Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next-2.6
[deliverable/linux.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/if.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_link.h>
32
33 #ifdef __KERNEL__
34 #include <linux/pm_qos_params.h>
35 #include <linux/timer.h>
36 #include <linux/delay.h>
37 #include <linux/mm.h>
38 #include <asm/atomic.h>
39 #include <asm/cache.h>
40 #include <asm/byteorder.h>
41
42 #include <linux/device.h>
43 #include <linux/percpu.h>
44 #include <linux/rculist.h>
45 #include <linux/dmaengine.h>
46 #include <linux/workqueue.h>
47
48 #include <linux/ethtool.h>
49 #include <net/net_namespace.h>
50 #include <net/dsa.h>
51 #ifdef CONFIG_DCB
52 #include <net/dcbnl.h>
53 #endif
54
55 struct vlan_group;
56 struct netpoll_info;
57 struct phy_device;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* source back-compat hooks */
61 #define SET_ETHTOOL_OPS(netdev,ops) \
62 ( (netdev)->ethtool_ops = (ops) )
63
64 #define HAVE_ALLOC_NETDEV /* feature macro: alloc_xxxdev
65 functions are available. */
66 #define HAVE_FREE_NETDEV /* free_netdev() */
67 #define HAVE_NETDEV_PRIV /* netdev_priv() */
68
69 /* hardware address assignment types */
70 #define NET_ADDR_PERM 0 /* address is permanent (default) */
71 #define NET_ADDR_RANDOM 1 /* address is generated randomly */
72 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */
73
74 /* Backlog congestion levels */
75 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
76 #define NET_RX_DROP 1 /* packet dropped */
77
78 /*
79 * Transmit return codes: transmit return codes originate from three different
80 * namespaces:
81 *
82 * - qdisc return codes
83 * - driver transmit return codes
84 * - errno values
85 *
86 * Drivers are allowed to return any one of those in their hard_start_xmit()
87 * function. Real network devices commonly used with qdiscs should only return
88 * the driver transmit return codes though - when qdiscs are used, the actual
89 * transmission happens asynchronously, so the value is not propagated to
90 * higher layers. Virtual network devices transmit synchronously, in this case
91 * the driver transmit return codes are consumed by dev_queue_xmit(), all
92 * others are propagated to higher layers.
93 */
94
95 /* qdisc ->enqueue() return codes. */
96 #define NET_XMIT_SUCCESS 0x00
97 #define NET_XMIT_DROP 0x01 /* skb dropped */
98 #define NET_XMIT_CN 0x02 /* congestion notification */
99 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
100 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
101
102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
103 * indicates that the device will soon be dropping packets, or already drops
104 * some packets of the same priority; prompting us to send less aggressively. */
105 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
106 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
107
108 /* Driver transmit return codes */
109 #define NETDEV_TX_MASK 0xf0
110
111 enum netdev_tx {
112 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
113 NETDEV_TX_OK = 0x00, /* driver took care of packet */
114 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
115 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
116 };
117 typedef enum netdev_tx netdev_tx_t;
118
119 /*
120 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
121 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
122 */
123 static inline bool dev_xmit_complete(int rc)
124 {
125 /*
126 * Positive cases with an skb consumed by a driver:
127 * - successful transmission (rc == NETDEV_TX_OK)
128 * - error while transmitting (rc < 0)
129 * - error while queueing to a different device (rc & NET_XMIT_MASK)
130 */
131 if (likely(rc < NET_XMIT_MASK))
132 return true;
133
134 return false;
135 }
136
137 #endif
138
139 #define MAX_ADDR_LEN 32 /* Largest hardware address length */
140
141 #ifdef __KERNEL__
142 /*
143 * Compute the worst case header length according to the protocols
144 * used.
145 */
146
147 #if defined(CONFIG_WLAN) || defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
148 # if defined(CONFIG_MAC80211_MESH)
149 # define LL_MAX_HEADER 128
150 # else
151 # define LL_MAX_HEADER 96
152 # endif
153 #elif defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
154 # define LL_MAX_HEADER 48
155 #else
156 # define LL_MAX_HEADER 32
157 #endif
158
159 #if !defined(CONFIG_NET_IPIP) && !defined(CONFIG_NET_IPIP_MODULE) && \
160 !defined(CONFIG_NET_IPGRE) && !defined(CONFIG_NET_IPGRE_MODULE) && \
161 !defined(CONFIG_IPV6_SIT) && !defined(CONFIG_IPV6_SIT_MODULE) && \
162 !defined(CONFIG_IPV6_TUNNEL) && !defined(CONFIG_IPV6_TUNNEL_MODULE)
163 #define MAX_HEADER LL_MAX_HEADER
164 #else
165 #define MAX_HEADER (LL_MAX_HEADER + 48)
166 #endif
167
168 /*
169 * Old network device statistics. Fields are native words
170 * (unsigned long) so they can be read and written atomically.
171 */
172
173 struct net_device_stats {
174 unsigned long rx_packets;
175 unsigned long tx_packets;
176 unsigned long rx_bytes;
177 unsigned long tx_bytes;
178 unsigned long rx_errors;
179 unsigned long tx_errors;
180 unsigned long rx_dropped;
181 unsigned long tx_dropped;
182 unsigned long multicast;
183 unsigned long collisions;
184 unsigned long rx_length_errors;
185 unsigned long rx_over_errors;
186 unsigned long rx_crc_errors;
187 unsigned long rx_frame_errors;
188 unsigned long rx_fifo_errors;
189 unsigned long rx_missed_errors;
190 unsigned long tx_aborted_errors;
191 unsigned long tx_carrier_errors;
192 unsigned long tx_fifo_errors;
193 unsigned long tx_heartbeat_errors;
194 unsigned long tx_window_errors;
195 unsigned long rx_compressed;
196 unsigned long tx_compressed;
197 };
198
199 #endif /* __KERNEL__ */
200
201
202 /* Media selection options. */
203 enum {
204 IF_PORT_UNKNOWN = 0,
205 IF_PORT_10BASE2,
206 IF_PORT_10BASET,
207 IF_PORT_AUI,
208 IF_PORT_100BASET,
209 IF_PORT_100BASETX,
210 IF_PORT_100BASEFX
211 };
212
213 #ifdef __KERNEL__
214
215 #include <linux/cache.h>
216 #include <linux/skbuff.h>
217
218 struct neighbour;
219 struct neigh_parms;
220 struct sk_buff;
221
222 struct netdev_hw_addr {
223 struct list_head list;
224 unsigned char addr[MAX_ADDR_LEN];
225 unsigned char type;
226 #define NETDEV_HW_ADDR_T_LAN 1
227 #define NETDEV_HW_ADDR_T_SAN 2
228 #define NETDEV_HW_ADDR_T_SLAVE 3
229 #define NETDEV_HW_ADDR_T_UNICAST 4
230 #define NETDEV_HW_ADDR_T_MULTICAST 5
231 int refcount;
232 bool synced;
233 bool global_use;
234 struct rcu_head rcu_head;
235 };
236
237 struct netdev_hw_addr_list {
238 struct list_head list;
239 int count;
240 };
241
242 #define netdev_hw_addr_list_count(l) ((l)->count)
243 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
244 #define netdev_hw_addr_list_for_each(ha, l) \
245 list_for_each_entry(ha, &(l)->list, list)
246
247 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
248 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
249 #define netdev_for_each_uc_addr(ha, dev) \
250 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
251
252 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
253 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
254 #define netdev_for_each_mc_addr(ha, dev) \
255 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
256
257 struct hh_cache {
258 struct hh_cache *hh_next; /* Next entry */
259 atomic_t hh_refcnt; /* number of users */
260 /*
261 * We want hh_output, hh_len, hh_lock and hh_data be a in a separate
262 * cache line on SMP.
263 * They are mostly read, but hh_refcnt may be changed quite frequently,
264 * incurring cache line ping pongs.
265 */
266 __be16 hh_type ____cacheline_aligned_in_smp;
267 /* protocol identifier, f.e ETH_P_IP
268 * NOTE: For VLANs, this will be the
269 * encapuslated type. --BLG
270 */
271 u16 hh_len; /* length of header */
272 int (*hh_output)(struct sk_buff *skb);
273 seqlock_t hh_lock;
274
275 /* cached hardware header; allow for machine alignment needs. */
276 #define HH_DATA_MOD 16
277 #define HH_DATA_OFF(__len) \
278 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
279 #define HH_DATA_ALIGN(__len) \
280 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
281 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
282 };
283
284 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
285 * Alternative is:
286 * dev->hard_header_len ? (dev->hard_header_len +
287 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
288 *
289 * We could use other alignment values, but we must maintain the
290 * relationship HH alignment <= LL alignment.
291 *
292 * LL_ALLOCATED_SPACE also takes into account the tailroom the device
293 * may need.
294 */
295 #define LL_RESERVED_SPACE(dev) \
296 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
297 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
298 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
299 #define LL_ALLOCATED_SPACE(dev) \
300 ((((dev)->hard_header_len+(dev)->needed_headroom+(dev)->needed_tailroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
301
302 struct header_ops {
303 int (*create) (struct sk_buff *skb, struct net_device *dev,
304 unsigned short type, const void *daddr,
305 const void *saddr, unsigned len);
306 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
307 int (*rebuild)(struct sk_buff *skb);
308 #define HAVE_HEADER_CACHE
309 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh);
310 void (*cache_update)(struct hh_cache *hh,
311 const struct net_device *dev,
312 const unsigned char *haddr);
313 };
314
315 /* These flag bits are private to the generic network queueing
316 * layer, they may not be explicitly referenced by any other
317 * code.
318 */
319
320 enum netdev_state_t {
321 __LINK_STATE_START,
322 __LINK_STATE_PRESENT,
323 __LINK_STATE_NOCARRIER,
324 __LINK_STATE_LINKWATCH_PENDING,
325 __LINK_STATE_DORMANT,
326 };
327
328
329 /*
330 * This structure holds at boot time configured netdevice settings. They
331 * are then used in the device probing.
332 */
333 struct netdev_boot_setup {
334 char name[IFNAMSIZ];
335 struct ifmap map;
336 };
337 #define NETDEV_BOOT_SETUP_MAX 8
338
339 extern int __init netdev_boot_setup(char *str);
340
341 /*
342 * Structure for NAPI scheduling similar to tasklet but with weighting
343 */
344 struct napi_struct {
345 /* The poll_list must only be managed by the entity which
346 * changes the state of the NAPI_STATE_SCHED bit. This means
347 * whoever atomically sets that bit can add this napi_struct
348 * to the per-cpu poll_list, and whoever clears that bit
349 * can remove from the list right before clearing the bit.
350 */
351 struct list_head poll_list;
352
353 unsigned long state;
354 int weight;
355 int (*poll)(struct napi_struct *, int);
356 #ifdef CONFIG_NETPOLL
357 spinlock_t poll_lock;
358 int poll_owner;
359 #endif
360
361 unsigned int gro_count;
362
363 struct net_device *dev;
364 struct list_head dev_list;
365 struct sk_buff *gro_list;
366 struct sk_buff *skb;
367 };
368
369 enum {
370 NAPI_STATE_SCHED, /* Poll is scheduled */
371 NAPI_STATE_DISABLE, /* Disable pending */
372 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
373 };
374
375 enum gro_result {
376 GRO_MERGED,
377 GRO_MERGED_FREE,
378 GRO_HELD,
379 GRO_NORMAL,
380 GRO_DROP,
381 };
382 typedef enum gro_result gro_result_t;
383
384 typedef struct sk_buff *rx_handler_func_t(struct sk_buff *skb);
385
386 extern void __napi_schedule(struct napi_struct *n);
387
388 static inline int napi_disable_pending(struct napi_struct *n)
389 {
390 return test_bit(NAPI_STATE_DISABLE, &n->state);
391 }
392
393 /**
394 * napi_schedule_prep - check if napi can be scheduled
395 * @n: napi context
396 *
397 * Test if NAPI routine is already running, and if not mark
398 * it as running. This is used as a condition variable
399 * insure only one NAPI poll instance runs. We also make
400 * sure there is no pending NAPI disable.
401 */
402 static inline int napi_schedule_prep(struct napi_struct *n)
403 {
404 return !napi_disable_pending(n) &&
405 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
406 }
407
408 /**
409 * napi_schedule - schedule NAPI poll
410 * @n: napi context
411 *
412 * Schedule NAPI poll routine to be called if it is not already
413 * running.
414 */
415 static inline void napi_schedule(struct napi_struct *n)
416 {
417 if (napi_schedule_prep(n))
418 __napi_schedule(n);
419 }
420
421 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
422 static inline int napi_reschedule(struct napi_struct *napi)
423 {
424 if (napi_schedule_prep(napi)) {
425 __napi_schedule(napi);
426 return 1;
427 }
428 return 0;
429 }
430
431 /**
432 * napi_complete - NAPI processing complete
433 * @n: napi context
434 *
435 * Mark NAPI processing as complete.
436 */
437 extern void __napi_complete(struct napi_struct *n);
438 extern void napi_complete(struct napi_struct *n);
439
440 /**
441 * napi_disable - prevent NAPI from scheduling
442 * @n: napi context
443 *
444 * Stop NAPI from being scheduled on this context.
445 * Waits till any outstanding processing completes.
446 */
447 static inline void napi_disable(struct napi_struct *n)
448 {
449 set_bit(NAPI_STATE_DISABLE, &n->state);
450 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
451 msleep(1);
452 clear_bit(NAPI_STATE_DISABLE, &n->state);
453 }
454
455 /**
456 * napi_enable - enable NAPI scheduling
457 * @n: napi context
458 *
459 * Resume NAPI from being scheduled on this context.
460 * Must be paired with napi_disable.
461 */
462 static inline void napi_enable(struct napi_struct *n)
463 {
464 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
465 smp_mb__before_clear_bit();
466 clear_bit(NAPI_STATE_SCHED, &n->state);
467 }
468
469 #ifdef CONFIG_SMP
470 /**
471 * napi_synchronize - wait until NAPI is not running
472 * @n: napi context
473 *
474 * Wait until NAPI is done being scheduled on this context.
475 * Waits till any outstanding processing completes but
476 * does not disable future activations.
477 */
478 static inline void napi_synchronize(const struct napi_struct *n)
479 {
480 while (test_bit(NAPI_STATE_SCHED, &n->state))
481 msleep(1);
482 }
483 #else
484 # define napi_synchronize(n) barrier()
485 #endif
486
487 enum netdev_queue_state_t {
488 __QUEUE_STATE_XOFF,
489 __QUEUE_STATE_FROZEN,
490 };
491
492 struct netdev_queue {
493 /*
494 * read mostly part
495 */
496 struct net_device *dev;
497 struct Qdisc *qdisc;
498 unsigned long state;
499 struct Qdisc *qdisc_sleeping;
500 /*
501 * write mostly part
502 */
503 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
504 int xmit_lock_owner;
505 /*
506 * please use this field instead of dev->trans_start
507 */
508 unsigned long trans_start;
509 u64 tx_bytes;
510 u64 tx_packets;
511 u64 tx_dropped;
512 } ____cacheline_aligned_in_smp;
513
514 #ifdef CONFIG_RPS
515 /*
516 * This structure holds an RPS map which can be of variable length. The
517 * map is an array of CPUs.
518 */
519 struct rps_map {
520 unsigned int len;
521 struct rcu_head rcu;
522 u16 cpus[0];
523 };
524 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + (_num * sizeof(u16)))
525
526 /*
527 * The rps_dev_flow structure contains the mapping of a flow to a CPU and the
528 * tail pointer for that CPU's input queue at the time of last enqueue.
529 */
530 struct rps_dev_flow {
531 u16 cpu;
532 u16 fill;
533 unsigned int last_qtail;
534 };
535
536 /*
537 * The rps_dev_flow_table structure contains a table of flow mappings.
538 */
539 struct rps_dev_flow_table {
540 unsigned int mask;
541 struct rcu_head rcu;
542 struct work_struct free_work;
543 struct rps_dev_flow flows[0];
544 };
545 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
546 (_num * sizeof(struct rps_dev_flow)))
547
548 /*
549 * The rps_sock_flow_table contains mappings of flows to the last CPU
550 * on which they were processed by the application (set in recvmsg).
551 */
552 struct rps_sock_flow_table {
553 unsigned int mask;
554 u16 ents[0];
555 };
556 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
557 (_num * sizeof(u16)))
558
559 #define RPS_NO_CPU 0xffff
560
561 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
562 u32 hash)
563 {
564 if (table && hash) {
565 unsigned int cpu, index = hash & table->mask;
566
567 /* We only give a hint, preemption can change cpu under us */
568 cpu = raw_smp_processor_id();
569
570 if (table->ents[index] != cpu)
571 table->ents[index] = cpu;
572 }
573 }
574
575 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
576 u32 hash)
577 {
578 if (table && hash)
579 table->ents[hash & table->mask] = RPS_NO_CPU;
580 }
581
582 extern struct rps_sock_flow_table *rps_sock_flow_table;
583
584 /* This structure contains an instance of an RX queue. */
585 struct netdev_rx_queue {
586 struct rps_map *rps_map;
587 struct rps_dev_flow_table *rps_flow_table;
588 struct kobject kobj;
589 struct netdev_rx_queue *first;
590 atomic_t count;
591 } ____cacheline_aligned_in_smp;
592 #endif /* CONFIG_RPS */
593
594 /*
595 * This structure defines the management hooks for network devices.
596 * The following hooks can be defined; unless noted otherwise, they are
597 * optional and can be filled with a null pointer.
598 *
599 * int (*ndo_init)(struct net_device *dev);
600 * This function is called once when network device is registered.
601 * The network device can use this to any late stage initializaton
602 * or semantic validattion. It can fail with an error code which will
603 * be propogated back to register_netdev
604 *
605 * void (*ndo_uninit)(struct net_device *dev);
606 * This function is called when device is unregistered or when registration
607 * fails. It is not called if init fails.
608 *
609 * int (*ndo_open)(struct net_device *dev);
610 * This function is called when network device transistions to the up
611 * state.
612 *
613 * int (*ndo_stop)(struct net_device *dev);
614 * This function is called when network device transistions to the down
615 * state.
616 *
617 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
618 * struct net_device *dev);
619 * Called when a packet needs to be transmitted.
620 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
621 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
622 * Required can not be NULL.
623 *
624 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
625 * Called to decide which queue to when device supports multiple
626 * transmit queues.
627 *
628 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
629 * This function is called to allow device receiver to make
630 * changes to configuration when multicast or promiscious is enabled.
631 *
632 * void (*ndo_set_rx_mode)(struct net_device *dev);
633 * This function is called device changes address list filtering.
634 *
635 * void (*ndo_set_multicast_list)(struct net_device *dev);
636 * This function is called when the multicast address list changes.
637 *
638 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
639 * This function is called when the Media Access Control address
640 * needs to be changed. If this interface is not defined, the
641 * mac address can not be changed.
642 *
643 * int (*ndo_validate_addr)(struct net_device *dev);
644 * Test if Media Access Control address is valid for the device.
645 *
646 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
647 * Called when a user request an ioctl which can't be handled by
648 * the generic interface code. If not defined ioctl's return
649 * not supported error code.
650 *
651 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
652 * Used to set network devices bus interface parameters. This interface
653 * is retained for legacy reason, new devices should use the bus
654 * interface (PCI) for low level management.
655 *
656 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
657 * Called when a user wants to change the Maximum Transfer Unit
658 * of a device. If not defined, any request to change MTU will
659 * will return an error.
660 *
661 * void (*ndo_tx_timeout)(struct net_device *dev);
662 * Callback uses when the transmitter has not made any progress
663 * for dev->watchdog ticks.
664 *
665 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
666 * struct rtnl_link_stats64 *storage);
667 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
668 * Called when a user wants to get the network device usage
669 * statistics. Drivers must do one of the following:
670 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
671 * rtnl_link_stats64 structure passed by the caller.
672 * 2. Define @ndo_get_stats to update a net_device_stats structure
673 * (which should normally be dev->stats) and return a pointer to
674 * it. The structure may be changed asynchronously only if each
675 * field is written atomically.
676 * 3. Update dev->stats asynchronously and atomically, and define
677 * neither operation.
678 *
679 * void (*ndo_vlan_rx_register)(struct net_device *dev, struct vlan_group *grp);
680 * If device support VLAN receive accleration
681 * (ie. dev->features & NETIF_F_HW_VLAN_RX), then this function is called
682 * when vlan groups for the device changes. Note: grp is NULL
683 * if no vlan's groups are being used.
684 *
685 * void (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
686 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
687 * this function is called when a VLAN id is registered.
688 *
689 * void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
690 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
691 * this function is called when a VLAN id is unregistered.
692 *
693 * void (*ndo_poll_controller)(struct net_device *dev);
694 *
695 * SR-IOV management functions.
696 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
697 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
698 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
699 * int (*ndo_get_vf_config)(struct net_device *dev,
700 * int vf, struct ifla_vf_info *ivf);
701 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
702 * struct nlattr *port[]);
703 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
704 */
705 #define HAVE_NET_DEVICE_OPS
706 struct net_device_ops {
707 int (*ndo_init)(struct net_device *dev);
708 void (*ndo_uninit)(struct net_device *dev);
709 int (*ndo_open)(struct net_device *dev);
710 int (*ndo_stop)(struct net_device *dev);
711 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
712 struct net_device *dev);
713 u16 (*ndo_select_queue)(struct net_device *dev,
714 struct sk_buff *skb);
715 void (*ndo_change_rx_flags)(struct net_device *dev,
716 int flags);
717 void (*ndo_set_rx_mode)(struct net_device *dev);
718 void (*ndo_set_multicast_list)(struct net_device *dev);
719 int (*ndo_set_mac_address)(struct net_device *dev,
720 void *addr);
721 int (*ndo_validate_addr)(struct net_device *dev);
722 int (*ndo_do_ioctl)(struct net_device *dev,
723 struct ifreq *ifr, int cmd);
724 int (*ndo_set_config)(struct net_device *dev,
725 struct ifmap *map);
726 int (*ndo_change_mtu)(struct net_device *dev,
727 int new_mtu);
728 int (*ndo_neigh_setup)(struct net_device *dev,
729 struct neigh_parms *);
730 void (*ndo_tx_timeout) (struct net_device *dev);
731
732 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
733 struct rtnl_link_stats64 *storage);
734 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
735
736 void (*ndo_vlan_rx_register)(struct net_device *dev,
737 struct vlan_group *grp);
738 void (*ndo_vlan_rx_add_vid)(struct net_device *dev,
739 unsigned short vid);
740 void (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
741 unsigned short vid);
742 #ifdef CONFIG_NET_POLL_CONTROLLER
743 void (*ndo_poll_controller)(struct net_device *dev);
744 int (*ndo_netpoll_setup)(struct net_device *dev,
745 struct netpoll_info *info);
746 void (*ndo_netpoll_cleanup)(struct net_device *dev);
747 #endif
748 int (*ndo_set_vf_mac)(struct net_device *dev,
749 int queue, u8 *mac);
750 int (*ndo_set_vf_vlan)(struct net_device *dev,
751 int queue, u16 vlan, u8 qos);
752 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
753 int vf, int rate);
754 int (*ndo_get_vf_config)(struct net_device *dev,
755 int vf,
756 struct ifla_vf_info *ivf);
757 int (*ndo_set_vf_port)(struct net_device *dev,
758 int vf,
759 struct nlattr *port[]);
760 int (*ndo_get_vf_port)(struct net_device *dev,
761 int vf, struct sk_buff *skb);
762 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
763 int (*ndo_fcoe_enable)(struct net_device *dev);
764 int (*ndo_fcoe_disable)(struct net_device *dev);
765 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
766 u16 xid,
767 struct scatterlist *sgl,
768 unsigned int sgc);
769 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
770 u16 xid);
771 #define NETDEV_FCOE_WWNN 0
772 #define NETDEV_FCOE_WWPN 1
773 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
774 u64 *wwn, int type);
775 #endif
776 };
777
778 /*
779 * The DEVICE structure.
780 * Actually, this whole structure is a big mistake. It mixes I/O
781 * data with strictly "high-level" data, and it has to know about
782 * almost every data structure used in the INET module.
783 *
784 * FIXME: cleanup struct net_device such that network protocol info
785 * moves out.
786 */
787
788 struct net_device {
789
790 /*
791 * This is the first field of the "visible" part of this structure
792 * (i.e. as seen by users in the "Space.c" file). It is the name
793 * the interface.
794 */
795 char name[IFNAMSIZ];
796
797 struct pm_qos_request_list pm_qos_req;
798
799 /* device name hash chain */
800 struct hlist_node name_hlist;
801 /* snmp alias */
802 char *ifalias;
803
804 /*
805 * I/O specific fields
806 * FIXME: Merge these and struct ifmap into one
807 */
808 unsigned long mem_end; /* shared mem end */
809 unsigned long mem_start; /* shared mem start */
810 unsigned long base_addr; /* device I/O address */
811 unsigned int irq; /* device IRQ number */
812
813 /*
814 * Some hardware also needs these fields, but they are not
815 * part of the usual set specified in Space.c.
816 */
817
818 unsigned char if_port; /* Selectable AUI, TP,..*/
819 unsigned char dma; /* DMA channel */
820
821 unsigned long state;
822
823 struct list_head dev_list;
824 struct list_head napi_list;
825 struct list_head unreg_list;
826
827 /* Net device features */
828 unsigned long features;
829 #define NETIF_F_SG 1 /* Scatter/gather IO. */
830 #define NETIF_F_IP_CSUM 2 /* Can checksum TCP/UDP over IPv4. */
831 #define NETIF_F_NO_CSUM 4 /* Does not require checksum. F.e. loopack. */
832 #define NETIF_F_HW_CSUM 8 /* Can checksum all the packets. */
833 #define NETIF_F_IPV6_CSUM 16 /* Can checksum TCP/UDP over IPV6 */
834 #define NETIF_F_HIGHDMA 32 /* Can DMA to high memory. */
835 #define NETIF_F_FRAGLIST 64 /* Scatter/gather IO. */
836 #define NETIF_F_HW_VLAN_TX 128 /* Transmit VLAN hw acceleration */
837 #define NETIF_F_HW_VLAN_RX 256 /* Receive VLAN hw acceleration */
838 #define NETIF_F_HW_VLAN_FILTER 512 /* Receive filtering on VLAN */
839 #define NETIF_F_VLAN_CHALLENGED 1024 /* Device cannot handle VLAN packets */
840 #define NETIF_F_GSO 2048 /* Enable software GSO. */
841 #define NETIF_F_LLTX 4096 /* LockLess TX - deprecated. Please */
842 /* do not use LLTX in new drivers */
843 #define NETIF_F_NETNS_LOCAL 8192 /* Does not change network namespaces */
844 #define NETIF_F_GRO 16384 /* Generic receive offload */
845 #define NETIF_F_LRO 32768 /* large receive offload */
846
847 /* the GSO_MASK reserves bits 16 through 23 */
848 #define NETIF_F_FCOE_CRC (1 << 24) /* FCoE CRC32 */
849 #define NETIF_F_SCTP_CSUM (1 << 25) /* SCTP checksum offload */
850 #define NETIF_F_FCOE_MTU (1 << 26) /* Supports max FCoE MTU, 2158 bytes*/
851 #define NETIF_F_NTUPLE (1 << 27) /* N-tuple filters supported */
852 #define NETIF_F_RXHASH (1 << 28) /* Receive hashing offload */
853
854 /* Segmentation offload features */
855 #define NETIF_F_GSO_SHIFT 16
856 #define NETIF_F_GSO_MASK 0x00ff0000
857 #define NETIF_F_TSO (SKB_GSO_TCPV4 << NETIF_F_GSO_SHIFT)
858 #define NETIF_F_UFO (SKB_GSO_UDP << NETIF_F_GSO_SHIFT)
859 #define NETIF_F_GSO_ROBUST (SKB_GSO_DODGY << NETIF_F_GSO_SHIFT)
860 #define NETIF_F_TSO_ECN (SKB_GSO_TCP_ECN << NETIF_F_GSO_SHIFT)
861 #define NETIF_F_TSO6 (SKB_GSO_TCPV6 << NETIF_F_GSO_SHIFT)
862 #define NETIF_F_FSO (SKB_GSO_FCOE << NETIF_F_GSO_SHIFT)
863
864 /* List of features with software fallbacks. */
865 #define NETIF_F_GSO_SOFTWARE (NETIF_F_TSO | NETIF_F_TSO_ECN | \
866 NETIF_F_TSO6 | NETIF_F_UFO)
867
868
869 #define NETIF_F_GEN_CSUM (NETIF_F_NO_CSUM | NETIF_F_HW_CSUM)
870 #define NETIF_F_V4_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IP_CSUM)
871 #define NETIF_F_V6_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IPV6_CSUM)
872 #define NETIF_F_ALL_CSUM (NETIF_F_V4_CSUM | NETIF_F_V6_CSUM)
873
874 /*
875 * If one device supports one of these features, then enable them
876 * for all in netdev_increment_features.
877 */
878 #define NETIF_F_ONE_FOR_ALL (NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ROBUST | \
879 NETIF_F_SG | NETIF_F_HIGHDMA | \
880 NETIF_F_FRAGLIST)
881
882 /* Interface index. Unique device identifier */
883 int ifindex;
884 int iflink;
885
886 struct net_device_stats stats;
887
888 #ifdef CONFIG_WIRELESS_EXT
889 /* List of functions to handle Wireless Extensions (instead of ioctl).
890 * See <net/iw_handler.h> for details. Jean II */
891 const struct iw_handler_def * wireless_handlers;
892 /* Instance data managed by the core of Wireless Extensions. */
893 struct iw_public_data * wireless_data;
894 #endif
895 /* Management operations */
896 const struct net_device_ops *netdev_ops;
897 const struct ethtool_ops *ethtool_ops;
898
899 /* Hardware header description */
900 const struct header_ops *header_ops;
901
902 unsigned int flags; /* interface flags (a la BSD) */
903 unsigned short gflags;
904 unsigned short priv_flags; /* Like 'flags' but invisible to userspace. */
905 unsigned short padded; /* How much padding added by alloc_netdev() */
906
907 unsigned char operstate; /* RFC2863 operstate */
908 unsigned char link_mode; /* mapping policy to operstate */
909
910 unsigned int mtu; /* interface MTU value */
911 unsigned short type; /* interface hardware type */
912 unsigned short hard_header_len; /* hardware hdr length */
913
914 /* extra head- and tailroom the hardware may need, but not in all cases
915 * can this be guaranteed, especially tailroom. Some cases also use
916 * LL_MAX_HEADER instead to allocate the skb.
917 */
918 unsigned short needed_headroom;
919 unsigned short needed_tailroom;
920
921 struct net_device *master; /* Pointer to master device of a group,
922 * which this device is member of.
923 */
924
925 /* Interface address info. */
926 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
927 unsigned char addr_assign_type; /* hw address assignment type */
928 unsigned char addr_len; /* hardware address length */
929 unsigned short dev_id; /* for shared network cards */
930
931 spinlock_t addr_list_lock;
932 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
933 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
934 int uc_promisc;
935 unsigned int promiscuity;
936 unsigned int allmulti;
937
938
939 /* Protocol specific pointers */
940
941 #ifdef CONFIG_NET_DSA
942 void *dsa_ptr; /* dsa specific data */
943 #endif
944 void *atalk_ptr; /* AppleTalk link */
945 void *ip_ptr; /* IPv4 specific data */
946 void *dn_ptr; /* DECnet specific data */
947 void *ip6_ptr; /* IPv6 specific data */
948 void *ec_ptr; /* Econet specific data */
949 void *ax25_ptr; /* AX.25 specific data */
950 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
951 assign before registering */
952
953 /*
954 * Cache line mostly used on receive path (including eth_type_trans())
955 */
956 unsigned long last_rx; /* Time of last Rx */
957 /* Interface address info used in eth_type_trans() */
958 unsigned char *dev_addr; /* hw address, (before bcast
959 because most packets are
960 unicast) */
961
962 struct netdev_hw_addr_list dev_addrs; /* list of device
963 hw addresses */
964
965 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
966
967 #ifdef CONFIG_RPS
968 struct kset *queues_kset;
969
970 struct netdev_rx_queue *_rx;
971
972 /* Number of RX queues allocated at alloc_netdev_mq() time */
973 unsigned int num_rx_queues;
974 #endif
975
976 struct netdev_queue rx_queue;
977 rx_handler_func_t *rx_handler;
978 void *rx_handler_data;
979
980 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
981
982 /* Number of TX queues allocated at alloc_netdev_mq() time */
983 unsigned int num_tx_queues;
984
985 /* Number of TX queues currently active in device */
986 unsigned int real_num_tx_queues;
987
988 /* root qdisc from userspace point of view */
989 struct Qdisc *qdisc;
990
991 unsigned long tx_queue_len; /* Max frames per queue allowed */
992 spinlock_t tx_global_lock;
993 /*
994 * One part is mostly used on xmit path (device)
995 */
996 /* These may be needed for future network-power-down code. */
997
998 /*
999 * trans_start here is expensive for high speed devices on SMP,
1000 * please use netdev_queue->trans_start instead.
1001 */
1002 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1003
1004 int watchdog_timeo; /* used by dev_watchdog() */
1005 struct timer_list watchdog_timer;
1006
1007 /* Number of references to this device */
1008 atomic_t refcnt ____cacheline_aligned_in_smp;
1009
1010 /* delayed register/unregister */
1011 struct list_head todo_list;
1012 /* device index hash chain */
1013 struct hlist_node index_hlist;
1014
1015 struct list_head link_watch_list;
1016
1017 /* register/unregister state machine */
1018 enum { NETREG_UNINITIALIZED=0,
1019 NETREG_REGISTERED, /* completed register_netdevice */
1020 NETREG_UNREGISTERING, /* called unregister_netdevice */
1021 NETREG_UNREGISTERED, /* completed unregister todo */
1022 NETREG_RELEASED, /* called free_netdev */
1023 NETREG_DUMMY, /* dummy device for NAPI poll */
1024 } reg_state:16;
1025
1026 enum {
1027 RTNL_LINK_INITIALIZED,
1028 RTNL_LINK_INITIALIZING,
1029 } rtnl_link_state:16;
1030
1031 /* Called from unregister, can be used to call free_netdev */
1032 void (*destructor)(struct net_device *dev);
1033
1034 #ifdef CONFIG_NETPOLL
1035 struct netpoll_info *npinfo;
1036 #endif
1037
1038 #ifdef CONFIG_NET_NS
1039 /* Network namespace this network device is inside */
1040 struct net *nd_net;
1041 #endif
1042
1043 /* mid-layer private */
1044 void *ml_priv;
1045
1046 /* GARP */
1047 struct garp_port *garp_port;
1048
1049 /* class/net/name entry */
1050 struct device dev;
1051 /* space for optional device, statistics, and wireless sysfs groups */
1052 const struct attribute_group *sysfs_groups[4];
1053
1054 /* rtnetlink link ops */
1055 const struct rtnl_link_ops *rtnl_link_ops;
1056
1057 /* VLAN feature mask */
1058 unsigned long vlan_features;
1059
1060 /* for setting kernel sock attribute on TCP connection setup */
1061 #define GSO_MAX_SIZE 65536
1062 unsigned int gso_max_size;
1063
1064 #ifdef CONFIG_DCB
1065 /* Data Center Bridging netlink ops */
1066 const struct dcbnl_rtnl_ops *dcbnl_ops;
1067 #endif
1068
1069 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
1070 /* max exchange id for FCoE LRO by ddp */
1071 unsigned int fcoe_ddp_xid;
1072 #endif
1073 /* n-tuple filter list attached to this device */
1074 struct ethtool_rx_ntuple_list ethtool_ntuple_list;
1075
1076 /* phy device may attach itself for hardware timestamping */
1077 struct phy_device *phydev;
1078 };
1079 #define to_net_dev(d) container_of(d, struct net_device, dev)
1080
1081 #define NETDEV_ALIGN 32
1082
1083 static inline
1084 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1085 unsigned int index)
1086 {
1087 return &dev->_tx[index];
1088 }
1089
1090 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1091 void (*f)(struct net_device *,
1092 struct netdev_queue *,
1093 void *),
1094 void *arg)
1095 {
1096 unsigned int i;
1097
1098 for (i = 0; i < dev->num_tx_queues; i++)
1099 f(dev, &dev->_tx[i], arg);
1100 }
1101
1102 /*
1103 * Net namespace inlines
1104 */
1105 static inline
1106 struct net *dev_net(const struct net_device *dev)
1107 {
1108 return read_pnet(&dev->nd_net);
1109 }
1110
1111 static inline
1112 void dev_net_set(struct net_device *dev, struct net *net)
1113 {
1114 #ifdef CONFIG_NET_NS
1115 release_net(dev->nd_net);
1116 dev->nd_net = hold_net(net);
1117 #endif
1118 }
1119
1120 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1121 {
1122 #ifdef CONFIG_NET_DSA_TAG_DSA
1123 if (dev->dsa_ptr != NULL)
1124 return dsa_uses_dsa_tags(dev->dsa_ptr);
1125 #endif
1126
1127 return 0;
1128 }
1129
1130 #ifndef CONFIG_NET_NS
1131 static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1132 {
1133 skb->dev = dev;
1134 }
1135 #else /* CONFIG_NET_NS */
1136 void skb_set_dev(struct sk_buff *skb, struct net_device *dev);
1137 #endif
1138
1139 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1140 {
1141 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1142 if (dev->dsa_ptr != NULL)
1143 return dsa_uses_trailer_tags(dev->dsa_ptr);
1144 #endif
1145
1146 return 0;
1147 }
1148
1149 /**
1150 * netdev_priv - access network device private data
1151 * @dev: network device
1152 *
1153 * Get network device private data
1154 */
1155 static inline void *netdev_priv(const struct net_device *dev)
1156 {
1157 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1158 }
1159
1160 /* Set the sysfs physical device reference for the network logical device
1161 * if set prior to registration will cause a symlink during initialization.
1162 */
1163 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1164
1165 /* Set the sysfs device type for the network logical device to allow
1166 * fin grained indentification of different network device types. For
1167 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1168 */
1169 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1170
1171 /**
1172 * netif_napi_add - initialize a napi context
1173 * @dev: network device
1174 * @napi: napi context
1175 * @poll: polling function
1176 * @weight: default weight
1177 *
1178 * netif_napi_add() must be used to initialize a napi context prior to calling
1179 * *any* of the other napi related functions.
1180 */
1181 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1182 int (*poll)(struct napi_struct *, int), int weight);
1183
1184 /**
1185 * netif_napi_del - remove a napi context
1186 * @napi: napi context
1187 *
1188 * netif_napi_del() removes a napi context from the network device napi list
1189 */
1190 void netif_napi_del(struct napi_struct *napi);
1191
1192 struct napi_gro_cb {
1193 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1194 void *frag0;
1195
1196 /* Length of frag0. */
1197 unsigned int frag0_len;
1198
1199 /* This indicates where we are processing relative to skb->data. */
1200 int data_offset;
1201
1202 /* This is non-zero if the packet may be of the same flow. */
1203 int same_flow;
1204
1205 /* This is non-zero if the packet cannot be merged with the new skb. */
1206 int flush;
1207
1208 /* Number of segments aggregated. */
1209 int count;
1210
1211 /* Free the skb? */
1212 int free;
1213 };
1214
1215 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1216
1217 struct packet_type {
1218 __be16 type; /* This is really htons(ether_type). */
1219 struct net_device *dev; /* NULL is wildcarded here */
1220 int (*func) (struct sk_buff *,
1221 struct net_device *,
1222 struct packet_type *,
1223 struct net_device *);
1224 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1225 int features);
1226 int (*gso_send_check)(struct sk_buff *skb);
1227 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1228 struct sk_buff *skb);
1229 int (*gro_complete)(struct sk_buff *skb);
1230 void *af_packet_priv;
1231 struct list_head list;
1232 };
1233
1234 #include <linux/interrupt.h>
1235 #include <linux/notifier.h>
1236
1237 extern rwlock_t dev_base_lock; /* Device list lock */
1238
1239
1240 #define for_each_netdev(net, d) \
1241 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1242 #define for_each_netdev_reverse(net, d) \
1243 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1244 #define for_each_netdev_rcu(net, d) \
1245 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1246 #define for_each_netdev_safe(net, d, n) \
1247 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1248 #define for_each_netdev_continue(net, d) \
1249 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1250 #define for_each_netdev_continue_rcu(net, d) \
1251 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1252 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1253
1254 static inline struct net_device *next_net_device(struct net_device *dev)
1255 {
1256 struct list_head *lh;
1257 struct net *net;
1258
1259 net = dev_net(dev);
1260 lh = dev->dev_list.next;
1261 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1262 }
1263
1264 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1265 {
1266 struct list_head *lh;
1267 struct net *net;
1268
1269 net = dev_net(dev);
1270 lh = rcu_dereference(dev->dev_list.next);
1271 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1272 }
1273
1274 static inline struct net_device *first_net_device(struct net *net)
1275 {
1276 return list_empty(&net->dev_base_head) ? NULL :
1277 net_device_entry(net->dev_base_head.next);
1278 }
1279
1280 extern int netdev_boot_setup_check(struct net_device *dev);
1281 extern unsigned long netdev_boot_base(const char *prefix, int unit);
1282 extern struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *hwaddr);
1283 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1284 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1285 extern void dev_add_pack(struct packet_type *pt);
1286 extern void dev_remove_pack(struct packet_type *pt);
1287 extern void __dev_remove_pack(struct packet_type *pt);
1288
1289 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1290 unsigned short mask);
1291 extern struct net_device *dev_get_by_name(struct net *net, const char *name);
1292 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1293 extern struct net_device *__dev_get_by_name(struct net *net, const char *name);
1294 extern int dev_alloc_name(struct net_device *dev, const char *name);
1295 extern int dev_open(struct net_device *dev);
1296 extern int dev_close(struct net_device *dev);
1297 extern void dev_disable_lro(struct net_device *dev);
1298 extern int dev_queue_xmit(struct sk_buff *skb);
1299 extern int register_netdevice(struct net_device *dev);
1300 extern void unregister_netdevice_queue(struct net_device *dev,
1301 struct list_head *head);
1302 extern void unregister_netdevice_many(struct list_head *head);
1303 static inline void unregister_netdevice(struct net_device *dev)
1304 {
1305 unregister_netdevice_queue(dev, NULL);
1306 }
1307
1308 extern void free_netdev(struct net_device *dev);
1309 extern void synchronize_net(void);
1310 extern int register_netdevice_notifier(struct notifier_block *nb);
1311 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1312 extern int init_dummy_netdev(struct net_device *dev);
1313 extern void netdev_resync_ops(struct net_device *dev);
1314
1315 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1316 extern struct net_device *dev_get_by_index(struct net *net, int ifindex);
1317 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1318 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1319 extern int dev_restart(struct net_device *dev);
1320 #ifdef CONFIG_NETPOLL_TRAP
1321 extern int netpoll_trap(void);
1322 #endif
1323 extern int skb_gro_receive(struct sk_buff **head,
1324 struct sk_buff *skb);
1325 extern void skb_gro_reset_offset(struct sk_buff *skb);
1326
1327 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1328 {
1329 return NAPI_GRO_CB(skb)->data_offset;
1330 }
1331
1332 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1333 {
1334 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1335 }
1336
1337 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1338 {
1339 NAPI_GRO_CB(skb)->data_offset += len;
1340 }
1341
1342 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1343 unsigned int offset)
1344 {
1345 return NAPI_GRO_CB(skb)->frag0 + offset;
1346 }
1347
1348 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1349 {
1350 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1351 }
1352
1353 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1354 unsigned int offset)
1355 {
1356 NAPI_GRO_CB(skb)->frag0 = NULL;
1357 NAPI_GRO_CB(skb)->frag0_len = 0;
1358 return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL;
1359 }
1360
1361 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1362 {
1363 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1364 }
1365
1366 static inline void *skb_gro_network_header(struct sk_buff *skb)
1367 {
1368 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1369 skb_network_offset(skb);
1370 }
1371
1372 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1373 unsigned short type,
1374 const void *daddr, const void *saddr,
1375 unsigned len)
1376 {
1377 if (!dev->header_ops || !dev->header_ops->create)
1378 return 0;
1379
1380 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1381 }
1382
1383 static inline int dev_parse_header(const struct sk_buff *skb,
1384 unsigned char *haddr)
1385 {
1386 const struct net_device *dev = skb->dev;
1387
1388 if (!dev->header_ops || !dev->header_ops->parse)
1389 return 0;
1390 return dev->header_ops->parse(skb, haddr);
1391 }
1392
1393 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1394 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1395 static inline int unregister_gifconf(unsigned int family)
1396 {
1397 return register_gifconf(family, NULL);
1398 }
1399
1400 /*
1401 * Incoming packets are placed on per-cpu queues
1402 */
1403 struct softnet_data {
1404 struct Qdisc *output_queue;
1405 struct Qdisc **output_queue_tailp;
1406 struct list_head poll_list;
1407 struct sk_buff *completion_queue;
1408 struct sk_buff_head process_queue;
1409
1410 /* stats */
1411 unsigned int processed;
1412 unsigned int time_squeeze;
1413 unsigned int cpu_collision;
1414 unsigned int received_rps;
1415
1416 #ifdef CONFIG_RPS
1417 struct softnet_data *rps_ipi_list;
1418
1419 /* Elements below can be accessed between CPUs for RPS */
1420 struct call_single_data csd ____cacheline_aligned_in_smp;
1421 struct softnet_data *rps_ipi_next;
1422 unsigned int cpu;
1423 unsigned int input_queue_head;
1424 unsigned int input_queue_tail;
1425 #endif
1426 unsigned dropped;
1427 struct sk_buff_head input_pkt_queue;
1428 struct napi_struct backlog;
1429 };
1430
1431 static inline void input_queue_head_incr(struct softnet_data *sd)
1432 {
1433 #ifdef CONFIG_RPS
1434 sd->input_queue_head++;
1435 #endif
1436 }
1437
1438 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1439 unsigned int *qtail)
1440 {
1441 #ifdef CONFIG_RPS
1442 *qtail = ++sd->input_queue_tail;
1443 #endif
1444 }
1445
1446 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1447
1448 #define HAVE_NETIF_QUEUE
1449
1450 extern void __netif_schedule(struct Qdisc *q);
1451
1452 static inline void netif_schedule_queue(struct netdev_queue *txq)
1453 {
1454 if (!test_bit(__QUEUE_STATE_XOFF, &txq->state))
1455 __netif_schedule(txq->qdisc);
1456 }
1457
1458 static inline void netif_tx_schedule_all(struct net_device *dev)
1459 {
1460 unsigned int i;
1461
1462 for (i = 0; i < dev->num_tx_queues; i++)
1463 netif_schedule_queue(netdev_get_tx_queue(dev, i));
1464 }
1465
1466 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1467 {
1468 clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1469 }
1470
1471 /**
1472 * netif_start_queue - allow transmit
1473 * @dev: network device
1474 *
1475 * Allow upper layers to call the device hard_start_xmit routine.
1476 */
1477 static inline void netif_start_queue(struct net_device *dev)
1478 {
1479 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1480 }
1481
1482 static inline void netif_tx_start_all_queues(struct net_device *dev)
1483 {
1484 unsigned int i;
1485
1486 for (i = 0; i < dev->num_tx_queues; i++) {
1487 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1488 netif_tx_start_queue(txq);
1489 }
1490 }
1491
1492 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1493 {
1494 #ifdef CONFIG_NETPOLL_TRAP
1495 if (netpoll_trap()) {
1496 netif_tx_start_queue(dev_queue);
1497 return;
1498 }
1499 #endif
1500 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state))
1501 __netif_schedule(dev_queue->qdisc);
1502 }
1503
1504 /**
1505 * netif_wake_queue - restart transmit
1506 * @dev: network device
1507 *
1508 * Allow upper layers to call the device hard_start_xmit routine.
1509 * Used for flow control when transmit resources are available.
1510 */
1511 static inline void netif_wake_queue(struct net_device *dev)
1512 {
1513 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1514 }
1515
1516 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1517 {
1518 unsigned int i;
1519
1520 for (i = 0; i < dev->num_tx_queues; i++) {
1521 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1522 netif_tx_wake_queue(txq);
1523 }
1524 }
1525
1526 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1527 {
1528 set_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1529 }
1530
1531 /**
1532 * netif_stop_queue - stop transmitted packets
1533 * @dev: network device
1534 *
1535 * Stop upper layers calling the device hard_start_xmit routine.
1536 * Used for flow control when transmit resources are unavailable.
1537 */
1538 static inline void netif_stop_queue(struct net_device *dev)
1539 {
1540 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1541 }
1542
1543 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1544 {
1545 unsigned int i;
1546
1547 for (i = 0; i < dev->num_tx_queues; i++) {
1548 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1549 netif_tx_stop_queue(txq);
1550 }
1551 }
1552
1553 static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1554 {
1555 return test_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1556 }
1557
1558 /**
1559 * netif_queue_stopped - test if transmit queue is flowblocked
1560 * @dev: network device
1561 *
1562 * Test if transmit queue on device is currently unable to send.
1563 */
1564 static inline int netif_queue_stopped(const struct net_device *dev)
1565 {
1566 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1567 }
1568
1569 static inline int netif_tx_queue_frozen(const struct netdev_queue *dev_queue)
1570 {
1571 return test_bit(__QUEUE_STATE_FROZEN, &dev_queue->state);
1572 }
1573
1574 /**
1575 * netif_running - test if up
1576 * @dev: network device
1577 *
1578 * Test if the device has been brought up.
1579 */
1580 static inline int netif_running(const struct net_device *dev)
1581 {
1582 return test_bit(__LINK_STATE_START, &dev->state);
1583 }
1584
1585 /*
1586 * Routines to manage the subqueues on a device. We only need start
1587 * stop, and a check if it's stopped. All other device management is
1588 * done at the overall netdevice level.
1589 * Also test the device if we're multiqueue.
1590 */
1591
1592 /**
1593 * netif_start_subqueue - allow sending packets on subqueue
1594 * @dev: network device
1595 * @queue_index: sub queue index
1596 *
1597 * Start individual transmit queue of a device with multiple transmit queues.
1598 */
1599 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
1600 {
1601 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1602
1603 netif_tx_start_queue(txq);
1604 }
1605
1606 /**
1607 * netif_stop_subqueue - stop sending packets on subqueue
1608 * @dev: network device
1609 * @queue_index: sub queue index
1610 *
1611 * Stop individual transmit queue of a device with multiple transmit queues.
1612 */
1613 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
1614 {
1615 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1616 #ifdef CONFIG_NETPOLL_TRAP
1617 if (netpoll_trap())
1618 return;
1619 #endif
1620 netif_tx_stop_queue(txq);
1621 }
1622
1623 /**
1624 * netif_subqueue_stopped - test status of subqueue
1625 * @dev: network device
1626 * @queue_index: sub queue index
1627 *
1628 * Check individual transmit queue of a device with multiple transmit queues.
1629 */
1630 static inline int __netif_subqueue_stopped(const struct net_device *dev,
1631 u16 queue_index)
1632 {
1633 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1634
1635 return netif_tx_queue_stopped(txq);
1636 }
1637
1638 static inline int netif_subqueue_stopped(const struct net_device *dev,
1639 struct sk_buff *skb)
1640 {
1641 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
1642 }
1643
1644 /**
1645 * netif_wake_subqueue - allow sending packets on subqueue
1646 * @dev: network device
1647 * @queue_index: sub queue index
1648 *
1649 * Resume individual transmit queue of a device with multiple transmit queues.
1650 */
1651 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
1652 {
1653 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1654 #ifdef CONFIG_NETPOLL_TRAP
1655 if (netpoll_trap())
1656 return;
1657 #endif
1658 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &txq->state))
1659 __netif_schedule(txq->qdisc);
1660 }
1661
1662 /**
1663 * netif_is_multiqueue - test if device has multiple transmit queues
1664 * @dev: network device
1665 *
1666 * Check if device has multiple transmit queues
1667 */
1668 static inline int netif_is_multiqueue(const struct net_device *dev)
1669 {
1670 return (dev->num_tx_queues > 1);
1671 }
1672
1673 extern void netif_set_real_num_tx_queues(struct net_device *dev,
1674 unsigned int txq);
1675
1676 /* Use this variant when it is known for sure that it
1677 * is executing from hardware interrupt context or with hardware interrupts
1678 * disabled.
1679 */
1680 extern void dev_kfree_skb_irq(struct sk_buff *skb);
1681
1682 /* Use this variant in places where it could be invoked
1683 * from either hardware interrupt or other context, with hardware interrupts
1684 * either disabled or enabled.
1685 */
1686 extern void dev_kfree_skb_any(struct sk_buff *skb);
1687
1688 #define HAVE_NETIF_RX 1
1689 extern int netif_rx(struct sk_buff *skb);
1690 extern int netif_rx_ni(struct sk_buff *skb);
1691 #define HAVE_NETIF_RECEIVE_SKB 1
1692 extern int netif_receive_skb(struct sk_buff *skb);
1693 extern gro_result_t dev_gro_receive(struct napi_struct *napi,
1694 struct sk_buff *skb);
1695 extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
1696 extern gro_result_t napi_gro_receive(struct napi_struct *napi,
1697 struct sk_buff *skb);
1698 extern void napi_reuse_skb(struct napi_struct *napi,
1699 struct sk_buff *skb);
1700 extern struct sk_buff * napi_get_frags(struct napi_struct *napi);
1701 extern gro_result_t napi_frags_finish(struct napi_struct *napi,
1702 struct sk_buff *skb,
1703 gro_result_t ret);
1704 extern struct sk_buff * napi_frags_skb(struct napi_struct *napi);
1705 extern gro_result_t napi_gro_frags(struct napi_struct *napi);
1706
1707 static inline void napi_free_frags(struct napi_struct *napi)
1708 {
1709 kfree_skb(napi->skb);
1710 napi->skb = NULL;
1711 }
1712
1713 extern int netdev_rx_handler_register(struct net_device *dev,
1714 rx_handler_func_t *rx_handler,
1715 void *rx_handler_data);
1716 extern void netdev_rx_handler_unregister(struct net_device *dev);
1717
1718 extern void netif_nit_deliver(struct sk_buff *skb);
1719 extern int dev_valid_name(const char *name);
1720 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
1721 extern int dev_ethtool(struct net *net, struct ifreq *);
1722 extern unsigned dev_get_flags(const struct net_device *);
1723 extern int __dev_change_flags(struct net_device *, unsigned int flags);
1724 extern int dev_change_flags(struct net_device *, unsigned);
1725 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags);
1726 extern int dev_change_name(struct net_device *, const char *);
1727 extern int dev_set_alias(struct net_device *, const char *, size_t);
1728 extern int dev_change_net_namespace(struct net_device *,
1729 struct net *, const char *);
1730 extern int dev_set_mtu(struct net_device *, int);
1731 extern int dev_set_mac_address(struct net_device *,
1732 struct sockaddr *);
1733 extern int dev_hard_start_xmit(struct sk_buff *skb,
1734 struct net_device *dev,
1735 struct netdev_queue *txq);
1736 extern int dev_forward_skb(struct net_device *dev,
1737 struct sk_buff *skb);
1738
1739 extern int netdev_budget;
1740
1741 /* Called by rtnetlink.c:rtnl_unlock() */
1742 extern void netdev_run_todo(void);
1743
1744 /**
1745 * dev_put - release reference to device
1746 * @dev: network device
1747 *
1748 * Release reference to device to allow it to be freed.
1749 */
1750 static inline void dev_put(struct net_device *dev)
1751 {
1752 atomic_dec(&dev->refcnt);
1753 }
1754
1755 /**
1756 * dev_hold - get reference to device
1757 * @dev: network device
1758 *
1759 * Hold reference to device to keep it from being freed.
1760 */
1761 static inline void dev_hold(struct net_device *dev)
1762 {
1763 atomic_inc(&dev->refcnt);
1764 }
1765
1766 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
1767 * and _off may be called from IRQ context, but it is caller
1768 * who is responsible for serialization of these calls.
1769 *
1770 * The name carrier is inappropriate, these functions should really be
1771 * called netif_lowerlayer_*() because they represent the state of any
1772 * kind of lower layer not just hardware media.
1773 */
1774
1775 extern void linkwatch_fire_event(struct net_device *dev);
1776 extern void linkwatch_forget_dev(struct net_device *dev);
1777
1778 /**
1779 * netif_carrier_ok - test if carrier present
1780 * @dev: network device
1781 *
1782 * Check if carrier is present on device
1783 */
1784 static inline int netif_carrier_ok(const struct net_device *dev)
1785 {
1786 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
1787 }
1788
1789 extern unsigned long dev_trans_start(struct net_device *dev);
1790
1791 extern void __netdev_watchdog_up(struct net_device *dev);
1792
1793 extern void netif_carrier_on(struct net_device *dev);
1794
1795 extern void netif_carrier_off(struct net_device *dev);
1796
1797 extern void netif_notify_peers(struct net_device *dev);
1798
1799 /**
1800 * netif_dormant_on - mark device as dormant.
1801 * @dev: network device
1802 *
1803 * Mark device as dormant (as per RFC2863).
1804 *
1805 * The dormant state indicates that the relevant interface is not
1806 * actually in a condition to pass packets (i.e., it is not 'up') but is
1807 * in a "pending" state, waiting for some external event. For "on-
1808 * demand" interfaces, this new state identifies the situation where the
1809 * interface is waiting for events to place it in the up state.
1810 *
1811 */
1812 static inline void netif_dormant_on(struct net_device *dev)
1813 {
1814 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
1815 linkwatch_fire_event(dev);
1816 }
1817
1818 /**
1819 * netif_dormant_off - set device as not dormant.
1820 * @dev: network device
1821 *
1822 * Device is not in dormant state.
1823 */
1824 static inline void netif_dormant_off(struct net_device *dev)
1825 {
1826 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
1827 linkwatch_fire_event(dev);
1828 }
1829
1830 /**
1831 * netif_dormant - test if carrier present
1832 * @dev: network device
1833 *
1834 * Check if carrier is present on device
1835 */
1836 static inline int netif_dormant(const struct net_device *dev)
1837 {
1838 return test_bit(__LINK_STATE_DORMANT, &dev->state);
1839 }
1840
1841
1842 /**
1843 * netif_oper_up - test if device is operational
1844 * @dev: network device
1845 *
1846 * Check if carrier is operational
1847 */
1848 static inline int netif_oper_up(const struct net_device *dev)
1849 {
1850 return (dev->operstate == IF_OPER_UP ||
1851 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
1852 }
1853
1854 /**
1855 * netif_device_present - is device available or removed
1856 * @dev: network device
1857 *
1858 * Check if device has not been removed from system.
1859 */
1860 static inline int netif_device_present(struct net_device *dev)
1861 {
1862 return test_bit(__LINK_STATE_PRESENT, &dev->state);
1863 }
1864
1865 extern void netif_device_detach(struct net_device *dev);
1866
1867 extern void netif_device_attach(struct net_device *dev);
1868
1869 /*
1870 * Network interface message level settings
1871 */
1872 #define HAVE_NETIF_MSG 1
1873
1874 enum {
1875 NETIF_MSG_DRV = 0x0001,
1876 NETIF_MSG_PROBE = 0x0002,
1877 NETIF_MSG_LINK = 0x0004,
1878 NETIF_MSG_TIMER = 0x0008,
1879 NETIF_MSG_IFDOWN = 0x0010,
1880 NETIF_MSG_IFUP = 0x0020,
1881 NETIF_MSG_RX_ERR = 0x0040,
1882 NETIF_MSG_TX_ERR = 0x0080,
1883 NETIF_MSG_TX_QUEUED = 0x0100,
1884 NETIF_MSG_INTR = 0x0200,
1885 NETIF_MSG_TX_DONE = 0x0400,
1886 NETIF_MSG_RX_STATUS = 0x0800,
1887 NETIF_MSG_PKTDATA = 0x1000,
1888 NETIF_MSG_HW = 0x2000,
1889 NETIF_MSG_WOL = 0x4000,
1890 };
1891
1892 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
1893 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
1894 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
1895 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
1896 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
1897 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
1898 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
1899 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
1900 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
1901 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
1902 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
1903 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
1904 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
1905 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
1906 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
1907
1908 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
1909 {
1910 /* use default */
1911 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
1912 return default_msg_enable_bits;
1913 if (debug_value == 0) /* no output */
1914 return 0;
1915 /* set low N bits */
1916 return (1 << debug_value) - 1;
1917 }
1918
1919 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
1920 {
1921 spin_lock(&txq->_xmit_lock);
1922 txq->xmit_lock_owner = cpu;
1923 }
1924
1925 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
1926 {
1927 spin_lock_bh(&txq->_xmit_lock);
1928 txq->xmit_lock_owner = smp_processor_id();
1929 }
1930
1931 static inline int __netif_tx_trylock(struct netdev_queue *txq)
1932 {
1933 int ok = spin_trylock(&txq->_xmit_lock);
1934 if (likely(ok))
1935 txq->xmit_lock_owner = smp_processor_id();
1936 return ok;
1937 }
1938
1939 static inline void __netif_tx_unlock(struct netdev_queue *txq)
1940 {
1941 txq->xmit_lock_owner = -1;
1942 spin_unlock(&txq->_xmit_lock);
1943 }
1944
1945 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
1946 {
1947 txq->xmit_lock_owner = -1;
1948 spin_unlock_bh(&txq->_xmit_lock);
1949 }
1950
1951 static inline void txq_trans_update(struct netdev_queue *txq)
1952 {
1953 if (txq->xmit_lock_owner != -1)
1954 txq->trans_start = jiffies;
1955 }
1956
1957 /**
1958 * netif_tx_lock - grab network device transmit lock
1959 * @dev: network device
1960 *
1961 * Get network device transmit lock
1962 */
1963 static inline void netif_tx_lock(struct net_device *dev)
1964 {
1965 unsigned int i;
1966 int cpu;
1967
1968 spin_lock(&dev->tx_global_lock);
1969 cpu = smp_processor_id();
1970 for (i = 0; i < dev->num_tx_queues; i++) {
1971 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1972
1973 /* We are the only thread of execution doing a
1974 * freeze, but we have to grab the _xmit_lock in
1975 * order to synchronize with threads which are in
1976 * the ->hard_start_xmit() handler and already
1977 * checked the frozen bit.
1978 */
1979 __netif_tx_lock(txq, cpu);
1980 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
1981 __netif_tx_unlock(txq);
1982 }
1983 }
1984
1985 static inline void netif_tx_lock_bh(struct net_device *dev)
1986 {
1987 local_bh_disable();
1988 netif_tx_lock(dev);
1989 }
1990
1991 static inline void netif_tx_unlock(struct net_device *dev)
1992 {
1993 unsigned int i;
1994
1995 for (i = 0; i < dev->num_tx_queues; i++) {
1996 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1997
1998 /* No need to grab the _xmit_lock here. If the
1999 * queue is not stopped for another reason, we
2000 * force a schedule.
2001 */
2002 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2003 netif_schedule_queue(txq);
2004 }
2005 spin_unlock(&dev->tx_global_lock);
2006 }
2007
2008 static inline void netif_tx_unlock_bh(struct net_device *dev)
2009 {
2010 netif_tx_unlock(dev);
2011 local_bh_enable();
2012 }
2013
2014 #define HARD_TX_LOCK(dev, txq, cpu) { \
2015 if ((dev->features & NETIF_F_LLTX) == 0) { \
2016 __netif_tx_lock(txq, cpu); \
2017 } \
2018 }
2019
2020 #define HARD_TX_UNLOCK(dev, txq) { \
2021 if ((dev->features & NETIF_F_LLTX) == 0) { \
2022 __netif_tx_unlock(txq); \
2023 } \
2024 }
2025
2026 static inline void netif_tx_disable(struct net_device *dev)
2027 {
2028 unsigned int i;
2029 int cpu;
2030
2031 local_bh_disable();
2032 cpu = smp_processor_id();
2033 for (i = 0; i < dev->num_tx_queues; i++) {
2034 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2035
2036 __netif_tx_lock(txq, cpu);
2037 netif_tx_stop_queue(txq);
2038 __netif_tx_unlock(txq);
2039 }
2040 local_bh_enable();
2041 }
2042
2043 static inline void netif_addr_lock(struct net_device *dev)
2044 {
2045 spin_lock(&dev->addr_list_lock);
2046 }
2047
2048 static inline void netif_addr_lock_bh(struct net_device *dev)
2049 {
2050 spin_lock_bh(&dev->addr_list_lock);
2051 }
2052
2053 static inline void netif_addr_unlock(struct net_device *dev)
2054 {
2055 spin_unlock(&dev->addr_list_lock);
2056 }
2057
2058 static inline void netif_addr_unlock_bh(struct net_device *dev)
2059 {
2060 spin_unlock_bh(&dev->addr_list_lock);
2061 }
2062
2063 /*
2064 * dev_addrs walker. Should be used only for read access. Call with
2065 * rcu_read_lock held.
2066 */
2067 #define for_each_dev_addr(dev, ha) \
2068 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2069
2070 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2071
2072 extern void ether_setup(struct net_device *dev);
2073
2074 /* Support for loadable net-drivers */
2075 extern struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
2076 void (*setup)(struct net_device *),
2077 unsigned int queue_count);
2078 #define alloc_netdev(sizeof_priv, name, setup) \
2079 alloc_netdev_mq(sizeof_priv, name, setup, 1)
2080 extern int register_netdev(struct net_device *dev);
2081 extern void unregister_netdev(struct net_device *dev);
2082
2083 /* General hardware address lists handling functions */
2084 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2085 struct netdev_hw_addr_list *from_list,
2086 int addr_len, unsigned char addr_type);
2087 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2088 struct netdev_hw_addr_list *from_list,
2089 int addr_len, unsigned char addr_type);
2090 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2091 struct netdev_hw_addr_list *from_list,
2092 int addr_len);
2093 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2094 struct netdev_hw_addr_list *from_list,
2095 int addr_len);
2096 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2097 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2098
2099 /* Functions used for device addresses handling */
2100 extern int dev_addr_add(struct net_device *dev, unsigned char *addr,
2101 unsigned char addr_type);
2102 extern int dev_addr_del(struct net_device *dev, unsigned char *addr,
2103 unsigned char addr_type);
2104 extern int dev_addr_add_multiple(struct net_device *to_dev,
2105 struct net_device *from_dev,
2106 unsigned char addr_type);
2107 extern int dev_addr_del_multiple(struct net_device *to_dev,
2108 struct net_device *from_dev,
2109 unsigned char addr_type);
2110 extern void dev_addr_flush(struct net_device *dev);
2111 extern int dev_addr_init(struct net_device *dev);
2112
2113 /* Functions used for unicast addresses handling */
2114 extern int dev_uc_add(struct net_device *dev, unsigned char *addr);
2115 extern int dev_uc_del(struct net_device *dev, unsigned char *addr);
2116 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2117 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2118 extern void dev_uc_flush(struct net_device *dev);
2119 extern void dev_uc_init(struct net_device *dev);
2120
2121 /* Functions used for multicast addresses handling */
2122 extern int dev_mc_add(struct net_device *dev, unsigned char *addr);
2123 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr);
2124 extern int dev_mc_del(struct net_device *dev, unsigned char *addr);
2125 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr);
2126 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2127 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2128 extern void dev_mc_flush(struct net_device *dev);
2129 extern void dev_mc_init(struct net_device *dev);
2130
2131 /* Functions used for secondary unicast and multicast support */
2132 extern void dev_set_rx_mode(struct net_device *dev);
2133 extern void __dev_set_rx_mode(struct net_device *dev);
2134 extern int dev_set_promiscuity(struct net_device *dev, int inc);
2135 extern int dev_set_allmulti(struct net_device *dev, int inc);
2136 extern void netdev_state_change(struct net_device *dev);
2137 extern int netdev_bonding_change(struct net_device *dev,
2138 unsigned long event);
2139 extern void netdev_features_change(struct net_device *dev);
2140 /* Load a device via the kmod */
2141 extern void dev_load(struct net *net, const char *name);
2142 extern void dev_mcast_init(void);
2143 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2144 struct rtnl_link_stats64 *storage);
2145 extern void dev_txq_stats_fold(const struct net_device *dev,
2146 struct rtnl_link_stats64 *stats);
2147
2148 extern int netdev_max_backlog;
2149 extern int netdev_tstamp_prequeue;
2150 extern int weight_p;
2151 extern int netdev_set_master(struct net_device *dev, struct net_device *master);
2152 extern int skb_checksum_help(struct sk_buff *skb);
2153 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features);
2154 #ifdef CONFIG_BUG
2155 extern void netdev_rx_csum_fault(struct net_device *dev);
2156 #else
2157 static inline void netdev_rx_csum_fault(struct net_device *dev)
2158 {
2159 }
2160 #endif
2161 /* rx skb timestamps */
2162 extern void net_enable_timestamp(void);
2163 extern void net_disable_timestamp(void);
2164
2165 #ifdef CONFIG_PROC_FS
2166 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2167 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2168 extern void dev_seq_stop(struct seq_file *seq, void *v);
2169 #endif
2170
2171 extern int netdev_class_create_file(struct class_attribute *class_attr);
2172 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2173
2174 extern char *netdev_drivername(const struct net_device *dev, char *buffer, int len);
2175
2176 extern void linkwatch_run_queue(void);
2177
2178 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
2179 unsigned long mask);
2180 unsigned long netdev_fix_features(unsigned long features, const char *name);
2181
2182 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2183 struct net_device *dev);
2184
2185 static inline int net_gso_ok(int features, int gso_type)
2186 {
2187 int feature = gso_type << NETIF_F_GSO_SHIFT;
2188 return (features & feature) == feature;
2189 }
2190
2191 static inline int skb_gso_ok(struct sk_buff *skb, int features)
2192 {
2193 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2194 (!skb_has_frags(skb) || (features & NETIF_F_FRAGLIST));
2195 }
2196
2197 static inline int netif_needs_gso(struct net_device *dev, struct sk_buff *skb)
2198 {
2199 return skb_is_gso(skb) &&
2200 (!skb_gso_ok(skb, dev->features) ||
2201 unlikely(skb->ip_summed != CHECKSUM_PARTIAL));
2202 }
2203
2204 static inline void netif_set_gso_max_size(struct net_device *dev,
2205 unsigned int size)
2206 {
2207 dev->gso_max_size = size;
2208 }
2209
2210 extern int __skb_bond_should_drop(struct sk_buff *skb,
2211 struct net_device *master);
2212
2213 static inline int skb_bond_should_drop(struct sk_buff *skb,
2214 struct net_device *master)
2215 {
2216 if (master)
2217 return __skb_bond_should_drop(skb, master);
2218 return 0;
2219 }
2220
2221 extern struct pernet_operations __net_initdata loopback_net_ops;
2222
2223 static inline int dev_ethtool_get_settings(struct net_device *dev,
2224 struct ethtool_cmd *cmd)
2225 {
2226 if (!dev->ethtool_ops || !dev->ethtool_ops->get_settings)
2227 return -EOPNOTSUPP;
2228 return dev->ethtool_ops->get_settings(dev, cmd);
2229 }
2230
2231 static inline u32 dev_ethtool_get_rx_csum(struct net_device *dev)
2232 {
2233 if (!dev->ethtool_ops || !dev->ethtool_ops->get_rx_csum)
2234 return 0;
2235 return dev->ethtool_ops->get_rx_csum(dev);
2236 }
2237
2238 static inline u32 dev_ethtool_get_flags(struct net_device *dev)
2239 {
2240 if (!dev->ethtool_ops || !dev->ethtool_ops->get_flags)
2241 return 0;
2242 return dev->ethtool_ops->get_flags(dev);
2243 }
2244
2245 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2246
2247 /* netdev_printk helpers, similar to dev_printk */
2248
2249 static inline const char *netdev_name(const struct net_device *dev)
2250 {
2251 if (dev->reg_state != NETREG_REGISTERED)
2252 return "(unregistered net_device)";
2253 return dev->name;
2254 }
2255
2256 extern int netdev_printk(const char *level, const struct net_device *dev,
2257 const char *format, ...)
2258 __attribute__ ((format (printf, 3, 4)));
2259 extern int netdev_emerg(const struct net_device *dev, const char *format, ...)
2260 __attribute__ ((format (printf, 2, 3)));
2261 extern int netdev_alert(const struct net_device *dev, const char *format, ...)
2262 __attribute__ ((format (printf, 2, 3)));
2263 extern int netdev_crit(const struct net_device *dev, const char *format, ...)
2264 __attribute__ ((format (printf, 2, 3)));
2265 extern int netdev_err(const struct net_device *dev, const char *format, ...)
2266 __attribute__ ((format (printf, 2, 3)));
2267 extern int netdev_warn(const struct net_device *dev, const char *format, ...)
2268 __attribute__ ((format (printf, 2, 3)));
2269 extern int netdev_notice(const struct net_device *dev, const char *format, ...)
2270 __attribute__ ((format (printf, 2, 3)));
2271 extern int netdev_info(const struct net_device *dev, const char *format, ...)
2272 __attribute__ ((format (printf, 2, 3)));
2273
2274 #if defined(DEBUG)
2275 #define netdev_dbg(__dev, format, args...) \
2276 netdev_printk(KERN_DEBUG, __dev, format, ##args)
2277 #elif defined(CONFIG_DYNAMIC_DEBUG)
2278 #define netdev_dbg(__dev, format, args...) \
2279 do { \
2280 dynamic_dev_dbg((__dev)->dev.parent, "%s: " format, \
2281 netdev_name(__dev), ##args); \
2282 } while (0)
2283 #else
2284 #define netdev_dbg(__dev, format, args...) \
2285 ({ \
2286 if (0) \
2287 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2288 0; \
2289 })
2290 #endif
2291
2292 #if defined(VERBOSE_DEBUG)
2293 #define netdev_vdbg netdev_dbg
2294 #else
2295
2296 #define netdev_vdbg(dev, format, args...) \
2297 ({ \
2298 if (0) \
2299 netdev_printk(KERN_DEBUG, dev, format, ##args); \
2300 0; \
2301 })
2302 #endif
2303
2304 /*
2305 * netdev_WARN() acts like dev_printk(), but with the key difference
2306 * of using a WARN/WARN_ON to get the message out, including the
2307 * file/line information and a backtrace.
2308 */
2309 #define netdev_WARN(dev, format, args...) \
2310 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2311
2312 /* netif printk helpers, similar to netdev_printk */
2313
2314 #define netif_printk(priv, type, level, dev, fmt, args...) \
2315 do { \
2316 if (netif_msg_##type(priv)) \
2317 netdev_printk(level, (dev), fmt, ##args); \
2318 } while (0)
2319
2320 #define netif_level(level, priv, type, dev, fmt, args...) \
2321 do { \
2322 if (netif_msg_##type(priv)) \
2323 netdev_##level(dev, fmt, ##args); \
2324 } while (0)
2325
2326 #define netif_emerg(priv, type, dev, fmt, args...) \
2327 netif_level(emerg, priv, type, dev, fmt, ##args)
2328 #define netif_alert(priv, type, dev, fmt, args...) \
2329 netif_level(alert, priv, type, dev, fmt, ##args)
2330 #define netif_crit(priv, type, dev, fmt, args...) \
2331 netif_level(crit, priv, type, dev, fmt, ##args)
2332 #define netif_err(priv, type, dev, fmt, args...) \
2333 netif_level(err, priv, type, dev, fmt, ##args)
2334 #define netif_warn(priv, type, dev, fmt, args...) \
2335 netif_level(warn, priv, type, dev, fmt, ##args)
2336 #define netif_notice(priv, type, dev, fmt, args...) \
2337 netif_level(notice, priv, type, dev, fmt, ##args)
2338 #define netif_info(priv, type, dev, fmt, args...) \
2339 netif_level(info, priv, type, dev, fmt, ##args)
2340
2341 #if defined(DEBUG)
2342 #define netif_dbg(priv, type, dev, format, args...) \
2343 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2344 #elif defined(CONFIG_DYNAMIC_DEBUG)
2345 #define netif_dbg(priv, type, netdev, format, args...) \
2346 do { \
2347 if (netif_msg_##type(priv)) \
2348 dynamic_dev_dbg((netdev)->dev.parent, \
2349 "%s: " format, \
2350 netdev_name(netdev), ##args); \
2351 } while (0)
2352 #else
2353 #define netif_dbg(priv, type, dev, format, args...) \
2354 ({ \
2355 if (0) \
2356 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2357 0; \
2358 })
2359 #endif
2360
2361 #if defined(VERBOSE_DEBUG)
2362 #define netif_vdbg netif_dbg
2363 #else
2364 #define netif_vdbg(priv, type, dev, format, args...) \
2365 ({ \
2366 if (0) \
2367 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2368 0; \
2369 })
2370 #endif
2371
2372 #endif /* __KERNEL__ */
2373
2374 #endif /* _LINUX_NETDEVICE_H */
This page took 0.132337 seconds and 5 git commands to generate.