Merge branch 'team' ("add support for peer notifications and igmp rejoins for team")
[deliverable/linux.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/pm_qos.h>
29 #include <linux/timer.h>
30 #include <linux/bug.h>
31 #include <linux/delay.h>
32 #include <linux/atomic.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53
54 struct netpoll_info;
55 struct device;
56 struct phy_device;
57 /* 802.11 specific */
58 struct wireless_dev;
59 /* source back-compat hooks */
60 #define SET_ETHTOOL_OPS(netdev,ops) \
61 ( (netdev)->ethtool_ops = (ops) )
62
63 extern void netdev_set_default_ethtool_ops(struct net_device *dev,
64 const struct ethtool_ops *ops);
65
66 /* hardware address assignment types */
67 #define NET_ADDR_PERM 0 /* address is permanent (default) */
68 #define NET_ADDR_RANDOM 1 /* address is generated randomly */
69 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */
70 #define NET_ADDR_SET 3 /* address is set using
71 * dev_set_mac_address() */
72
73 /* Backlog congestion levels */
74 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
75 #define NET_RX_DROP 1 /* packet dropped */
76
77 /*
78 * Transmit return codes: transmit return codes originate from three different
79 * namespaces:
80 *
81 * - qdisc return codes
82 * - driver transmit return codes
83 * - errno values
84 *
85 * Drivers are allowed to return any one of those in their hard_start_xmit()
86 * function. Real network devices commonly used with qdiscs should only return
87 * the driver transmit return codes though - when qdiscs are used, the actual
88 * transmission happens asynchronously, so the value is not propagated to
89 * higher layers. Virtual network devices transmit synchronously, in this case
90 * the driver transmit return codes are consumed by dev_queue_xmit(), all
91 * others are propagated to higher layers.
92 */
93
94 /* qdisc ->enqueue() return codes. */
95 #define NET_XMIT_SUCCESS 0x00
96 #define NET_XMIT_DROP 0x01 /* skb dropped */
97 #define NET_XMIT_CN 0x02 /* congestion notification */
98 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
99 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
100
101 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
102 * indicates that the device will soon be dropping packets, or already drops
103 * some packets of the same priority; prompting us to send less aggressively. */
104 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
105 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
106
107 /* Driver transmit return codes */
108 #define NETDEV_TX_MASK 0xf0
109
110 enum netdev_tx {
111 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
112 NETDEV_TX_OK = 0x00, /* driver took care of packet */
113 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
114 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
115 };
116 typedef enum netdev_tx netdev_tx_t;
117
118 /*
119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121 */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 /*
125 * Positive cases with an skb consumed by a driver:
126 * - successful transmission (rc == NETDEV_TX_OK)
127 * - error while transmitting (rc < 0)
128 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 */
130 if (likely(rc < NET_XMIT_MASK))
131 return true;
132
133 return false;
134 }
135
136 /*
137 * Compute the worst case header length according to the protocols
138 * used.
139 */
140
141 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
142 # if defined(CONFIG_MAC80211_MESH)
143 # define LL_MAX_HEADER 128
144 # else
145 # define LL_MAX_HEADER 96
146 # endif
147 #else
148 # define LL_MAX_HEADER 32
149 #endif
150
151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
152 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
153 #define MAX_HEADER LL_MAX_HEADER
154 #else
155 #define MAX_HEADER (LL_MAX_HEADER + 48)
156 #endif
157
158 /*
159 * Old network device statistics. Fields are native words
160 * (unsigned long) so they can be read and written atomically.
161 */
162
163 struct net_device_stats {
164 unsigned long rx_packets;
165 unsigned long tx_packets;
166 unsigned long rx_bytes;
167 unsigned long tx_bytes;
168 unsigned long rx_errors;
169 unsigned long tx_errors;
170 unsigned long rx_dropped;
171 unsigned long tx_dropped;
172 unsigned long multicast;
173 unsigned long collisions;
174 unsigned long rx_length_errors;
175 unsigned long rx_over_errors;
176 unsigned long rx_crc_errors;
177 unsigned long rx_frame_errors;
178 unsigned long rx_fifo_errors;
179 unsigned long rx_missed_errors;
180 unsigned long tx_aborted_errors;
181 unsigned long tx_carrier_errors;
182 unsigned long tx_fifo_errors;
183 unsigned long tx_heartbeat_errors;
184 unsigned long tx_window_errors;
185 unsigned long rx_compressed;
186 unsigned long tx_compressed;
187 };
188
189
190 #include <linux/cache.h>
191 #include <linux/skbuff.h>
192
193 #ifdef CONFIG_RPS
194 #include <linux/static_key.h>
195 extern struct static_key rps_needed;
196 #endif
197
198 struct neighbour;
199 struct neigh_parms;
200 struct sk_buff;
201
202 struct netdev_hw_addr {
203 struct list_head list;
204 unsigned char addr[MAX_ADDR_LEN];
205 unsigned char type;
206 #define NETDEV_HW_ADDR_T_LAN 1
207 #define NETDEV_HW_ADDR_T_SAN 2
208 #define NETDEV_HW_ADDR_T_SLAVE 3
209 #define NETDEV_HW_ADDR_T_UNICAST 4
210 #define NETDEV_HW_ADDR_T_MULTICAST 5
211 bool global_use;
212 int sync_cnt;
213 int refcount;
214 int synced;
215 struct rcu_head rcu_head;
216 };
217
218 struct netdev_hw_addr_list {
219 struct list_head list;
220 int count;
221 };
222
223 #define netdev_hw_addr_list_count(l) ((l)->count)
224 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
225 #define netdev_hw_addr_list_for_each(ha, l) \
226 list_for_each_entry(ha, &(l)->list, list)
227
228 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
229 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
230 #define netdev_for_each_uc_addr(ha, dev) \
231 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
232
233 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
234 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
235 #define netdev_for_each_mc_addr(ha, dev) \
236 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
237
238 struct hh_cache {
239 u16 hh_len;
240 u16 __pad;
241 seqlock_t hh_lock;
242
243 /* cached hardware header; allow for machine alignment needs. */
244 #define HH_DATA_MOD 16
245 #define HH_DATA_OFF(__len) \
246 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247 #define HH_DATA_ALIGN(__len) \
248 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250 };
251
252 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
253 * Alternative is:
254 * dev->hard_header_len ? (dev->hard_header_len +
255 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256 *
257 * We could use other alignment values, but we must maintain the
258 * relationship HH alignment <= LL alignment.
259 */
260 #define LL_RESERVED_SPACE(dev) \
261 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264
265 struct header_ops {
266 int (*create) (struct sk_buff *skb, struct net_device *dev,
267 unsigned short type, const void *daddr,
268 const void *saddr, unsigned int len);
269 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
270 int (*rebuild)(struct sk_buff *skb);
271 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
272 void (*cache_update)(struct hh_cache *hh,
273 const struct net_device *dev,
274 const unsigned char *haddr);
275 };
276
277 /* These flag bits are private to the generic network queueing
278 * layer, they may not be explicitly referenced by any other
279 * code.
280 */
281
282 enum netdev_state_t {
283 __LINK_STATE_START,
284 __LINK_STATE_PRESENT,
285 __LINK_STATE_NOCARRIER,
286 __LINK_STATE_LINKWATCH_PENDING,
287 __LINK_STATE_DORMANT,
288 };
289
290
291 /*
292 * This structure holds at boot time configured netdevice settings. They
293 * are then used in the device probing.
294 */
295 struct netdev_boot_setup {
296 char name[IFNAMSIZ];
297 struct ifmap map;
298 };
299 #define NETDEV_BOOT_SETUP_MAX 8
300
301 extern int __init netdev_boot_setup(char *str);
302
303 /*
304 * Structure for NAPI scheduling similar to tasklet but with weighting
305 */
306 struct napi_struct {
307 /* The poll_list must only be managed by the entity which
308 * changes the state of the NAPI_STATE_SCHED bit. This means
309 * whoever atomically sets that bit can add this napi_struct
310 * to the per-cpu poll_list, and whoever clears that bit
311 * can remove from the list right before clearing the bit.
312 */
313 struct list_head poll_list;
314
315 unsigned long state;
316 int weight;
317 unsigned int gro_count;
318 int (*poll)(struct napi_struct *, int);
319 #ifdef CONFIG_NETPOLL
320 spinlock_t poll_lock;
321 int poll_owner;
322 #endif
323 struct net_device *dev;
324 struct sk_buff *gro_list;
325 struct sk_buff *skb;
326 struct list_head dev_list;
327 struct hlist_node napi_hash_node;
328 unsigned int napi_id;
329 };
330
331 enum {
332 NAPI_STATE_SCHED, /* Poll is scheduled */
333 NAPI_STATE_DISABLE, /* Disable pending */
334 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
335 NAPI_STATE_HASHED, /* In NAPI hash */
336 };
337
338 enum gro_result {
339 GRO_MERGED,
340 GRO_MERGED_FREE,
341 GRO_HELD,
342 GRO_NORMAL,
343 GRO_DROP,
344 };
345 typedef enum gro_result gro_result_t;
346
347 /*
348 * enum rx_handler_result - Possible return values for rx_handlers.
349 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
350 * further.
351 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
352 * case skb->dev was changed by rx_handler.
353 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
354 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
355 *
356 * rx_handlers are functions called from inside __netif_receive_skb(), to do
357 * special processing of the skb, prior to delivery to protocol handlers.
358 *
359 * Currently, a net_device can only have a single rx_handler registered. Trying
360 * to register a second rx_handler will return -EBUSY.
361 *
362 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
363 * To unregister a rx_handler on a net_device, use
364 * netdev_rx_handler_unregister().
365 *
366 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
367 * do with the skb.
368 *
369 * If the rx_handler consumed to skb in some way, it should return
370 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
371 * the skb to be delivered in some other ways.
372 *
373 * If the rx_handler changed skb->dev, to divert the skb to another
374 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
375 * new device will be called if it exists.
376 *
377 * If the rx_handler consider the skb should be ignored, it should return
378 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
379 * are registered on exact device (ptype->dev == skb->dev).
380 *
381 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
382 * delivered, it should return RX_HANDLER_PASS.
383 *
384 * A device without a registered rx_handler will behave as if rx_handler
385 * returned RX_HANDLER_PASS.
386 */
387
388 enum rx_handler_result {
389 RX_HANDLER_CONSUMED,
390 RX_HANDLER_ANOTHER,
391 RX_HANDLER_EXACT,
392 RX_HANDLER_PASS,
393 };
394 typedef enum rx_handler_result rx_handler_result_t;
395 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
396
397 extern void __napi_schedule(struct napi_struct *n);
398
399 static inline bool napi_disable_pending(struct napi_struct *n)
400 {
401 return test_bit(NAPI_STATE_DISABLE, &n->state);
402 }
403
404 /**
405 * napi_schedule_prep - check if napi can be scheduled
406 * @n: napi context
407 *
408 * Test if NAPI routine is already running, and if not mark
409 * it as running. This is used as a condition variable
410 * insure only one NAPI poll instance runs. We also make
411 * sure there is no pending NAPI disable.
412 */
413 static inline bool napi_schedule_prep(struct napi_struct *n)
414 {
415 return !napi_disable_pending(n) &&
416 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
417 }
418
419 /**
420 * napi_schedule - schedule NAPI poll
421 * @n: napi context
422 *
423 * Schedule NAPI poll routine to be called if it is not already
424 * running.
425 */
426 static inline void napi_schedule(struct napi_struct *n)
427 {
428 if (napi_schedule_prep(n))
429 __napi_schedule(n);
430 }
431
432 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
433 static inline bool napi_reschedule(struct napi_struct *napi)
434 {
435 if (napi_schedule_prep(napi)) {
436 __napi_schedule(napi);
437 return true;
438 }
439 return false;
440 }
441
442 /**
443 * napi_complete - NAPI processing complete
444 * @n: napi context
445 *
446 * Mark NAPI processing as complete.
447 */
448 extern void __napi_complete(struct napi_struct *n);
449 extern void napi_complete(struct napi_struct *n);
450
451 /**
452 * napi_by_id - lookup a NAPI by napi_id
453 * @napi_id: hashed napi_id
454 *
455 * lookup @napi_id in napi_hash table
456 * must be called under rcu_read_lock()
457 */
458 extern struct napi_struct *napi_by_id(unsigned int napi_id);
459
460 /**
461 * napi_hash_add - add a NAPI to global hashtable
462 * @napi: napi context
463 *
464 * generate a new napi_id and store a @napi under it in napi_hash
465 */
466 extern void napi_hash_add(struct napi_struct *napi);
467
468 /**
469 * napi_hash_del - remove a NAPI from global table
470 * @napi: napi context
471 *
472 * Warning: caller must observe rcu grace period
473 * before freeing memory containing @napi
474 */
475 extern void napi_hash_del(struct napi_struct *napi);
476
477 /**
478 * napi_disable - prevent NAPI from scheduling
479 * @n: napi context
480 *
481 * Stop NAPI from being scheduled on this context.
482 * Waits till any outstanding processing completes.
483 */
484 static inline void napi_disable(struct napi_struct *n)
485 {
486 set_bit(NAPI_STATE_DISABLE, &n->state);
487 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
488 msleep(1);
489 clear_bit(NAPI_STATE_DISABLE, &n->state);
490 }
491
492 /**
493 * napi_enable - enable NAPI scheduling
494 * @n: napi context
495 *
496 * Resume NAPI from being scheduled on this context.
497 * Must be paired with napi_disable.
498 */
499 static inline void napi_enable(struct napi_struct *n)
500 {
501 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
502 smp_mb__before_clear_bit();
503 clear_bit(NAPI_STATE_SCHED, &n->state);
504 }
505
506 #ifdef CONFIG_SMP
507 /**
508 * napi_synchronize - wait until NAPI is not running
509 * @n: napi context
510 *
511 * Wait until NAPI is done being scheduled on this context.
512 * Waits till any outstanding processing completes but
513 * does not disable future activations.
514 */
515 static inline void napi_synchronize(const struct napi_struct *n)
516 {
517 while (test_bit(NAPI_STATE_SCHED, &n->state))
518 msleep(1);
519 }
520 #else
521 # define napi_synchronize(n) barrier()
522 #endif
523
524 enum netdev_queue_state_t {
525 __QUEUE_STATE_DRV_XOFF,
526 __QUEUE_STATE_STACK_XOFF,
527 __QUEUE_STATE_FROZEN,
528 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \
529 (1 << __QUEUE_STATE_STACK_XOFF))
530 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
531 (1 << __QUEUE_STATE_FROZEN))
532 };
533 /*
534 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
535 * netif_tx_* functions below are used to manipulate this flag. The
536 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
537 * queue independently. The netif_xmit_*stopped functions below are called
538 * to check if the queue has been stopped by the driver or stack (either
539 * of the XOFF bits are set in the state). Drivers should not need to call
540 * netif_xmit*stopped functions, they should only be using netif_tx_*.
541 */
542
543 struct netdev_queue {
544 /*
545 * read mostly part
546 */
547 struct net_device *dev;
548 struct Qdisc *qdisc;
549 struct Qdisc *qdisc_sleeping;
550 #ifdef CONFIG_SYSFS
551 struct kobject kobj;
552 #endif
553 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
554 int numa_node;
555 #endif
556 /*
557 * write mostly part
558 */
559 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
560 int xmit_lock_owner;
561 /*
562 * please use this field instead of dev->trans_start
563 */
564 unsigned long trans_start;
565
566 /*
567 * Number of TX timeouts for this queue
568 * (/sys/class/net/DEV/Q/trans_timeout)
569 */
570 unsigned long trans_timeout;
571
572 unsigned long state;
573
574 #ifdef CONFIG_BQL
575 struct dql dql;
576 #endif
577 } ____cacheline_aligned_in_smp;
578
579 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
580 {
581 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
582 return q->numa_node;
583 #else
584 return NUMA_NO_NODE;
585 #endif
586 }
587
588 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
589 {
590 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
591 q->numa_node = node;
592 #endif
593 }
594
595 #ifdef CONFIG_RPS
596 /*
597 * This structure holds an RPS map which can be of variable length. The
598 * map is an array of CPUs.
599 */
600 struct rps_map {
601 unsigned int len;
602 struct rcu_head rcu;
603 u16 cpus[0];
604 };
605 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
606
607 /*
608 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
609 * tail pointer for that CPU's input queue at the time of last enqueue, and
610 * a hardware filter index.
611 */
612 struct rps_dev_flow {
613 u16 cpu;
614 u16 filter;
615 unsigned int last_qtail;
616 };
617 #define RPS_NO_FILTER 0xffff
618
619 /*
620 * The rps_dev_flow_table structure contains a table of flow mappings.
621 */
622 struct rps_dev_flow_table {
623 unsigned int mask;
624 struct rcu_head rcu;
625 struct rps_dev_flow flows[0];
626 };
627 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
628 ((_num) * sizeof(struct rps_dev_flow)))
629
630 /*
631 * The rps_sock_flow_table contains mappings of flows to the last CPU
632 * on which they were processed by the application (set in recvmsg).
633 */
634 struct rps_sock_flow_table {
635 unsigned int mask;
636 u16 ents[0];
637 };
638 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
639 ((_num) * sizeof(u16)))
640
641 #define RPS_NO_CPU 0xffff
642
643 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
644 u32 hash)
645 {
646 if (table && hash) {
647 unsigned int cpu, index = hash & table->mask;
648
649 /* We only give a hint, preemption can change cpu under us */
650 cpu = raw_smp_processor_id();
651
652 if (table->ents[index] != cpu)
653 table->ents[index] = cpu;
654 }
655 }
656
657 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
658 u32 hash)
659 {
660 if (table && hash)
661 table->ents[hash & table->mask] = RPS_NO_CPU;
662 }
663
664 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
665
666 #ifdef CONFIG_RFS_ACCEL
667 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
668 u32 flow_id, u16 filter_id);
669 #endif
670
671 /* This structure contains an instance of an RX queue. */
672 struct netdev_rx_queue {
673 struct rps_map __rcu *rps_map;
674 struct rps_dev_flow_table __rcu *rps_flow_table;
675 struct kobject kobj;
676 struct net_device *dev;
677 } ____cacheline_aligned_in_smp;
678 #endif /* CONFIG_RPS */
679
680 #ifdef CONFIG_XPS
681 /*
682 * This structure holds an XPS map which can be of variable length. The
683 * map is an array of queues.
684 */
685 struct xps_map {
686 unsigned int len;
687 unsigned int alloc_len;
688 struct rcu_head rcu;
689 u16 queues[0];
690 };
691 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
692 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
693 / sizeof(u16))
694
695 /*
696 * This structure holds all XPS maps for device. Maps are indexed by CPU.
697 */
698 struct xps_dev_maps {
699 struct rcu_head rcu;
700 struct xps_map __rcu *cpu_map[0];
701 };
702 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
703 (nr_cpu_ids * sizeof(struct xps_map *)))
704 #endif /* CONFIG_XPS */
705
706 #define TC_MAX_QUEUE 16
707 #define TC_BITMASK 15
708 /* HW offloaded queuing disciplines txq count and offset maps */
709 struct netdev_tc_txq {
710 u16 count;
711 u16 offset;
712 };
713
714 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
715 /*
716 * This structure is to hold information about the device
717 * configured to run FCoE protocol stack.
718 */
719 struct netdev_fcoe_hbainfo {
720 char manufacturer[64];
721 char serial_number[64];
722 char hardware_version[64];
723 char driver_version[64];
724 char optionrom_version[64];
725 char firmware_version[64];
726 char model[256];
727 char model_description[256];
728 };
729 #endif
730
731 /*
732 * This structure defines the management hooks for network devices.
733 * The following hooks can be defined; unless noted otherwise, they are
734 * optional and can be filled with a null pointer.
735 *
736 * int (*ndo_init)(struct net_device *dev);
737 * This function is called once when network device is registered.
738 * The network device can use this to any late stage initializaton
739 * or semantic validattion. It can fail with an error code which will
740 * be propogated back to register_netdev
741 *
742 * void (*ndo_uninit)(struct net_device *dev);
743 * This function is called when device is unregistered or when registration
744 * fails. It is not called if init fails.
745 *
746 * int (*ndo_open)(struct net_device *dev);
747 * This function is called when network device transistions to the up
748 * state.
749 *
750 * int (*ndo_stop)(struct net_device *dev);
751 * This function is called when network device transistions to the down
752 * state.
753 *
754 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
755 * struct net_device *dev);
756 * Called when a packet needs to be transmitted.
757 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
758 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
759 * Required can not be NULL.
760 *
761 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
762 * Called to decide which queue to when device supports multiple
763 * transmit queues.
764 *
765 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
766 * This function is called to allow device receiver to make
767 * changes to configuration when multicast or promiscious is enabled.
768 *
769 * void (*ndo_set_rx_mode)(struct net_device *dev);
770 * This function is called device changes address list filtering.
771 * If driver handles unicast address filtering, it should set
772 * IFF_UNICAST_FLT to its priv_flags.
773 *
774 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
775 * This function is called when the Media Access Control address
776 * needs to be changed. If this interface is not defined, the
777 * mac address can not be changed.
778 *
779 * int (*ndo_validate_addr)(struct net_device *dev);
780 * Test if Media Access Control address is valid for the device.
781 *
782 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
783 * Called when a user request an ioctl which can't be handled by
784 * the generic interface code. If not defined ioctl's return
785 * not supported error code.
786 *
787 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
788 * Used to set network devices bus interface parameters. This interface
789 * is retained for legacy reason, new devices should use the bus
790 * interface (PCI) for low level management.
791 *
792 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
793 * Called when a user wants to change the Maximum Transfer Unit
794 * of a device. If not defined, any request to change MTU will
795 * will return an error.
796 *
797 * void (*ndo_tx_timeout)(struct net_device *dev);
798 * Callback uses when the transmitter has not made any progress
799 * for dev->watchdog ticks.
800 *
801 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
802 * struct rtnl_link_stats64 *storage);
803 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
804 * Called when a user wants to get the network device usage
805 * statistics. Drivers must do one of the following:
806 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
807 * rtnl_link_stats64 structure passed by the caller.
808 * 2. Define @ndo_get_stats to update a net_device_stats structure
809 * (which should normally be dev->stats) and return a pointer to
810 * it. The structure may be changed asynchronously only if each
811 * field is written atomically.
812 * 3. Update dev->stats asynchronously and atomically, and define
813 * neither operation.
814 *
815 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16t vid);
816 * If device support VLAN filtering this function is called when a
817 * VLAN id is registered.
818 *
819 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
820 * If device support VLAN filtering this function is called when a
821 * VLAN id is unregistered.
822 *
823 * void (*ndo_poll_controller)(struct net_device *dev);
824 *
825 * SR-IOV management functions.
826 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
827 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
828 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
829 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
830 * int (*ndo_get_vf_config)(struct net_device *dev,
831 * int vf, struct ifla_vf_info *ivf);
832 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
833 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
834 * struct nlattr *port[]);
835 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
836 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
837 * Called to setup 'tc' number of traffic classes in the net device. This
838 * is always called from the stack with the rtnl lock held and netif tx
839 * queues stopped. This allows the netdevice to perform queue management
840 * safely.
841 *
842 * Fiber Channel over Ethernet (FCoE) offload functions.
843 * int (*ndo_fcoe_enable)(struct net_device *dev);
844 * Called when the FCoE protocol stack wants to start using LLD for FCoE
845 * so the underlying device can perform whatever needed configuration or
846 * initialization to support acceleration of FCoE traffic.
847 *
848 * int (*ndo_fcoe_disable)(struct net_device *dev);
849 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
850 * so the underlying device can perform whatever needed clean-ups to
851 * stop supporting acceleration of FCoE traffic.
852 *
853 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
854 * struct scatterlist *sgl, unsigned int sgc);
855 * Called when the FCoE Initiator wants to initialize an I/O that
856 * is a possible candidate for Direct Data Placement (DDP). The LLD can
857 * perform necessary setup and returns 1 to indicate the device is set up
858 * successfully to perform DDP on this I/O, otherwise this returns 0.
859 *
860 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
861 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
862 * indicated by the FC exchange id 'xid', so the underlying device can
863 * clean up and reuse resources for later DDP requests.
864 *
865 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
866 * struct scatterlist *sgl, unsigned int sgc);
867 * Called when the FCoE Target wants to initialize an I/O that
868 * is a possible candidate for Direct Data Placement (DDP). The LLD can
869 * perform necessary setup and returns 1 to indicate the device is set up
870 * successfully to perform DDP on this I/O, otherwise this returns 0.
871 *
872 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
873 * struct netdev_fcoe_hbainfo *hbainfo);
874 * Called when the FCoE Protocol stack wants information on the underlying
875 * device. This information is utilized by the FCoE protocol stack to
876 * register attributes with Fiber Channel management service as per the
877 * FC-GS Fabric Device Management Information(FDMI) specification.
878 *
879 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
880 * Called when the underlying device wants to override default World Wide
881 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
882 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
883 * protocol stack to use.
884 *
885 * RFS acceleration.
886 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
887 * u16 rxq_index, u32 flow_id);
888 * Set hardware filter for RFS. rxq_index is the target queue index;
889 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
890 * Return the filter ID on success, or a negative error code.
891 *
892 * Slave management functions (for bridge, bonding, etc).
893 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
894 * Called to make another netdev an underling.
895 *
896 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
897 * Called to release previously enslaved netdev.
898 *
899 * Feature/offload setting functions.
900 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
901 * netdev_features_t features);
902 * Adjusts the requested feature flags according to device-specific
903 * constraints, and returns the resulting flags. Must not modify
904 * the device state.
905 *
906 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
907 * Called to update device configuration to new features. Passed
908 * feature set might be less than what was returned by ndo_fix_features()).
909 * Must return >0 or -errno if it changed dev->features itself.
910 *
911 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
912 * struct net_device *dev,
913 * const unsigned char *addr, u16 flags)
914 * Adds an FDB entry to dev for addr.
915 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
916 * struct net_device *dev,
917 * const unsigned char *addr)
918 * Deletes the FDB entry from dev coresponding to addr.
919 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
920 * struct net_device *dev, int idx)
921 * Used to add FDB entries to dump requests. Implementers should add
922 * entries to skb and update idx with the number of entries.
923 *
924 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
925 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
926 * struct net_device *dev, u32 filter_mask)
927 *
928 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
929 * Called to change device carrier. Soft-devices (like dummy, team, etc)
930 * which do not represent real hardware may define this to allow their
931 * userspace components to manage their virtual carrier state. Devices
932 * that determine carrier state from physical hardware properties (eg
933 * network cables) or protocol-dependent mechanisms (eg
934 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
935 */
936 struct net_device_ops {
937 int (*ndo_init)(struct net_device *dev);
938 void (*ndo_uninit)(struct net_device *dev);
939 int (*ndo_open)(struct net_device *dev);
940 int (*ndo_stop)(struct net_device *dev);
941 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
942 struct net_device *dev);
943 u16 (*ndo_select_queue)(struct net_device *dev,
944 struct sk_buff *skb);
945 void (*ndo_change_rx_flags)(struct net_device *dev,
946 int flags);
947 void (*ndo_set_rx_mode)(struct net_device *dev);
948 int (*ndo_set_mac_address)(struct net_device *dev,
949 void *addr);
950 int (*ndo_validate_addr)(struct net_device *dev);
951 int (*ndo_do_ioctl)(struct net_device *dev,
952 struct ifreq *ifr, int cmd);
953 int (*ndo_set_config)(struct net_device *dev,
954 struct ifmap *map);
955 int (*ndo_change_mtu)(struct net_device *dev,
956 int new_mtu);
957 int (*ndo_neigh_setup)(struct net_device *dev,
958 struct neigh_parms *);
959 void (*ndo_tx_timeout) (struct net_device *dev);
960
961 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
962 struct rtnl_link_stats64 *storage);
963 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
964
965 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
966 __be16 proto, u16 vid);
967 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
968 __be16 proto, u16 vid);
969 #ifdef CONFIG_NET_POLL_CONTROLLER
970 void (*ndo_poll_controller)(struct net_device *dev);
971 int (*ndo_netpoll_setup)(struct net_device *dev,
972 struct netpoll_info *info,
973 gfp_t gfp);
974 void (*ndo_netpoll_cleanup)(struct net_device *dev);
975 #endif
976 #ifdef CONFIG_NET_LL_RX_POLL
977 int (*ndo_busy_poll)(struct napi_struct *dev);
978 #endif
979 int (*ndo_set_vf_mac)(struct net_device *dev,
980 int queue, u8 *mac);
981 int (*ndo_set_vf_vlan)(struct net_device *dev,
982 int queue, u16 vlan, u8 qos);
983 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
984 int vf, int rate);
985 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
986 int vf, bool setting);
987 int (*ndo_get_vf_config)(struct net_device *dev,
988 int vf,
989 struct ifla_vf_info *ivf);
990 int (*ndo_set_vf_link_state)(struct net_device *dev,
991 int vf, int link_state);
992 int (*ndo_set_vf_port)(struct net_device *dev,
993 int vf,
994 struct nlattr *port[]);
995 int (*ndo_get_vf_port)(struct net_device *dev,
996 int vf, struct sk_buff *skb);
997 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
998 #if IS_ENABLED(CONFIG_FCOE)
999 int (*ndo_fcoe_enable)(struct net_device *dev);
1000 int (*ndo_fcoe_disable)(struct net_device *dev);
1001 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1002 u16 xid,
1003 struct scatterlist *sgl,
1004 unsigned int sgc);
1005 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1006 u16 xid);
1007 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1008 u16 xid,
1009 struct scatterlist *sgl,
1010 unsigned int sgc);
1011 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1012 struct netdev_fcoe_hbainfo *hbainfo);
1013 #endif
1014
1015 #if IS_ENABLED(CONFIG_LIBFCOE)
1016 #define NETDEV_FCOE_WWNN 0
1017 #define NETDEV_FCOE_WWPN 1
1018 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1019 u64 *wwn, int type);
1020 #endif
1021
1022 #ifdef CONFIG_RFS_ACCEL
1023 int (*ndo_rx_flow_steer)(struct net_device *dev,
1024 const struct sk_buff *skb,
1025 u16 rxq_index,
1026 u32 flow_id);
1027 #endif
1028 int (*ndo_add_slave)(struct net_device *dev,
1029 struct net_device *slave_dev);
1030 int (*ndo_del_slave)(struct net_device *dev,
1031 struct net_device *slave_dev);
1032 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1033 netdev_features_t features);
1034 int (*ndo_set_features)(struct net_device *dev,
1035 netdev_features_t features);
1036 int (*ndo_neigh_construct)(struct neighbour *n);
1037 void (*ndo_neigh_destroy)(struct neighbour *n);
1038
1039 int (*ndo_fdb_add)(struct ndmsg *ndm,
1040 struct nlattr *tb[],
1041 struct net_device *dev,
1042 const unsigned char *addr,
1043 u16 flags);
1044 int (*ndo_fdb_del)(struct ndmsg *ndm,
1045 struct nlattr *tb[],
1046 struct net_device *dev,
1047 const unsigned char *addr);
1048 int (*ndo_fdb_dump)(struct sk_buff *skb,
1049 struct netlink_callback *cb,
1050 struct net_device *dev,
1051 int idx);
1052
1053 int (*ndo_bridge_setlink)(struct net_device *dev,
1054 struct nlmsghdr *nlh);
1055 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1056 u32 pid, u32 seq,
1057 struct net_device *dev,
1058 u32 filter_mask);
1059 int (*ndo_bridge_dellink)(struct net_device *dev,
1060 struct nlmsghdr *nlh);
1061 int (*ndo_change_carrier)(struct net_device *dev,
1062 bool new_carrier);
1063 };
1064
1065 /*
1066 * The DEVICE structure.
1067 * Actually, this whole structure is a big mistake. It mixes I/O
1068 * data with strictly "high-level" data, and it has to know about
1069 * almost every data structure used in the INET module.
1070 *
1071 * FIXME: cleanup struct net_device such that network protocol info
1072 * moves out.
1073 */
1074
1075 struct net_device {
1076
1077 /*
1078 * This is the first field of the "visible" part of this structure
1079 * (i.e. as seen by users in the "Space.c" file). It is the name
1080 * of the interface.
1081 */
1082 char name[IFNAMSIZ];
1083
1084 /* device name hash chain, please keep it close to name[] */
1085 struct hlist_node name_hlist;
1086
1087 /* snmp alias */
1088 char *ifalias;
1089
1090 /*
1091 * I/O specific fields
1092 * FIXME: Merge these and struct ifmap into one
1093 */
1094 unsigned long mem_end; /* shared mem end */
1095 unsigned long mem_start; /* shared mem start */
1096 unsigned long base_addr; /* device I/O address */
1097 unsigned int irq; /* device IRQ number */
1098
1099 /*
1100 * Some hardware also needs these fields, but they are not
1101 * part of the usual set specified in Space.c.
1102 */
1103
1104 unsigned long state;
1105
1106 struct list_head dev_list;
1107 struct list_head napi_list;
1108 struct list_head unreg_list;
1109 struct list_head upper_dev_list; /* List of upper devices */
1110
1111
1112 /* currently active device features */
1113 netdev_features_t features;
1114 /* user-changeable features */
1115 netdev_features_t hw_features;
1116 /* user-requested features */
1117 netdev_features_t wanted_features;
1118 /* mask of features inheritable by VLAN devices */
1119 netdev_features_t vlan_features;
1120 /* mask of features inherited by encapsulating devices
1121 * This field indicates what encapsulation offloads
1122 * the hardware is capable of doing, and drivers will
1123 * need to set them appropriately.
1124 */
1125 netdev_features_t hw_enc_features;
1126 /* mask of fetures inheritable by MPLS */
1127 netdev_features_t mpls_features;
1128
1129 /* Interface index. Unique device identifier */
1130 int ifindex;
1131 int iflink;
1132
1133 struct net_device_stats stats;
1134 atomic_long_t rx_dropped; /* dropped packets by core network
1135 * Do not use this in drivers.
1136 */
1137
1138 #ifdef CONFIG_WIRELESS_EXT
1139 /* List of functions to handle Wireless Extensions (instead of ioctl).
1140 * See <net/iw_handler.h> for details. Jean II */
1141 const struct iw_handler_def * wireless_handlers;
1142 /* Instance data managed by the core of Wireless Extensions. */
1143 struct iw_public_data * wireless_data;
1144 #endif
1145 /* Management operations */
1146 const struct net_device_ops *netdev_ops;
1147 const struct ethtool_ops *ethtool_ops;
1148
1149 /* Hardware header description */
1150 const struct header_ops *header_ops;
1151
1152 unsigned int flags; /* interface flags (a la BSD) */
1153 unsigned int priv_flags; /* Like 'flags' but invisible to userspace.
1154 * See if.h for definitions. */
1155 unsigned short gflags;
1156 unsigned short padded; /* How much padding added by alloc_netdev() */
1157
1158 unsigned char operstate; /* RFC2863 operstate */
1159 unsigned char link_mode; /* mapping policy to operstate */
1160
1161 unsigned char if_port; /* Selectable AUI, TP,..*/
1162 unsigned char dma; /* DMA channel */
1163
1164 unsigned int mtu; /* interface MTU value */
1165 unsigned short type; /* interface hardware type */
1166 unsigned short hard_header_len; /* hardware hdr length */
1167
1168 /* extra head- and tailroom the hardware may need, but not in all cases
1169 * can this be guaranteed, especially tailroom. Some cases also use
1170 * LL_MAX_HEADER instead to allocate the skb.
1171 */
1172 unsigned short needed_headroom;
1173 unsigned short needed_tailroom;
1174
1175 /* Interface address info. */
1176 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1177 unsigned char addr_assign_type; /* hw address assignment type */
1178 unsigned char addr_len; /* hardware address length */
1179 unsigned char neigh_priv_len;
1180 unsigned short dev_id; /* Used to differentiate devices
1181 * that share the same link
1182 * layer address
1183 */
1184 spinlock_t addr_list_lock;
1185 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
1186 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
1187 struct netdev_hw_addr_list dev_addrs; /* list of device
1188 * hw addresses
1189 */
1190 #ifdef CONFIG_SYSFS
1191 struct kset *queues_kset;
1192 #endif
1193
1194 bool uc_promisc;
1195 unsigned int promiscuity;
1196 unsigned int allmulti;
1197
1198
1199 /* Protocol specific pointers */
1200
1201 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1202 struct vlan_info __rcu *vlan_info; /* VLAN info */
1203 #endif
1204 #if IS_ENABLED(CONFIG_NET_DSA)
1205 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */
1206 #endif
1207 void *atalk_ptr; /* AppleTalk link */
1208 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1209 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1210 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1211 void *ax25_ptr; /* AX.25 specific data */
1212 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1213 assign before registering */
1214
1215 /*
1216 * Cache lines mostly used on receive path (including eth_type_trans())
1217 */
1218 unsigned long last_rx; /* Time of last Rx
1219 * This should not be set in
1220 * drivers, unless really needed,
1221 * because network stack (bonding)
1222 * use it if/when necessary, to
1223 * avoid dirtying this cache line.
1224 */
1225
1226 /* Interface address info used in eth_type_trans() */
1227 unsigned char *dev_addr; /* hw address, (before bcast
1228 because most packets are
1229 unicast) */
1230
1231
1232 #ifdef CONFIG_RPS
1233 struct netdev_rx_queue *_rx;
1234
1235 /* Number of RX queues allocated at register_netdev() time */
1236 unsigned int num_rx_queues;
1237
1238 /* Number of RX queues currently active in device */
1239 unsigned int real_num_rx_queues;
1240
1241 #endif
1242
1243 rx_handler_func_t __rcu *rx_handler;
1244 void __rcu *rx_handler_data;
1245
1246 struct netdev_queue __rcu *ingress_queue;
1247 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1248
1249
1250 /*
1251 * Cache lines mostly used on transmit path
1252 */
1253 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1254
1255 /* Number of TX queues allocated at alloc_netdev_mq() time */
1256 unsigned int num_tx_queues;
1257
1258 /* Number of TX queues currently active in device */
1259 unsigned int real_num_tx_queues;
1260
1261 /* root qdisc from userspace point of view */
1262 struct Qdisc *qdisc;
1263
1264 unsigned long tx_queue_len; /* Max frames per queue allowed */
1265 spinlock_t tx_global_lock;
1266
1267 #ifdef CONFIG_XPS
1268 struct xps_dev_maps __rcu *xps_maps;
1269 #endif
1270 #ifdef CONFIG_RFS_ACCEL
1271 /* CPU reverse-mapping for RX completion interrupts, indexed
1272 * by RX queue number. Assigned by driver. This must only be
1273 * set if the ndo_rx_flow_steer operation is defined. */
1274 struct cpu_rmap *rx_cpu_rmap;
1275 #endif
1276
1277 /* These may be needed for future network-power-down code. */
1278
1279 /*
1280 * trans_start here is expensive for high speed devices on SMP,
1281 * please use netdev_queue->trans_start instead.
1282 */
1283 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1284
1285 int watchdog_timeo; /* used by dev_watchdog() */
1286 struct timer_list watchdog_timer;
1287
1288 /* Number of references to this device */
1289 int __percpu *pcpu_refcnt;
1290
1291 /* delayed register/unregister */
1292 struct list_head todo_list;
1293 /* device index hash chain */
1294 struct hlist_node index_hlist;
1295
1296 struct list_head link_watch_list;
1297
1298 /* register/unregister state machine */
1299 enum { NETREG_UNINITIALIZED=0,
1300 NETREG_REGISTERED, /* completed register_netdevice */
1301 NETREG_UNREGISTERING, /* called unregister_netdevice */
1302 NETREG_UNREGISTERED, /* completed unregister todo */
1303 NETREG_RELEASED, /* called free_netdev */
1304 NETREG_DUMMY, /* dummy device for NAPI poll */
1305 } reg_state:8;
1306
1307 bool dismantle; /* device is going do be freed */
1308
1309 enum {
1310 RTNL_LINK_INITIALIZED,
1311 RTNL_LINK_INITIALIZING,
1312 } rtnl_link_state:16;
1313
1314 /* Called from unregister, can be used to call free_netdev */
1315 void (*destructor)(struct net_device *dev);
1316
1317 #ifdef CONFIG_NETPOLL
1318 struct netpoll_info __rcu *npinfo;
1319 #endif
1320
1321 #ifdef CONFIG_NET_NS
1322 /* Network namespace this network device is inside */
1323 struct net *nd_net;
1324 #endif
1325
1326 /* mid-layer private */
1327 union {
1328 void *ml_priv;
1329 struct pcpu_lstats __percpu *lstats; /* loopback stats */
1330 struct pcpu_tstats __percpu *tstats; /* tunnel stats */
1331 struct pcpu_dstats __percpu *dstats; /* dummy stats */
1332 struct pcpu_vstats __percpu *vstats; /* veth stats */
1333 };
1334 /* GARP */
1335 struct garp_port __rcu *garp_port;
1336 /* MRP */
1337 struct mrp_port __rcu *mrp_port;
1338
1339 /* class/net/name entry */
1340 struct device dev;
1341 /* space for optional device, statistics, and wireless sysfs groups */
1342 const struct attribute_group *sysfs_groups[4];
1343
1344 /* rtnetlink link ops */
1345 const struct rtnl_link_ops *rtnl_link_ops;
1346
1347 /* for setting kernel sock attribute on TCP connection setup */
1348 #define GSO_MAX_SIZE 65536
1349 unsigned int gso_max_size;
1350 #define GSO_MAX_SEGS 65535
1351 u16 gso_max_segs;
1352
1353 #ifdef CONFIG_DCB
1354 /* Data Center Bridging netlink ops */
1355 const struct dcbnl_rtnl_ops *dcbnl_ops;
1356 #endif
1357 u8 num_tc;
1358 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1359 u8 prio_tc_map[TC_BITMASK + 1];
1360
1361 #if IS_ENABLED(CONFIG_FCOE)
1362 /* max exchange id for FCoE LRO by ddp */
1363 unsigned int fcoe_ddp_xid;
1364 #endif
1365 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1366 struct netprio_map __rcu *priomap;
1367 #endif
1368 /* phy device may attach itself for hardware timestamping */
1369 struct phy_device *phydev;
1370
1371 struct lock_class_key *qdisc_tx_busylock;
1372
1373 /* group the device belongs to */
1374 int group;
1375
1376 struct pm_qos_request pm_qos_req;
1377 };
1378 #define to_net_dev(d) container_of(d, struct net_device, dev)
1379
1380 #define NETDEV_ALIGN 32
1381
1382 static inline
1383 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1384 {
1385 return dev->prio_tc_map[prio & TC_BITMASK];
1386 }
1387
1388 static inline
1389 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1390 {
1391 if (tc >= dev->num_tc)
1392 return -EINVAL;
1393
1394 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1395 return 0;
1396 }
1397
1398 static inline
1399 void netdev_reset_tc(struct net_device *dev)
1400 {
1401 dev->num_tc = 0;
1402 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1403 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1404 }
1405
1406 static inline
1407 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1408 {
1409 if (tc >= dev->num_tc)
1410 return -EINVAL;
1411
1412 dev->tc_to_txq[tc].count = count;
1413 dev->tc_to_txq[tc].offset = offset;
1414 return 0;
1415 }
1416
1417 static inline
1418 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1419 {
1420 if (num_tc > TC_MAX_QUEUE)
1421 return -EINVAL;
1422
1423 dev->num_tc = num_tc;
1424 return 0;
1425 }
1426
1427 static inline
1428 int netdev_get_num_tc(struct net_device *dev)
1429 {
1430 return dev->num_tc;
1431 }
1432
1433 static inline
1434 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1435 unsigned int index)
1436 {
1437 return &dev->_tx[index];
1438 }
1439
1440 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1441 void (*f)(struct net_device *,
1442 struct netdev_queue *,
1443 void *),
1444 void *arg)
1445 {
1446 unsigned int i;
1447
1448 for (i = 0; i < dev->num_tx_queues; i++)
1449 f(dev, &dev->_tx[i], arg);
1450 }
1451
1452 extern struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1453 struct sk_buff *skb);
1454 extern u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb);
1455
1456 /*
1457 * Net namespace inlines
1458 */
1459 static inline
1460 struct net *dev_net(const struct net_device *dev)
1461 {
1462 return read_pnet(&dev->nd_net);
1463 }
1464
1465 static inline
1466 void dev_net_set(struct net_device *dev, struct net *net)
1467 {
1468 #ifdef CONFIG_NET_NS
1469 release_net(dev->nd_net);
1470 dev->nd_net = hold_net(net);
1471 #endif
1472 }
1473
1474 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1475 {
1476 #ifdef CONFIG_NET_DSA_TAG_DSA
1477 if (dev->dsa_ptr != NULL)
1478 return dsa_uses_dsa_tags(dev->dsa_ptr);
1479 #endif
1480
1481 return 0;
1482 }
1483
1484 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1485 {
1486 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1487 if (dev->dsa_ptr != NULL)
1488 return dsa_uses_trailer_tags(dev->dsa_ptr);
1489 #endif
1490
1491 return 0;
1492 }
1493
1494 /**
1495 * netdev_priv - access network device private data
1496 * @dev: network device
1497 *
1498 * Get network device private data
1499 */
1500 static inline void *netdev_priv(const struct net_device *dev)
1501 {
1502 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1503 }
1504
1505 /* Set the sysfs physical device reference for the network logical device
1506 * if set prior to registration will cause a symlink during initialization.
1507 */
1508 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1509
1510 /* Set the sysfs device type for the network logical device to allow
1511 * fin grained indentification of different network device types. For
1512 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1513 */
1514 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1515
1516 /* Default NAPI poll() weight
1517 * Device drivers are strongly advised to not use bigger value
1518 */
1519 #define NAPI_POLL_WEIGHT 64
1520
1521 /**
1522 * netif_napi_add - initialize a napi context
1523 * @dev: network device
1524 * @napi: napi context
1525 * @poll: polling function
1526 * @weight: default weight
1527 *
1528 * netif_napi_add() must be used to initialize a napi context prior to calling
1529 * *any* of the other napi related functions.
1530 */
1531 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1532 int (*poll)(struct napi_struct *, int), int weight);
1533
1534 /**
1535 * netif_napi_del - remove a napi context
1536 * @napi: napi context
1537 *
1538 * netif_napi_del() removes a napi context from the network device napi list
1539 */
1540 void netif_napi_del(struct napi_struct *napi);
1541
1542 struct napi_gro_cb {
1543 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1544 void *frag0;
1545
1546 /* Length of frag0. */
1547 unsigned int frag0_len;
1548
1549 /* This indicates where we are processing relative to skb->data. */
1550 int data_offset;
1551
1552 /* This is non-zero if the packet cannot be merged with the new skb. */
1553 int flush;
1554
1555 /* Number of segments aggregated. */
1556 u16 count;
1557
1558 /* This is non-zero if the packet may be of the same flow. */
1559 u8 same_flow;
1560
1561 /* Free the skb? */
1562 u8 free;
1563 #define NAPI_GRO_FREE 1
1564 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1565
1566 /* jiffies when first packet was created/queued */
1567 unsigned long age;
1568
1569 /* Used in ipv6_gro_receive() */
1570 int proto;
1571
1572 /* used in skb_gro_receive() slow path */
1573 struct sk_buff *last;
1574 };
1575
1576 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1577
1578 struct packet_type {
1579 __be16 type; /* This is really htons(ether_type). */
1580 struct net_device *dev; /* NULL is wildcarded here */
1581 int (*func) (struct sk_buff *,
1582 struct net_device *,
1583 struct packet_type *,
1584 struct net_device *);
1585 bool (*id_match)(struct packet_type *ptype,
1586 struct sock *sk);
1587 void *af_packet_priv;
1588 struct list_head list;
1589 };
1590
1591 struct offload_callbacks {
1592 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1593 netdev_features_t features);
1594 int (*gso_send_check)(struct sk_buff *skb);
1595 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1596 struct sk_buff *skb);
1597 int (*gro_complete)(struct sk_buff *skb);
1598 };
1599
1600 struct packet_offload {
1601 __be16 type; /* This is really htons(ether_type). */
1602 struct offload_callbacks callbacks;
1603 struct list_head list;
1604 };
1605
1606 #include <linux/notifier.h>
1607
1608 /* netdevice notifier chain. Please remember to update the rtnetlink
1609 * notification exclusion list in rtnetlink_event() when adding new
1610 * types.
1611 */
1612 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
1613 #define NETDEV_DOWN 0x0002
1614 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
1615 detected a hardware crash and restarted
1616 - we can use this eg to kick tcp sessions
1617 once done */
1618 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
1619 #define NETDEV_REGISTER 0x0005
1620 #define NETDEV_UNREGISTER 0x0006
1621 #define NETDEV_CHANGEMTU 0x0007
1622 #define NETDEV_CHANGEADDR 0x0008
1623 #define NETDEV_GOING_DOWN 0x0009
1624 #define NETDEV_CHANGENAME 0x000A
1625 #define NETDEV_FEAT_CHANGE 0x000B
1626 #define NETDEV_BONDING_FAILOVER 0x000C
1627 #define NETDEV_PRE_UP 0x000D
1628 #define NETDEV_PRE_TYPE_CHANGE 0x000E
1629 #define NETDEV_POST_TYPE_CHANGE 0x000F
1630 #define NETDEV_POST_INIT 0x0010
1631 #define NETDEV_UNREGISTER_FINAL 0x0011
1632 #define NETDEV_RELEASE 0x0012
1633 #define NETDEV_NOTIFY_PEERS 0x0013
1634 #define NETDEV_JOIN 0x0014
1635 #define NETDEV_CHANGEUPPER 0x0015
1636 #define NETDEV_RESEND_IGMP 0x0016
1637
1638 extern int register_netdevice_notifier(struct notifier_block *nb);
1639 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1640
1641 struct netdev_notifier_info {
1642 struct net_device *dev;
1643 };
1644
1645 struct netdev_notifier_change_info {
1646 struct netdev_notifier_info info; /* must be first */
1647 unsigned int flags_changed;
1648 };
1649
1650 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
1651 struct net_device *dev)
1652 {
1653 info->dev = dev;
1654 }
1655
1656 static inline struct net_device *
1657 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
1658 {
1659 return info->dev;
1660 }
1661
1662 extern int call_netdevice_notifiers_info(unsigned long val, struct net_device *dev,
1663 struct netdev_notifier_info *info);
1664 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1665
1666
1667 extern rwlock_t dev_base_lock; /* Device list lock */
1668
1669 extern seqcount_t devnet_rename_seq; /* Device rename seq */
1670
1671
1672 #define for_each_netdev(net, d) \
1673 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1674 #define for_each_netdev_reverse(net, d) \
1675 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1676 #define for_each_netdev_rcu(net, d) \
1677 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1678 #define for_each_netdev_safe(net, d, n) \
1679 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1680 #define for_each_netdev_continue(net, d) \
1681 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1682 #define for_each_netdev_continue_rcu(net, d) \
1683 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1684 #define for_each_netdev_in_bond_rcu(bond, slave) \
1685 for_each_netdev_rcu(&init_net, slave) \
1686 if (netdev_master_upper_dev_get_rcu(slave) == bond)
1687 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1688
1689 static inline struct net_device *next_net_device(struct net_device *dev)
1690 {
1691 struct list_head *lh;
1692 struct net *net;
1693
1694 net = dev_net(dev);
1695 lh = dev->dev_list.next;
1696 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1697 }
1698
1699 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1700 {
1701 struct list_head *lh;
1702 struct net *net;
1703
1704 net = dev_net(dev);
1705 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1706 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1707 }
1708
1709 static inline struct net_device *first_net_device(struct net *net)
1710 {
1711 return list_empty(&net->dev_base_head) ? NULL :
1712 net_device_entry(net->dev_base_head.next);
1713 }
1714
1715 static inline struct net_device *first_net_device_rcu(struct net *net)
1716 {
1717 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1718
1719 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1720 }
1721
1722 extern int netdev_boot_setup_check(struct net_device *dev);
1723 extern unsigned long netdev_boot_base(const char *prefix, int unit);
1724 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1725 const char *hwaddr);
1726 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1727 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1728 extern void dev_add_pack(struct packet_type *pt);
1729 extern void dev_remove_pack(struct packet_type *pt);
1730 extern void __dev_remove_pack(struct packet_type *pt);
1731 extern void dev_add_offload(struct packet_offload *po);
1732 extern void dev_remove_offload(struct packet_offload *po);
1733 extern void __dev_remove_offload(struct packet_offload *po);
1734
1735 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1736 unsigned short mask);
1737 extern struct net_device *dev_get_by_name(struct net *net, const char *name);
1738 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1739 extern struct net_device *__dev_get_by_name(struct net *net, const char *name);
1740 extern int dev_alloc_name(struct net_device *dev, const char *name);
1741 extern int dev_open(struct net_device *dev);
1742 extern int dev_close(struct net_device *dev);
1743 extern void dev_disable_lro(struct net_device *dev);
1744 extern int dev_loopback_xmit(struct sk_buff *newskb);
1745 extern int dev_queue_xmit(struct sk_buff *skb);
1746 extern int register_netdevice(struct net_device *dev);
1747 extern void unregister_netdevice_queue(struct net_device *dev,
1748 struct list_head *head);
1749 extern void unregister_netdevice_many(struct list_head *head);
1750 static inline void unregister_netdevice(struct net_device *dev)
1751 {
1752 unregister_netdevice_queue(dev, NULL);
1753 }
1754
1755 extern int netdev_refcnt_read(const struct net_device *dev);
1756 extern void free_netdev(struct net_device *dev);
1757 extern void synchronize_net(void);
1758 extern int init_dummy_netdev(struct net_device *dev);
1759
1760 extern struct net_device *dev_get_by_index(struct net *net, int ifindex);
1761 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1762 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1763 extern int netdev_get_name(struct net *net, char *name, int ifindex);
1764 extern int dev_restart(struct net_device *dev);
1765 #ifdef CONFIG_NETPOLL_TRAP
1766 extern int netpoll_trap(void);
1767 #endif
1768 extern int skb_gro_receive(struct sk_buff **head,
1769 struct sk_buff *skb);
1770
1771 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1772 {
1773 return NAPI_GRO_CB(skb)->data_offset;
1774 }
1775
1776 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1777 {
1778 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1779 }
1780
1781 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1782 {
1783 NAPI_GRO_CB(skb)->data_offset += len;
1784 }
1785
1786 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1787 unsigned int offset)
1788 {
1789 return NAPI_GRO_CB(skb)->frag0 + offset;
1790 }
1791
1792 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1793 {
1794 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1795 }
1796
1797 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1798 unsigned int offset)
1799 {
1800 if (!pskb_may_pull(skb, hlen))
1801 return NULL;
1802
1803 NAPI_GRO_CB(skb)->frag0 = NULL;
1804 NAPI_GRO_CB(skb)->frag0_len = 0;
1805 return skb->data + offset;
1806 }
1807
1808 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1809 {
1810 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1811 }
1812
1813 static inline void *skb_gro_network_header(struct sk_buff *skb)
1814 {
1815 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1816 skb_network_offset(skb);
1817 }
1818
1819 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1820 unsigned short type,
1821 const void *daddr, const void *saddr,
1822 unsigned int len)
1823 {
1824 if (!dev->header_ops || !dev->header_ops->create)
1825 return 0;
1826
1827 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1828 }
1829
1830 static inline int dev_parse_header(const struct sk_buff *skb,
1831 unsigned char *haddr)
1832 {
1833 const struct net_device *dev = skb->dev;
1834
1835 if (!dev->header_ops || !dev->header_ops->parse)
1836 return 0;
1837 return dev->header_ops->parse(skb, haddr);
1838 }
1839
1840 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1841 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1842 static inline int unregister_gifconf(unsigned int family)
1843 {
1844 return register_gifconf(family, NULL);
1845 }
1846
1847 #ifdef CONFIG_NET_FLOW_LIMIT
1848 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
1849 struct sd_flow_limit {
1850 u64 count;
1851 unsigned int num_buckets;
1852 unsigned int history_head;
1853 u16 history[FLOW_LIMIT_HISTORY];
1854 u8 buckets[];
1855 };
1856
1857 extern int netdev_flow_limit_table_len;
1858 #endif /* CONFIG_NET_FLOW_LIMIT */
1859
1860 /*
1861 * Incoming packets are placed on per-cpu queues
1862 */
1863 struct softnet_data {
1864 struct Qdisc *output_queue;
1865 struct Qdisc **output_queue_tailp;
1866 struct list_head poll_list;
1867 struct sk_buff *completion_queue;
1868 struct sk_buff_head process_queue;
1869
1870 /* stats */
1871 unsigned int processed;
1872 unsigned int time_squeeze;
1873 unsigned int cpu_collision;
1874 unsigned int received_rps;
1875
1876 #ifdef CONFIG_RPS
1877 struct softnet_data *rps_ipi_list;
1878
1879 /* Elements below can be accessed between CPUs for RPS */
1880 struct call_single_data csd ____cacheline_aligned_in_smp;
1881 struct softnet_data *rps_ipi_next;
1882 unsigned int cpu;
1883 unsigned int input_queue_head;
1884 unsigned int input_queue_tail;
1885 #endif
1886 unsigned int dropped;
1887 struct sk_buff_head input_pkt_queue;
1888 struct napi_struct backlog;
1889
1890 #ifdef CONFIG_NET_FLOW_LIMIT
1891 struct sd_flow_limit __rcu *flow_limit;
1892 #endif
1893 };
1894
1895 static inline void input_queue_head_incr(struct softnet_data *sd)
1896 {
1897 #ifdef CONFIG_RPS
1898 sd->input_queue_head++;
1899 #endif
1900 }
1901
1902 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1903 unsigned int *qtail)
1904 {
1905 #ifdef CONFIG_RPS
1906 *qtail = ++sd->input_queue_tail;
1907 #endif
1908 }
1909
1910 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1911
1912 extern void __netif_schedule(struct Qdisc *q);
1913
1914 static inline void netif_schedule_queue(struct netdev_queue *txq)
1915 {
1916 if (!(txq->state & QUEUE_STATE_ANY_XOFF))
1917 __netif_schedule(txq->qdisc);
1918 }
1919
1920 static inline void netif_tx_schedule_all(struct net_device *dev)
1921 {
1922 unsigned int i;
1923
1924 for (i = 0; i < dev->num_tx_queues; i++)
1925 netif_schedule_queue(netdev_get_tx_queue(dev, i));
1926 }
1927
1928 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1929 {
1930 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1931 }
1932
1933 /**
1934 * netif_start_queue - allow transmit
1935 * @dev: network device
1936 *
1937 * Allow upper layers to call the device hard_start_xmit routine.
1938 */
1939 static inline void netif_start_queue(struct net_device *dev)
1940 {
1941 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1942 }
1943
1944 static inline void netif_tx_start_all_queues(struct net_device *dev)
1945 {
1946 unsigned int i;
1947
1948 for (i = 0; i < dev->num_tx_queues; i++) {
1949 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1950 netif_tx_start_queue(txq);
1951 }
1952 }
1953
1954 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1955 {
1956 #ifdef CONFIG_NETPOLL_TRAP
1957 if (netpoll_trap()) {
1958 netif_tx_start_queue(dev_queue);
1959 return;
1960 }
1961 #endif
1962 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
1963 __netif_schedule(dev_queue->qdisc);
1964 }
1965
1966 /**
1967 * netif_wake_queue - restart transmit
1968 * @dev: network device
1969 *
1970 * Allow upper layers to call the device hard_start_xmit routine.
1971 * Used for flow control when transmit resources are available.
1972 */
1973 static inline void netif_wake_queue(struct net_device *dev)
1974 {
1975 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1976 }
1977
1978 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1979 {
1980 unsigned int i;
1981
1982 for (i = 0; i < dev->num_tx_queues; i++) {
1983 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1984 netif_tx_wake_queue(txq);
1985 }
1986 }
1987
1988 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1989 {
1990 if (WARN_ON(!dev_queue)) {
1991 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1992 return;
1993 }
1994 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1995 }
1996
1997 /**
1998 * netif_stop_queue - stop transmitted packets
1999 * @dev: network device
2000 *
2001 * Stop upper layers calling the device hard_start_xmit routine.
2002 * Used for flow control when transmit resources are unavailable.
2003 */
2004 static inline void netif_stop_queue(struct net_device *dev)
2005 {
2006 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2007 }
2008
2009 static inline void netif_tx_stop_all_queues(struct net_device *dev)
2010 {
2011 unsigned int i;
2012
2013 for (i = 0; i < dev->num_tx_queues; i++) {
2014 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2015 netif_tx_stop_queue(txq);
2016 }
2017 }
2018
2019 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2020 {
2021 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2022 }
2023
2024 /**
2025 * netif_queue_stopped - test if transmit queue is flowblocked
2026 * @dev: network device
2027 *
2028 * Test if transmit queue on device is currently unable to send.
2029 */
2030 static inline bool netif_queue_stopped(const struct net_device *dev)
2031 {
2032 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2033 }
2034
2035 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2036 {
2037 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2038 }
2039
2040 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2041 {
2042 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2043 }
2044
2045 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2046 unsigned int bytes)
2047 {
2048 #ifdef CONFIG_BQL
2049 dql_queued(&dev_queue->dql, bytes);
2050
2051 if (likely(dql_avail(&dev_queue->dql) >= 0))
2052 return;
2053
2054 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2055
2056 /*
2057 * The XOFF flag must be set before checking the dql_avail below,
2058 * because in netdev_tx_completed_queue we update the dql_completed
2059 * before checking the XOFF flag.
2060 */
2061 smp_mb();
2062
2063 /* check again in case another CPU has just made room avail */
2064 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2065 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2066 #endif
2067 }
2068
2069 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2070 {
2071 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2072 }
2073
2074 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2075 unsigned int pkts, unsigned int bytes)
2076 {
2077 #ifdef CONFIG_BQL
2078 if (unlikely(!bytes))
2079 return;
2080
2081 dql_completed(&dev_queue->dql, bytes);
2082
2083 /*
2084 * Without the memory barrier there is a small possiblity that
2085 * netdev_tx_sent_queue will miss the update and cause the queue to
2086 * be stopped forever
2087 */
2088 smp_mb();
2089
2090 if (dql_avail(&dev_queue->dql) < 0)
2091 return;
2092
2093 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2094 netif_schedule_queue(dev_queue);
2095 #endif
2096 }
2097
2098 static inline void netdev_completed_queue(struct net_device *dev,
2099 unsigned int pkts, unsigned int bytes)
2100 {
2101 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2102 }
2103
2104 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2105 {
2106 #ifdef CONFIG_BQL
2107 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2108 dql_reset(&q->dql);
2109 #endif
2110 }
2111
2112 static inline void netdev_reset_queue(struct net_device *dev_queue)
2113 {
2114 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2115 }
2116
2117 /**
2118 * netif_running - test if up
2119 * @dev: network device
2120 *
2121 * Test if the device has been brought up.
2122 */
2123 static inline bool netif_running(const struct net_device *dev)
2124 {
2125 return test_bit(__LINK_STATE_START, &dev->state);
2126 }
2127
2128 /*
2129 * Routines to manage the subqueues on a device. We only need start
2130 * stop, and a check if it's stopped. All other device management is
2131 * done at the overall netdevice level.
2132 * Also test the device if we're multiqueue.
2133 */
2134
2135 /**
2136 * netif_start_subqueue - allow sending packets on subqueue
2137 * @dev: network device
2138 * @queue_index: sub queue index
2139 *
2140 * Start individual transmit queue of a device with multiple transmit queues.
2141 */
2142 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2143 {
2144 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2145
2146 netif_tx_start_queue(txq);
2147 }
2148
2149 /**
2150 * netif_stop_subqueue - stop sending packets on subqueue
2151 * @dev: network device
2152 * @queue_index: sub queue index
2153 *
2154 * Stop individual transmit queue of a device with multiple transmit queues.
2155 */
2156 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2157 {
2158 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2159 #ifdef CONFIG_NETPOLL_TRAP
2160 if (netpoll_trap())
2161 return;
2162 #endif
2163 netif_tx_stop_queue(txq);
2164 }
2165
2166 /**
2167 * netif_subqueue_stopped - test status of subqueue
2168 * @dev: network device
2169 * @queue_index: sub queue index
2170 *
2171 * Check individual transmit queue of a device with multiple transmit queues.
2172 */
2173 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2174 u16 queue_index)
2175 {
2176 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2177
2178 return netif_tx_queue_stopped(txq);
2179 }
2180
2181 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2182 struct sk_buff *skb)
2183 {
2184 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2185 }
2186
2187 /**
2188 * netif_wake_subqueue - allow sending packets on subqueue
2189 * @dev: network device
2190 * @queue_index: sub queue index
2191 *
2192 * Resume individual transmit queue of a device with multiple transmit queues.
2193 */
2194 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2195 {
2196 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2197 #ifdef CONFIG_NETPOLL_TRAP
2198 if (netpoll_trap())
2199 return;
2200 #endif
2201 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2202 __netif_schedule(txq->qdisc);
2203 }
2204
2205 #ifdef CONFIG_XPS
2206 extern int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask,
2207 u16 index);
2208 #else
2209 static inline int netif_set_xps_queue(struct net_device *dev,
2210 struct cpumask *mask,
2211 u16 index)
2212 {
2213 return 0;
2214 }
2215 #endif
2216
2217 /*
2218 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2219 * as a distribution range limit for the returned value.
2220 */
2221 static inline u16 skb_tx_hash(const struct net_device *dev,
2222 const struct sk_buff *skb)
2223 {
2224 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2225 }
2226
2227 /**
2228 * netif_is_multiqueue - test if device has multiple transmit queues
2229 * @dev: network device
2230 *
2231 * Check if device has multiple transmit queues
2232 */
2233 static inline bool netif_is_multiqueue(const struct net_device *dev)
2234 {
2235 return dev->num_tx_queues > 1;
2236 }
2237
2238 extern int netif_set_real_num_tx_queues(struct net_device *dev,
2239 unsigned int txq);
2240
2241 #ifdef CONFIG_RPS
2242 extern int netif_set_real_num_rx_queues(struct net_device *dev,
2243 unsigned int rxq);
2244 #else
2245 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2246 unsigned int rxq)
2247 {
2248 return 0;
2249 }
2250 #endif
2251
2252 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2253 const struct net_device *from_dev)
2254 {
2255 int err;
2256
2257 err = netif_set_real_num_tx_queues(to_dev,
2258 from_dev->real_num_tx_queues);
2259 if (err)
2260 return err;
2261 #ifdef CONFIG_RPS
2262 return netif_set_real_num_rx_queues(to_dev,
2263 from_dev->real_num_rx_queues);
2264 #else
2265 return 0;
2266 #endif
2267 }
2268
2269 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
2270 extern int netif_get_num_default_rss_queues(void);
2271
2272 /* Use this variant when it is known for sure that it
2273 * is executing from hardware interrupt context or with hardware interrupts
2274 * disabled.
2275 */
2276 extern void dev_kfree_skb_irq(struct sk_buff *skb);
2277
2278 /* Use this variant in places where it could be invoked
2279 * from either hardware interrupt or other context, with hardware interrupts
2280 * either disabled or enabled.
2281 */
2282 extern void dev_kfree_skb_any(struct sk_buff *skb);
2283
2284 extern int netif_rx(struct sk_buff *skb);
2285 extern int netif_rx_ni(struct sk_buff *skb);
2286 extern int netif_receive_skb(struct sk_buff *skb);
2287 extern gro_result_t napi_gro_receive(struct napi_struct *napi,
2288 struct sk_buff *skb);
2289 extern void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2290 extern struct sk_buff * napi_get_frags(struct napi_struct *napi);
2291 extern gro_result_t napi_gro_frags(struct napi_struct *napi);
2292
2293 static inline void napi_free_frags(struct napi_struct *napi)
2294 {
2295 kfree_skb(napi->skb);
2296 napi->skb = NULL;
2297 }
2298
2299 extern int netdev_rx_handler_register(struct net_device *dev,
2300 rx_handler_func_t *rx_handler,
2301 void *rx_handler_data);
2302 extern void netdev_rx_handler_unregister(struct net_device *dev);
2303
2304 extern bool dev_valid_name(const char *name);
2305 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2306 extern int dev_ethtool(struct net *net, struct ifreq *);
2307 extern unsigned int dev_get_flags(const struct net_device *);
2308 extern int __dev_change_flags(struct net_device *, unsigned int flags);
2309 extern int dev_change_flags(struct net_device *, unsigned int);
2310 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags);
2311 extern int dev_change_name(struct net_device *, const char *);
2312 extern int dev_set_alias(struct net_device *, const char *, size_t);
2313 extern int dev_change_net_namespace(struct net_device *,
2314 struct net *, const char *);
2315 extern int dev_set_mtu(struct net_device *, int);
2316 extern void dev_set_group(struct net_device *, int);
2317 extern int dev_set_mac_address(struct net_device *,
2318 struct sockaddr *);
2319 extern int dev_change_carrier(struct net_device *,
2320 bool new_carrier);
2321 extern int dev_hard_start_xmit(struct sk_buff *skb,
2322 struct net_device *dev,
2323 struct netdev_queue *txq);
2324 extern int dev_forward_skb(struct net_device *dev,
2325 struct sk_buff *skb);
2326
2327 extern int netdev_budget;
2328
2329 /* Called by rtnetlink.c:rtnl_unlock() */
2330 extern void netdev_run_todo(void);
2331
2332 /**
2333 * dev_put - release reference to device
2334 * @dev: network device
2335 *
2336 * Release reference to device to allow it to be freed.
2337 */
2338 static inline void dev_put(struct net_device *dev)
2339 {
2340 this_cpu_dec(*dev->pcpu_refcnt);
2341 }
2342
2343 /**
2344 * dev_hold - get reference to device
2345 * @dev: network device
2346 *
2347 * Hold reference to device to keep it from being freed.
2348 */
2349 static inline void dev_hold(struct net_device *dev)
2350 {
2351 this_cpu_inc(*dev->pcpu_refcnt);
2352 }
2353
2354 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2355 * and _off may be called from IRQ context, but it is caller
2356 * who is responsible for serialization of these calls.
2357 *
2358 * The name carrier is inappropriate, these functions should really be
2359 * called netif_lowerlayer_*() because they represent the state of any
2360 * kind of lower layer not just hardware media.
2361 */
2362
2363 extern void linkwatch_init_dev(struct net_device *dev);
2364 extern void linkwatch_fire_event(struct net_device *dev);
2365 extern void linkwatch_forget_dev(struct net_device *dev);
2366
2367 /**
2368 * netif_carrier_ok - test if carrier present
2369 * @dev: network device
2370 *
2371 * Check if carrier is present on device
2372 */
2373 static inline bool netif_carrier_ok(const struct net_device *dev)
2374 {
2375 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2376 }
2377
2378 extern unsigned long dev_trans_start(struct net_device *dev);
2379
2380 extern void __netdev_watchdog_up(struct net_device *dev);
2381
2382 extern void netif_carrier_on(struct net_device *dev);
2383
2384 extern void netif_carrier_off(struct net_device *dev);
2385
2386 /**
2387 * netif_dormant_on - mark device as dormant.
2388 * @dev: network device
2389 *
2390 * Mark device as dormant (as per RFC2863).
2391 *
2392 * The dormant state indicates that the relevant interface is not
2393 * actually in a condition to pass packets (i.e., it is not 'up') but is
2394 * in a "pending" state, waiting for some external event. For "on-
2395 * demand" interfaces, this new state identifies the situation where the
2396 * interface is waiting for events to place it in the up state.
2397 *
2398 */
2399 static inline void netif_dormant_on(struct net_device *dev)
2400 {
2401 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2402 linkwatch_fire_event(dev);
2403 }
2404
2405 /**
2406 * netif_dormant_off - set device as not dormant.
2407 * @dev: network device
2408 *
2409 * Device is not in dormant state.
2410 */
2411 static inline void netif_dormant_off(struct net_device *dev)
2412 {
2413 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2414 linkwatch_fire_event(dev);
2415 }
2416
2417 /**
2418 * netif_dormant - test if carrier present
2419 * @dev: network device
2420 *
2421 * Check if carrier is present on device
2422 */
2423 static inline bool netif_dormant(const struct net_device *dev)
2424 {
2425 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2426 }
2427
2428
2429 /**
2430 * netif_oper_up - test if device is operational
2431 * @dev: network device
2432 *
2433 * Check if carrier is operational
2434 */
2435 static inline bool netif_oper_up(const struct net_device *dev)
2436 {
2437 return (dev->operstate == IF_OPER_UP ||
2438 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2439 }
2440
2441 /**
2442 * netif_device_present - is device available or removed
2443 * @dev: network device
2444 *
2445 * Check if device has not been removed from system.
2446 */
2447 static inline bool netif_device_present(struct net_device *dev)
2448 {
2449 return test_bit(__LINK_STATE_PRESENT, &dev->state);
2450 }
2451
2452 extern void netif_device_detach(struct net_device *dev);
2453
2454 extern void netif_device_attach(struct net_device *dev);
2455
2456 /*
2457 * Network interface message level settings
2458 */
2459
2460 enum {
2461 NETIF_MSG_DRV = 0x0001,
2462 NETIF_MSG_PROBE = 0x0002,
2463 NETIF_MSG_LINK = 0x0004,
2464 NETIF_MSG_TIMER = 0x0008,
2465 NETIF_MSG_IFDOWN = 0x0010,
2466 NETIF_MSG_IFUP = 0x0020,
2467 NETIF_MSG_RX_ERR = 0x0040,
2468 NETIF_MSG_TX_ERR = 0x0080,
2469 NETIF_MSG_TX_QUEUED = 0x0100,
2470 NETIF_MSG_INTR = 0x0200,
2471 NETIF_MSG_TX_DONE = 0x0400,
2472 NETIF_MSG_RX_STATUS = 0x0800,
2473 NETIF_MSG_PKTDATA = 0x1000,
2474 NETIF_MSG_HW = 0x2000,
2475 NETIF_MSG_WOL = 0x4000,
2476 };
2477
2478 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2479 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2480 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2481 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2482 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2483 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2484 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2485 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2486 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2487 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2488 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2489 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2490 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2491 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2492 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2493
2494 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2495 {
2496 /* use default */
2497 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2498 return default_msg_enable_bits;
2499 if (debug_value == 0) /* no output */
2500 return 0;
2501 /* set low N bits */
2502 return (1 << debug_value) - 1;
2503 }
2504
2505 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2506 {
2507 spin_lock(&txq->_xmit_lock);
2508 txq->xmit_lock_owner = cpu;
2509 }
2510
2511 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2512 {
2513 spin_lock_bh(&txq->_xmit_lock);
2514 txq->xmit_lock_owner = smp_processor_id();
2515 }
2516
2517 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2518 {
2519 bool ok = spin_trylock(&txq->_xmit_lock);
2520 if (likely(ok))
2521 txq->xmit_lock_owner = smp_processor_id();
2522 return ok;
2523 }
2524
2525 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2526 {
2527 txq->xmit_lock_owner = -1;
2528 spin_unlock(&txq->_xmit_lock);
2529 }
2530
2531 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2532 {
2533 txq->xmit_lock_owner = -1;
2534 spin_unlock_bh(&txq->_xmit_lock);
2535 }
2536
2537 static inline void txq_trans_update(struct netdev_queue *txq)
2538 {
2539 if (txq->xmit_lock_owner != -1)
2540 txq->trans_start = jiffies;
2541 }
2542
2543 /**
2544 * netif_tx_lock - grab network device transmit lock
2545 * @dev: network device
2546 *
2547 * Get network device transmit lock
2548 */
2549 static inline void netif_tx_lock(struct net_device *dev)
2550 {
2551 unsigned int i;
2552 int cpu;
2553
2554 spin_lock(&dev->tx_global_lock);
2555 cpu = smp_processor_id();
2556 for (i = 0; i < dev->num_tx_queues; i++) {
2557 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2558
2559 /* We are the only thread of execution doing a
2560 * freeze, but we have to grab the _xmit_lock in
2561 * order to synchronize with threads which are in
2562 * the ->hard_start_xmit() handler and already
2563 * checked the frozen bit.
2564 */
2565 __netif_tx_lock(txq, cpu);
2566 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2567 __netif_tx_unlock(txq);
2568 }
2569 }
2570
2571 static inline void netif_tx_lock_bh(struct net_device *dev)
2572 {
2573 local_bh_disable();
2574 netif_tx_lock(dev);
2575 }
2576
2577 static inline void netif_tx_unlock(struct net_device *dev)
2578 {
2579 unsigned int i;
2580
2581 for (i = 0; i < dev->num_tx_queues; i++) {
2582 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2583
2584 /* No need to grab the _xmit_lock here. If the
2585 * queue is not stopped for another reason, we
2586 * force a schedule.
2587 */
2588 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2589 netif_schedule_queue(txq);
2590 }
2591 spin_unlock(&dev->tx_global_lock);
2592 }
2593
2594 static inline void netif_tx_unlock_bh(struct net_device *dev)
2595 {
2596 netif_tx_unlock(dev);
2597 local_bh_enable();
2598 }
2599
2600 #define HARD_TX_LOCK(dev, txq, cpu) { \
2601 if ((dev->features & NETIF_F_LLTX) == 0) { \
2602 __netif_tx_lock(txq, cpu); \
2603 } \
2604 }
2605
2606 #define HARD_TX_UNLOCK(dev, txq) { \
2607 if ((dev->features & NETIF_F_LLTX) == 0) { \
2608 __netif_tx_unlock(txq); \
2609 } \
2610 }
2611
2612 static inline void netif_tx_disable(struct net_device *dev)
2613 {
2614 unsigned int i;
2615 int cpu;
2616
2617 local_bh_disable();
2618 cpu = smp_processor_id();
2619 for (i = 0; i < dev->num_tx_queues; i++) {
2620 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2621
2622 __netif_tx_lock(txq, cpu);
2623 netif_tx_stop_queue(txq);
2624 __netif_tx_unlock(txq);
2625 }
2626 local_bh_enable();
2627 }
2628
2629 static inline void netif_addr_lock(struct net_device *dev)
2630 {
2631 spin_lock(&dev->addr_list_lock);
2632 }
2633
2634 static inline void netif_addr_lock_nested(struct net_device *dev)
2635 {
2636 spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2637 }
2638
2639 static inline void netif_addr_lock_bh(struct net_device *dev)
2640 {
2641 spin_lock_bh(&dev->addr_list_lock);
2642 }
2643
2644 static inline void netif_addr_unlock(struct net_device *dev)
2645 {
2646 spin_unlock(&dev->addr_list_lock);
2647 }
2648
2649 static inline void netif_addr_unlock_bh(struct net_device *dev)
2650 {
2651 spin_unlock_bh(&dev->addr_list_lock);
2652 }
2653
2654 /*
2655 * dev_addrs walker. Should be used only for read access. Call with
2656 * rcu_read_lock held.
2657 */
2658 #define for_each_dev_addr(dev, ha) \
2659 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2660
2661 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2662
2663 extern void ether_setup(struct net_device *dev);
2664
2665 /* Support for loadable net-drivers */
2666 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2667 void (*setup)(struct net_device *),
2668 unsigned int txqs, unsigned int rxqs);
2669 #define alloc_netdev(sizeof_priv, name, setup) \
2670 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2671
2672 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2673 alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2674
2675 extern int register_netdev(struct net_device *dev);
2676 extern void unregister_netdev(struct net_device *dev);
2677
2678 /* General hardware address lists handling functions */
2679 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2680 struct netdev_hw_addr_list *from_list,
2681 int addr_len, unsigned char addr_type);
2682 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2683 struct netdev_hw_addr_list *from_list,
2684 int addr_len, unsigned char addr_type);
2685 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2686 struct netdev_hw_addr_list *from_list,
2687 int addr_len);
2688 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2689 struct netdev_hw_addr_list *from_list,
2690 int addr_len);
2691 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2692 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2693
2694 /* Functions used for device addresses handling */
2695 extern int dev_addr_add(struct net_device *dev, const unsigned char *addr,
2696 unsigned char addr_type);
2697 extern int dev_addr_del(struct net_device *dev, const unsigned char *addr,
2698 unsigned char addr_type);
2699 extern int dev_addr_add_multiple(struct net_device *to_dev,
2700 struct net_device *from_dev,
2701 unsigned char addr_type);
2702 extern int dev_addr_del_multiple(struct net_device *to_dev,
2703 struct net_device *from_dev,
2704 unsigned char addr_type);
2705 extern void dev_addr_flush(struct net_device *dev);
2706 extern int dev_addr_init(struct net_device *dev);
2707
2708 /* Functions used for unicast addresses handling */
2709 extern int dev_uc_add(struct net_device *dev, const unsigned char *addr);
2710 extern int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
2711 extern int dev_uc_del(struct net_device *dev, const unsigned char *addr);
2712 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2713 extern int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
2714 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2715 extern void dev_uc_flush(struct net_device *dev);
2716 extern void dev_uc_init(struct net_device *dev);
2717
2718 /* Functions used for multicast addresses handling */
2719 extern int dev_mc_add(struct net_device *dev, const unsigned char *addr);
2720 extern int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
2721 extern int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
2722 extern int dev_mc_del(struct net_device *dev, const unsigned char *addr);
2723 extern int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
2724 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2725 extern int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
2726 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2727 extern void dev_mc_flush(struct net_device *dev);
2728 extern void dev_mc_init(struct net_device *dev);
2729
2730 /* Functions used for secondary unicast and multicast support */
2731 extern void dev_set_rx_mode(struct net_device *dev);
2732 extern void __dev_set_rx_mode(struct net_device *dev);
2733 extern int dev_set_promiscuity(struct net_device *dev, int inc);
2734 extern int dev_set_allmulti(struct net_device *dev, int inc);
2735 extern void netdev_state_change(struct net_device *dev);
2736 extern void netdev_notify_peers(struct net_device *dev);
2737 extern void netdev_features_change(struct net_device *dev);
2738 /* Load a device via the kmod */
2739 extern void dev_load(struct net *net, const char *name);
2740 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2741 struct rtnl_link_stats64 *storage);
2742 extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
2743 const struct net_device_stats *netdev_stats);
2744
2745 extern int netdev_max_backlog;
2746 extern int netdev_tstamp_prequeue;
2747 extern int weight_p;
2748 extern int bpf_jit_enable;
2749
2750 extern bool netdev_has_upper_dev(struct net_device *dev,
2751 struct net_device *upper_dev);
2752 extern bool netdev_has_any_upper_dev(struct net_device *dev);
2753 extern struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
2754 extern struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
2755 extern int netdev_upper_dev_link(struct net_device *dev,
2756 struct net_device *upper_dev);
2757 extern int netdev_master_upper_dev_link(struct net_device *dev,
2758 struct net_device *upper_dev);
2759 extern void netdev_upper_dev_unlink(struct net_device *dev,
2760 struct net_device *upper_dev);
2761 extern int skb_checksum_help(struct sk_buff *skb);
2762 extern struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2763 netdev_features_t features, bool tx_path);
2764 extern struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2765 netdev_features_t features);
2766
2767 static inline
2768 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
2769 {
2770 return __skb_gso_segment(skb, features, true);
2771 }
2772 __be16 skb_network_protocol(struct sk_buff *skb);
2773
2774 static inline bool can_checksum_protocol(netdev_features_t features,
2775 __be16 protocol)
2776 {
2777 return ((features & NETIF_F_GEN_CSUM) ||
2778 ((features & NETIF_F_V4_CSUM) &&
2779 protocol == htons(ETH_P_IP)) ||
2780 ((features & NETIF_F_V6_CSUM) &&
2781 protocol == htons(ETH_P_IPV6)) ||
2782 ((features & NETIF_F_FCOE_CRC) &&
2783 protocol == htons(ETH_P_FCOE)));
2784 }
2785
2786 #ifdef CONFIG_BUG
2787 extern void netdev_rx_csum_fault(struct net_device *dev);
2788 #else
2789 static inline void netdev_rx_csum_fault(struct net_device *dev)
2790 {
2791 }
2792 #endif
2793 /* rx skb timestamps */
2794 extern void net_enable_timestamp(void);
2795 extern void net_disable_timestamp(void);
2796
2797 #ifdef CONFIG_PROC_FS
2798 extern int __init dev_proc_init(void);
2799 #else
2800 #define dev_proc_init() 0
2801 #endif
2802
2803 extern int netdev_class_create_file(struct class_attribute *class_attr);
2804 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2805
2806 extern struct kobj_ns_type_operations net_ns_type_operations;
2807
2808 extern const char *netdev_drivername(const struct net_device *dev);
2809
2810 extern void linkwatch_run_queue(void);
2811
2812 static inline netdev_features_t netdev_get_wanted_features(
2813 struct net_device *dev)
2814 {
2815 return (dev->features & ~dev->hw_features) | dev->wanted_features;
2816 }
2817 netdev_features_t netdev_increment_features(netdev_features_t all,
2818 netdev_features_t one, netdev_features_t mask);
2819
2820 /* Allow TSO being used on stacked device :
2821 * Performing the GSO segmentation before last device
2822 * is a performance improvement.
2823 */
2824 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
2825 netdev_features_t mask)
2826 {
2827 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
2828 }
2829
2830 int __netdev_update_features(struct net_device *dev);
2831 void netdev_update_features(struct net_device *dev);
2832 void netdev_change_features(struct net_device *dev);
2833
2834 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2835 struct net_device *dev);
2836
2837 netdev_features_t netif_skb_features(struct sk_buff *skb);
2838
2839 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
2840 {
2841 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2842
2843 /* check flags correspondence */
2844 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2845 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2846 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2847 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2848 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2849 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2850
2851 return (features & feature) == feature;
2852 }
2853
2854 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2855 {
2856 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2857 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2858 }
2859
2860 static inline bool netif_needs_gso(struct sk_buff *skb,
2861 netdev_features_t features)
2862 {
2863 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2864 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
2865 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
2866 }
2867
2868 static inline void netif_set_gso_max_size(struct net_device *dev,
2869 unsigned int size)
2870 {
2871 dev->gso_max_size = size;
2872 }
2873
2874 static inline bool netif_is_bond_master(struct net_device *dev)
2875 {
2876 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
2877 }
2878
2879 static inline bool netif_is_bond_slave(struct net_device *dev)
2880 {
2881 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2882 }
2883
2884 static inline bool netif_supports_nofcs(struct net_device *dev)
2885 {
2886 return dev->priv_flags & IFF_SUPP_NOFCS;
2887 }
2888
2889 extern struct pernet_operations __net_initdata loopback_net_ops;
2890
2891 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2892
2893 /* netdev_printk helpers, similar to dev_printk */
2894
2895 static inline const char *netdev_name(const struct net_device *dev)
2896 {
2897 if (dev->reg_state != NETREG_REGISTERED)
2898 return "(unregistered net_device)";
2899 return dev->name;
2900 }
2901
2902 extern __printf(3, 4)
2903 int netdev_printk(const char *level, const struct net_device *dev,
2904 const char *format, ...);
2905 extern __printf(2, 3)
2906 int netdev_emerg(const struct net_device *dev, const char *format, ...);
2907 extern __printf(2, 3)
2908 int netdev_alert(const struct net_device *dev, const char *format, ...);
2909 extern __printf(2, 3)
2910 int netdev_crit(const struct net_device *dev, const char *format, ...);
2911 extern __printf(2, 3)
2912 int netdev_err(const struct net_device *dev, const char *format, ...);
2913 extern __printf(2, 3)
2914 int netdev_warn(const struct net_device *dev, const char *format, ...);
2915 extern __printf(2, 3)
2916 int netdev_notice(const struct net_device *dev, const char *format, ...);
2917 extern __printf(2, 3)
2918 int netdev_info(const struct net_device *dev, const char *format, ...);
2919
2920 #define MODULE_ALIAS_NETDEV(device) \
2921 MODULE_ALIAS("netdev-" device)
2922
2923 #if defined(CONFIG_DYNAMIC_DEBUG)
2924 #define netdev_dbg(__dev, format, args...) \
2925 do { \
2926 dynamic_netdev_dbg(__dev, format, ##args); \
2927 } while (0)
2928 #elif defined(DEBUG)
2929 #define netdev_dbg(__dev, format, args...) \
2930 netdev_printk(KERN_DEBUG, __dev, format, ##args)
2931 #else
2932 #define netdev_dbg(__dev, format, args...) \
2933 ({ \
2934 if (0) \
2935 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2936 0; \
2937 })
2938 #endif
2939
2940 #if defined(VERBOSE_DEBUG)
2941 #define netdev_vdbg netdev_dbg
2942 #else
2943
2944 #define netdev_vdbg(dev, format, args...) \
2945 ({ \
2946 if (0) \
2947 netdev_printk(KERN_DEBUG, dev, format, ##args); \
2948 0; \
2949 })
2950 #endif
2951
2952 /*
2953 * netdev_WARN() acts like dev_printk(), but with the key difference
2954 * of using a WARN/WARN_ON to get the message out, including the
2955 * file/line information and a backtrace.
2956 */
2957 #define netdev_WARN(dev, format, args...) \
2958 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2959
2960 /* netif printk helpers, similar to netdev_printk */
2961
2962 #define netif_printk(priv, type, level, dev, fmt, args...) \
2963 do { \
2964 if (netif_msg_##type(priv)) \
2965 netdev_printk(level, (dev), fmt, ##args); \
2966 } while (0)
2967
2968 #define netif_level(level, priv, type, dev, fmt, args...) \
2969 do { \
2970 if (netif_msg_##type(priv)) \
2971 netdev_##level(dev, fmt, ##args); \
2972 } while (0)
2973
2974 #define netif_emerg(priv, type, dev, fmt, args...) \
2975 netif_level(emerg, priv, type, dev, fmt, ##args)
2976 #define netif_alert(priv, type, dev, fmt, args...) \
2977 netif_level(alert, priv, type, dev, fmt, ##args)
2978 #define netif_crit(priv, type, dev, fmt, args...) \
2979 netif_level(crit, priv, type, dev, fmt, ##args)
2980 #define netif_err(priv, type, dev, fmt, args...) \
2981 netif_level(err, priv, type, dev, fmt, ##args)
2982 #define netif_warn(priv, type, dev, fmt, args...) \
2983 netif_level(warn, priv, type, dev, fmt, ##args)
2984 #define netif_notice(priv, type, dev, fmt, args...) \
2985 netif_level(notice, priv, type, dev, fmt, ##args)
2986 #define netif_info(priv, type, dev, fmt, args...) \
2987 netif_level(info, priv, type, dev, fmt, ##args)
2988
2989 #if defined(CONFIG_DYNAMIC_DEBUG)
2990 #define netif_dbg(priv, type, netdev, format, args...) \
2991 do { \
2992 if (netif_msg_##type(priv)) \
2993 dynamic_netdev_dbg(netdev, format, ##args); \
2994 } while (0)
2995 #elif defined(DEBUG)
2996 #define netif_dbg(priv, type, dev, format, args...) \
2997 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2998 #else
2999 #define netif_dbg(priv, type, dev, format, args...) \
3000 ({ \
3001 if (0) \
3002 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3003 0; \
3004 })
3005 #endif
3006
3007 #if defined(VERBOSE_DEBUG)
3008 #define netif_vdbg netif_dbg
3009 #else
3010 #define netif_vdbg(priv, type, dev, format, args...) \
3011 ({ \
3012 if (0) \
3013 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3014 0; \
3015 })
3016 #endif
3017
3018 /*
3019 * The list of packet types we will receive (as opposed to discard)
3020 * and the routines to invoke.
3021 *
3022 * Why 16. Because with 16 the only overlap we get on a hash of the
3023 * low nibble of the protocol value is RARP/SNAP/X.25.
3024 *
3025 * NOTE: That is no longer true with the addition of VLAN tags. Not
3026 * sure which should go first, but I bet it won't make much
3027 * difference if we are running VLANs. The good news is that
3028 * this protocol won't be in the list unless compiled in, so
3029 * the average user (w/out VLANs) will not be adversely affected.
3030 * --BLG
3031 *
3032 * 0800 IP
3033 * 8100 802.1Q VLAN
3034 * 0001 802.3
3035 * 0002 AX.25
3036 * 0004 802.2
3037 * 8035 RARP
3038 * 0005 SNAP
3039 * 0805 X.25
3040 * 0806 ARP
3041 * 8137 IPX
3042 * 0009 Localtalk
3043 * 86DD IPv6
3044 */
3045 #define PTYPE_HASH_SIZE (16)
3046 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
3047
3048 #endif /* _LINUX_NETDEVICE_H */
This page took 0.152661 seconds and 6 git commands to generate.