(struct net_device *dev);
2822
2823 /* Functions used for multicast addresses handling */
2824 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
2825 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
2826 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
2827 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
2828 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
2829 int dev_mc_sync(struct net_device *to, struct net_device *from);
2830 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
2831 void dev_mc_unsync(struct net_device *to, struct net_device *from);
2832 void dev_mc_flush(struct net_device *dev);
2833 void dev_mc_init(struct net_device *dev);
2834
2835 /* Functions used for secondary unicast and multicast support */
2836 void dev_set_rx_mode(struct net_device *dev);
2837 void __dev_set_rx_mode(struct net_device *dev);
2838 int dev_set_promiscuity(struct net_device *dev, int inc);
2839 int dev_set_allmulti(struct net_device *dev, int inc);
2840 void netdev_state_change(struct net_device *dev);
2841 void netdev_notify_peers(struct net_device *dev);
2842 void netdev_features_change(struct net_device *dev);
2843 /* Load a device via the kmod */
2844 void dev_load(struct net *net, const char *name);
2845 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2846 struct rtnl_link_stats64 *storage);
2847 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
2848 const struct net_device_stats *netdev_stats);
2849
2850 extern int netdev_max_backlog;
2851 extern int netdev_tstamp_prequeue;
2852 extern int weight_p;
2853 extern int bpf_jit_enable;
2854
2855 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
2856 bool netdev_has_any_upper_dev(struct net_device *dev);
2857 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
2858 struct list_head **iter);
2859
2860 /* iterate through upper list, must be called under RCU read lock */
2861 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
2862 for (iter = &(dev)->all_adj_list.upper, \
2863 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
2864 updev; \
2865 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
2866
2867 void *netdev_lower_get_next_private(struct net_device *dev,
2868 struct list_head **iter);
2869 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
2870 struct list_head **iter);
2871
2872 #define netdev_for_each_lower_private(dev, priv, iter) \
2873 for (iter = (dev)->adj_list.lower.next, \
2874 priv = netdev_lower_get_next_private(dev, &(iter)); \
2875 priv; \
2876 priv = netdev_lower_get_next_private(dev, &(iter)))
2877
2878 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
2879 for (iter = &(dev)->adj_list.lower, \
2880 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
2881 priv; \
2882 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
2883
2884 void *netdev_adjacent_get_private(struct list_head *adj_list);
2885 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
2886 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
2887 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
2888 int netdev_master_upper_dev_link(struct net_device *dev,
2889 struct net_device *upper_dev);
2890 int netdev_master_upper_dev_link_private(struct net_device *dev,
2891 struct net_device *upper_dev,
2892 void *private);
2893 void netdev_upper_dev_unlink(struct net_device *dev,
2894 struct net_device *upper_dev);
2895 void *netdev_lower_dev_get_private_rcu(struct net_device *dev,
2896 struct net_device *lower_dev);
2897 void *netdev_lower_dev_get_private(struct net_device *dev,
2898 struct net_device *lower_dev);
2899 int skb_checksum_help(struct sk_buff *skb);
2900 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2901 netdev_features_t features, bool tx_path);
2902 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2903 netdev_features_t features);
2904
2905 static inline
2906 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
2907 {
2908 return __skb_gso_segment(skb, features, true);
2909 }
2910 __be16 skb_network_protocol(struct sk_buff *skb);
2911
2912 static inline bool can_checksum_protocol(netdev_features_t features,
2913 __be16 protocol)
2914 {
2915 return ((features & NETIF_F_GEN_CSUM) ||
2916 ((features & NETIF_F_V4_CSUM) &&
2917 protocol == htons(ETH_P_IP)) ||
2918 ((features & NETIF_F_V6_CSUM) &&
2919 protocol == htons(ETH_P_IPV6)) ||
2920 ((features & NETIF_F_FCOE_CRC) &&
2921 protocol == htons(ETH_P_FCOE)));
2922 }
2923
2924 #ifdef CONFIG_BUG
2925 void netdev_rx_csum_fault(struct net_device *dev);
2926 #else
2927 static inline void netdev_rx_csum_fault(struct net_device *dev)
2928 {
2929 }
2930 #endif
2931 /* rx skb timestamps */
2932 void net_enable_timestamp(void);
2933 void net_disable_timestamp(void);
2934
2935 #ifdef CONFIG_PROC_FS
2936 int __init dev_proc_init(void);
2937 #else
2938 #define dev_proc_init() 0
2939 #endif
2940
2941 int netdev_class_create_file_ns(struct class_attribute *class_attr,
2942 const void *ns);
2943 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
2944 const void *ns);
2945
2946 static inline int netdev_class_create_file(struct class_attribute *class_attr)
2947 {
2948 return netdev_class_create_file_ns(class_attr, NULL);
2949 }
2950
2951 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
2952 {
2953 netdev_class_remove_file_ns(class_attr, NULL);
2954 }
2955
2956 extern struct kobj_ns_type_operations net_ns_type_operations;
2957
2958 const char *netdev_drivername(const struct net_device *dev);
2959
2960 void linkwatch_run_queue(void);
2961
2962 static inline netdev_features_t netdev_get_wanted_features(
2963 struct net_device *dev)
2964 {
2965 return (dev->features & ~dev->hw_features) | dev->wanted_features;
2966 }
2967 netdev_features_t netdev_increment_features(netdev_features_t all,
2968 netdev_features_t one, netdev_features_t mask);
2969
2970 /* Allow TSO being used on stacked device :
2971 * Performing the GSO segmentation before last device
2972 * is a performance improvement.
2973 */
2974 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
2975 netdev_features_t mask)
2976 {
2977 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
2978 }
2979
2980 int __netdev_update_features(struct net_device *dev);
2981 void netdev_update_features(struct net_device *dev);
2982 void netdev_change_features(struct net_device *dev);
2983
2984 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2985 struct net_device *dev);
2986
2987 netdev_features_t netif_skb_features(struct sk_buff *skb);
2988
2989 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
2990 {
2991 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2992
2993 /* check flags correspondence */
2994 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2995 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2996 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2997 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2998 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2999 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3000
3001 return (features & feature) == feature;
3002 }
3003
3004 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3005 {
3006 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3007 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3008 }
3009
3010 static inline bool netif_needs_gso(struct sk_buff *skb,
3011 netdev_features_t features)
3012 {
3013 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3014 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3015 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3016 }
3017
3018 static inline void netif_set_gso_max_size(struct net_device *dev,
3019 unsigned int size)
3020 {
3021 dev->gso_max_size = size;
3022 }
3023
3024 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3025 int pulled_hlen, u16 mac_offset,
3026 int mac_len)
3027 {
3028 skb->protocol = protocol;
3029 skb->encapsulation = 1;
3030 skb_push(skb, pulled_hlen);
3031 skb_reset_transport_header(skb);
3032 skb->mac_header = mac_offset;
3033 skb->network_header = skb->mac_header + mac_len;
3034 skb->mac_len = mac_len;
3035 }
3036
3037 static inline bool netif_is_macvlan(struct net_device *dev)
3038 {
3039 return dev->priv_flags & IFF_MACVLAN;
3040 }
3041
3042 static inline bool netif_is_bond_master(struct net_device *dev)
3043 {
3044 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3045 }
3046
3047 static inline bool netif_is_bond_slave(struct net_device *dev)
3048 {
3049 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3050 }
3051
3052 static inline bool netif_supports_nofcs(struct net_device *dev)
3053 {
3054 return dev->priv_flags & IFF_SUPP_NOFCS;
3055 }
3056
3057 extern struct pernet_operations __net_initdata loopback_net_ops;
3058
3059 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3060
3061 /* netdev_printk helpers, similar to dev_printk */
3062
3063 static inline const char *netdev_name(const struct net_device *dev)
3064 {
3065 if (dev->reg_state != NETREG_REGISTERED)
3066 return "(unregistered net_device)";
3067 return dev->name;
3068 }
3069
3070 __printf(3, 4)
3071 int netdev_printk(const char *level, const struct net_device *dev,
3072 const char *format, ...);
3073 __printf(2, 3)
3074 int netdev_emerg(const struct net_device *dev, const char *format, ...);
3075 __printf(2, 3)
3076 int netdev_alert(const struct net_device *dev, const char *format, ...);
3077 __printf(2, 3)
3078 int netdev_crit(const struct net_device *dev, const char *format, ...);
3079 __printf(2, 3)
3080 int netdev_err(const struct net_device *dev, const char *format, ...);
3081 __printf(2, 3)
3082 int netdev_warn(const struct net_device *dev, const char *format, ...);
3083 __printf(2, 3)
3084 int netdev_notice(const struct net_device *dev, const char *format, ...);
3085 __printf(2, 3)
3086 int netdev_info(const struct net_device *dev, const char *format, ...);
3087
3088 #define MODULE_ALIAS_NETDEV(device) \
3089 MODULE_ALIAS("netdev-" device)
3090
3091 #if defined(CONFIG_DYNAMIC_DEBUG)
3092 #define netdev_dbg(__dev, format, args...) \
3093 do { \
3094 dynamic_netdev_dbg(__dev, format, ##args); \
3095 } while (0)
3096 #elif defined(DEBUG)
3097 #define netdev_dbg(__dev, format, args...) \
3098 netdev_printk(KERN_DEBUG, __dev, format, ##args)
3099 #else
3100 #define netdev_dbg(__dev, format, args...) \
3101 ({ \
3102 if (0) \
3103 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3104 0; \
3105 })
3106 #endif
3107
3108 #if defined(VERBOSE_DEBUG)
3109 #define netdev_vdbg netdev_dbg
3110 #else
3111
3112 #define netdev_vdbg(dev, format, args...) \
3113 ({ \
3114 if (0) \
3115 netdev_printk(KERN_DEBUG, dev, format, ##args); \
3116 0; \
3117 })
3118 #endif
3119
3120 /*
3121 * netdev_WARN() acts like dev_printk(), but with the key difference
3122 * of using a WARN/WARN_ON to get the message out, including the
3123 * file/line information and a backtrace.
3124 */
3125 #define netdev_WARN(dev, format, args...) \
3126 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args)
3127
3128 /* netif printk helpers, similar to netdev_printk */
3129
3130 #define netif_printk(priv, type, level, dev, fmt, args...) \
3131 do { \
3132 if (netif_msg_##type(priv)) \
3133 netdev_printk(level, (dev), fmt, ##args); \
3134 } while (0)
3135
3136 #define netif_level(level, priv, type, dev, fmt, args...) \
3137 do { \
3138 if (netif_msg_##type(priv)) \
3139 netdev_##level(dev, fmt, ##args); \
3140 } while (0)
3141
3142 #define netif_emerg(priv, type, dev, fmt, args...) \
3143 netif_level(emerg, priv, type, dev, fmt, ##args)
3144 #define netif_alert(priv, type, dev, fmt, args...) \
3145 netif_level(alert, priv, type, dev, fmt, ##args)
3146 #define netif_crit(priv, type, dev, fmt, args...) \
3147 netif_level(crit, priv, type, dev, fmt, ##args)
3148 #define netif_err(priv, type, dev, fmt, args...) \
3149 netif_level(err, priv, type, dev, fmt, ##args)
3150 #define netif_warn(priv, type, dev, fmt, args...) \
3151 netif_level(warn, priv, type, dev, fmt, ##args)
3152 #define netif_notice(priv, type, dev, fmt, args...) \
3153 netif_level(notice, priv, type, dev, fmt, ##args)
3154 #define netif_info(priv, type, dev, fmt, args...) \
3155 netif_level(info, priv, type, dev, fmt, ##args)
3156
3157 #if defined(CONFIG_DYNAMIC_DEBUG)
3158 #define netif_dbg(priv, type, netdev, format, args...) \
3159 do { \
3160 if (netif_msg_##type(priv)) \
3161 dynamic_netdev_dbg(netdev, format, ##args); \
3162 } while (0)
3163 #elif defined(DEBUG)
3164 #define netif_dbg(priv, type, dev, format, args...) \
3165 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3166 #else
3167 #define netif_dbg(priv, type, dev, format, args...) \
3168 ({ \
3169 if (0) \
3170 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3171 0; \
3172 })
3173 #endif
3174
3175 #if defined(VERBOSE_DEBUG)
3176 #define netif_vdbg netif_dbg
3177 #else
3178 #define netif_vdbg(priv, type, dev, format, args...) \
3179 ({ \
3180 if (0) \
3181 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3182 0; \
3183 })
3184 #endif
3185
3186 /*
3187 * The list of packet types we will receive (as opposed to discard)
3188 * and the routines to invoke.
3189 *
3190 * Why 16. Because with 16 the only overlap we get on a hash of the
3191 * low nibble of the protocol value is RARP/SNAP/X.25.
3192 *
3193 * NOTE: That is no longer true with the addition of VLAN tags. Not
3194 * sure which should go first, but I bet it won't make much
3195 * difference if we are running VLANs. The good news is that
3196 * this protocol won't be in the list unless compiled in, so
3197 * the average user (w/out VLANs) will not be adversely affected.
3198 * --BLG
3199 *
3200 * 0800 IP
3201 * 8100 802.1Q VLAN
3202 * 0001 802.3
3203 * 0002 AX.25
3204 * 0004 802.2
3205 * 8035 RARP
3206 * 0005 SNAP
3207 * 0805 X.25
3208 * 0806 ARP
3209 * 8137 IPX
3210 * 0009 Localtalk
3211 * 86DD IPv6
3212 */
3213 #define PTYPE_HASH_SIZE (16)
3214 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
3215
3216 #endif /* _LINUX_NETDEVICE_H */
This page took 0.100362 seconds and 5 git commands to generate.