mm: remove remaining references to NUMA hinting bits and helpers
[deliverable/linux.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/pm_qos.h>
29 #include <linux/timer.h>
30 #include <linux/bug.h>
31 #include <linux/delay.h>
32 #include <linux/atomic.h>
33 #include <linux/prefetch.h>
34 #include <asm/cache.h>
35 #include <asm/byteorder.h>
36
37 #include <linux/percpu.h>
38 #include <linux/rculist.h>
39 #include <linux/dmaengine.h>
40 #include <linux/workqueue.h>
41 #include <linux/dynamic_queue_limits.h>
42
43 #include <linux/ethtool.h>
44 #include <net/net_namespace.h>
45 #include <net/dsa.h>
46 #ifdef CONFIG_DCB
47 #include <net/dcbnl.h>
48 #endif
49 #include <net/netprio_cgroup.h>
50
51 #include <linux/netdev_features.h>
52 #include <linux/neighbour.h>
53 #include <uapi/linux/netdevice.h>
54 #include <uapi/linux/if_bonding.h>
55
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 /* 802.11 specific */
60 struct wireless_dev;
61 /* 802.15.4 specific */
62 struct wpan_dev;
63
64 void netdev_set_default_ethtool_ops(struct net_device *dev,
65 const struct ethtool_ops *ops);
66
67 /* Backlog congestion levels */
68 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
69 #define NET_RX_DROP 1 /* packet dropped */
70
71 /*
72 * Transmit return codes: transmit return codes originate from three different
73 * namespaces:
74 *
75 * - qdisc return codes
76 * - driver transmit return codes
77 * - errno values
78 *
79 * Drivers are allowed to return any one of those in their hard_start_xmit()
80 * function. Real network devices commonly used with qdiscs should only return
81 * the driver transmit return codes though - when qdiscs are used, the actual
82 * transmission happens asynchronously, so the value is not propagated to
83 * higher layers. Virtual network devices transmit synchronously, in this case
84 * the driver transmit return codes are consumed by dev_queue_xmit(), all
85 * others are propagated to higher layers.
86 */
87
88 /* qdisc ->enqueue() return codes. */
89 #define NET_XMIT_SUCCESS 0x00
90 #define NET_XMIT_DROP 0x01 /* skb dropped */
91 #define NET_XMIT_CN 0x02 /* congestion notification */
92 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
93 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
94
95 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
96 * indicates that the device will soon be dropping packets, or already drops
97 * some packets of the same priority; prompting us to send less aggressively. */
98 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
99 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
100
101 /* Driver transmit return codes */
102 #define NETDEV_TX_MASK 0xf0
103
104 enum netdev_tx {
105 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
106 NETDEV_TX_OK = 0x00, /* driver took care of packet */
107 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
108 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
109 };
110 typedef enum netdev_tx netdev_tx_t;
111
112 /*
113 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
114 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
115 */
116 static inline bool dev_xmit_complete(int rc)
117 {
118 /*
119 * Positive cases with an skb consumed by a driver:
120 * - successful transmission (rc == NETDEV_TX_OK)
121 * - error while transmitting (rc < 0)
122 * - error while queueing to a different device (rc & NET_XMIT_MASK)
123 */
124 if (likely(rc < NET_XMIT_MASK))
125 return true;
126
127 return false;
128 }
129
130 /*
131 * Compute the worst case header length according to the protocols
132 * used.
133 */
134
135 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
136 # if defined(CONFIG_MAC80211_MESH)
137 # define LL_MAX_HEADER 128
138 # else
139 # define LL_MAX_HEADER 96
140 # endif
141 #else
142 # define LL_MAX_HEADER 32
143 #endif
144
145 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
146 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
147 #define MAX_HEADER LL_MAX_HEADER
148 #else
149 #define MAX_HEADER (LL_MAX_HEADER + 48)
150 #endif
151
152 /*
153 * Old network device statistics. Fields are native words
154 * (unsigned long) so they can be read and written atomically.
155 */
156
157 struct net_device_stats {
158 unsigned long rx_packets;
159 unsigned long tx_packets;
160 unsigned long rx_bytes;
161 unsigned long tx_bytes;
162 unsigned long rx_errors;
163 unsigned long tx_errors;
164 unsigned long rx_dropped;
165 unsigned long tx_dropped;
166 unsigned long multicast;
167 unsigned long collisions;
168 unsigned long rx_length_errors;
169 unsigned long rx_over_errors;
170 unsigned long rx_crc_errors;
171 unsigned long rx_frame_errors;
172 unsigned long rx_fifo_errors;
173 unsigned long rx_missed_errors;
174 unsigned long tx_aborted_errors;
175 unsigned long tx_carrier_errors;
176 unsigned long tx_fifo_errors;
177 unsigned long tx_heartbeat_errors;
178 unsigned long tx_window_errors;
179 unsigned long rx_compressed;
180 unsigned long tx_compressed;
181 };
182
183
184 #include <linux/cache.h>
185 #include <linux/skbuff.h>
186
187 #ifdef CONFIG_RPS
188 #include <linux/static_key.h>
189 extern struct static_key rps_needed;
190 #endif
191
192 struct neighbour;
193 struct neigh_parms;
194 struct sk_buff;
195
196 struct netdev_hw_addr {
197 struct list_head list;
198 unsigned char addr[MAX_ADDR_LEN];
199 unsigned char type;
200 #define NETDEV_HW_ADDR_T_LAN 1
201 #define NETDEV_HW_ADDR_T_SAN 2
202 #define NETDEV_HW_ADDR_T_SLAVE 3
203 #define NETDEV_HW_ADDR_T_UNICAST 4
204 #define NETDEV_HW_ADDR_T_MULTICAST 5
205 bool global_use;
206 int sync_cnt;
207 int refcount;
208 int synced;
209 struct rcu_head rcu_head;
210 };
211
212 struct netdev_hw_addr_list {
213 struct list_head list;
214 int count;
215 };
216
217 #define netdev_hw_addr_list_count(l) ((l)->count)
218 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
219 #define netdev_hw_addr_list_for_each(ha, l) \
220 list_for_each_entry(ha, &(l)->list, list)
221
222 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
223 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
224 #define netdev_for_each_uc_addr(ha, dev) \
225 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
226
227 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
228 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
229 #define netdev_for_each_mc_addr(ha, dev) \
230 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
231
232 struct hh_cache {
233 u16 hh_len;
234 u16 __pad;
235 seqlock_t hh_lock;
236
237 /* cached hardware header; allow for machine alignment needs. */
238 #define HH_DATA_MOD 16
239 #define HH_DATA_OFF(__len) \
240 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
241 #define HH_DATA_ALIGN(__len) \
242 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
243 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
244 };
245
246 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
247 * Alternative is:
248 * dev->hard_header_len ? (dev->hard_header_len +
249 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
250 *
251 * We could use other alignment values, but we must maintain the
252 * relationship HH alignment <= LL alignment.
253 */
254 #define LL_RESERVED_SPACE(dev) \
255 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
256 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
257 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258
259 struct header_ops {
260 int (*create) (struct sk_buff *skb, struct net_device *dev,
261 unsigned short type, const void *daddr,
262 const void *saddr, unsigned int len);
263 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
264 int (*rebuild)(struct sk_buff *skb);
265 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
266 void (*cache_update)(struct hh_cache *hh,
267 const struct net_device *dev,
268 const unsigned char *haddr);
269 };
270
271 /* These flag bits are private to the generic network queueing
272 * layer, they may not be explicitly referenced by any other
273 * code.
274 */
275
276 enum netdev_state_t {
277 __LINK_STATE_START,
278 __LINK_STATE_PRESENT,
279 __LINK_STATE_NOCARRIER,
280 __LINK_STATE_LINKWATCH_PENDING,
281 __LINK_STATE_DORMANT,
282 };
283
284
285 /*
286 * This structure holds at boot time configured netdevice settings. They
287 * are then used in the device probing.
288 */
289 struct netdev_boot_setup {
290 char name[IFNAMSIZ];
291 struct ifmap map;
292 };
293 #define NETDEV_BOOT_SETUP_MAX 8
294
295 int __init netdev_boot_setup(char *str);
296
297 /*
298 * Structure for NAPI scheduling similar to tasklet but with weighting
299 */
300 struct napi_struct {
301 /* The poll_list must only be managed by the entity which
302 * changes the state of the NAPI_STATE_SCHED bit. This means
303 * whoever atomically sets that bit can add this napi_struct
304 * to the per-cpu poll_list, and whoever clears that bit
305 * can remove from the list right before clearing the bit.
306 */
307 struct list_head poll_list;
308
309 unsigned long state;
310 int weight;
311 unsigned int gro_count;
312 int (*poll)(struct napi_struct *, int);
313 #ifdef CONFIG_NETPOLL
314 spinlock_t poll_lock;
315 int poll_owner;
316 #endif
317 struct net_device *dev;
318 struct sk_buff *gro_list;
319 struct sk_buff *skb;
320 struct hrtimer timer;
321 struct list_head dev_list;
322 struct hlist_node napi_hash_node;
323 unsigned int napi_id;
324 };
325
326 enum {
327 NAPI_STATE_SCHED, /* Poll is scheduled */
328 NAPI_STATE_DISABLE, /* Disable pending */
329 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
330 NAPI_STATE_HASHED, /* In NAPI hash */
331 };
332
333 enum gro_result {
334 GRO_MERGED,
335 GRO_MERGED_FREE,
336 GRO_HELD,
337 GRO_NORMAL,
338 GRO_DROP,
339 };
340 typedef enum gro_result gro_result_t;
341
342 /*
343 * enum rx_handler_result - Possible return values for rx_handlers.
344 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
345 * further.
346 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
347 * case skb->dev was changed by rx_handler.
348 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
349 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
350 *
351 * rx_handlers are functions called from inside __netif_receive_skb(), to do
352 * special processing of the skb, prior to delivery to protocol handlers.
353 *
354 * Currently, a net_device can only have a single rx_handler registered. Trying
355 * to register a second rx_handler will return -EBUSY.
356 *
357 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
358 * To unregister a rx_handler on a net_device, use
359 * netdev_rx_handler_unregister().
360 *
361 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
362 * do with the skb.
363 *
364 * If the rx_handler consumed to skb in some way, it should return
365 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
366 * the skb to be delivered in some other ways.
367 *
368 * If the rx_handler changed skb->dev, to divert the skb to another
369 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
370 * new device will be called if it exists.
371 *
372 * If the rx_handler consider the skb should be ignored, it should return
373 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
374 * are registered on exact device (ptype->dev == skb->dev).
375 *
376 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
377 * delivered, it should return RX_HANDLER_PASS.
378 *
379 * A device without a registered rx_handler will behave as if rx_handler
380 * returned RX_HANDLER_PASS.
381 */
382
383 enum rx_handler_result {
384 RX_HANDLER_CONSUMED,
385 RX_HANDLER_ANOTHER,
386 RX_HANDLER_EXACT,
387 RX_HANDLER_PASS,
388 };
389 typedef enum rx_handler_result rx_handler_result_t;
390 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
391
392 void __napi_schedule(struct napi_struct *n);
393 void __napi_schedule_irqoff(struct napi_struct *n);
394
395 static inline bool napi_disable_pending(struct napi_struct *n)
396 {
397 return test_bit(NAPI_STATE_DISABLE, &n->state);
398 }
399
400 /**
401 * napi_schedule_prep - check if napi can be scheduled
402 * @n: napi context
403 *
404 * Test if NAPI routine is already running, and if not mark
405 * it as running. This is used as a condition variable
406 * insure only one NAPI poll instance runs. We also make
407 * sure there is no pending NAPI disable.
408 */
409 static inline bool napi_schedule_prep(struct napi_struct *n)
410 {
411 return !napi_disable_pending(n) &&
412 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
413 }
414
415 /**
416 * napi_schedule - schedule NAPI poll
417 * @n: napi context
418 *
419 * Schedule NAPI poll routine to be called if it is not already
420 * running.
421 */
422 static inline void napi_schedule(struct napi_struct *n)
423 {
424 if (napi_schedule_prep(n))
425 __napi_schedule(n);
426 }
427
428 /**
429 * napi_schedule_irqoff - schedule NAPI poll
430 * @n: napi context
431 *
432 * Variant of napi_schedule(), assuming hard irqs are masked.
433 */
434 static inline void napi_schedule_irqoff(struct napi_struct *n)
435 {
436 if (napi_schedule_prep(n))
437 __napi_schedule_irqoff(n);
438 }
439
440 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
441 static inline bool napi_reschedule(struct napi_struct *napi)
442 {
443 if (napi_schedule_prep(napi)) {
444 __napi_schedule(napi);
445 return true;
446 }
447 return false;
448 }
449
450 void __napi_complete(struct napi_struct *n);
451 void napi_complete_done(struct napi_struct *n, int work_done);
452 /**
453 * napi_complete - NAPI processing complete
454 * @n: napi context
455 *
456 * Mark NAPI processing as complete.
457 * Consider using napi_complete_done() instead.
458 */
459 static inline void napi_complete(struct napi_struct *n)
460 {
461 return napi_complete_done(n, 0);
462 }
463
464 /**
465 * napi_by_id - lookup a NAPI by napi_id
466 * @napi_id: hashed napi_id
467 *
468 * lookup @napi_id in napi_hash table
469 * must be called under rcu_read_lock()
470 */
471 struct napi_struct *napi_by_id(unsigned int napi_id);
472
473 /**
474 * napi_hash_add - add a NAPI to global hashtable
475 * @napi: napi context
476 *
477 * generate a new napi_id and store a @napi under it in napi_hash
478 */
479 void napi_hash_add(struct napi_struct *napi);
480
481 /**
482 * napi_hash_del - remove a NAPI from global table
483 * @napi: napi context
484 *
485 * Warning: caller must observe rcu grace period
486 * before freeing memory containing @napi
487 */
488 void napi_hash_del(struct napi_struct *napi);
489
490 /**
491 * napi_disable - prevent NAPI from scheduling
492 * @n: napi context
493 *
494 * Stop NAPI from being scheduled on this context.
495 * Waits till any outstanding processing completes.
496 */
497 void napi_disable(struct napi_struct *n);
498
499 /**
500 * napi_enable - enable NAPI scheduling
501 * @n: napi context
502 *
503 * Resume NAPI from being scheduled on this context.
504 * Must be paired with napi_disable.
505 */
506 static inline void napi_enable(struct napi_struct *n)
507 {
508 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
509 smp_mb__before_atomic();
510 clear_bit(NAPI_STATE_SCHED, &n->state);
511 }
512
513 #ifdef CONFIG_SMP
514 /**
515 * napi_synchronize - wait until NAPI is not running
516 * @n: napi context
517 *
518 * Wait until NAPI is done being scheduled on this context.
519 * Waits till any outstanding processing completes but
520 * does not disable future activations.
521 */
522 static inline void napi_synchronize(const struct napi_struct *n)
523 {
524 while (test_bit(NAPI_STATE_SCHED, &n->state))
525 msleep(1);
526 }
527 #else
528 # define napi_synchronize(n) barrier()
529 #endif
530
531 enum netdev_queue_state_t {
532 __QUEUE_STATE_DRV_XOFF,
533 __QUEUE_STATE_STACK_XOFF,
534 __QUEUE_STATE_FROZEN,
535 };
536
537 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
538 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
539 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
540
541 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
542 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
543 QUEUE_STATE_FROZEN)
544 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
545 QUEUE_STATE_FROZEN)
546
547 /*
548 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
549 * netif_tx_* functions below are used to manipulate this flag. The
550 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
551 * queue independently. The netif_xmit_*stopped functions below are called
552 * to check if the queue has been stopped by the driver or stack (either
553 * of the XOFF bits are set in the state). Drivers should not need to call
554 * netif_xmit*stopped functions, they should only be using netif_tx_*.
555 */
556
557 struct netdev_queue {
558 /*
559 * read mostly part
560 */
561 struct net_device *dev;
562 struct Qdisc __rcu *qdisc;
563 struct Qdisc *qdisc_sleeping;
564 #ifdef CONFIG_SYSFS
565 struct kobject kobj;
566 #endif
567 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
568 int numa_node;
569 #endif
570 /*
571 * write mostly part
572 */
573 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
574 int xmit_lock_owner;
575 /*
576 * please use this field instead of dev->trans_start
577 */
578 unsigned long trans_start;
579
580 /*
581 * Number of TX timeouts for this queue
582 * (/sys/class/net/DEV/Q/trans_timeout)
583 */
584 unsigned long trans_timeout;
585
586 unsigned long state;
587
588 #ifdef CONFIG_BQL
589 struct dql dql;
590 #endif
591 } ____cacheline_aligned_in_smp;
592
593 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
594 {
595 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
596 return q->numa_node;
597 #else
598 return NUMA_NO_NODE;
599 #endif
600 }
601
602 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
603 {
604 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
605 q->numa_node = node;
606 #endif
607 }
608
609 #ifdef CONFIG_RPS
610 /*
611 * This structure holds an RPS map which can be of variable length. The
612 * map is an array of CPUs.
613 */
614 struct rps_map {
615 unsigned int len;
616 struct rcu_head rcu;
617 u16 cpus[0];
618 };
619 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
620
621 /*
622 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
623 * tail pointer for that CPU's input queue at the time of last enqueue, and
624 * a hardware filter index.
625 */
626 struct rps_dev_flow {
627 u16 cpu;
628 u16 filter;
629 unsigned int last_qtail;
630 };
631 #define RPS_NO_FILTER 0xffff
632
633 /*
634 * The rps_dev_flow_table structure contains a table of flow mappings.
635 */
636 struct rps_dev_flow_table {
637 unsigned int mask;
638 struct rcu_head rcu;
639 struct rps_dev_flow flows[0];
640 };
641 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
642 ((_num) * sizeof(struct rps_dev_flow)))
643
644 /*
645 * The rps_sock_flow_table contains mappings of flows to the last CPU
646 * on which they were processed by the application (set in recvmsg).
647 * Each entry is a 32bit value. Upper part is the high order bits
648 * of flow hash, lower part is cpu number.
649 * rps_cpu_mask is used to partition the space, depending on number of
650 * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
651 * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
652 * meaning we use 32-6=26 bits for the hash.
653 */
654 struct rps_sock_flow_table {
655 u32 mask;
656
657 u32 ents[0] ____cacheline_aligned_in_smp;
658 };
659 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
660
661 #define RPS_NO_CPU 0xffff
662
663 extern u32 rps_cpu_mask;
664 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
665
666 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
667 u32 hash)
668 {
669 if (table && hash) {
670 unsigned int index = hash & table->mask;
671 u32 val = hash & ~rps_cpu_mask;
672
673 /* We only give a hint, preemption can change cpu under us */
674 val |= raw_smp_processor_id();
675
676 if (table->ents[index] != val)
677 table->ents[index] = val;
678 }
679 }
680
681 #ifdef CONFIG_RFS_ACCEL
682 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
683 u16 filter_id);
684 #endif
685 #endif /* CONFIG_RPS */
686
687 /* This structure contains an instance of an RX queue. */
688 struct netdev_rx_queue {
689 #ifdef CONFIG_RPS
690 struct rps_map __rcu *rps_map;
691 struct rps_dev_flow_table __rcu *rps_flow_table;
692 #endif
693 struct kobject kobj;
694 struct net_device *dev;
695 } ____cacheline_aligned_in_smp;
696
697 /*
698 * RX queue sysfs structures and functions.
699 */
700 struct rx_queue_attribute {
701 struct attribute attr;
702 ssize_t (*show)(struct netdev_rx_queue *queue,
703 struct rx_queue_attribute *attr, char *buf);
704 ssize_t (*store)(struct netdev_rx_queue *queue,
705 struct rx_queue_attribute *attr, const char *buf, size_t len);
706 };
707
708 #ifdef CONFIG_XPS
709 /*
710 * This structure holds an XPS map which can be of variable length. The
711 * map is an array of queues.
712 */
713 struct xps_map {
714 unsigned int len;
715 unsigned int alloc_len;
716 struct rcu_head rcu;
717 u16 queues[0];
718 };
719 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
720 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
721 / sizeof(u16))
722
723 /*
724 * This structure holds all XPS maps for device. Maps are indexed by CPU.
725 */
726 struct xps_dev_maps {
727 struct rcu_head rcu;
728 struct xps_map __rcu *cpu_map[0];
729 };
730 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
731 (nr_cpu_ids * sizeof(struct xps_map *)))
732 #endif /* CONFIG_XPS */
733
734 #define TC_MAX_QUEUE 16
735 #define TC_BITMASK 15
736 /* HW offloaded queuing disciplines txq count and offset maps */
737 struct netdev_tc_txq {
738 u16 count;
739 u16 offset;
740 };
741
742 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
743 /*
744 * This structure is to hold information about the device
745 * configured to run FCoE protocol stack.
746 */
747 struct netdev_fcoe_hbainfo {
748 char manufacturer[64];
749 char serial_number[64];
750 char hardware_version[64];
751 char driver_version[64];
752 char optionrom_version[64];
753 char firmware_version[64];
754 char model[256];
755 char model_description[256];
756 };
757 #endif
758
759 #define MAX_PHYS_ITEM_ID_LEN 32
760
761 /* This structure holds a unique identifier to identify some
762 * physical item (port for example) used by a netdevice.
763 */
764 struct netdev_phys_item_id {
765 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
766 unsigned char id_len;
767 };
768
769 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
770 struct sk_buff *skb);
771
772 /*
773 * This structure defines the management hooks for network devices.
774 * The following hooks can be defined; unless noted otherwise, they are
775 * optional and can be filled with a null pointer.
776 *
777 * int (*ndo_init)(struct net_device *dev);
778 * This function is called once when network device is registered.
779 * The network device can use this to any late stage initializaton
780 * or semantic validattion. It can fail with an error code which will
781 * be propogated back to register_netdev
782 *
783 * void (*ndo_uninit)(struct net_device *dev);
784 * This function is called when device is unregistered or when registration
785 * fails. It is not called if init fails.
786 *
787 * int (*ndo_open)(struct net_device *dev);
788 * This function is called when network device transistions to the up
789 * state.
790 *
791 * int (*ndo_stop)(struct net_device *dev);
792 * This function is called when network device transistions to the down
793 * state.
794 *
795 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
796 * struct net_device *dev);
797 * Called when a packet needs to be transmitted.
798 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
799 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
800 * Required can not be NULL.
801 *
802 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
803 * void *accel_priv, select_queue_fallback_t fallback);
804 * Called to decide which queue to when device supports multiple
805 * transmit queues.
806 *
807 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
808 * This function is called to allow device receiver to make
809 * changes to configuration when multicast or promiscious is enabled.
810 *
811 * void (*ndo_set_rx_mode)(struct net_device *dev);
812 * This function is called device changes address list filtering.
813 * If driver handles unicast address filtering, it should set
814 * IFF_UNICAST_FLT to its priv_flags.
815 *
816 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
817 * This function is called when the Media Access Control address
818 * needs to be changed. If this interface is not defined, the
819 * mac address can not be changed.
820 *
821 * int (*ndo_validate_addr)(struct net_device *dev);
822 * Test if Media Access Control address is valid for the device.
823 *
824 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
825 * Called when a user request an ioctl which can't be handled by
826 * the generic interface code. If not defined ioctl's return
827 * not supported error code.
828 *
829 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
830 * Used to set network devices bus interface parameters. This interface
831 * is retained for legacy reason, new devices should use the bus
832 * interface (PCI) for low level management.
833 *
834 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
835 * Called when a user wants to change the Maximum Transfer Unit
836 * of a device. If not defined, any request to change MTU will
837 * will return an error.
838 *
839 * void (*ndo_tx_timeout)(struct net_device *dev);
840 * Callback uses when the transmitter has not made any progress
841 * for dev->watchdog ticks.
842 *
843 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
844 * struct rtnl_link_stats64 *storage);
845 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
846 * Called when a user wants to get the network device usage
847 * statistics. Drivers must do one of the following:
848 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
849 * rtnl_link_stats64 structure passed by the caller.
850 * 2. Define @ndo_get_stats to update a net_device_stats structure
851 * (which should normally be dev->stats) and return a pointer to
852 * it. The structure may be changed asynchronously only if each
853 * field is written atomically.
854 * 3. Update dev->stats asynchronously and atomically, and define
855 * neither operation.
856 *
857 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
858 * If device support VLAN filtering this function is called when a
859 * VLAN id is registered.
860 *
861 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
862 * If device support VLAN filtering this function is called when a
863 * VLAN id is unregistered.
864 *
865 * void (*ndo_poll_controller)(struct net_device *dev);
866 *
867 * SR-IOV management functions.
868 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
869 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
870 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
871 * int max_tx_rate);
872 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
873 * int (*ndo_get_vf_config)(struct net_device *dev,
874 * int vf, struct ifla_vf_info *ivf);
875 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
876 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
877 * struct nlattr *port[]);
878 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
879 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
880 * Called to setup 'tc' number of traffic classes in the net device. This
881 * is always called from the stack with the rtnl lock held and netif tx
882 * queues stopped. This allows the netdevice to perform queue management
883 * safely.
884 *
885 * Fiber Channel over Ethernet (FCoE) offload functions.
886 * int (*ndo_fcoe_enable)(struct net_device *dev);
887 * Called when the FCoE protocol stack wants to start using LLD for FCoE
888 * so the underlying device can perform whatever needed configuration or
889 * initialization to support acceleration of FCoE traffic.
890 *
891 * int (*ndo_fcoe_disable)(struct net_device *dev);
892 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
893 * so the underlying device can perform whatever needed clean-ups to
894 * stop supporting acceleration of FCoE traffic.
895 *
896 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
897 * struct scatterlist *sgl, unsigned int sgc);
898 * Called when the FCoE Initiator wants to initialize an I/O that
899 * is a possible candidate for Direct Data Placement (DDP). The LLD can
900 * perform necessary setup and returns 1 to indicate the device is set up
901 * successfully to perform DDP on this I/O, otherwise this returns 0.
902 *
903 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
904 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
905 * indicated by the FC exchange id 'xid', so the underlying device can
906 * clean up and reuse resources for later DDP requests.
907 *
908 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
909 * struct scatterlist *sgl, unsigned int sgc);
910 * Called when the FCoE Target wants to initialize an I/O that
911 * is a possible candidate for Direct Data Placement (DDP). The LLD can
912 * perform necessary setup and returns 1 to indicate the device is set up
913 * successfully to perform DDP on this I/O, otherwise this returns 0.
914 *
915 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
916 * struct netdev_fcoe_hbainfo *hbainfo);
917 * Called when the FCoE Protocol stack wants information on the underlying
918 * device. This information is utilized by the FCoE protocol stack to
919 * register attributes with Fiber Channel management service as per the
920 * FC-GS Fabric Device Management Information(FDMI) specification.
921 *
922 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
923 * Called when the underlying device wants to override default World Wide
924 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
925 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
926 * protocol stack to use.
927 *
928 * RFS acceleration.
929 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
930 * u16 rxq_index, u32 flow_id);
931 * Set hardware filter for RFS. rxq_index is the target queue index;
932 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
933 * Return the filter ID on success, or a negative error code.
934 *
935 * Slave management functions (for bridge, bonding, etc).
936 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
937 * Called to make another netdev an underling.
938 *
939 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
940 * Called to release previously enslaved netdev.
941 *
942 * Feature/offload setting functions.
943 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
944 * netdev_features_t features);
945 * Adjusts the requested feature flags according to device-specific
946 * constraints, and returns the resulting flags. Must not modify
947 * the device state.
948 *
949 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
950 * Called to update device configuration to new features. Passed
951 * feature set might be less than what was returned by ndo_fix_features()).
952 * Must return >0 or -errno if it changed dev->features itself.
953 *
954 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
955 * struct net_device *dev,
956 * const unsigned char *addr, u16 vid, u16 flags)
957 * Adds an FDB entry to dev for addr.
958 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
959 * struct net_device *dev,
960 * const unsigned char *addr, u16 vid)
961 * Deletes the FDB entry from dev coresponding to addr.
962 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
963 * struct net_device *dev, struct net_device *filter_dev,
964 * int idx)
965 * Used to add FDB entries to dump requests. Implementers should add
966 * entries to skb and update idx with the number of entries.
967 *
968 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
969 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
970 * struct net_device *dev, u32 filter_mask)
971 *
972 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
973 * Called to change device carrier. Soft-devices (like dummy, team, etc)
974 * which do not represent real hardware may define this to allow their
975 * userspace components to manage their virtual carrier state. Devices
976 * that determine carrier state from physical hardware properties (eg
977 * network cables) or protocol-dependent mechanisms (eg
978 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
979 *
980 * int (*ndo_get_phys_port_id)(struct net_device *dev,
981 * struct netdev_phys_item_id *ppid);
982 * Called to get ID of physical port of this device. If driver does
983 * not implement this, it is assumed that the hw is not able to have
984 * multiple net devices on single physical port.
985 *
986 * void (*ndo_add_vxlan_port)(struct net_device *dev,
987 * sa_family_t sa_family, __be16 port);
988 * Called by vxlan to notiy a driver about the UDP port and socket
989 * address family that vxlan is listnening to. It is called only when
990 * a new port starts listening. The operation is protected by the
991 * vxlan_net->sock_lock.
992 *
993 * void (*ndo_del_vxlan_port)(struct net_device *dev,
994 * sa_family_t sa_family, __be16 port);
995 * Called by vxlan to notify the driver about a UDP port and socket
996 * address family that vxlan is not listening to anymore. The operation
997 * is protected by the vxlan_net->sock_lock.
998 *
999 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1000 * struct net_device *dev)
1001 * Called by upper layer devices to accelerate switching or other
1002 * station functionality into hardware. 'pdev is the lowerdev
1003 * to use for the offload and 'dev' is the net device that will
1004 * back the offload. Returns a pointer to the private structure
1005 * the upper layer will maintain.
1006 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1007 * Called by upper layer device to delete the station created
1008 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1009 * the station and priv is the structure returned by the add
1010 * operation.
1011 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1012 * struct net_device *dev,
1013 * void *priv);
1014 * Callback to use for xmit over the accelerated station. This
1015 * is used in place of ndo_start_xmit on accelerated net
1016 * devices.
1017 * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1018 * struct net_device *dev
1019 * netdev_features_t features);
1020 * Called by core transmit path to determine if device is capable of
1021 * performing offload operations on a given packet. This is to give
1022 * the device an opportunity to implement any restrictions that cannot
1023 * be otherwise expressed by feature flags. The check is called with
1024 * the set of features that the stack has calculated and it returns
1025 * those the driver believes to be appropriate.
1026 *
1027 * int (*ndo_switch_parent_id_get)(struct net_device *dev,
1028 * struct netdev_phys_item_id *psid);
1029 * Called to get an ID of the switch chip this port is part of.
1030 * If driver implements this, it indicates that it represents a port
1031 * of a switch chip.
1032 * int (*ndo_switch_port_stp_update)(struct net_device *dev, u8 state);
1033 * Called to notify switch device port of bridge port STP
1034 * state change.
1035 */
1036 struct net_device_ops {
1037 int (*ndo_init)(struct net_device *dev);
1038 void (*ndo_uninit)(struct net_device *dev);
1039 int (*ndo_open)(struct net_device *dev);
1040 int (*ndo_stop)(struct net_device *dev);
1041 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
1042 struct net_device *dev);
1043 u16 (*ndo_select_queue)(struct net_device *dev,
1044 struct sk_buff *skb,
1045 void *accel_priv,
1046 select_queue_fallback_t fallback);
1047 void (*ndo_change_rx_flags)(struct net_device *dev,
1048 int flags);
1049 void (*ndo_set_rx_mode)(struct net_device *dev);
1050 int (*ndo_set_mac_address)(struct net_device *dev,
1051 void *addr);
1052 int (*ndo_validate_addr)(struct net_device *dev);
1053 int (*ndo_do_ioctl)(struct net_device *dev,
1054 struct ifreq *ifr, int cmd);
1055 int (*ndo_set_config)(struct net_device *dev,
1056 struct ifmap *map);
1057 int (*ndo_change_mtu)(struct net_device *dev,
1058 int new_mtu);
1059 int (*ndo_neigh_setup)(struct net_device *dev,
1060 struct neigh_parms *);
1061 void (*ndo_tx_timeout) (struct net_device *dev);
1062
1063 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1064 struct rtnl_link_stats64 *storage);
1065 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1066
1067 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1068 __be16 proto, u16 vid);
1069 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1070 __be16 proto, u16 vid);
1071 #ifdef CONFIG_NET_POLL_CONTROLLER
1072 void (*ndo_poll_controller)(struct net_device *dev);
1073 int (*ndo_netpoll_setup)(struct net_device *dev,
1074 struct netpoll_info *info);
1075 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1076 #endif
1077 #ifdef CONFIG_NET_RX_BUSY_POLL
1078 int (*ndo_busy_poll)(struct napi_struct *dev);
1079 #endif
1080 int (*ndo_set_vf_mac)(struct net_device *dev,
1081 int queue, u8 *mac);
1082 int (*ndo_set_vf_vlan)(struct net_device *dev,
1083 int queue, u16 vlan, u8 qos);
1084 int (*ndo_set_vf_rate)(struct net_device *dev,
1085 int vf, int min_tx_rate,
1086 int max_tx_rate);
1087 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1088 int vf, bool setting);
1089 int (*ndo_get_vf_config)(struct net_device *dev,
1090 int vf,
1091 struct ifla_vf_info *ivf);
1092 int (*ndo_set_vf_link_state)(struct net_device *dev,
1093 int vf, int link_state);
1094 int (*ndo_set_vf_port)(struct net_device *dev,
1095 int vf,
1096 struct nlattr *port[]);
1097 int (*ndo_get_vf_port)(struct net_device *dev,
1098 int vf, struct sk_buff *skb);
1099 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1100 #if IS_ENABLED(CONFIG_FCOE)
1101 int (*ndo_fcoe_enable)(struct net_device *dev);
1102 int (*ndo_fcoe_disable)(struct net_device *dev);
1103 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1104 u16 xid,
1105 struct scatterlist *sgl,
1106 unsigned int sgc);
1107 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1108 u16 xid);
1109 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1110 u16 xid,
1111 struct scatterlist *sgl,
1112 unsigned int sgc);
1113 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1114 struct netdev_fcoe_hbainfo *hbainfo);
1115 #endif
1116
1117 #if IS_ENABLED(CONFIG_LIBFCOE)
1118 #define NETDEV_FCOE_WWNN 0
1119 #define NETDEV_FCOE_WWPN 1
1120 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1121 u64 *wwn, int type);
1122 #endif
1123
1124 #ifdef CONFIG_RFS_ACCEL
1125 int (*ndo_rx_flow_steer)(struct net_device *dev,
1126 const struct sk_buff *skb,
1127 u16 rxq_index,
1128 u32 flow_id);
1129 #endif
1130 int (*ndo_add_slave)(struct net_device *dev,
1131 struct net_device *slave_dev);
1132 int (*ndo_del_slave)(struct net_device *dev,
1133 struct net_device *slave_dev);
1134 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1135 netdev_features_t features);
1136 int (*ndo_set_features)(struct net_device *dev,
1137 netdev_features_t features);
1138 int (*ndo_neigh_construct)(struct neighbour *n);
1139 void (*ndo_neigh_destroy)(struct neighbour *n);
1140
1141 int (*ndo_fdb_add)(struct ndmsg *ndm,
1142 struct nlattr *tb[],
1143 struct net_device *dev,
1144 const unsigned char *addr,
1145 u16 vid,
1146 u16 flags);
1147 int (*ndo_fdb_del)(struct ndmsg *ndm,
1148 struct nlattr *tb[],
1149 struct net_device *dev,
1150 const unsigned char *addr,
1151 u16 vid);
1152 int (*ndo_fdb_dump)(struct sk_buff *skb,
1153 struct netlink_callback *cb,
1154 struct net_device *dev,
1155 struct net_device *filter_dev,
1156 int idx);
1157
1158 int (*ndo_bridge_setlink)(struct net_device *dev,
1159 struct nlmsghdr *nlh,
1160 u16 flags);
1161 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1162 u32 pid, u32 seq,
1163 struct net_device *dev,
1164 u32 filter_mask);
1165 int (*ndo_bridge_dellink)(struct net_device *dev,
1166 struct nlmsghdr *nlh,
1167 u16 flags);
1168 int (*ndo_change_carrier)(struct net_device *dev,
1169 bool new_carrier);
1170 int (*ndo_get_phys_port_id)(struct net_device *dev,
1171 struct netdev_phys_item_id *ppid);
1172 void (*ndo_add_vxlan_port)(struct net_device *dev,
1173 sa_family_t sa_family,
1174 __be16 port);
1175 void (*ndo_del_vxlan_port)(struct net_device *dev,
1176 sa_family_t sa_family,
1177 __be16 port);
1178
1179 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1180 struct net_device *dev);
1181 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1182 void *priv);
1183
1184 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1185 struct net_device *dev,
1186 void *priv);
1187 int (*ndo_get_lock_subclass)(struct net_device *dev);
1188 netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1189 struct net_device *dev,
1190 netdev_features_t features);
1191 #ifdef CONFIG_NET_SWITCHDEV
1192 int (*ndo_switch_parent_id_get)(struct net_device *dev,
1193 struct netdev_phys_item_id *psid);
1194 int (*ndo_switch_port_stp_update)(struct net_device *dev,
1195 u8 state);
1196 #endif
1197 };
1198
1199 /**
1200 * enum net_device_priv_flags - &struct net_device priv_flags
1201 *
1202 * These are the &struct net_device, they are only set internally
1203 * by drivers and used in the kernel. These flags are invisible to
1204 * userspace, this means that the order of these flags can change
1205 * during any kernel release.
1206 *
1207 * You should have a pretty good reason to be extending these flags.
1208 *
1209 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1210 * @IFF_EBRIDGE: Ethernet bridging device
1211 * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active
1212 * @IFF_MASTER_8023AD: bonding master, 802.3ad
1213 * @IFF_MASTER_ALB: bonding master, balance-alb
1214 * @IFF_BONDING: bonding master or slave
1215 * @IFF_SLAVE_NEEDARP: need ARPs for validation
1216 * @IFF_ISATAP: ISATAP interface (RFC4214)
1217 * @IFF_MASTER_ARPMON: bonding master, ARP mon in use
1218 * @IFF_WAN_HDLC: WAN HDLC device
1219 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1220 * release skb->dst
1221 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1222 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1223 * @IFF_MACVLAN_PORT: device used as macvlan port
1224 * @IFF_BRIDGE_PORT: device used as bridge port
1225 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1226 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1227 * @IFF_UNICAST_FLT: Supports unicast filtering
1228 * @IFF_TEAM_PORT: device used as team port
1229 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1230 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1231 * change when it's running
1232 * @IFF_MACVLAN: Macvlan device
1233 */
1234 enum netdev_priv_flags {
1235 IFF_802_1Q_VLAN = 1<<0,
1236 IFF_EBRIDGE = 1<<1,
1237 IFF_SLAVE_INACTIVE = 1<<2,
1238 IFF_MASTER_8023AD = 1<<3,
1239 IFF_MASTER_ALB = 1<<4,
1240 IFF_BONDING = 1<<5,
1241 IFF_SLAVE_NEEDARP = 1<<6,
1242 IFF_ISATAP = 1<<7,
1243 IFF_MASTER_ARPMON = 1<<8,
1244 IFF_WAN_HDLC = 1<<9,
1245 IFF_XMIT_DST_RELEASE = 1<<10,
1246 IFF_DONT_BRIDGE = 1<<11,
1247 IFF_DISABLE_NETPOLL = 1<<12,
1248 IFF_MACVLAN_PORT = 1<<13,
1249 IFF_BRIDGE_PORT = 1<<14,
1250 IFF_OVS_DATAPATH = 1<<15,
1251 IFF_TX_SKB_SHARING = 1<<16,
1252 IFF_UNICAST_FLT = 1<<17,
1253 IFF_TEAM_PORT = 1<<18,
1254 IFF_SUPP_NOFCS = 1<<19,
1255 IFF_LIVE_ADDR_CHANGE = 1<<20,
1256 IFF_MACVLAN = 1<<21,
1257 IFF_XMIT_DST_RELEASE_PERM = 1<<22,
1258 IFF_IPVLAN_MASTER = 1<<23,
1259 IFF_IPVLAN_SLAVE = 1<<24,
1260 };
1261
1262 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1263 #define IFF_EBRIDGE IFF_EBRIDGE
1264 #define IFF_SLAVE_INACTIVE IFF_SLAVE_INACTIVE
1265 #define IFF_MASTER_8023AD IFF_MASTER_8023AD
1266 #define IFF_MASTER_ALB IFF_MASTER_ALB
1267 #define IFF_BONDING IFF_BONDING
1268 #define IFF_SLAVE_NEEDARP IFF_SLAVE_NEEDARP
1269 #define IFF_ISATAP IFF_ISATAP
1270 #define IFF_MASTER_ARPMON IFF_MASTER_ARPMON
1271 #define IFF_WAN_HDLC IFF_WAN_HDLC
1272 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1273 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1274 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1275 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1276 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1277 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1278 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1279 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1280 #define IFF_TEAM_PORT IFF_TEAM_PORT
1281 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1282 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1283 #define IFF_MACVLAN IFF_MACVLAN
1284 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1285 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER
1286 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE
1287
1288 /**
1289 * struct net_device - The DEVICE structure.
1290 * Actually, this whole structure is a big mistake. It mixes I/O
1291 * data with strictly "high-level" data, and it has to know about
1292 * almost every data structure used in the INET module.
1293 *
1294 * @name: This is the first field of the "visible" part of this structure
1295 * (i.e. as seen by users in the "Space.c" file). It is the name
1296 * of the interface.
1297 *
1298 * @name_hlist: Device name hash chain, please keep it close to name[]
1299 * @ifalias: SNMP alias
1300 * @mem_end: Shared memory end
1301 * @mem_start: Shared memory start
1302 * @base_addr: Device I/O address
1303 * @irq: Device IRQ number
1304 *
1305 * @state: Generic network queuing layer state, see netdev_state_t
1306 * @dev_list: The global list of network devices
1307 * @napi_list: List entry, that is used for polling napi devices
1308 * @unreg_list: List entry, that is used, when we are unregistering the
1309 * device, see the function unregister_netdev
1310 * @close_list: List entry, that is used, when we are closing the device
1311 *
1312 * @adj_list: Directly linked devices, like slaves for bonding
1313 * @all_adj_list: All linked devices, *including* neighbours
1314 * @features: Currently active device features
1315 * @hw_features: User-changeable features
1316 *
1317 * @wanted_features: User-requested features
1318 * @vlan_features: Mask of features inheritable by VLAN devices
1319 *
1320 * @hw_enc_features: Mask of features inherited by encapsulating devices
1321 * This field indicates what encapsulation
1322 * offloads the hardware is capable of doing,
1323 * and drivers will need to set them appropriately.
1324 *
1325 * @mpls_features: Mask of features inheritable by MPLS
1326 *
1327 * @ifindex: interface index
1328 * @iflink: unique device identifier
1329 *
1330 * @stats: Statistics struct, which was left as a legacy, use
1331 * rtnl_link_stats64 instead
1332 *
1333 * @rx_dropped: Dropped packets by core network,
1334 * do not use this in drivers
1335 * @tx_dropped: Dropped packets by core network,
1336 * do not use this in drivers
1337 *
1338 * @carrier_changes: Stats to monitor carrier on<->off transitions
1339 *
1340 * @wireless_handlers: List of functions to handle Wireless Extensions,
1341 * instead of ioctl,
1342 * see <net/iw_handler.h> for details.
1343 * @wireless_data: Instance data managed by the core of wireless extensions
1344 *
1345 * @netdev_ops: Includes several pointers to callbacks,
1346 * if one wants to override the ndo_*() functions
1347 * @ethtool_ops: Management operations
1348 * @fwd_ops: Management operations
1349 * @header_ops: Includes callbacks for creating,parsing,rebuilding,etc
1350 * of Layer 2 headers.
1351 *
1352 * @flags: Interface flags (a la BSD)
1353 * @priv_flags: Like 'flags' but invisible to userspace,
1354 * see if.h for the definitions
1355 * @gflags: Global flags ( kept as legacy )
1356 * @padded: How much padding added by alloc_netdev()
1357 * @operstate: RFC2863 operstate
1358 * @link_mode: Mapping policy to operstate
1359 * @if_port: Selectable AUI, TP, ...
1360 * @dma: DMA channel
1361 * @mtu: Interface MTU value
1362 * @type: Interface hardware type
1363 * @hard_header_len: Hardware header length
1364 *
1365 * @needed_headroom: Extra headroom the hardware may need, but not in all
1366 * cases can this be guaranteed
1367 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1368 * cases can this be guaranteed. Some cases also use
1369 * LL_MAX_HEADER instead to allocate the skb
1370 *
1371 * interface address info:
1372 *
1373 * @perm_addr: Permanent hw address
1374 * @addr_assign_type: Hw address assignment type
1375 * @addr_len: Hardware address length
1376 * @neigh_priv_len; Used in neigh_alloc(),
1377 * initialized only in atm/clip.c
1378 * @dev_id: Used to differentiate devices that share
1379 * the same link layer address
1380 * @dev_port: Used to differentiate devices that share
1381 * the same function
1382 * @addr_list_lock: XXX: need comments on this one
1383 * @uc: unicast mac addresses
1384 * @mc: multicast mac addresses
1385 * @dev_addrs: list of device hw addresses
1386 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1387 * @uc_promisc: Counter, that indicates, that promiscuous mode
1388 * has been enabled due to the need to listen to
1389 * additional unicast addresses in a device that
1390 * does not implement ndo_set_rx_mode()
1391 * @promiscuity: Number of times, the NIC is told to work in
1392 * Promiscuous mode, if it becomes 0 the NIC will
1393 * exit from working in Promiscuous mode
1394 * @allmulti: Counter, enables or disables allmulticast mode
1395 *
1396 * @vlan_info: VLAN info
1397 * @dsa_ptr: dsa specific data
1398 * @tipc_ptr: TIPC specific data
1399 * @atalk_ptr: AppleTalk link
1400 * @ip_ptr: IPv4 specific data
1401 * @dn_ptr: DECnet specific data
1402 * @ip6_ptr: IPv6 specific data
1403 * @ax25_ptr: AX.25 specific data
1404 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1405 *
1406 * @last_rx: Time of last Rx
1407 * @dev_addr: Hw address (before bcast,
1408 * because most packets are unicast)
1409 *
1410 * @_rx: Array of RX queues
1411 * @num_rx_queues: Number of RX queues
1412 * allocated at register_netdev() time
1413 * @real_num_rx_queues: Number of RX queues currently active in device
1414 *
1415 * @rx_handler: handler for received packets
1416 * @rx_handler_data: XXX: need comments on this one
1417 * @ingress_queue: XXX: need comments on this one
1418 * @broadcast: hw bcast address
1419 *
1420 * @_tx: Array of TX queues
1421 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1422 * @real_num_tx_queues: Number of TX queues currently active in device
1423 * @qdisc: Root qdisc from userspace point of view
1424 * @tx_queue_len: Max frames per queue allowed
1425 * @tx_global_lock: XXX: need comments on this one
1426 *
1427 * @xps_maps: XXX: need comments on this one
1428 *
1429 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1430 * indexed by RX queue number. Assigned by driver.
1431 * This must only be set if the ndo_rx_flow_steer
1432 * operation is defined
1433 *
1434 * @trans_start: Time (in jiffies) of last Tx
1435 * @watchdog_timeo: Represents the timeout that is used by
1436 * the watchdog ( see dev_watchdog() )
1437 * @watchdog_timer: List of timers
1438 *
1439 * @pcpu_refcnt: Number of references to this device
1440 * @todo_list: Delayed register/unregister
1441 * @index_hlist: Device index hash chain
1442 * @link_watch_list: XXX: need comments on this one
1443 *
1444 * @reg_state: Register/unregister state machine
1445 * @dismantle: Device is going to be freed
1446 * @rtnl_link_state: This enum represents the phases of creating
1447 * a new link
1448 *
1449 * @destructor: Called from unregister,
1450 * can be used to call free_netdev
1451 * @npinfo: XXX: need comments on this one
1452 * @nd_net: Network namespace this network device is inside
1453 *
1454 * @ml_priv: Mid-layer private
1455 * @lstats: Loopback statistics
1456 * @tstats: Tunnel statistics
1457 * @dstats: Dummy statistics
1458 * @vstats: Virtual ethernet statistics
1459 *
1460 * @garp_port: GARP
1461 * @mrp_port: MRP
1462 *
1463 * @dev: Class/net/name entry
1464 * @sysfs_groups: Space for optional device, statistics and wireless
1465 * sysfs groups
1466 *
1467 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1468 * @rtnl_link_ops: Rtnl_link_ops
1469 *
1470 * @gso_max_size: Maximum size of generic segmentation offload
1471 * @gso_max_segs: Maximum number of segments that can be passed to the
1472 * NIC for GSO
1473 * @gso_min_segs: Minimum number of segments that can be passed to the
1474 * NIC for GSO
1475 *
1476 * @dcbnl_ops: Data Center Bridging netlink ops
1477 * @num_tc: Number of traffic classes in the net device
1478 * @tc_to_txq: XXX: need comments on this one
1479 * @prio_tc_map XXX: need comments on this one
1480 *
1481 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1482 *
1483 * @priomap: XXX: need comments on this one
1484 * @phydev: Physical device may attach itself
1485 * for hardware timestamping
1486 *
1487 * @qdisc_tx_busylock: XXX: need comments on this one
1488 *
1489 * @group: The group, that the device belongs to
1490 * @pm_qos_req: Power Management QoS object
1491 *
1492 * FIXME: cleanup struct net_device such that network protocol info
1493 * moves out.
1494 */
1495
1496 struct net_device {
1497 char name[IFNAMSIZ];
1498 struct hlist_node name_hlist;
1499 char *ifalias;
1500 /*
1501 * I/O specific fields
1502 * FIXME: Merge these and struct ifmap into one
1503 */
1504 unsigned long mem_end;
1505 unsigned long mem_start;
1506 unsigned long base_addr;
1507 int irq;
1508
1509 /*
1510 * Some hardware also needs these fields (state,dev_list,
1511 * napi_list,unreg_list,close_list) but they are not
1512 * part of the usual set specified in Space.c.
1513 */
1514
1515 unsigned long state;
1516
1517 struct list_head dev_list;
1518 struct list_head napi_list;
1519 struct list_head unreg_list;
1520 struct list_head close_list;
1521 struct list_head ptype_all;
1522 struct list_head ptype_specific;
1523
1524 struct {
1525 struct list_head upper;
1526 struct list_head lower;
1527 } adj_list;
1528
1529 struct {
1530 struct list_head upper;
1531 struct list_head lower;
1532 } all_adj_list;
1533
1534 netdev_features_t features;
1535 netdev_features_t hw_features;
1536 netdev_features_t wanted_features;
1537 netdev_features_t vlan_features;
1538 netdev_features_t hw_enc_features;
1539 netdev_features_t mpls_features;
1540
1541 int ifindex;
1542 int iflink;
1543
1544 struct net_device_stats stats;
1545
1546 atomic_long_t rx_dropped;
1547 atomic_long_t tx_dropped;
1548
1549 atomic_t carrier_changes;
1550
1551 #ifdef CONFIG_WIRELESS_EXT
1552 const struct iw_handler_def * wireless_handlers;
1553 struct iw_public_data * wireless_data;
1554 #endif
1555 const struct net_device_ops *netdev_ops;
1556 const struct ethtool_ops *ethtool_ops;
1557 const struct forwarding_accel_ops *fwd_ops;
1558
1559 const struct header_ops *header_ops;
1560
1561 unsigned int flags;
1562 unsigned int priv_flags;
1563
1564 unsigned short gflags;
1565 unsigned short padded;
1566
1567 unsigned char operstate;
1568 unsigned char link_mode;
1569
1570 unsigned char if_port;
1571 unsigned char dma;
1572
1573 unsigned int mtu;
1574 unsigned short type;
1575 unsigned short hard_header_len;
1576
1577 unsigned short needed_headroom;
1578 unsigned short needed_tailroom;
1579
1580 /* Interface address info. */
1581 unsigned char perm_addr[MAX_ADDR_LEN];
1582 unsigned char addr_assign_type;
1583 unsigned char addr_len;
1584 unsigned short neigh_priv_len;
1585 unsigned short dev_id;
1586 unsigned short dev_port;
1587 spinlock_t addr_list_lock;
1588 struct netdev_hw_addr_list uc;
1589 struct netdev_hw_addr_list mc;
1590 struct netdev_hw_addr_list dev_addrs;
1591
1592 #ifdef CONFIG_SYSFS
1593 struct kset *queues_kset;
1594 #endif
1595
1596 unsigned char name_assign_type;
1597
1598 bool uc_promisc;
1599 unsigned int promiscuity;
1600 unsigned int allmulti;
1601
1602
1603 /* Protocol specific pointers */
1604
1605 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1606 struct vlan_info __rcu *vlan_info;
1607 #endif
1608 #if IS_ENABLED(CONFIG_NET_DSA)
1609 struct dsa_switch_tree *dsa_ptr;
1610 #endif
1611 #if IS_ENABLED(CONFIG_TIPC)
1612 struct tipc_bearer __rcu *tipc_ptr;
1613 #endif
1614 void *atalk_ptr;
1615 struct in_device __rcu *ip_ptr;
1616 struct dn_dev __rcu *dn_ptr;
1617 struct inet6_dev __rcu *ip6_ptr;
1618 void *ax25_ptr;
1619 struct wireless_dev *ieee80211_ptr;
1620 struct wpan_dev *ieee802154_ptr;
1621
1622 /*
1623 * Cache lines mostly used on receive path (including eth_type_trans())
1624 */
1625 unsigned long last_rx;
1626
1627 /* Interface address info used in eth_type_trans() */
1628 unsigned char *dev_addr;
1629
1630
1631 #ifdef CONFIG_SYSFS
1632 struct netdev_rx_queue *_rx;
1633
1634 unsigned int num_rx_queues;
1635 unsigned int real_num_rx_queues;
1636
1637 #endif
1638
1639 unsigned long gro_flush_timeout;
1640 rx_handler_func_t __rcu *rx_handler;
1641 void __rcu *rx_handler_data;
1642
1643 struct netdev_queue __rcu *ingress_queue;
1644 unsigned char broadcast[MAX_ADDR_LEN];
1645
1646
1647 /*
1648 * Cache lines mostly used on transmit path
1649 */
1650 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1651 unsigned int num_tx_queues;
1652 unsigned int real_num_tx_queues;
1653 struct Qdisc *qdisc;
1654 unsigned long tx_queue_len;
1655 spinlock_t tx_global_lock;
1656
1657 #ifdef CONFIG_XPS
1658 struct xps_dev_maps __rcu *xps_maps;
1659 #endif
1660 #ifdef CONFIG_RFS_ACCEL
1661 struct cpu_rmap *rx_cpu_rmap;
1662 #endif
1663
1664 /* These may be needed for future network-power-down code. */
1665
1666 /*
1667 * trans_start here is expensive for high speed devices on SMP,
1668 * please use netdev_queue->trans_start instead.
1669 */
1670 unsigned long trans_start;
1671
1672 int watchdog_timeo;
1673 struct timer_list watchdog_timer;
1674
1675 int __percpu *pcpu_refcnt;
1676 struct list_head todo_list;
1677
1678 struct hlist_node index_hlist;
1679 struct list_head link_watch_list;
1680
1681 enum { NETREG_UNINITIALIZED=0,
1682 NETREG_REGISTERED, /* completed register_netdevice */
1683 NETREG_UNREGISTERING, /* called unregister_netdevice */
1684 NETREG_UNREGISTERED, /* completed unregister todo */
1685 NETREG_RELEASED, /* called free_netdev */
1686 NETREG_DUMMY, /* dummy device for NAPI poll */
1687 } reg_state:8;
1688
1689 bool dismantle;
1690
1691 enum {
1692 RTNL_LINK_INITIALIZED,
1693 RTNL_LINK_INITIALIZING,
1694 } rtnl_link_state:16;
1695
1696 void (*destructor)(struct net_device *dev);
1697
1698 #ifdef CONFIG_NETPOLL
1699 struct netpoll_info __rcu *npinfo;
1700 #endif
1701
1702 #ifdef CONFIG_NET_NS
1703 struct net *nd_net;
1704 #endif
1705
1706 /* mid-layer private */
1707 union {
1708 void *ml_priv;
1709 struct pcpu_lstats __percpu *lstats;
1710 struct pcpu_sw_netstats __percpu *tstats;
1711 struct pcpu_dstats __percpu *dstats;
1712 struct pcpu_vstats __percpu *vstats;
1713 };
1714
1715 struct garp_port __rcu *garp_port;
1716 struct mrp_port __rcu *mrp_port;
1717
1718 struct device dev;
1719 const struct attribute_group *sysfs_groups[4];
1720 const struct attribute_group *sysfs_rx_queue_group;
1721
1722 const struct rtnl_link_ops *rtnl_link_ops;
1723
1724 /* for setting kernel sock attribute on TCP connection setup */
1725 #define GSO_MAX_SIZE 65536
1726 unsigned int gso_max_size;
1727 #define GSO_MAX_SEGS 65535
1728 u16 gso_max_segs;
1729 u16 gso_min_segs;
1730 #ifdef CONFIG_DCB
1731 const struct dcbnl_rtnl_ops *dcbnl_ops;
1732 #endif
1733 u8 num_tc;
1734 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1735 u8 prio_tc_map[TC_BITMASK + 1];
1736
1737 #if IS_ENABLED(CONFIG_FCOE)
1738 unsigned int fcoe_ddp_xid;
1739 #endif
1740 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1741 struct netprio_map __rcu *priomap;
1742 #endif
1743 struct phy_device *phydev;
1744 struct lock_class_key *qdisc_tx_busylock;
1745 int group;
1746 struct pm_qos_request pm_qos_req;
1747 };
1748 #define to_net_dev(d) container_of(d, struct net_device, dev)
1749
1750 #define NETDEV_ALIGN 32
1751
1752 static inline
1753 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1754 {
1755 return dev->prio_tc_map[prio & TC_BITMASK];
1756 }
1757
1758 static inline
1759 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1760 {
1761 if (tc >= dev->num_tc)
1762 return -EINVAL;
1763
1764 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1765 return 0;
1766 }
1767
1768 static inline
1769 void netdev_reset_tc(struct net_device *dev)
1770 {
1771 dev->num_tc = 0;
1772 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1773 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1774 }
1775
1776 static inline
1777 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1778 {
1779 if (tc >= dev->num_tc)
1780 return -EINVAL;
1781
1782 dev->tc_to_txq[tc].count = count;
1783 dev->tc_to_txq[tc].offset = offset;
1784 return 0;
1785 }
1786
1787 static inline
1788 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1789 {
1790 if (num_tc > TC_MAX_QUEUE)
1791 return -EINVAL;
1792
1793 dev->num_tc = num_tc;
1794 return 0;
1795 }
1796
1797 static inline
1798 int netdev_get_num_tc(struct net_device *dev)
1799 {
1800 return dev->num_tc;
1801 }
1802
1803 static inline
1804 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1805 unsigned int index)
1806 {
1807 return &dev->_tx[index];
1808 }
1809
1810 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1811 const struct sk_buff *skb)
1812 {
1813 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1814 }
1815
1816 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1817 void (*f)(struct net_device *,
1818 struct netdev_queue *,
1819 void *),
1820 void *arg)
1821 {
1822 unsigned int i;
1823
1824 for (i = 0; i < dev->num_tx_queues; i++)
1825 f(dev, &dev->_tx[i], arg);
1826 }
1827
1828 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1829 struct sk_buff *skb,
1830 void *accel_priv);
1831
1832 /*
1833 * Net namespace inlines
1834 */
1835 static inline
1836 struct net *dev_net(const struct net_device *dev)
1837 {
1838 return read_pnet(&dev->nd_net);
1839 }
1840
1841 static inline
1842 void dev_net_set(struct net_device *dev, struct net *net)
1843 {
1844 #ifdef CONFIG_NET_NS
1845 release_net(dev->nd_net);
1846 dev->nd_net = hold_net(net);
1847 #endif
1848 }
1849
1850 static inline bool netdev_uses_dsa(struct net_device *dev)
1851 {
1852 #if IS_ENABLED(CONFIG_NET_DSA)
1853 if (dev->dsa_ptr != NULL)
1854 return dsa_uses_tagged_protocol(dev->dsa_ptr);
1855 #endif
1856 return false;
1857 }
1858
1859 /**
1860 * netdev_priv - access network device private data
1861 * @dev: network device
1862 *
1863 * Get network device private data
1864 */
1865 static inline void *netdev_priv(const struct net_device *dev)
1866 {
1867 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1868 }
1869
1870 /* Set the sysfs physical device reference for the network logical device
1871 * if set prior to registration will cause a symlink during initialization.
1872 */
1873 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1874
1875 /* Set the sysfs device type for the network logical device to allow
1876 * fine-grained identification of different network device types. For
1877 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1878 */
1879 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1880
1881 /* Default NAPI poll() weight
1882 * Device drivers are strongly advised to not use bigger value
1883 */
1884 #define NAPI_POLL_WEIGHT 64
1885
1886 /**
1887 * netif_napi_add - initialize a napi context
1888 * @dev: network device
1889 * @napi: napi context
1890 * @poll: polling function
1891 * @weight: default weight
1892 *
1893 * netif_napi_add() must be used to initialize a napi context prior to calling
1894 * *any* of the other napi related functions.
1895 */
1896 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1897 int (*poll)(struct napi_struct *, int), int weight);
1898
1899 /**
1900 * netif_napi_del - remove a napi context
1901 * @napi: napi context
1902 *
1903 * netif_napi_del() removes a napi context from the network device napi list
1904 */
1905 void netif_napi_del(struct napi_struct *napi);
1906
1907 struct napi_gro_cb {
1908 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1909 void *frag0;
1910
1911 /* Length of frag0. */
1912 unsigned int frag0_len;
1913
1914 /* This indicates where we are processing relative to skb->data. */
1915 int data_offset;
1916
1917 /* This is non-zero if the packet cannot be merged with the new skb. */
1918 u16 flush;
1919
1920 /* Save the IP ID here and check when we get to the transport layer */
1921 u16 flush_id;
1922
1923 /* Number of segments aggregated. */
1924 u16 count;
1925
1926 /* This is non-zero if the packet may be of the same flow. */
1927 u8 same_flow;
1928
1929 /* Free the skb? */
1930 u8 free;
1931 #define NAPI_GRO_FREE 1
1932 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1933
1934 /* jiffies when first packet was created/queued */
1935 unsigned long age;
1936
1937 /* Used in ipv6_gro_receive() and foo-over-udp */
1938 u16 proto;
1939
1940 /* Used in udp_gro_receive */
1941 u8 udp_mark:1;
1942
1943 /* GRO checksum is valid */
1944 u8 csum_valid:1;
1945
1946 /* Number of checksums via CHECKSUM_UNNECESSARY */
1947 u8 csum_cnt:3;
1948
1949 /* Used in foo-over-udp, set in udp[46]_gro_receive */
1950 u8 is_ipv6:1;
1951
1952 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
1953 __wsum csum;
1954
1955 /* used in skb_gro_receive() slow path */
1956 struct sk_buff *last;
1957 };
1958
1959 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1960
1961 struct packet_type {
1962 __be16 type; /* This is really htons(ether_type). */
1963 struct net_device *dev; /* NULL is wildcarded here */
1964 int (*func) (struct sk_buff *,
1965 struct net_device *,
1966 struct packet_type *,
1967 struct net_device *);
1968 bool (*id_match)(struct packet_type *ptype,
1969 struct sock *sk);
1970 void *af_packet_priv;
1971 struct list_head list;
1972 };
1973
1974 struct offload_callbacks {
1975 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1976 netdev_features_t features);
1977 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1978 struct sk_buff *skb);
1979 int (*gro_complete)(struct sk_buff *skb, int nhoff);
1980 };
1981
1982 struct packet_offload {
1983 __be16 type; /* This is really htons(ether_type). */
1984 struct offload_callbacks callbacks;
1985 struct list_head list;
1986 };
1987
1988 struct udp_offload;
1989
1990 struct udp_offload_callbacks {
1991 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1992 struct sk_buff *skb,
1993 struct udp_offload *uoff);
1994 int (*gro_complete)(struct sk_buff *skb,
1995 int nhoff,
1996 struct udp_offload *uoff);
1997 };
1998
1999 struct udp_offload {
2000 __be16 port;
2001 u8 ipproto;
2002 struct udp_offload_callbacks callbacks;
2003 };
2004
2005 /* often modified stats are per cpu, other are shared (netdev->stats) */
2006 struct pcpu_sw_netstats {
2007 u64 rx_packets;
2008 u64 rx_bytes;
2009 u64 tx_packets;
2010 u64 tx_bytes;
2011 struct u64_stats_sync syncp;
2012 };
2013
2014 #define netdev_alloc_pcpu_stats(type) \
2015 ({ \
2016 typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
2017 if (pcpu_stats) { \
2018 int i; \
2019 for_each_possible_cpu(i) { \
2020 typeof(type) *stat; \
2021 stat = per_cpu_ptr(pcpu_stats, i); \
2022 u64_stats_init(&stat->syncp); \
2023 } \
2024 } \
2025 pcpu_stats; \
2026 })
2027
2028 #include <linux/notifier.h>
2029
2030 /* netdevice notifier chain. Please remember to update the rtnetlink
2031 * notification exclusion list in rtnetlink_event() when adding new
2032 * types.
2033 */
2034 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
2035 #define NETDEV_DOWN 0x0002
2036 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
2037 detected a hardware crash and restarted
2038 - we can use this eg to kick tcp sessions
2039 once done */
2040 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
2041 #define NETDEV_REGISTER 0x0005
2042 #define NETDEV_UNREGISTER 0x0006
2043 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
2044 #define NETDEV_CHANGEADDR 0x0008
2045 #define NETDEV_GOING_DOWN 0x0009
2046 #define NETDEV_CHANGENAME 0x000A
2047 #define NETDEV_FEAT_CHANGE 0x000B
2048 #define NETDEV_BONDING_FAILOVER 0x000C
2049 #define NETDEV_PRE_UP 0x000D
2050 #define NETDEV_PRE_TYPE_CHANGE 0x000E
2051 #define NETDEV_POST_TYPE_CHANGE 0x000F
2052 #define NETDEV_POST_INIT 0x0010
2053 #define NETDEV_UNREGISTER_FINAL 0x0011
2054 #define NETDEV_RELEASE 0x0012
2055 #define NETDEV_NOTIFY_PEERS 0x0013
2056 #define NETDEV_JOIN 0x0014
2057 #define NETDEV_CHANGEUPPER 0x0015
2058 #define NETDEV_RESEND_IGMP 0x0016
2059 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
2060 #define NETDEV_CHANGEINFODATA 0x0018
2061 #define NETDEV_BONDING_INFO 0x0019
2062
2063 int register_netdevice_notifier(struct notifier_block *nb);
2064 int unregister_netdevice_notifier(struct notifier_block *nb);
2065
2066 struct netdev_notifier_info {
2067 struct net_device *dev;
2068 };
2069
2070 struct netdev_notifier_change_info {
2071 struct netdev_notifier_info info; /* must be first */
2072 unsigned int flags_changed;
2073 };
2074
2075 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2076 struct net_device *dev)
2077 {
2078 info->dev = dev;
2079 }
2080
2081 static inline struct net_device *
2082 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2083 {
2084 return info->dev;
2085 }
2086
2087 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2088
2089
2090 extern rwlock_t dev_base_lock; /* Device list lock */
2091
2092 #define for_each_netdev(net, d) \
2093 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2094 #define for_each_netdev_reverse(net, d) \
2095 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2096 #define for_each_netdev_rcu(net, d) \
2097 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2098 #define for_each_netdev_safe(net, d, n) \
2099 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2100 #define for_each_netdev_continue(net, d) \
2101 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2102 #define for_each_netdev_continue_rcu(net, d) \
2103 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2104 #define for_each_netdev_in_bond_rcu(bond, slave) \
2105 for_each_netdev_rcu(&init_net, slave) \
2106 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2107 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2108
2109 static inline struct net_device *next_net_device(struct net_device *dev)
2110 {
2111 struct list_head *lh;
2112 struct net *net;
2113
2114 net = dev_net(dev);
2115 lh = dev->dev_list.next;
2116 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2117 }
2118
2119 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2120 {
2121 struct list_head *lh;
2122 struct net *net;
2123
2124 net = dev_net(dev);
2125 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2126 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2127 }
2128
2129 static inline struct net_device *first_net_device(struct net *net)
2130 {
2131 return list_empty(&net->dev_base_head) ? NULL :
2132 net_device_entry(net->dev_base_head.next);
2133 }
2134
2135 static inline struct net_device *first_net_device_rcu(struct net *net)
2136 {
2137 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2138
2139 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2140 }
2141
2142 int netdev_boot_setup_check(struct net_device *dev);
2143 unsigned long netdev_boot_base(const char *prefix, int unit);
2144 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2145 const char *hwaddr);
2146 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2147 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2148 void dev_add_pack(struct packet_type *pt);
2149 void dev_remove_pack(struct packet_type *pt);
2150 void __dev_remove_pack(struct packet_type *pt);
2151 void dev_add_offload(struct packet_offload *po);
2152 void dev_remove_offload(struct packet_offload *po);
2153
2154 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2155 unsigned short mask);
2156 struct net_device *dev_get_by_name(struct net *net, const char *name);
2157 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2158 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2159 int dev_alloc_name(struct net_device *dev, const char *name);
2160 int dev_open(struct net_device *dev);
2161 int dev_close(struct net_device *dev);
2162 void dev_disable_lro(struct net_device *dev);
2163 int dev_loopback_xmit(struct sk_buff *newskb);
2164 int dev_queue_xmit(struct sk_buff *skb);
2165 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2166 int register_netdevice(struct net_device *dev);
2167 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2168 void unregister_netdevice_many(struct list_head *head);
2169 static inline void unregister_netdevice(struct net_device *dev)
2170 {
2171 unregister_netdevice_queue(dev, NULL);
2172 }
2173
2174 int netdev_refcnt_read(const struct net_device *dev);
2175 void free_netdev(struct net_device *dev);
2176 void netdev_freemem(struct net_device *dev);
2177 void synchronize_net(void);
2178 int init_dummy_netdev(struct net_device *dev);
2179
2180 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2181 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2182 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2183 int netdev_get_name(struct net *net, char *name, int ifindex);
2184 int dev_restart(struct net_device *dev);
2185 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2186
2187 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2188 {
2189 return NAPI_GRO_CB(skb)->data_offset;
2190 }
2191
2192 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2193 {
2194 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2195 }
2196
2197 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2198 {
2199 NAPI_GRO_CB(skb)->data_offset += len;
2200 }
2201
2202 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2203 unsigned int offset)
2204 {
2205 return NAPI_GRO_CB(skb)->frag0 + offset;
2206 }
2207
2208 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2209 {
2210 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2211 }
2212
2213 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2214 unsigned int offset)
2215 {
2216 if (!pskb_may_pull(skb, hlen))
2217 return NULL;
2218
2219 NAPI_GRO_CB(skb)->frag0 = NULL;
2220 NAPI_GRO_CB(skb)->frag0_len = 0;
2221 return skb->data + offset;
2222 }
2223
2224 static inline void *skb_gro_network_header(struct sk_buff *skb)
2225 {
2226 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2227 skb_network_offset(skb);
2228 }
2229
2230 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2231 const void *start, unsigned int len)
2232 {
2233 if (NAPI_GRO_CB(skb)->csum_valid)
2234 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2235 csum_partial(start, len, 0));
2236 }
2237
2238 /* GRO checksum functions. These are logical equivalents of the normal
2239 * checksum functions (in skbuff.h) except that they operate on the GRO
2240 * offsets and fields in sk_buff.
2241 */
2242
2243 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2244
2245 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2246 bool zero_okay,
2247 __sum16 check)
2248 {
2249 return (skb->ip_summed != CHECKSUM_PARTIAL &&
2250 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2251 (!zero_okay || check));
2252 }
2253
2254 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2255 __wsum psum)
2256 {
2257 if (NAPI_GRO_CB(skb)->csum_valid &&
2258 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2259 return 0;
2260
2261 NAPI_GRO_CB(skb)->csum = psum;
2262
2263 return __skb_gro_checksum_complete(skb);
2264 }
2265
2266 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2267 {
2268 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2269 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2270 NAPI_GRO_CB(skb)->csum_cnt--;
2271 } else {
2272 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2273 * verified a new top level checksum or an encapsulated one
2274 * during GRO. This saves work if we fallback to normal path.
2275 */
2276 __skb_incr_checksum_unnecessary(skb);
2277 }
2278 }
2279
2280 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2281 compute_pseudo) \
2282 ({ \
2283 __sum16 __ret = 0; \
2284 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2285 __ret = __skb_gro_checksum_validate_complete(skb, \
2286 compute_pseudo(skb, proto)); \
2287 if (__ret) \
2288 __skb_mark_checksum_bad(skb); \
2289 else \
2290 skb_gro_incr_csum_unnecessary(skb); \
2291 __ret; \
2292 })
2293
2294 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2295 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2296
2297 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2298 compute_pseudo) \
2299 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2300
2301 #define skb_gro_checksum_simple_validate(skb) \
2302 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2303
2304 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2305 {
2306 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2307 !NAPI_GRO_CB(skb)->csum_valid);
2308 }
2309
2310 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2311 __sum16 check, __wsum pseudo)
2312 {
2313 NAPI_GRO_CB(skb)->csum = ~pseudo;
2314 NAPI_GRO_CB(skb)->csum_valid = 1;
2315 }
2316
2317 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2318 do { \
2319 if (__skb_gro_checksum_convert_check(skb)) \
2320 __skb_gro_checksum_convert(skb, check, \
2321 compute_pseudo(skb, proto)); \
2322 } while (0)
2323
2324 static inline void skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2325 int start, int offset)
2326 {
2327 __wsum delta;
2328
2329 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2330
2331 delta = remcsum_adjust(ptr, NAPI_GRO_CB(skb)->csum, start, offset);
2332
2333 /* Adjust skb->csum since we changed the packet */
2334 skb->csum = csum_add(skb->csum, delta);
2335 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2336 }
2337
2338
2339 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2340 unsigned short type,
2341 const void *daddr, const void *saddr,
2342 unsigned int len)
2343 {
2344 if (!dev->header_ops || !dev->header_ops->create)
2345 return 0;
2346
2347 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2348 }
2349
2350 static inline int dev_parse_header(const struct sk_buff *skb,
2351 unsigned char *haddr)
2352 {
2353 const struct net_device *dev = skb->dev;
2354
2355 if (!dev->header_ops || !dev->header_ops->parse)
2356 return 0;
2357 return dev->header_ops->parse(skb, haddr);
2358 }
2359
2360 static inline int dev_rebuild_header(struct sk_buff *skb)
2361 {
2362 const struct net_device *dev = skb->dev;
2363
2364 if (!dev->header_ops || !dev->header_ops->rebuild)
2365 return 0;
2366 return dev->header_ops->rebuild(skb);
2367 }
2368
2369 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2370 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2371 static inline int unregister_gifconf(unsigned int family)
2372 {
2373 return register_gifconf(family, NULL);
2374 }
2375
2376 #ifdef CONFIG_NET_FLOW_LIMIT
2377 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2378 struct sd_flow_limit {
2379 u64 count;
2380 unsigned int num_buckets;
2381 unsigned int history_head;
2382 u16 history[FLOW_LIMIT_HISTORY];
2383 u8 buckets[];
2384 };
2385
2386 extern int netdev_flow_limit_table_len;
2387 #endif /* CONFIG_NET_FLOW_LIMIT */
2388
2389 /*
2390 * Incoming packets are placed on per-cpu queues
2391 */
2392 struct softnet_data {
2393 struct list_head poll_list;
2394 struct sk_buff_head process_queue;
2395
2396 /* stats */
2397 unsigned int processed;
2398 unsigned int time_squeeze;
2399 unsigned int cpu_collision;
2400 unsigned int received_rps;
2401 #ifdef CONFIG_RPS
2402 struct softnet_data *rps_ipi_list;
2403 #endif
2404 #ifdef CONFIG_NET_FLOW_LIMIT
2405 struct sd_flow_limit __rcu *flow_limit;
2406 #endif
2407 struct Qdisc *output_queue;
2408 struct Qdisc **output_queue_tailp;
2409 struct sk_buff *completion_queue;
2410
2411 #ifdef CONFIG_RPS
2412 /* Elements below can be accessed between CPUs for RPS */
2413 struct call_single_data csd ____cacheline_aligned_in_smp;
2414 struct softnet_data *rps_ipi_next;
2415 unsigned int cpu;
2416 unsigned int input_queue_head;
2417 unsigned int input_queue_tail;
2418 #endif
2419 unsigned int dropped;
2420 struct sk_buff_head input_pkt_queue;
2421 struct napi_struct backlog;
2422
2423 };
2424
2425 static inline void input_queue_head_incr(struct softnet_data *sd)
2426 {
2427 #ifdef CONFIG_RPS
2428 sd->input_queue_head++;
2429 #endif
2430 }
2431
2432 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2433 unsigned int *qtail)
2434 {
2435 #ifdef CONFIG_RPS
2436 *qtail = ++sd->input_queue_tail;
2437 #endif
2438 }
2439
2440 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2441
2442 void __netif_schedule(struct Qdisc *q);
2443 void netif_schedule_queue(struct netdev_queue *txq);
2444
2445 static inline void netif_tx_schedule_all(struct net_device *dev)
2446 {
2447 unsigned int i;
2448
2449 for (i = 0; i < dev->num_tx_queues; i++)
2450 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2451 }
2452
2453 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2454 {
2455 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2456 }
2457
2458 /**
2459 * netif_start_queue - allow transmit
2460 * @dev: network device
2461 *
2462 * Allow upper layers to call the device hard_start_xmit routine.
2463 */
2464 static inline void netif_start_queue(struct net_device *dev)
2465 {
2466 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2467 }
2468
2469 static inline void netif_tx_start_all_queues(struct net_device *dev)
2470 {
2471 unsigned int i;
2472
2473 for (i = 0; i < dev->num_tx_queues; i++) {
2474 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2475 netif_tx_start_queue(txq);
2476 }
2477 }
2478
2479 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2480
2481 /**
2482 * netif_wake_queue - restart transmit
2483 * @dev: network device
2484 *
2485 * Allow upper layers to call the device hard_start_xmit routine.
2486 * Used for flow control when transmit resources are available.
2487 */
2488 static inline void netif_wake_queue(struct net_device *dev)
2489 {
2490 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2491 }
2492
2493 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2494 {
2495 unsigned int i;
2496
2497 for (i = 0; i < dev->num_tx_queues; i++) {
2498 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2499 netif_tx_wake_queue(txq);
2500 }
2501 }
2502
2503 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2504 {
2505 if (WARN_ON(!dev_queue)) {
2506 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2507 return;
2508 }
2509 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2510 }
2511
2512 /**
2513 * netif_stop_queue - stop transmitted packets
2514 * @dev: network device
2515 *
2516 * Stop upper layers calling the device hard_start_xmit routine.
2517 * Used for flow control when transmit resources are unavailable.
2518 */
2519 static inline void netif_stop_queue(struct net_device *dev)
2520 {
2521 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2522 }
2523
2524 static inline void netif_tx_stop_all_queues(struct net_device *dev)
2525 {
2526 unsigned int i;
2527
2528 for (i = 0; i < dev->num_tx_queues; i++) {
2529 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2530 netif_tx_stop_queue(txq);
2531 }
2532 }
2533
2534 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2535 {
2536 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2537 }
2538
2539 /**
2540 * netif_queue_stopped - test if transmit queue is flowblocked
2541 * @dev: network device
2542 *
2543 * Test if transmit queue on device is currently unable to send.
2544 */
2545 static inline bool netif_queue_stopped(const struct net_device *dev)
2546 {
2547 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2548 }
2549
2550 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2551 {
2552 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2553 }
2554
2555 static inline bool
2556 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2557 {
2558 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2559 }
2560
2561 static inline bool
2562 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2563 {
2564 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2565 }
2566
2567 /**
2568 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2569 * @dev_queue: pointer to transmit queue
2570 *
2571 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2572 * to give appropriate hint to the cpu.
2573 */
2574 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2575 {
2576 #ifdef CONFIG_BQL
2577 prefetchw(&dev_queue->dql.num_queued);
2578 #endif
2579 }
2580
2581 /**
2582 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2583 * @dev_queue: pointer to transmit queue
2584 *
2585 * BQL enabled drivers might use this helper in their TX completion path,
2586 * to give appropriate hint to the cpu.
2587 */
2588 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2589 {
2590 #ifdef CONFIG_BQL
2591 prefetchw(&dev_queue->dql.limit);
2592 #endif
2593 }
2594
2595 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2596 unsigned int bytes)
2597 {
2598 #ifdef CONFIG_BQL
2599 dql_queued(&dev_queue->dql, bytes);
2600
2601 if (likely(dql_avail(&dev_queue->dql) >= 0))
2602 return;
2603
2604 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2605
2606 /*
2607 * The XOFF flag must be set before checking the dql_avail below,
2608 * because in netdev_tx_completed_queue we update the dql_completed
2609 * before checking the XOFF flag.
2610 */
2611 smp_mb();
2612
2613 /* check again in case another CPU has just made room avail */
2614 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2615 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2616 #endif
2617 }
2618
2619 /**
2620 * netdev_sent_queue - report the number of bytes queued to hardware
2621 * @dev: network device
2622 * @bytes: number of bytes queued to the hardware device queue
2623 *
2624 * Report the number of bytes queued for sending/completion to the network
2625 * device hardware queue. @bytes should be a good approximation and should
2626 * exactly match netdev_completed_queue() @bytes
2627 */
2628 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2629 {
2630 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2631 }
2632
2633 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2634 unsigned int pkts, unsigned int bytes)
2635 {
2636 #ifdef CONFIG_BQL
2637 if (unlikely(!bytes))
2638 return;
2639
2640 dql_completed(&dev_queue->dql, bytes);
2641
2642 /*
2643 * Without the memory barrier there is a small possiblity that
2644 * netdev_tx_sent_queue will miss the update and cause the queue to
2645 * be stopped forever
2646 */
2647 smp_mb();
2648
2649 if (dql_avail(&dev_queue->dql) < 0)
2650 return;
2651
2652 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2653 netif_schedule_queue(dev_queue);
2654 #endif
2655 }
2656
2657 /**
2658 * netdev_completed_queue - report bytes and packets completed by device
2659 * @dev: network device
2660 * @pkts: actual number of packets sent over the medium
2661 * @bytes: actual number of bytes sent over the medium
2662 *
2663 * Report the number of bytes and packets transmitted by the network device
2664 * hardware queue over the physical medium, @bytes must exactly match the
2665 * @bytes amount passed to netdev_sent_queue()
2666 */
2667 static inline void netdev_completed_queue(struct net_device *dev,
2668 unsigned int pkts, unsigned int bytes)
2669 {
2670 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2671 }
2672
2673 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2674 {
2675 #ifdef CONFIG_BQL
2676 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2677 dql_reset(&q->dql);
2678 #endif
2679 }
2680
2681 /**
2682 * netdev_reset_queue - reset the packets and bytes count of a network device
2683 * @dev_queue: network device
2684 *
2685 * Reset the bytes and packet count of a network device and clear the
2686 * software flow control OFF bit for this network device
2687 */
2688 static inline void netdev_reset_queue(struct net_device *dev_queue)
2689 {
2690 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2691 }
2692
2693 /**
2694 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
2695 * @dev: network device
2696 * @queue_index: given tx queue index
2697 *
2698 * Returns 0 if given tx queue index >= number of device tx queues,
2699 * otherwise returns the originally passed tx queue index.
2700 */
2701 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2702 {
2703 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2704 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2705 dev->name, queue_index,
2706 dev->real_num_tx_queues);
2707 return 0;
2708 }
2709
2710 return queue_index;
2711 }
2712
2713 /**
2714 * netif_running - test if up
2715 * @dev: network device
2716 *
2717 * Test if the device has been brought up.
2718 */
2719 static inline bool netif_running(const struct net_device *dev)
2720 {
2721 return test_bit(__LINK_STATE_START, &dev->state);
2722 }
2723
2724 /*
2725 * Routines to manage the subqueues on a device. We only need start
2726 * stop, and a check if it's stopped. All other device management is
2727 * done at the overall netdevice level.
2728 * Also test the device if we're multiqueue.
2729 */
2730
2731 /**
2732 * netif_start_subqueue - allow sending packets on subqueue
2733 * @dev: network device
2734 * @queue_index: sub queue index
2735 *
2736 * Start individual transmit queue of a device with multiple transmit queues.
2737 */
2738 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2739 {
2740 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2741
2742 netif_tx_start_queue(txq);
2743 }
2744
2745 /**
2746 * netif_stop_subqueue - stop sending packets on subqueue
2747 * @dev: network device
2748 * @queue_index: sub queue index
2749 *
2750 * Stop individual transmit queue of a device with multiple transmit queues.
2751 */
2752 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2753 {
2754 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2755 netif_tx_stop_queue(txq);
2756 }
2757
2758 /**
2759 * netif_subqueue_stopped - test status of subqueue
2760 * @dev: network device
2761 * @queue_index: sub queue index
2762 *
2763 * Check individual transmit queue of a device with multiple transmit queues.
2764 */
2765 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2766 u16 queue_index)
2767 {
2768 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2769
2770 return netif_tx_queue_stopped(txq);
2771 }
2772
2773 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2774 struct sk_buff *skb)
2775 {
2776 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2777 }
2778
2779 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2780
2781 #ifdef CONFIG_XPS
2782 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2783 u16 index);
2784 #else
2785 static inline int netif_set_xps_queue(struct net_device *dev,
2786 const struct cpumask *mask,
2787 u16 index)
2788 {
2789 return 0;
2790 }
2791 #endif
2792
2793 /*
2794 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2795 * as a distribution range limit for the returned value.
2796 */
2797 static inline u16 skb_tx_hash(const struct net_device *dev,
2798 struct sk_buff *skb)
2799 {
2800 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2801 }
2802
2803 /**
2804 * netif_is_multiqueue - test if device has multiple transmit queues
2805 * @dev: network device
2806 *
2807 * Check if device has multiple transmit queues
2808 */
2809 static inline bool netif_is_multiqueue(const struct net_device *dev)
2810 {
2811 return dev->num_tx_queues > 1;
2812 }
2813
2814 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2815
2816 #ifdef CONFIG_SYSFS
2817 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2818 #else
2819 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2820 unsigned int rxq)
2821 {
2822 return 0;
2823 }
2824 #endif
2825
2826 #ifdef CONFIG_SYSFS
2827 static inline unsigned int get_netdev_rx_queue_index(
2828 struct netdev_rx_queue *queue)
2829 {
2830 struct net_device *dev = queue->dev;
2831 int index = queue - dev->_rx;
2832
2833 BUG_ON(index >= dev->num_rx_queues);
2834 return index;
2835 }
2836 #endif
2837
2838 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
2839 int netif_get_num_default_rss_queues(void);
2840
2841 enum skb_free_reason {
2842 SKB_REASON_CONSUMED,
2843 SKB_REASON_DROPPED,
2844 };
2845
2846 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2847 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2848
2849 /*
2850 * It is not allowed to call kfree_skb() or consume_skb() from hardware
2851 * interrupt context or with hardware interrupts being disabled.
2852 * (in_irq() || irqs_disabled())
2853 *
2854 * We provide four helpers that can be used in following contexts :
2855 *
2856 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2857 * replacing kfree_skb(skb)
2858 *
2859 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2860 * Typically used in place of consume_skb(skb) in TX completion path
2861 *
2862 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2863 * replacing kfree_skb(skb)
2864 *
2865 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2866 * and consumed a packet. Used in place of consume_skb(skb)
2867 */
2868 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2869 {
2870 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2871 }
2872
2873 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2874 {
2875 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2876 }
2877
2878 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2879 {
2880 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2881 }
2882
2883 static inline void dev_consume_skb_any(struct sk_buff *skb)
2884 {
2885 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2886 }
2887
2888 int netif_rx(struct sk_buff *skb);
2889 int netif_rx_ni(struct sk_buff *skb);
2890 int netif_receive_skb(struct sk_buff *skb);
2891 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2892 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2893 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2894 gro_result_t napi_gro_frags(struct napi_struct *napi);
2895 struct packet_offload *gro_find_receive_by_type(__be16 type);
2896 struct packet_offload *gro_find_complete_by_type(__be16 type);
2897
2898 static inline void napi_free_frags(struct napi_struct *napi)
2899 {
2900 kfree_skb(napi->skb);
2901 napi->skb = NULL;
2902 }
2903
2904 int netdev_rx_handler_register(struct net_device *dev,
2905 rx_handler_func_t *rx_handler,
2906 void *rx_handler_data);
2907 void netdev_rx_handler_unregister(struct net_device *dev);
2908
2909 bool dev_valid_name(const char *name);
2910 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2911 int dev_ethtool(struct net *net, struct ifreq *);
2912 unsigned int dev_get_flags(const struct net_device *);
2913 int __dev_change_flags(struct net_device *, unsigned int flags);
2914 int dev_change_flags(struct net_device *, unsigned int);
2915 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2916 unsigned int gchanges);
2917 int dev_change_name(struct net_device *, const char *);
2918 int dev_set_alias(struct net_device *, const char *, size_t);
2919 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2920 int dev_set_mtu(struct net_device *, int);
2921 void dev_set_group(struct net_device *, int);
2922 int dev_set_mac_address(struct net_device *, struct sockaddr *);
2923 int dev_change_carrier(struct net_device *, bool new_carrier);
2924 int dev_get_phys_port_id(struct net_device *dev,
2925 struct netdev_phys_item_id *ppid);
2926 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
2927 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2928 struct netdev_queue *txq, int *ret);
2929 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2930 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2931 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
2932
2933 extern int netdev_budget;
2934
2935 /* Called by rtnetlink.c:rtnl_unlock() */
2936 void netdev_run_todo(void);
2937
2938 /**
2939 * dev_put - release reference to device
2940 * @dev: network device
2941 *
2942 * Release reference to device to allow it to be freed.
2943 */
2944 static inline void dev_put(struct net_device *dev)
2945 {
2946 this_cpu_dec(*dev->pcpu_refcnt);
2947 }
2948
2949 /**
2950 * dev_hold - get reference to device
2951 * @dev: network device
2952 *
2953 * Hold reference to device to keep it from being freed.
2954 */
2955 static inline void dev_hold(struct net_device *dev)
2956 {
2957 this_cpu_inc(*dev->pcpu_refcnt);
2958 }
2959
2960 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2961 * and _off may be called from IRQ context, but it is caller
2962 * who is responsible for serialization of these calls.
2963 *
2964 * The name carrier is inappropriate, these functions should really be
2965 * called netif_lowerlayer_*() because they represent the state of any
2966 * kind of lower layer not just hardware media.
2967 */
2968
2969 void linkwatch_init_dev(struct net_device *dev);
2970 void linkwatch_fire_event(struct net_device *dev);
2971 void linkwatch_forget_dev(struct net_device *dev);
2972
2973 /**
2974 * netif_carrier_ok - test if carrier present
2975 * @dev: network device
2976 *
2977 * Check if carrier is present on device
2978 */
2979 static inline bool netif_carrier_ok(const struct net_device *dev)
2980 {
2981 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2982 }
2983
2984 unsigned long dev_trans_start(struct net_device *dev);
2985
2986 void __netdev_watchdog_up(struct net_device *dev);
2987
2988 void netif_carrier_on(struct net_device *dev);
2989
2990 void netif_carrier_off(struct net_device *dev);
2991
2992 /**
2993 * netif_dormant_on - mark device as dormant.
2994 * @dev: network device
2995 *
2996 * Mark device as dormant (as per RFC2863).
2997 *
2998 * The dormant state indicates that the relevant interface is not
2999 * actually in a condition to pass packets (i.e., it is not 'up') but is
3000 * in a "pending" state, waiting for some external event. For "on-
3001 * demand" interfaces, this new state identifies the situation where the
3002 * interface is waiting for events to place it in the up state.
3003 *
3004 */
3005 static inline void netif_dormant_on(struct net_device *dev)
3006 {
3007 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3008 linkwatch_fire_event(dev);
3009 }
3010
3011 /**
3012 * netif_dormant_off - set device as not dormant.
3013 * @dev: network device
3014 *
3015 * Device is not in dormant state.
3016 */
3017 static inline void netif_dormant_off(struct net_device *dev)
3018 {
3019 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3020 linkwatch_fire_event(dev);
3021 }
3022
3023 /**
3024 * netif_dormant - test if carrier present
3025 * @dev: network device
3026 *
3027 * Check if carrier is present on device
3028 */
3029 static inline bool netif_dormant(const struct net_device *dev)
3030 {
3031 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3032 }
3033
3034
3035 /**
3036 * netif_oper_up - test if device is operational
3037 * @dev: network device
3038 *
3039 * Check if carrier is operational
3040 */
3041 static inline bool netif_oper_up(const struct net_device *dev)
3042 {
3043 return (dev->operstate == IF_OPER_UP ||
3044 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3045 }
3046
3047 /**
3048 * netif_device_present - is device available or removed
3049 * @dev: network device
3050 *
3051 * Check if device has not been removed from system.
3052 */
3053 static inline bool netif_device_present(struct net_device *dev)
3054 {
3055 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3056 }
3057
3058 void netif_device_detach(struct net_device *dev);
3059
3060 void netif_device_attach(struct net_device *dev);
3061
3062 /*
3063 * Network interface message level settings
3064 */
3065
3066 enum {
3067 NETIF_MSG_DRV = 0x0001,
3068 NETIF_MSG_PROBE = 0x0002,
3069 NETIF_MSG_LINK = 0x0004,
3070 NETIF_MSG_TIMER = 0x0008,
3071 NETIF_MSG_IFDOWN = 0x0010,
3072 NETIF_MSG_IFUP = 0x0020,
3073 NETIF_MSG_RX_ERR = 0x0040,
3074 NETIF_MSG_TX_ERR = 0x0080,
3075 NETIF_MSG_TX_QUEUED = 0x0100,
3076 NETIF_MSG_INTR = 0x0200,
3077 NETIF_MSG_TX_DONE = 0x0400,
3078 NETIF_MSG_RX_STATUS = 0x0800,
3079 NETIF_MSG_PKTDATA = 0x1000,
3080 NETIF_MSG_HW = 0x2000,
3081 NETIF_MSG_WOL = 0x4000,
3082 };
3083
3084 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3085 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3086 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3087 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3088 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3089 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3090 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3091 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3092 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3093 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3094 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3095 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3096 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3097 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3098 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3099
3100 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3101 {
3102 /* use default */
3103 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3104 return default_msg_enable_bits;
3105 if (debug_value == 0) /* no output */
3106 return 0;
3107 /* set low N bits */
3108 return (1 << debug_value) - 1;
3109 }
3110
3111 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3112 {
3113 spin_lock(&txq->_xmit_lock);
3114 txq->xmit_lock_owner = cpu;
3115 }
3116
3117 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3118 {
3119 spin_lock_bh(&txq->_xmit_lock);
3120 txq->xmit_lock_owner = smp_processor_id();
3121 }
3122
3123 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3124 {
3125 bool ok = spin_trylock(&txq->_xmit_lock);
3126 if (likely(ok))
3127 txq->xmit_lock_owner = smp_processor_id();
3128 return ok;
3129 }
3130
3131 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3132 {
3133 txq->xmit_lock_owner = -1;
3134 spin_unlock(&txq->_xmit_lock);
3135 }
3136
3137 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3138 {
3139 txq->xmit_lock_owner = -1;
3140 spin_unlock_bh(&txq->_xmit_lock);
3141 }
3142
3143 static inline void txq_trans_update(struct netdev_queue *txq)
3144 {
3145 if (txq->xmit_lock_owner != -1)
3146 txq->trans_start = jiffies;
3147 }
3148
3149 /**
3150 * netif_tx_lock - grab network device transmit lock
3151 * @dev: network device
3152 *
3153 * Get network device transmit lock
3154 */
3155 static inline void netif_tx_lock(struct net_device *dev)
3156 {
3157 unsigned int i;
3158 int cpu;
3159
3160 spin_lock(&dev->tx_global_lock);
3161 cpu = smp_processor_id();
3162 for (i = 0; i < dev->num_tx_queues; i++) {
3163 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3164
3165 /* We are the only thread of execution doing a
3166 * freeze, but we have to grab the _xmit_lock in
3167 * order to synchronize with threads which are in
3168 * the ->hard_start_xmit() handler and already
3169 * checked the frozen bit.
3170 */
3171 __netif_tx_lock(txq, cpu);
3172 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3173 __netif_tx_unlock(txq);
3174 }
3175 }
3176
3177 static inline void netif_tx_lock_bh(struct net_device *dev)
3178 {
3179 local_bh_disable();
3180 netif_tx_lock(dev);
3181 }
3182
3183 static inline void netif_tx_unlock(struct net_device *dev)
3184 {
3185 unsigned int i;
3186
3187 for (i = 0; i < dev->num_tx_queues; i++) {
3188 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3189
3190 /* No need to grab the _xmit_lock here. If the
3191 * queue is not stopped for another reason, we
3192 * force a schedule.
3193 */
3194 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3195 netif_schedule_queue(txq);
3196 }
3197 spin_unlock(&dev->tx_global_lock);
3198 }
3199
3200 static inline void netif_tx_unlock_bh(struct net_device *dev)
3201 {
3202 netif_tx_unlock(dev);
3203 local_bh_enable();
3204 }
3205
3206 #define HARD_TX_LOCK(dev, txq, cpu) { \
3207 if ((dev->features & NETIF_F_LLTX) == 0) { \
3208 __netif_tx_lock(txq, cpu); \
3209 } \
3210 }
3211
3212 #define HARD_TX_TRYLOCK(dev, txq) \
3213 (((dev->features & NETIF_F_LLTX) == 0) ? \
3214 __netif_tx_trylock(txq) : \
3215 true )
3216
3217 #define HARD_TX_UNLOCK(dev, txq) { \
3218 if ((dev->features & NETIF_F_LLTX) == 0) { \
3219 __netif_tx_unlock(txq); \
3220 } \
3221 }
3222
3223 static inline void netif_tx_disable(struct net_device *dev)
3224 {
3225 unsigned int i;
3226 int cpu;
3227
3228 local_bh_disable();
3229 cpu = smp_processor_id();
3230 for (i = 0; i < dev->num_tx_queues; i++) {
3231 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3232
3233 __netif_tx_lock(txq, cpu);
3234 netif_tx_stop_queue(txq);
3235 __netif_tx_unlock(txq);
3236 }
3237 local_bh_enable();
3238 }
3239
3240 static inline void netif_addr_lock(struct net_device *dev)
3241 {
3242 spin_lock(&dev->addr_list_lock);
3243 }
3244
3245 static inline void netif_addr_lock_nested(struct net_device *dev)
3246 {
3247 int subclass = SINGLE_DEPTH_NESTING;
3248
3249 if (dev->netdev_ops->ndo_get_lock_subclass)
3250 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3251
3252 spin_lock_nested(&dev->addr_list_lock, subclass);
3253 }
3254
3255 static inline void netif_addr_lock_bh(struct net_device *dev)
3256 {
3257 spin_lock_bh(&dev->addr_list_lock);
3258 }
3259
3260 static inline void netif_addr_unlock(struct net_device *dev)
3261 {
3262 spin_unlock(&dev->addr_list_lock);
3263 }
3264
3265 static inline void netif_addr_unlock_bh(struct net_device *dev)
3266 {
3267 spin_unlock_bh(&dev->addr_list_lock);
3268 }
3269
3270 /*
3271 * dev_addrs walker. Should be used only for read access. Call with
3272 * rcu_read_lock held.
3273 */
3274 #define for_each_dev_addr(dev, ha) \
3275 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3276
3277 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3278
3279 void ether_setup(struct net_device *dev);
3280
3281 /* Support for loadable net-drivers */
3282 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3283 unsigned char name_assign_type,
3284 void (*setup)(struct net_device *),
3285 unsigned int txqs, unsigned int rxqs);
3286 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3287 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3288
3289 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3290 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3291 count)
3292
3293 int register_netdev(struct net_device *dev);
3294 void unregister_netdev(struct net_device *dev);
3295
3296 /* General hardware address lists handling functions */
3297 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3298 struct netdev_hw_addr_list *from_list, int addr_len);
3299 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3300 struct netdev_hw_addr_list *from_list, int addr_len);
3301 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3302 struct net_device *dev,
3303 int (*sync)(struct net_device *, const unsigned char *),
3304 int (*unsync)(struct net_device *,
3305 const unsigned char *));
3306 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3307 struct net_device *dev,
3308 int (*unsync)(struct net_device *,
3309 const unsigned char *));
3310 void __hw_addr_init(struct netdev_hw_addr_list *list);
3311
3312 /* Functions used for device addresses handling */
3313 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3314 unsigned char addr_type);
3315 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3316 unsigned char addr_type);
3317 void dev_addr_flush(struct net_device *dev);
3318 int dev_addr_init(struct net_device *dev);
3319
3320 /* Functions used for unicast addresses handling */
3321 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3322 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3323 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3324 int dev_uc_sync(struct net_device *to, struct net_device *from);
3325 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3326 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3327 void dev_uc_flush(struct net_device *dev);
3328 void dev_uc_init(struct net_device *dev);
3329
3330 /**
3331 * __dev_uc_sync - Synchonize device's unicast list
3332 * @dev: device to sync
3333 * @sync: function to call if address should be added
3334 * @unsync: function to call if address should be removed
3335 *
3336 * Add newly added addresses to the interface, and release
3337 * addresses that have been deleted.
3338 **/
3339 static inline int __dev_uc_sync(struct net_device *dev,
3340 int (*sync)(struct net_device *,
3341 const unsigned char *),
3342 int (*unsync)(struct net_device *,
3343 const unsigned char *))
3344 {
3345 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3346 }
3347
3348 /**
3349 * __dev_uc_unsync - Remove synchronized addresses from device
3350 * @dev: device to sync
3351 * @unsync: function to call if address should be removed
3352 *
3353 * Remove all addresses that were added to the device by dev_uc_sync().
3354 **/
3355 static inline void __dev_uc_unsync(struct net_device *dev,
3356 int (*unsync)(struct net_device *,
3357 const unsigned char *))
3358 {
3359 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3360 }
3361
3362 /* Functions used for multicast addresses handling */
3363 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3364 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3365 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3366 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3367 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3368 int dev_mc_sync(struct net_device *to, struct net_device *from);
3369 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3370 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3371 void dev_mc_flush(struct net_device *dev);
3372 void dev_mc_init(struct net_device *dev);
3373
3374 /**
3375 * __dev_mc_sync - Synchonize device's multicast list
3376 * @dev: device to sync
3377 * @sync: function to call if address should be added
3378 * @unsync: function to call if address should be removed
3379 *
3380 * Add newly added addresses to the interface, and release
3381 * addresses that have been deleted.
3382 **/
3383 static inline int __dev_mc_sync(struct net_device *dev,
3384 int (*sync)(struct net_device *,
3385 const unsigned char *),
3386 int (*unsync)(struct net_device *,
3387 const unsigned char *))
3388 {
3389 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3390 }
3391
3392 /**
3393 * __dev_mc_unsync - Remove synchronized addresses from device
3394 * @dev: device to sync
3395 * @unsync: function to call if address should be removed
3396 *
3397 * Remove all addresses that were added to the device by dev_mc_sync().
3398 **/
3399 static inline void __dev_mc_unsync(struct net_device *dev,
3400 int (*unsync)(struct net_device *,
3401 const unsigned char *))
3402 {
3403 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3404 }
3405
3406 /* Functions used for secondary unicast and multicast support */
3407 void dev_set_rx_mode(struct net_device *dev);
3408 void __dev_set_rx_mode(struct net_device *dev);
3409 int dev_set_promiscuity(struct net_device *dev, int inc);
3410 int dev_set_allmulti(struct net_device *dev, int inc);
3411 void netdev_state_change(struct net_device *dev);
3412 void netdev_notify_peers(struct net_device *dev);
3413 void netdev_features_change(struct net_device *dev);
3414 /* Load a device via the kmod */
3415 void dev_load(struct net *net, const char *name);
3416 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3417 struct rtnl_link_stats64 *storage);
3418 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3419 const struct net_device_stats *netdev_stats);
3420
3421 extern int netdev_max_backlog;
3422 extern int netdev_tstamp_prequeue;
3423 extern int weight_p;
3424 extern int bpf_jit_enable;
3425
3426 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3427 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3428 struct list_head **iter);
3429 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3430 struct list_head **iter);
3431
3432 /* iterate through upper list, must be called under RCU read lock */
3433 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3434 for (iter = &(dev)->adj_list.upper, \
3435 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3436 updev; \
3437 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3438
3439 /* iterate through upper list, must be called under RCU read lock */
3440 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3441 for (iter = &(dev)->all_adj_list.upper, \
3442 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3443 updev; \
3444 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3445
3446 void *netdev_lower_get_next_private(struct net_device *dev,
3447 struct list_head **iter);
3448 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3449 struct list_head **iter);
3450
3451 #define netdev_for_each_lower_private(dev, priv, iter) \
3452 for (iter = (dev)->adj_list.lower.next, \
3453 priv = netdev_lower_get_next_private(dev, &(iter)); \
3454 priv; \
3455 priv = netdev_lower_get_next_private(dev, &(iter)))
3456
3457 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3458 for (iter = &(dev)->adj_list.lower, \
3459 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3460 priv; \
3461 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3462
3463 void *netdev_lower_get_next(struct net_device *dev,
3464 struct list_head **iter);
3465 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3466 for (iter = &(dev)->adj_list.lower, \
3467 ldev = netdev_lower_get_next(dev, &(iter)); \
3468 ldev; \
3469 ldev = netdev_lower_get_next(dev, &(iter)))
3470
3471 void *netdev_adjacent_get_private(struct list_head *adj_list);
3472 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3473 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3474 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3475 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3476 int netdev_master_upper_dev_link(struct net_device *dev,
3477 struct net_device *upper_dev);
3478 int netdev_master_upper_dev_link_private(struct net_device *dev,
3479 struct net_device *upper_dev,
3480 void *private);
3481 void netdev_upper_dev_unlink(struct net_device *dev,
3482 struct net_device *upper_dev);
3483 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3484 void *netdev_lower_dev_get_private(struct net_device *dev,
3485 struct net_device *lower_dev);
3486
3487 /* RSS keys are 40 or 52 bytes long */
3488 #define NETDEV_RSS_KEY_LEN 52
3489 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3490 void netdev_rss_key_fill(void *buffer, size_t len);
3491
3492 int dev_get_nest_level(struct net_device *dev,
3493 bool (*type_check)(struct net_device *dev));
3494 int skb_checksum_help(struct sk_buff *skb);
3495 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3496 netdev_features_t features, bool tx_path);
3497 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3498 netdev_features_t features);
3499
3500 struct netdev_bonding_info {
3501 ifslave slave;
3502 ifbond master;
3503 };
3504
3505 struct netdev_notifier_bonding_info {
3506 struct netdev_notifier_info info; /* must be first */
3507 struct netdev_bonding_info bonding_info;
3508 };
3509
3510 void netdev_bonding_info_change(struct net_device *dev,
3511 struct netdev_bonding_info *bonding_info);
3512
3513 static inline
3514 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3515 {
3516 return __skb_gso_segment(skb, features, true);
3517 }
3518 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3519
3520 static inline bool can_checksum_protocol(netdev_features_t features,
3521 __be16 protocol)
3522 {
3523 return ((features & NETIF_F_GEN_CSUM) ||
3524 ((features & NETIF_F_V4_CSUM) &&
3525 protocol == htons(ETH_P_IP)) ||
3526 ((features & NETIF_F_V6_CSUM) &&
3527 protocol == htons(ETH_P_IPV6)) ||
3528 ((features & NETIF_F_FCOE_CRC) &&
3529 protocol == htons(ETH_P_FCOE)));
3530 }
3531
3532 #ifdef CONFIG_BUG
3533 void netdev_rx_csum_fault(struct net_device *dev);
3534 #else
3535 static inline void netdev_rx_csum_fault(struct net_device *dev)
3536 {
3537 }
3538 #endif
3539 /* rx skb timestamps */
3540 void net_enable_timestamp(void);
3541 void net_disable_timestamp(void);
3542
3543 #ifdef CONFIG_PROC_FS
3544 int __init dev_proc_init(void);
3545 #else
3546 #define dev_proc_init() 0
3547 #endif
3548
3549 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3550 struct sk_buff *skb, struct net_device *dev,
3551 bool more)
3552 {
3553 skb->xmit_more = more ? 1 : 0;
3554 return ops->ndo_start_xmit(skb, dev);
3555 }
3556
3557 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3558 struct netdev_queue *txq, bool more)
3559 {
3560 const struct net_device_ops *ops = dev->netdev_ops;
3561 int rc;
3562
3563 rc = __netdev_start_xmit(ops, skb, dev, more);
3564 if (rc == NETDEV_TX_OK)
3565 txq_trans_update(txq);
3566
3567 return rc;
3568 }
3569
3570 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3571 const void *ns);
3572 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3573 const void *ns);
3574
3575 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3576 {
3577 return netdev_class_create_file_ns(class_attr, NULL);
3578 }
3579
3580 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3581 {
3582 netdev_class_remove_file_ns(class_attr, NULL);
3583 }
3584
3585 extern struct kobj_ns_type_operations net_ns_type_operations;
3586
3587 const char *netdev_drivername(const struct net_device *dev);
3588
3589 void linkwatch_run_queue(void);
3590
3591 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3592 netdev_features_t f2)
3593 {
3594 if (f1 & NETIF_F_GEN_CSUM)
3595 f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3596 if (f2 & NETIF_F_GEN_CSUM)
3597 f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3598 f1 &= f2;
3599 if (f1 & NETIF_F_GEN_CSUM)
3600 f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3601
3602 return f1;
3603 }
3604
3605 static inline netdev_features_t netdev_get_wanted_features(
3606 struct net_device *dev)
3607 {
3608 return (dev->features & ~dev->hw_features) | dev->wanted_features;
3609 }
3610 netdev_features_t netdev_increment_features(netdev_features_t all,
3611 netdev_features_t one, netdev_features_t mask);
3612
3613 /* Allow TSO being used on stacked device :
3614 * Performing the GSO segmentation before last device
3615 * is a performance improvement.
3616 */
3617 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3618 netdev_features_t mask)
3619 {
3620 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3621 }
3622
3623 int __netdev_update_features(struct net_device *dev);
3624 void netdev_update_features(struct net_device *dev);
3625 void netdev_change_features(struct net_device *dev);
3626
3627 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3628 struct net_device *dev);
3629
3630 netdev_features_t netif_skb_features(struct sk_buff *skb);
3631
3632 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3633 {
3634 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3635
3636 /* check flags correspondence */
3637 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3638 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3639 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3640 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3641 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3642 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3643 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3644 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3645 BUILD_BUG_ON(SKB_GSO_IPIP != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3646 BUILD_BUG_ON(SKB_GSO_SIT != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3647 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3648 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3649 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3650
3651 return (features & feature) == feature;
3652 }
3653
3654 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3655 {
3656 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3657 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3658 }
3659
3660 static inline bool netif_needs_gso(struct net_device *dev, struct sk_buff *skb,
3661 netdev_features_t features)
3662 {
3663 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3664 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3665 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3666 }
3667
3668 static inline void netif_set_gso_max_size(struct net_device *dev,
3669 unsigned int size)
3670 {
3671 dev->gso_max_size = size;
3672 }
3673
3674 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3675 int pulled_hlen, u16 mac_offset,
3676 int mac_len)
3677 {
3678 skb->protocol = protocol;
3679 skb->encapsulation = 1;
3680 skb_push(skb, pulled_hlen);
3681 skb_reset_transport_header(skb);
3682 skb->mac_header = mac_offset;
3683 skb->network_header = skb->mac_header + mac_len;
3684 skb->mac_len = mac_len;
3685 }
3686
3687 static inline bool netif_is_macvlan(struct net_device *dev)
3688 {
3689 return dev->priv_flags & IFF_MACVLAN;
3690 }
3691
3692 static inline bool netif_is_macvlan_port(struct net_device *dev)
3693 {
3694 return dev->priv_flags & IFF_MACVLAN_PORT;
3695 }
3696
3697 static inline bool netif_is_ipvlan(struct net_device *dev)
3698 {
3699 return dev->priv_flags & IFF_IPVLAN_SLAVE;
3700 }
3701
3702 static inline bool netif_is_ipvlan_port(struct net_device *dev)
3703 {
3704 return dev->priv_flags & IFF_IPVLAN_MASTER;
3705 }
3706
3707 static inline bool netif_is_bond_master(struct net_device *dev)
3708 {
3709 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3710 }
3711
3712 static inline bool netif_is_bond_slave(struct net_device *dev)
3713 {
3714 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3715 }
3716
3717 static inline bool netif_supports_nofcs(struct net_device *dev)
3718 {
3719 return dev->priv_flags & IFF_SUPP_NOFCS;
3720 }
3721
3722 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3723 static inline void netif_keep_dst(struct net_device *dev)
3724 {
3725 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3726 }
3727
3728 extern struct pernet_operations __net_initdata loopback_net_ops;
3729
3730 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3731
3732 /* netdev_printk helpers, similar to dev_printk */
3733
3734 static inline const char *netdev_name(const struct net_device *dev)
3735 {
3736 if (!dev->name[0] || strchr(dev->name, '%'))
3737 return "(unnamed net_device)";
3738 return dev->name;
3739 }
3740
3741 static inline const char *netdev_reg_state(const struct net_device *dev)
3742 {
3743 switch (dev->reg_state) {
3744 case NETREG_UNINITIALIZED: return " (uninitialized)";
3745 case NETREG_REGISTERED: return "";
3746 case NETREG_UNREGISTERING: return " (unregistering)";
3747 case NETREG_UNREGISTERED: return " (unregistered)";
3748 case NETREG_RELEASED: return " (released)";
3749 case NETREG_DUMMY: return " (dummy)";
3750 }
3751
3752 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3753 return " (unknown)";
3754 }
3755
3756 __printf(3, 4)
3757 void netdev_printk(const char *level, const struct net_device *dev,
3758 const char *format, ...);
3759 __printf(2, 3)
3760 void netdev_emerg(const struct net_device *dev, const char *format, ...);
3761 __printf(2, 3)
3762 void netdev_alert(const struct net_device *dev, const char *format, ...);
3763 __printf(2, 3)
3764 void netdev_crit(const struct net_device *dev, const char *format, ...);
3765 __printf(2, 3)
3766 void netdev_err(const struct net_device *dev, const char *format, ...);
3767 __printf(2, 3)
3768 void netdev_warn(const struct net_device *dev, const char *format, ...);
3769 __printf(2, 3)
3770 void netdev_notice(const struct net_device *dev, const char *format, ...);
3771 __printf(2, 3)
3772 void netdev_info(const struct net_device *dev, const char *format, ...);
3773
3774 #define MODULE_ALIAS_NETDEV(device) \
3775 MODULE_ALIAS("netdev-" device)
3776
3777 #if defined(CONFIG_DYNAMIC_DEBUG)
3778 #define netdev_dbg(__dev, format, args...) \
3779 do { \
3780 dynamic_netdev_dbg(__dev, format, ##args); \
3781 } while (0)
3782 #elif defined(DEBUG)
3783 #define netdev_dbg(__dev, format, args...) \
3784 netdev_printk(KERN_DEBUG, __dev, format, ##args)
3785 #else
3786 #define netdev_dbg(__dev, format, args...) \
3787 ({ \
3788 if (0) \
3789 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3790 })
3791 #endif
3792
3793 #if defined(VERBOSE_DEBUG)
3794 #define netdev_vdbg netdev_dbg
3795 #else
3796
3797 #define netdev_vdbg(dev, format, args...) \
3798 ({ \
3799 if (0) \
3800 netdev_printk(KERN_DEBUG, dev, format, ##args); \
3801 0; \
3802 })
3803 #endif
3804
3805 /*
3806 * netdev_WARN() acts like dev_printk(), but with the key difference
3807 * of using a WARN/WARN_ON to get the message out, including the
3808 * file/line information and a backtrace.
3809 */
3810 #define netdev_WARN(dev, format, args...) \
3811 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \
3812 netdev_reg_state(dev), ##args)
3813
3814 /* netif printk helpers, similar to netdev_printk */
3815
3816 #define netif_printk(priv, type, level, dev, fmt, args...) \
3817 do { \
3818 if (netif_msg_##type(priv)) \
3819 netdev_printk(level, (dev), fmt, ##args); \
3820 } while (0)
3821
3822 #define netif_level(level, priv, type, dev, fmt, args...) \
3823 do { \
3824 if (netif_msg_##type(priv)) \
3825 netdev_##level(dev, fmt, ##args); \
3826 } while (0)
3827
3828 #define netif_emerg(priv, type, dev, fmt, args...) \
3829 netif_level(emerg, priv, type, dev, fmt, ##args)
3830 #define netif_alert(priv, type, dev, fmt, args...) \
3831 netif_level(alert, priv, type, dev, fmt, ##args)
3832 #define netif_crit(priv, type, dev, fmt, args...) \
3833 netif_level(crit, priv, type, dev, fmt, ##args)
3834 #define netif_err(priv, type, dev, fmt, args...) \
3835 netif_level(err, priv, type, dev, fmt, ##args)
3836 #define netif_warn(priv, type, dev, fmt, args...) \
3837 netif_level(warn, priv, type, dev, fmt, ##args)
3838 #define netif_notice(priv, type, dev, fmt, args...) \
3839 netif_level(notice, priv, type, dev, fmt, ##args)
3840 #define netif_info(priv, type, dev, fmt, args...) \
3841 netif_level(info, priv, type, dev, fmt, ##args)
3842
3843 #if defined(CONFIG_DYNAMIC_DEBUG)
3844 #define netif_dbg(priv, type, netdev, format, args...) \
3845 do { \
3846 if (netif_msg_##type(priv)) \
3847 dynamic_netdev_dbg(netdev, format, ##args); \
3848 } while (0)
3849 #elif defined(DEBUG)
3850 #define netif_dbg(priv, type, dev, format, args...) \
3851 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3852 #else
3853 #define netif_dbg(priv, type, dev, format, args...) \
3854 ({ \
3855 if (0) \
3856 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3857 0; \
3858 })
3859 #endif
3860
3861 #if defined(VERBOSE_DEBUG)
3862 #define netif_vdbg netif_dbg
3863 #else
3864 #define netif_vdbg(priv, type, dev, format, args...) \
3865 ({ \
3866 if (0) \
3867 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3868 0; \
3869 })
3870 #endif
3871
3872 /*
3873 * The list of packet types we will receive (as opposed to discard)
3874 * and the routines to invoke.
3875 *
3876 * Why 16. Because with 16 the only overlap we get on a hash of the
3877 * low nibble of the protocol value is RARP/SNAP/X.25.
3878 *
3879 * NOTE: That is no longer true with the addition of VLAN tags. Not
3880 * sure which should go first, but I bet it won't make much
3881 * difference if we are running VLANs. The good news is that
3882 * this protocol won't be in the list unless compiled in, so
3883 * the average user (w/out VLANs) will not be adversely affected.
3884 * --BLG
3885 *
3886 * 0800 IP
3887 * 8100 802.1Q VLAN
3888 * 0001 802.3
3889 * 0002 AX.25
3890 * 0004 802.2
3891 * 8035 RARP
3892 * 0005 SNAP
3893 * 0805 X.25
3894 * 0806 ARP
3895 * 8137 IPX
3896 * 0009 Localtalk
3897 * 86DD IPv6
3898 */
3899 #define PTYPE_HASH_SIZE (16)
3900 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
3901
3902 #endif /* _LINUX_NETDEVICE_H */
This page took 0.163788 seconds and 5 git commands to generate.