Merge remote-tracking branch 'asoc/topic/wm8904' into tmp
[deliverable/linux.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/pm_qos.h>
29 #include <linux/timer.h>
30 #include <linux/bug.h>
31 #include <linux/delay.h>
32 #include <linux/atomic.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53
54 struct netpoll_info;
55 struct device;
56 struct phy_device;
57 /* 802.11 specific */
58 struct wireless_dev;
59 /* source back-compat hooks */
60 #define SET_ETHTOOL_OPS(netdev,ops) \
61 ( (netdev)->ethtool_ops = (ops) )
62
63 extern void netdev_set_default_ethtool_ops(struct net_device *dev,
64 const struct ethtool_ops *ops);
65
66 /* hardware address assignment types */
67 #define NET_ADDR_PERM 0 /* address is permanent (default) */
68 #define NET_ADDR_RANDOM 1 /* address is generated randomly */
69 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */
70 #define NET_ADDR_SET 3 /* address is set using
71 * dev_set_mac_address() */
72
73 /* Backlog congestion levels */
74 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
75 #define NET_RX_DROP 1 /* packet dropped */
76
77 /*
78 * Transmit return codes: transmit return codes originate from three different
79 * namespaces:
80 *
81 * - qdisc return codes
82 * - driver transmit return codes
83 * - errno values
84 *
85 * Drivers are allowed to return any one of those in their hard_start_xmit()
86 * function. Real network devices commonly used with qdiscs should only return
87 * the driver transmit return codes though - when qdiscs are used, the actual
88 * transmission happens asynchronously, so the value is not propagated to
89 * higher layers. Virtual network devices transmit synchronously, in this case
90 * the driver transmit return codes are consumed by dev_queue_xmit(), all
91 * others are propagated to higher layers.
92 */
93
94 /* qdisc ->enqueue() return codes. */
95 #define NET_XMIT_SUCCESS 0x00
96 #define NET_XMIT_DROP 0x01 /* skb dropped */
97 #define NET_XMIT_CN 0x02 /* congestion notification */
98 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
99 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
100
101 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
102 * indicates that the device will soon be dropping packets, or already drops
103 * some packets of the same priority; prompting us to send less aggressively. */
104 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
105 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
106
107 /* Driver transmit return codes */
108 #define NETDEV_TX_MASK 0xf0
109
110 enum netdev_tx {
111 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
112 NETDEV_TX_OK = 0x00, /* driver took care of packet */
113 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
114 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
115 };
116 typedef enum netdev_tx netdev_tx_t;
117
118 /*
119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121 */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 /*
125 * Positive cases with an skb consumed by a driver:
126 * - successful transmission (rc == NETDEV_TX_OK)
127 * - error while transmitting (rc < 0)
128 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 */
130 if (likely(rc < NET_XMIT_MASK))
131 return true;
132
133 return false;
134 }
135
136 /*
137 * Compute the worst case header length according to the protocols
138 * used.
139 */
140
141 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
142 # if defined(CONFIG_MAC80211_MESH)
143 # define LL_MAX_HEADER 128
144 # else
145 # define LL_MAX_HEADER 96
146 # endif
147 #else
148 # define LL_MAX_HEADER 32
149 #endif
150
151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
152 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
153 #define MAX_HEADER LL_MAX_HEADER
154 #else
155 #define MAX_HEADER (LL_MAX_HEADER + 48)
156 #endif
157
158 /*
159 * Old network device statistics. Fields are native words
160 * (unsigned long) so they can be read and written atomically.
161 */
162
163 struct net_device_stats {
164 unsigned long rx_packets;
165 unsigned long tx_packets;
166 unsigned long rx_bytes;
167 unsigned long tx_bytes;
168 unsigned long rx_errors;
169 unsigned long tx_errors;
170 unsigned long rx_dropped;
171 unsigned long tx_dropped;
172 unsigned long multicast;
173 unsigned long collisions;
174 unsigned long rx_length_errors;
175 unsigned long rx_over_errors;
176 unsigned long rx_crc_errors;
177 unsigned long rx_frame_errors;
178 unsigned long rx_fifo_errors;
179 unsigned long rx_missed_errors;
180 unsigned long tx_aborted_errors;
181 unsigned long tx_carrier_errors;
182 unsigned long tx_fifo_errors;
183 unsigned long tx_heartbeat_errors;
184 unsigned long tx_window_errors;
185 unsigned long rx_compressed;
186 unsigned long tx_compressed;
187 };
188
189
190 #include <linux/cache.h>
191 #include <linux/skbuff.h>
192
193 #ifdef CONFIG_RPS
194 #include <linux/static_key.h>
195 extern struct static_key rps_needed;
196 #endif
197
198 struct neighbour;
199 struct neigh_parms;
200 struct sk_buff;
201
202 struct netdev_hw_addr {
203 struct list_head list;
204 unsigned char addr[MAX_ADDR_LEN];
205 unsigned char type;
206 #define NETDEV_HW_ADDR_T_LAN 1
207 #define NETDEV_HW_ADDR_T_SAN 2
208 #define NETDEV_HW_ADDR_T_SLAVE 3
209 #define NETDEV_HW_ADDR_T_UNICAST 4
210 #define NETDEV_HW_ADDR_T_MULTICAST 5
211 bool global_use;
212 int sync_cnt;
213 int refcount;
214 int synced;
215 struct rcu_head rcu_head;
216 };
217
218 struct netdev_hw_addr_list {
219 struct list_head list;
220 int count;
221 };
222
223 #define netdev_hw_addr_list_count(l) ((l)->count)
224 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
225 #define netdev_hw_addr_list_for_each(ha, l) \
226 list_for_each_entry(ha, &(l)->list, list)
227
228 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
229 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
230 #define netdev_for_each_uc_addr(ha, dev) \
231 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
232
233 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
234 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
235 #define netdev_for_each_mc_addr(ha, dev) \
236 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
237
238 struct hh_cache {
239 u16 hh_len;
240 u16 __pad;
241 seqlock_t hh_lock;
242
243 /* cached hardware header; allow for machine alignment needs. */
244 #define HH_DATA_MOD 16
245 #define HH_DATA_OFF(__len) \
246 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247 #define HH_DATA_ALIGN(__len) \
248 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250 };
251
252 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
253 * Alternative is:
254 * dev->hard_header_len ? (dev->hard_header_len +
255 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256 *
257 * We could use other alignment values, but we must maintain the
258 * relationship HH alignment <= LL alignment.
259 */
260 #define LL_RESERVED_SPACE(dev) \
261 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264
265 struct header_ops {
266 int (*create) (struct sk_buff *skb, struct net_device *dev,
267 unsigned short type, const void *daddr,
268 const void *saddr, unsigned int len);
269 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
270 int (*rebuild)(struct sk_buff *skb);
271 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
272 void (*cache_update)(struct hh_cache *hh,
273 const struct net_device *dev,
274 const unsigned char *haddr);
275 };
276
277 /* These flag bits are private to the generic network queueing
278 * layer, they may not be explicitly referenced by any other
279 * code.
280 */
281
282 enum netdev_state_t {
283 __LINK_STATE_START,
284 __LINK_STATE_PRESENT,
285 __LINK_STATE_NOCARRIER,
286 __LINK_STATE_LINKWATCH_PENDING,
287 __LINK_STATE_DORMANT,
288 };
289
290
291 /*
292 * This structure holds at boot time configured netdevice settings. They
293 * are then used in the device probing.
294 */
295 struct netdev_boot_setup {
296 char name[IFNAMSIZ];
297 struct ifmap map;
298 };
299 #define NETDEV_BOOT_SETUP_MAX 8
300
301 extern int __init netdev_boot_setup(char *str);
302
303 /*
304 * Structure for NAPI scheduling similar to tasklet but with weighting
305 */
306 struct napi_struct {
307 /* The poll_list must only be managed by the entity which
308 * changes the state of the NAPI_STATE_SCHED bit. This means
309 * whoever atomically sets that bit can add this napi_struct
310 * to the per-cpu poll_list, and whoever clears that bit
311 * can remove from the list right before clearing the bit.
312 */
313 struct list_head poll_list;
314
315 unsigned long state;
316 int weight;
317 unsigned int gro_count;
318 int (*poll)(struct napi_struct *, int);
319 #ifdef CONFIG_NETPOLL
320 spinlock_t poll_lock;
321 int poll_owner;
322 #endif
323 struct net_device *dev;
324 struct sk_buff *gro_list;
325 struct sk_buff *skb;
326 struct list_head dev_list;
327 struct hlist_node napi_hash_node;
328 unsigned int napi_id;
329 };
330
331 enum {
332 NAPI_STATE_SCHED, /* Poll is scheduled */
333 NAPI_STATE_DISABLE, /* Disable pending */
334 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
335 NAPI_STATE_HASHED, /* In NAPI hash */
336 };
337
338 enum gro_result {
339 GRO_MERGED,
340 GRO_MERGED_FREE,
341 GRO_HELD,
342 GRO_NORMAL,
343 GRO_DROP,
344 };
345 typedef enum gro_result gro_result_t;
346
347 /*
348 * enum rx_handler_result - Possible return values for rx_handlers.
349 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
350 * further.
351 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
352 * case skb->dev was changed by rx_handler.
353 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
354 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
355 *
356 * rx_handlers are functions called from inside __netif_receive_skb(), to do
357 * special processing of the skb, prior to delivery to protocol handlers.
358 *
359 * Currently, a net_device can only have a single rx_handler registered. Trying
360 * to register a second rx_handler will return -EBUSY.
361 *
362 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
363 * To unregister a rx_handler on a net_device, use
364 * netdev_rx_handler_unregister().
365 *
366 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
367 * do with the skb.
368 *
369 * If the rx_handler consumed to skb in some way, it should return
370 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
371 * the skb to be delivered in some other ways.
372 *
373 * If the rx_handler changed skb->dev, to divert the skb to another
374 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
375 * new device will be called if it exists.
376 *
377 * If the rx_handler consider the skb should be ignored, it should return
378 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
379 * are registered on exact device (ptype->dev == skb->dev).
380 *
381 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
382 * delivered, it should return RX_HANDLER_PASS.
383 *
384 * A device without a registered rx_handler will behave as if rx_handler
385 * returned RX_HANDLER_PASS.
386 */
387
388 enum rx_handler_result {
389 RX_HANDLER_CONSUMED,
390 RX_HANDLER_ANOTHER,
391 RX_HANDLER_EXACT,
392 RX_HANDLER_PASS,
393 };
394 typedef enum rx_handler_result rx_handler_result_t;
395 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
396
397 extern void __napi_schedule(struct napi_struct *n);
398
399 static inline bool napi_disable_pending(struct napi_struct *n)
400 {
401 return test_bit(NAPI_STATE_DISABLE, &n->state);
402 }
403
404 /**
405 * napi_schedule_prep - check if napi can be scheduled
406 * @n: napi context
407 *
408 * Test if NAPI routine is already running, and if not mark
409 * it as running. This is used as a condition variable
410 * insure only one NAPI poll instance runs. We also make
411 * sure there is no pending NAPI disable.
412 */
413 static inline bool napi_schedule_prep(struct napi_struct *n)
414 {
415 return !napi_disable_pending(n) &&
416 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
417 }
418
419 /**
420 * napi_schedule - schedule NAPI poll
421 * @n: napi context
422 *
423 * Schedule NAPI poll routine to be called if it is not already
424 * running.
425 */
426 static inline void napi_schedule(struct napi_struct *n)
427 {
428 if (napi_schedule_prep(n))
429 __napi_schedule(n);
430 }
431
432 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
433 static inline bool napi_reschedule(struct napi_struct *napi)
434 {
435 if (napi_schedule_prep(napi)) {
436 __napi_schedule(napi);
437 return true;
438 }
439 return false;
440 }
441
442 /**
443 * napi_complete - NAPI processing complete
444 * @n: napi context
445 *
446 * Mark NAPI processing as complete.
447 */
448 extern void __napi_complete(struct napi_struct *n);
449 extern void napi_complete(struct napi_struct *n);
450
451 /**
452 * napi_by_id - lookup a NAPI by napi_id
453 * @napi_id: hashed napi_id
454 *
455 * lookup @napi_id in napi_hash table
456 * must be called under rcu_read_lock()
457 */
458 extern struct napi_struct *napi_by_id(unsigned int napi_id);
459
460 /**
461 * napi_hash_add - add a NAPI to global hashtable
462 * @napi: napi context
463 *
464 * generate a new napi_id and store a @napi under it in napi_hash
465 */
466 extern void napi_hash_add(struct napi_struct *napi);
467
468 /**
469 * napi_hash_del - remove a NAPI from global table
470 * @napi: napi context
471 *
472 * Warning: caller must observe rcu grace period
473 * before freeing memory containing @napi
474 */
475 extern void napi_hash_del(struct napi_struct *napi);
476
477 /**
478 * napi_disable - prevent NAPI from scheduling
479 * @n: napi context
480 *
481 * Stop NAPI from being scheduled on this context.
482 * Waits till any outstanding processing completes.
483 */
484 static inline void napi_disable(struct napi_struct *n)
485 {
486 set_bit(NAPI_STATE_DISABLE, &n->state);
487 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
488 msleep(1);
489 clear_bit(NAPI_STATE_DISABLE, &n->state);
490 }
491
492 /**
493 * napi_enable - enable NAPI scheduling
494 * @n: napi context
495 *
496 * Resume NAPI from being scheduled on this context.
497 * Must be paired with napi_disable.
498 */
499 static inline void napi_enable(struct napi_struct *n)
500 {
501 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
502 smp_mb__before_clear_bit();
503 clear_bit(NAPI_STATE_SCHED, &n->state);
504 }
505
506 #ifdef CONFIG_SMP
507 /**
508 * napi_synchronize - wait until NAPI is not running
509 * @n: napi context
510 *
511 * Wait until NAPI is done being scheduled on this context.
512 * Waits till any outstanding processing completes but
513 * does not disable future activations.
514 */
515 static inline void napi_synchronize(const struct napi_struct *n)
516 {
517 while (test_bit(NAPI_STATE_SCHED, &n->state))
518 msleep(1);
519 }
520 #else
521 # define napi_synchronize(n) barrier()
522 #endif
523
524 enum netdev_queue_state_t {
525 __QUEUE_STATE_DRV_XOFF,
526 __QUEUE_STATE_STACK_XOFF,
527 __QUEUE_STATE_FROZEN,
528 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \
529 (1 << __QUEUE_STATE_STACK_XOFF))
530 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
531 (1 << __QUEUE_STATE_FROZEN))
532 };
533 /*
534 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
535 * netif_tx_* functions below are used to manipulate this flag. The
536 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
537 * queue independently. The netif_xmit_*stopped functions below are called
538 * to check if the queue has been stopped by the driver or stack (either
539 * of the XOFF bits are set in the state). Drivers should not need to call
540 * netif_xmit*stopped functions, they should only be using netif_tx_*.
541 */
542
543 struct netdev_queue {
544 /*
545 * read mostly part
546 */
547 struct net_device *dev;
548 struct Qdisc *qdisc;
549 struct Qdisc *qdisc_sleeping;
550 #ifdef CONFIG_SYSFS
551 struct kobject kobj;
552 #endif
553 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
554 int numa_node;
555 #endif
556 /*
557 * write mostly part
558 */
559 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
560 int xmit_lock_owner;
561 /*
562 * please use this field instead of dev->trans_start
563 */
564 unsigned long trans_start;
565
566 /*
567 * Number of TX timeouts for this queue
568 * (/sys/class/net/DEV/Q/trans_timeout)
569 */
570 unsigned long trans_timeout;
571
572 unsigned long state;
573
574 #ifdef CONFIG_BQL
575 struct dql dql;
576 #endif
577 } ____cacheline_aligned_in_smp;
578
579 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
580 {
581 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
582 return q->numa_node;
583 #else
584 return NUMA_NO_NODE;
585 #endif
586 }
587
588 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
589 {
590 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
591 q->numa_node = node;
592 #endif
593 }
594
595 #ifdef CONFIG_RPS
596 /*
597 * This structure holds an RPS map which can be of variable length. The
598 * map is an array of CPUs.
599 */
600 struct rps_map {
601 unsigned int len;
602 struct rcu_head rcu;
603 u16 cpus[0];
604 };
605 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
606
607 /*
608 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
609 * tail pointer for that CPU's input queue at the time of last enqueue, and
610 * a hardware filter index.
611 */
612 struct rps_dev_flow {
613 u16 cpu;
614 u16 filter;
615 unsigned int last_qtail;
616 };
617 #define RPS_NO_FILTER 0xffff
618
619 /*
620 * The rps_dev_flow_table structure contains a table of flow mappings.
621 */
622 struct rps_dev_flow_table {
623 unsigned int mask;
624 struct rcu_head rcu;
625 struct rps_dev_flow flows[0];
626 };
627 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
628 ((_num) * sizeof(struct rps_dev_flow)))
629
630 /*
631 * The rps_sock_flow_table contains mappings of flows to the last CPU
632 * on which they were processed by the application (set in recvmsg).
633 */
634 struct rps_sock_flow_table {
635 unsigned int mask;
636 u16 ents[0];
637 };
638 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
639 ((_num) * sizeof(u16)))
640
641 #define RPS_NO_CPU 0xffff
642
643 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
644 u32 hash)
645 {
646 if (table && hash) {
647 unsigned int cpu, index = hash & table->mask;
648
649 /* We only give a hint, preemption can change cpu under us */
650 cpu = raw_smp_processor_id();
651
652 if (table->ents[index] != cpu)
653 table->ents[index] = cpu;
654 }
655 }
656
657 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
658 u32 hash)
659 {
660 if (table && hash)
661 table->ents[hash & table->mask] = RPS_NO_CPU;
662 }
663
664 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
665
666 #ifdef CONFIG_RFS_ACCEL
667 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
668 u32 flow_id, u16 filter_id);
669 #endif
670
671 /* This structure contains an instance of an RX queue. */
672 struct netdev_rx_queue {
673 struct rps_map __rcu *rps_map;
674 struct rps_dev_flow_table __rcu *rps_flow_table;
675 struct kobject kobj;
676 struct net_device *dev;
677 } ____cacheline_aligned_in_smp;
678 #endif /* CONFIG_RPS */
679
680 #ifdef CONFIG_XPS
681 /*
682 * This structure holds an XPS map which can be of variable length. The
683 * map is an array of queues.
684 */
685 struct xps_map {
686 unsigned int len;
687 unsigned int alloc_len;
688 struct rcu_head rcu;
689 u16 queues[0];
690 };
691 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
692 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
693 / sizeof(u16))
694
695 /*
696 * This structure holds all XPS maps for device. Maps are indexed by CPU.
697 */
698 struct xps_dev_maps {
699 struct rcu_head rcu;
700 struct xps_map __rcu *cpu_map[0];
701 };
702 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
703 (nr_cpu_ids * sizeof(struct xps_map *)))
704 #endif /* CONFIG_XPS */
705
706 #define TC_MAX_QUEUE 16
707 #define TC_BITMASK 15
708 /* HW offloaded queuing disciplines txq count and offset maps */
709 struct netdev_tc_txq {
710 u16 count;
711 u16 offset;
712 };
713
714 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
715 /*
716 * This structure is to hold information about the device
717 * configured to run FCoE protocol stack.
718 */
719 struct netdev_fcoe_hbainfo {
720 char manufacturer[64];
721 char serial_number[64];
722 char hardware_version[64];
723 char driver_version[64];
724 char optionrom_version[64];
725 char firmware_version[64];
726 char model[256];
727 char model_description[256];
728 };
729 #endif
730
731 /*
732 * This structure defines the management hooks for network devices.
733 * The following hooks can be defined; unless noted otherwise, they are
734 * optional and can be filled with a null pointer.
735 *
736 * int (*ndo_init)(struct net_device *dev);
737 * This function is called once when network device is registered.
738 * The network device can use this to any late stage initializaton
739 * or semantic validattion. It can fail with an error code which will
740 * be propogated back to register_netdev
741 *
742 * void (*ndo_uninit)(struct net_device *dev);
743 * This function is called when device is unregistered or when registration
744 * fails. It is not called if init fails.
745 *
746 * int (*ndo_open)(struct net_device *dev);
747 * This function is called when network device transistions to the up
748 * state.
749 *
750 * int (*ndo_stop)(struct net_device *dev);
751 * This function is called when network device transistions to the down
752 * state.
753 *
754 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
755 * struct net_device *dev);
756 * Called when a packet needs to be transmitted.
757 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
758 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
759 * Required can not be NULL.
760 *
761 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
762 * Called to decide which queue to when device supports multiple
763 * transmit queues.
764 *
765 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
766 * This function is called to allow device receiver to make
767 * changes to configuration when multicast or promiscious is enabled.
768 *
769 * void (*ndo_set_rx_mode)(struct net_device *dev);
770 * This function is called device changes address list filtering.
771 * If driver handles unicast address filtering, it should set
772 * IFF_UNICAST_FLT to its priv_flags.
773 *
774 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
775 * This function is called when the Media Access Control address
776 * needs to be changed. If this interface is not defined, the
777 * mac address can not be changed.
778 *
779 * int (*ndo_validate_addr)(struct net_device *dev);
780 * Test if Media Access Control address is valid for the device.
781 *
782 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
783 * Called when a user request an ioctl which can't be handled by
784 * the generic interface code. If not defined ioctl's return
785 * not supported error code.
786 *
787 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
788 * Used to set network devices bus interface parameters. This interface
789 * is retained for legacy reason, new devices should use the bus
790 * interface (PCI) for low level management.
791 *
792 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
793 * Called when a user wants to change the Maximum Transfer Unit
794 * of a device. If not defined, any request to change MTU will
795 * will return an error.
796 *
797 * void (*ndo_tx_timeout)(struct net_device *dev);
798 * Callback uses when the transmitter has not made any progress
799 * for dev->watchdog ticks.
800 *
801 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
802 * struct rtnl_link_stats64 *storage);
803 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
804 * Called when a user wants to get the network device usage
805 * statistics. Drivers must do one of the following:
806 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
807 * rtnl_link_stats64 structure passed by the caller.
808 * 2. Define @ndo_get_stats to update a net_device_stats structure
809 * (which should normally be dev->stats) and return a pointer to
810 * it. The structure may be changed asynchronously only if each
811 * field is written atomically.
812 * 3. Update dev->stats asynchronously and atomically, and define
813 * neither operation.
814 *
815 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16t vid);
816 * If device support VLAN filtering this function is called when a
817 * VLAN id is registered.
818 *
819 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
820 * If device support VLAN filtering this function is called when a
821 * VLAN id is unregistered.
822 *
823 * void (*ndo_poll_controller)(struct net_device *dev);
824 *
825 * SR-IOV management functions.
826 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
827 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
828 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
829 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
830 * int (*ndo_get_vf_config)(struct net_device *dev,
831 * int vf, struct ifla_vf_info *ivf);
832 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
833 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
834 * struct nlattr *port[]);
835 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
836 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
837 * Called to setup 'tc' number of traffic classes in the net device. This
838 * is always called from the stack with the rtnl lock held and netif tx
839 * queues stopped. This allows the netdevice to perform queue management
840 * safely.
841 *
842 * Fiber Channel over Ethernet (FCoE) offload functions.
843 * int (*ndo_fcoe_enable)(struct net_device *dev);
844 * Called when the FCoE protocol stack wants to start using LLD for FCoE
845 * so the underlying device can perform whatever needed configuration or
846 * initialization to support acceleration of FCoE traffic.
847 *
848 * int (*ndo_fcoe_disable)(struct net_device *dev);
849 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
850 * so the underlying device can perform whatever needed clean-ups to
851 * stop supporting acceleration of FCoE traffic.
852 *
853 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
854 * struct scatterlist *sgl, unsigned int sgc);
855 * Called when the FCoE Initiator wants to initialize an I/O that
856 * is a possible candidate for Direct Data Placement (DDP). The LLD can
857 * perform necessary setup and returns 1 to indicate the device is set up
858 * successfully to perform DDP on this I/O, otherwise this returns 0.
859 *
860 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
861 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
862 * indicated by the FC exchange id 'xid', so the underlying device can
863 * clean up and reuse resources for later DDP requests.
864 *
865 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
866 * struct scatterlist *sgl, unsigned int sgc);
867 * Called when the FCoE Target wants to initialize an I/O that
868 * is a possible candidate for Direct Data Placement (DDP). The LLD can
869 * perform necessary setup and returns 1 to indicate the device is set up
870 * successfully to perform DDP on this I/O, otherwise this returns 0.
871 *
872 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
873 * struct netdev_fcoe_hbainfo *hbainfo);
874 * Called when the FCoE Protocol stack wants information on the underlying
875 * device. This information is utilized by the FCoE protocol stack to
876 * register attributes with Fiber Channel management service as per the
877 * FC-GS Fabric Device Management Information(FDMI) specification.
878 *
879 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
880 * Called when the underlying device wants to override default World Wide
881 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
882 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
883 * protocol stack to use.
884 *
885 * RFS acceleration.
886 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
887 * u16 rxq_index, u32 flow_id);
888 * Set hardware filter for RFS. rxq_index is the target queue index;
889 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
890 * Return the filter ID on success, or a negative error code.
891 *
892 * Slave management functions (for bridge, bonding, etc).
893 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
894 * Called to make another netdev an underling.
895 *
896 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
897 * Called to release previously enslaved netdev.
898 *
899 * Feature/offload setting functions.
900 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
901 * netdev_features_t features);
902 * Adjusts the requested feature flags according to device-specific
903 * constraints, and returns the resulting flags. Must not modify
904 * the device state.
905 *
906 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
907 * Called to update device configuration to new features. Passed
908 * feature set might be less than what was returned by ndo_fix_features()).
909 * Must return >0 or -errno if it changed dev->features itself.
910 *
911 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
912 * struct net_device *dev,
913 * const unsigned char *addr, u16 flags)
914 * Adds an FDB entry to dev for addr.
915 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
916 * struct net_device *dev,
917 * const unsigned char *addr)
918 * Deletes the FDB entry from dev coresponding to addr.
919 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
920 * struct net_device *dev, int idx)
921 * Used to add FDB entries to dump requests. Implementers should add
922 * entries to skb and update idx with the number of entries.
923 *
924 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
925 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
926 * struct net_device *dev, u32 filter_mask)
927 *
928 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
929 * Called to change device carrier. Soft-devices (like dummy, team, etc)
930 * which do not represent real hardware may define this to allow their
931 * userspace components to manage their virtual carrier state. Devices
932 * that determine carrier state from physical hardware properties (eg
933 * network cables) or protocol-dependent mechanisms (eg
934 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
935 */
936 struct net_device_ops {
937 int (*ndo_init)(struct net_device *dev);
938 void (*ndo_uninit)(struct net_device *dev);
939 int (*ndo_open)(struct net_device *dev);
940 int (*ndo_stop)(struct net_device *dev);
941 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
942 struct net_device *dev);
943 u16 (*ndo_select_queue)(struct net_device *dev,
944 struct sk_buff *skb);
945 void (*ndo_change_rx_flags)(struct net_device *dev,
946 int flags);
947 void (*ndo_set_rx_mode)(struct net_device *dev);
948 int (*ndo_set_mac_address)(struct net_device *dev,
949 void *addr);
950 int (*ndo_validate_addr)(struct net_device *dev);
951 int (*ndo_do_ioctl)(struct net_device *dev,
952 struct ifreq *ifr, int cmd);
953 int (*ndo_set_config)(struct net_device *dev,
954 struct ifmap *map);
955 int (*ndo_change_mtu)(struct net_device *dev,
956 int new_mtu);
957 int (*ndo_neigh_setup)(struct net_device *dev,
958 struct neigh_parms *);
959 void (*ndo_tx_timeout) (struct net_device *dev);
960
961 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
962 struct rtnl_link_stats64 *storage);
963 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
964
965 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
966 __be16 proto, u16 vid);
967 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
968 __be16 proto, u16 vid);
969 #ifdef CONFIG_NET_POLL_CONTROLLER
970 void (*ndo_poll_controller)(struct net_device *dev);
971 int (*ndo_netpoll_setup)(struct net_device *dev,
972 struct netpoll_info *info,
973 gfp_t gfp);
974 void (*ndo_netpoll_cleanup)(struct net_device *dev);
975 #endif
976 #ifdef CONFIG_NET_RX_BUSY_POLL
977 int (*ndo_busy_poll)(struct napi_struct *dev);
978 #endif
979 int (*ndo_set_vf_mac)(struct net_device *dev,
980 int queue, u8 *mac);
981 int (*ndo_set_vf_vlan)(struct net_device *dev,
982 int queue, u16 vlan, u8 qos);
983 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
984 int vf, int rate);
985 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
986 int vf, bool setting);
987 int (*ndo_get_vf_config)(struct net_device *dev,
988 int vf,
989 struct ifla_vf_info *ivf);
990 int (*ndo_set_vf_link_state)(struct net_device *dev,
991 int vf, int link_state);
992 int (*ndo_set_vf_port)(struct net_device *dev,
993 int vf,
994 struct nlattr *port[]);
995 int (*ndo_get_vf_port)(struct net_device *dev,
996 int vf, struct sk_buff *skb);
997 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
998 #if IS_ENABLED(CONFIG_FCOE)
999 int (*ndo_fcoe_enable)(struct net_device *dev);
1000 int (*ndo_fcoe_disable)(struct net_device *dev);
1001 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1002 u16 xid,
1003 struct scatterlist *sgl,
1004 unsigned int sgc);
1005 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1006 u16 xid);
1007 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1008 u16 xid,
1009 struct scatterlist *sgl,
1010 unsigned int sgc);
1011 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1012 struct netdev_fcoe_hbainfo *hbainfo);
1013 #endif
1014
1015 #if IS_ENABLED(CONFIG_LIBFCOE)
1016 #define NETDEV_FCOE_WWNN 0
1017 #define NETDEV_FCOE_WWPN 1
1018 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1019 u64 *wwn, int type);
1020 #endif
1021
1022 #ifdef CONFIG_RFS_ACCEL
1023 int (*ndo_rx_flow_steer)(struct net_device *dev,
1024 const struct sk_buff *skb,
1025 u16 rxq_index,
1026 u32 flow_id);
1027 #endif
1028 int (*ndo_add_slave)(struct net_device *dev,
1029 struct net_device *slave_dev);
1030 int (*ndo_del_slave)(struct net_device *dev,
1031 struct net_device *slave_dev);
1032 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1033 netdev_features_t features);
1034 int (*ndo_set_features)(struct net_device *dev,
1035 netdev_features_t features);
1036 int (*ndo_neigh_construct)(struct neighbour *n);
1037 void (*ndo_neigh_destroy)(struct neighbour *n);
1038
1039 int (*ndo_fdb_add)(struct ndmsg *ndm,
1040 struct nlattr *tb[],
1041 struct net_device *dev,
1042 const unsigned char *addr,
1043 u16 flags);
1044 int (*ndo_fdb_del)(struct ndmsg *ndm,
1045 struct nlattr *tb[],
1046 struct net_device *dev,
1047 const unsigned char *addr);
1048 int (*ndo_fdb_dump)(struct sk_buff *skb,
1049 struct netlink_callback *cb,
1050 struct net_device *dev,
1051 int idx);
1052
1053 int (*ndo_bridge_setlink)(struct net_device *dev,
1054 struct nlmsghdr *nlh);
1055 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1056 u32 pid, u32 seq,
1057 struct net_device *dev,
1058 u32 filter_mask);
1059 int (*ndo_bridge_dellink)(struct net_device *dev,
1060 struct nlmsghdr *nlh);
1061 int (*ndo_change_carrier)(struct net_device *dev,
1062 bool new_carrier);
1063 };
1064
1065 /*
1066 * The DEVICE structure.
1067 * Actually, this whole structure is a big mistake. It mixes I/O
1068 * data with strictly "high-level" data, and it has to know about
1069 * almost every data structure used in the INET module.
1070 *
1071 * FIXME: cleanup struct net_device such that network protocol info
1072 * moves out.
1073 */
1074
1075 struct net_device {
1076
1077 /*
1078 * This is the first field of the "visible" part of this structure
1079 * (i.e. as seen by users in the "Space.c" file). It is the name
1080 * of the interface.
1081 */
1082 char name[IFNAMSIZ];
1083
1084 /* device name hash chain, please keep it close to name[] */
1085 struct hlist_node name_hlist;
1086
1087 /* snmp alias */
1088 char *ifalias;
1089
1090 /*
1091 * I/O specific fields
1092 * FIXME: Merge these and struct ifmap into one
1093 */
1094 unsigned long mem_end; /* shared mem end */
1095 unsigned long mem_start; /* shared mem start */
1096 unsigned long base_addr; /* device I/O address */
1097 unsigned int irq; /* device IRQ number */
1098
1099 /*
1100 * Some hardware also needs these fields, but they are not
1101 * part of the usual set specified in Space.c.
1102 */
1103
1104 unsigned long state;
1105
1106 struct list_head dev_list;
1107 struct list_head napi_list;
1108 struct list_head unreg_list;
1109 struct list_head upper_dev_list; /* List of upper devices */
1110
1111
1112 /* currently active device features */
1113 netdev_features_t features;
1114 /* user-changeable features */
1115 netdev_features_t hw_features;
1116 /* user-requested features */
1117 netdev_features_t wanted_features;
1118 /* mask of features inheritable by VLAN devices */
1119 netdev_features_t vlan_features;
1120 /* mask of features inherited by encapsulating devices
1121 * This field indicates what encapsulation offloads
1122 * the hardware is capable of doing, and drivers will
1123 * need to set them appropriately.
1124 */
1125 netdev_features_t hw_enc_features;
1126 /* mask of fetures inheritable by MPLS */
1127 netdev_features_t mpls_features;
1128
1129 /* Interface index. Unique device identifier */
1130 int ifindex;
1131 int iflink;
1132
1133 struct net_device_stats stats;
1134 atomic_long_t rx_dropped; /* dropped packets by core network
1135 * Do not use this in drivers.
1136 */
1137
1138 #ifdef CONFIG_WIRELESS_EXT
1139 /* List of functions to handle Wireless Extensions (instead of ioctl).
1140 * See <net/iw_handler.h> for details. Jean II */
1141 const struct iw_handler_def * wireless_handlers;
1142 /* Instance data managed by the core of Wireless Extensions. */
1143 struct iw_public_data * wireless_data;
1144 #endif
1145 /* Management operations */
1146 const struct net_device_ops *netdev_ops;
1147 const struct ethtool_ops *ethtool_ops;
1148
1149 /* Hardware header description */
1150 const struct header_ops *header_ops;
1151
1152 unsigned int flags; /* interface flags (a la BSD) */
1153 unsigned int priv_flags; /* Like 'flags' but invisible to userspace.
1154 * See if.h for definitions. */
1155 unsigned short gflags;
1156 unsigned short padded; /* How much padding added by alloc_netdev() */
1157
1158 unsigned char operstate; /* RFC2863 operstate */
1159 unsigned char link_mode; /* mapping policy to operstate */
1160
1161 unsigned char if_port; /* Selectable AUI, TP,..*/
1162 unsigned char dma; /* DMA channel */
1163
1164 unsigned int mtu; /* interface MTU value */
1165 unsigned short type; /* interface hardware type */
1166 unsigned short hard_header_len; /* hardware hdr length */
1167
1168 /* extra head- and tailroom the hardware may need, but not in all cases
1169 * can this be guaranteed, especially tailroom. Some cases also use
1170 * LL_MAX_HEADER instead to allocate the skb.
1171 */
1172 unsigned short needed_headroom;
1173 unsigned short needed_tailroom;
1174
1175 /* Interface address info. */
1176 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1177 unsigned char addr_assign_type; /* hw address assignment type */
1178 unsigned char addr_len; /* hardware address length */
1179 unsigned char neigh_priv_len;
1180 unsigned short dev_id; /* Used to differentiate devices
1181 * that share the same link
1182 * layer address
1183 */
1184 spinlock_t addr_list_lock;
1185 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
1186 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
1187 struct netdev_hw_addr_list dev_addrs; /* list of device
1188 * hw addresses
1189 */
1190 #ifdef CONFIG_SYSFS
1191 struct kset *queues_kset;
1192 #endif
1193
1194 bool uc_promisc;
1195 unsigned int promiscuity;
1196 unsigned int allmulti;
1197
1198
1199 /* Protocol specific pointers */
1200
1201 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1202 struct vlan_info __rcu *vlan_info; /* VLAN info */
1203 #endif
1204 #if IS_ENABLED(CONFIG_NET_DSA)
1205 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */
1206 #endif
1207 void *atalk_ptr; /* AppleTalk link */
1208 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1209 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1210 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1211 void *ax25_ptr; /* AX.25 specific data */
1212 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1213 assign before registering */
1214
1215 /*
1216 * Cache lines mostly used on receive path (including eth_type_trans())
1217 */
1218 unsigned long last_rx; /* Time of last Rx
1219 * This should not be set in
1220 * drivers, unless really needed,
1221 * because network stack (bonding)
1222 * use it if/when necessary, to
1223 * avoid dirtying this cache line.
1224 */
1225
1226 /* Interface address info used in eth_type_trans() */
1227 unsigned char *dev_addr; /* hw address, (before bcast
1228 because most packets are
1229 unicast) */
1230
1231
1232 #ifdef CONFIG_RPS
1233 struct netdev_rx_queue *_rx;
1234
1235 /* Number of RX queues allocated at register_netdev() time */
1236 unsigned int num_rx_queues;
1237
1238 /* Number of RX queues currently active in device */
1239 unsigned int real_num_rx_queues;
1240
1241 #endif
1242
1243 rx_handler_func_t __rcu *rx_handler;
1244 void __rcu *rx_handler_data;
1245
1246 struct netdev_queue __rcu *ingress_queue;
1247 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1248
1249
1250 /*
1251 * Cache lines mostly used on transmit path
1252 */
1253 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1254
1255 /* Number of TX queues allocated at alloc_netdev_mq() time */
1256 unsigned int num_tx_queues;
1257
1258 /* Number of TX queues currently active in device */
1259 unsigned int real_num_tx_queues;
1260
1261 /* root qdisc from userspace point of view */
1262 struct Qdisc *qdisc;
1263
1264 unsigned long tx_queue_len; /* Max frames per queue allowed */
1265 spinlock_t tx_global_lock;
1266
1267 #ifdef CONFIG_XPS
1268 struct xps_dev_maps __rcu *xps_maps;
1269 #endif
1270 #ifdef CONFIG_RFS_ACCEL
1271 /* CPU reverse-mapping for RX completion interrupts, indexed
1272 * by RX queue number. Assigned by driver. This must only be
1273 * set if the ndo_rx_flow_steer operation is defined. */
1274 struct cpu_rmap *rx_cpu_rmap;
1275 #endif
1276
1277 /* These may be needed for future network-power-down code. */
1278
1279 /*
1280 * trans_start here is expensive for high speed devices on SMP,
1281 * please use netdev_queue->trans_start instead.
1282 */
1283 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1284
1285 int watchdog_timeo; /* used by dev_watchdog() */
1286 struct timer_list watchdog_timer;
1287
1288 /* Number of references to this device */
1289 int __percpu *pcpu_refcnt;
1290
1291 /* delayed register/unregister */
1292 struct list_head todo_list;
1293 /* device index hash chain */
1294 struct hlist_node index_hlist;
1295
1296 struct list_head link_watch_list;
1297
1298 /* register/unregister state machine */
1299 enum { NETREG_UNINITIALIZED=0,
1300 NETREG_REGISTERED, /* completed register_netdevice */
1301 NETREG_UNREGISTERING, /* called unregister_netdevice */
1302 NETREG_UNREGISTERED, /* completed unregister todo */
1303 NETREG_RELEASED, /* called free_netdev */
1304 NETREG_DUMMY, /* dummy device for NAPI poll */
1305 } reg_state:8;
1306
1307 bool dismantle; /* device is going do be freed */
1308
1309 enum {
1310 RTNL_LINK_INITIALIZED,
1311 RTNL_LINK_INITIALIZING,
1312 } rtnl_link_state:16;
1313
1314 /* Called from unregister, can be used to call free_netdev */
1315 void (*destructor)(struct net_device *dev);
1316
1317 #ifdef CONFIG_NETPOLL
1318 struct netpoll_info __rcu *npinfo;
1319 #endif
1320
1321 #ifdef CONFIG_NET_NS
1322 /* Network namespace this network device is inside */
1323 struct net *nd_net;
1324 #endif
1325
1326 /* mid-layer private */
1327 union {
1328 void *ml_priv;
1329 struct pcpu_lstats __percpu *lstats; /* loopback stats */
1330 struct pcpu_tstats __percpu *tstats; /* tunnel stats */
1331 struct pcpu_dstats __percpu *dstats; /* dummy stats */
1332 struct pcpu_vstats __percpu *vstats; /* veth stats */
1333 };
1334 /* GARP */
1335 struct garp_port __rcu *garp_port;
1336 /* MRP */
1337 struct mrp_port __rcu *mrp_port;
1338
1339 /* class/net/name entry */
1340 struct device dev;
1341 /* space for optional device, statistics, and wireless sysfs groups */
1342 const struct attribute_group *sysfs_groups[4];
1343
1344 /* rtnetlink link ops */
1345 const struct rtnl_link_ops *rtnl_link_ops;
1346
1347 /* for setting kernel sock attribute on TCP connection setup */
1348 #define GSO_MAX_SIZE 65536
1349 unsigned int gso_max_size;
1350 #define GSO_MAX_SEGS 65535
1351 u16 gso_max_segs;
1352
1353 #ifdef CONFIG_DCB
1354 /* Data Center Bridging netlink ops */
1355 const struct dcbnl_rtnl_ops *dcbnl_ops;
1356 #endif
1357 u8 num_tc;
1358 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1359 u8 prio_tc_map[TC_BITMASK + 1];
1360
1361 #if IS_ENABLED(CONFIG_FCOE)
1362 /* max exchange id for FCoE LRO by ddp */
1363 unsigned int fcoe_ddp_xid;
1364 #endif
1365 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1366 struct netprio_map __rcu *priomap;
1367 #endif
1368 /* phy device may attach itself for hardware timestamping */
1369 struct phy_device *phydev;
1370
1371 struct lock_class_key *qdisc_tx_busylock;
1372
1373 /* group the device belongs to */
1374 int group;
1375
1376 struct pm_qos_request pm_qos_req;
1377 };
1378 #define to_net_dev(d) container_of(d, struct net_device, dev)
1379
1380 #define NETDEV_ALIGN 32
1381
1382 static inline
1383 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1384 {
1385 return dev->prio_tc_map[prio & TC_BITMASK];
1386 }
1387
1388 static inline
1389 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1390 {
1391 if (tc >= dev->num_tc)
1392 return -EINVAL;
1393
1394 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1395 return 0;
1396 }
1397
1398 static inline
1399 void netdev_reset_tc(struct net_device *dev)
1400 {
1401 dev->num_tc = 0;
1402 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1403 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1404 }
1405
1406 static inline
1407 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1408 {
1409 if (tc >= dev->num_tc)
1410 return -EINVAL;
1411
1412 dev->tc_to_txq[tc].count = count;
1413 dev->tc_to_txq[tc].offset = offset;
1414 return 0;
1415 }
1416
1417 static inline
1418 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1419 {
1420 if (num_tc > TC_MAX_QUEUE)
1421 return -EINVAL;
1422
1423 dev->num_tc = num_tc;
1424 return 0;
1425 }
1426
1427 static inline
1428 int netdev_get_num_tc(struct net_device *dev)
1429 {
1430 return dev->num_tc;
1431 }
1432
1433 static inline
1434 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1435 unsigned int index)
1436 {
1437 return &dev->_tx[index];
1438 }
1439
1440 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1441 void (*f)(struct net_device *,
1442 struct netdev_queue *,
1443 void *),
1444 void *arg)
1445 {
1446 unsigned int i;
1447
1448 for (i = 0; i < dev->num_tx_queues; i++)
1449 f(dev, &dev->_tx[i], arg);
1450 }
1451
1452 extern struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1453 struct sk_buff *skb);
1454 extern u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb);
1455
1456 /*
1457 * Net namespace inlines
1458 */
1459 static inline
1460 struct net *dev_net(const struct net_device *dev)
1461 {
1462 return read_pnet(&dev->nd_net);
1463 }
1464
1465 static inline
1466 void dev_net_set(struct net_device *dev, struct net *net)
1467 {
1468 #ifdef CONFIG_NET_NS
1469 release_net(dev->nd_net);
1470 dev->nd_net = hold_net(net);
1471 #endif
1472 }
1473
1474 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1475 {
1476 #ifdef CONFIG_NET_DSA_TAG_DSA
1477 if (dev->dsa_ptr != NULL)
1478 return dsa_uses_dsa_tags(dev->dsa_ptr);
1479 #endif
1480
1481 return 0;
1482 }
1483
1484 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1485 {
1486 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1487 if (dev->dsa_ptr != NULL)
1488 return dsa_uses_trailer_tags(dev->dsa_ptr);
1489 #endif
1490
1491 return 0;
1492 }
1493
1494 /**
1495 * netdev_priv - access network device private data
1496 * @dev: network device
1497 *
1498 * Get network device private data
1499 */
1500 static inline void *netdev_priv(const struct net_device *dev)
1501 {
1502 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1503 }
1504
1505 /* Set the sysfs physical device reference for the network logical device
1506 * if set prior to registration will cause a symlink during initialization.
1507 */
1508 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1509
1510 /* Set the sysfs device type for the network logical device to allow
1511 * fin grained indentification of different network device types. For
1512 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1513 */
1514 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1515
1516 /* Default NAPI poll() weight
1517 * Device drivers are strongly advised to not use bigger value
1518 */
1519 #define NAPI_POLL_WEIGHT 64
1520
1521 /**
1522 * netif_napi_add - initialize a napi context
1523 * @dev: network device
1524 * @napi: napi context
1525 * @poll: polling function
1526 * @weight: default weight
1527 *
1528 * netif_napi_add() must be used to initialize a napi context prior to calling
1529 * *any* of the other napi related functions.
1530 */
1531 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1532 int (*poll)(struct napi_struct *, int), int weight);
1533
1534 /**
1535 * netif_napi_del - remove a napi context
1536 * @napi: napi context
1537 *
1538 * netif_napi_del() removes a napi context from the network device napi list
1539 */
1540 void netif_napi_del(struct napi_struct *napi);
1541
1542 struct napi_gro_cb {
1543 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1544 void *frag0;
1545
1546 /* Length of frag0. */
1547 unsigned int frag0_len;
1548
1549 /* This indicates where we are processing relative to skb->data. */
1550 int data_offset;
1551
1552 /* This is non-zero if the packet cannot be merged with the new skb. */
1553 int flush;
1554
1555 /* Number of segments aggregated. */
1556 u16 count;
1557
1558 /* This is non-zero if the packet may be of the same flow. */
1559 u8 same_flow;
1560
1561 /* Free the skb? */
1562 u8 free;
1563 #define NAPI_GRO_FREE 1
1564 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1565
1566 /* jiffies when first packet was created/queued */
1567 unsigned long age;
1568
1569 /* Used in ipv6_gro_receive() */
1570 int proto;
1571
1572 /* used in skb_gro_receive() slow path */
1573 struct sk_buff *last;
1574 };
1575
1576 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1577
1578 struct packet_type {
1579 __be16 type; /* This is really htons(ether_type). */
1580 struct net_device *dev; /* NULL is wildcarded here */
1581 int (*func) (struct sk_buff *,
1582 struct net_device *,
1583 struct packet_type *,
1584 struct net_device *);
1585 bool (*id_match)(struct packet_type *ptype,
1586 struct sock *sk);
1587 void *af_packet_priv;
1588 struct list_head list;
1589 };
1590
1591 struct offload_callbacks {
1592 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1593 netdev_features_t features);
1594 int (*gso_send_check)(struct sk_buff *skb);
1595 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1596 struct sk_buff *skb);
1597 int (*gro_complete)(struct sk_buff *skb);
1598 };
1599
1600 struct packet_offload {
1601 __be16 type; /* This is really htons(ether_type). */
1602 struct offload_callbacks callbacks;
1603 struct list_head list;
1604 };
1605
1606 #include <linux/notifier.h>
1607
1608 /* netdevice notifier chain. Please remember to update the rtnetlink
1609 * notification exclusion list in rtnetlink_event() when adding new
1610 * types.
1611 */
1612 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
1613 #define NETDEV_DOWN 0x0002
1614 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
1615 detected a hardware crash and restarted
1616 - we can use this eg to kick tcp sessions
1617 once done */
1618 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
1619 #define NETDEV_REGISTER 0x0005
1620 #define NETDEV_UNREGISTER 0x0006
1621 #define NETDEV_CHANGEMTU 0x0007
1622 #define NETDEV_CHANGEADDR 0x0008
1623 #define NETDEV_GOING_DOWN 0x0009
1624 #define NETDEV_CHANGENAME 0x000A
1625 #define NETDEV_FEAT_CHANGE 0x000B
1626 #define NETDEV_BONDING_FAILOVER 0x000C
1627 #define NETDEV_PRE_UP 0x000D
1628 #define NETDEV_PRE_TYPE_CHANGE 0x000E
1629 #define NETDEV_POST_TYPE_CHANGE 0x000F
1630 #define NETDEV_POST_INIT 0x0010
1631 #define NETDEV_UNREGISTER_FINAL 0x0011
1632 #define NETDEV_RELEASE 0x0012
1633 #define NETDEV_NOTIFY_PEERS 0x0013
1634 #define NETDEV_JOIN 0x0014
1635 #define NETDEV_CHANGEUPPER 0x0015
1636
1637 extern int register_netdevice_notifier(struct notifier_block *nb);
1638 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1639
1640 struct netdev_notifier_info {
1641 struct net_device *dev;
1642 };
1643
1644 struct netdev_notifier_change_info {
1645 struct netdev_notifier_info info; /* must be first */
1646 unsigned int flags_changed;
1647 };
1648
1649 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
1650 struct net_device *dev)
1651 {
1652 info->dev = dev;
1653 }
1654
1655 static inline struct net_device *
1656 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
1657 {
1658 return info->dev;
1659 }
1660
1661 extern int call_netdevice_notifiers_info(unsigned long val, struct net_device *dev,
1662 struct netdev_notifier_info *info);
1663 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1664
1665
1666 extern rwlock_t dev_base_lock; /* Device list lock */
1667
1668 extern seqcount_t devnet_rename_seq; /* Device rename seq */
1669
1670
1671 #define for_each_netdev(net, d) \
1672 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1673 #define for_each_netdev_reverse(net, d) \
1674 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1675 #define for_each_netdev_rcu(net, d) \
1676 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1677 #define for_each_netdev_safe(net, d, n) \
1678 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1679 #define for_each_netdev_continue(net, d) \
1680 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1681 #define for_each_netdev_continue_rcu(net, d) \
1682 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1683 #define for_each_netdev_in_bond_rcu(bond, slave) \
1684 for_each_netdev_rcu(&init_net, slave) \
1685 if (netdev_master_upper_dev_get_rcu(slave) == bond)
1686 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1687
1688 static inline struct net_device *next_net_device(struct net_device *dev)
1689 {
1690 struct list_head *lh;
1691 struct net *net;
1692
1693 net = dev_net(dev);
1694 lh = dev->dev_list.next;
1695 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1696 }
1697
1698 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1699 {
1700 struct list_head *lh;
1701 struct net *net;
1702
1703 net = dev_net(dev);
1704 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1705 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1706 }
1707
1708 static inline struct net_device *first_net_device(struct net *net)
1709 {
1710 return list_empty(&net->dev_base_head) ? NULL :
1711 net_device_entry(net->dev_base_head.next);
1712 }
1713
1714 static inline struct net_device *first_net_device_rcu(struct net *net)
1715 {
1716 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1717
1718 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1719 }
1720
1721 extern int netdev_boot_setup_check(struct net_device *dev);
1722 extern unsigned long netdev_boot_base(const char *prefix, int unit);
1723 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1724 const char *hwaddr);
1725 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1726 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1727 extern void dev_add_pack(struct packet_type *pt);
1728 extern void dev_remove_pack(struct packet_type *pt);
1729 extern void __dev_remove_pack(struct packet_type *pt);
1730 extern void dev_add_offload(struct packet_offload *po);
1731 extern void dev_remove_offload(struct packet_offload *po);
1732 extern void __dev_remove_offload(struct packet_offload *po);
1733
1734 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1735 unsigned short mask);
1736 extern struct net_device *dev_get_by_name(struct net *net, const char *name);
1737 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1738 extern struct net_device *__dev_get_by_name(struct net *net, const char *name);
1739 extern int dev_alloc_name(struct net_device *dev, const char *name);
1740 extern int dev_open(struct net_device *dev);
1741 extern int dev_close(struct net_device *dev);
1742 extern void dev_disable_lro(struct net_device *dev);
1743 extern int dev_loopback_xmit(struct sk_buff *newskb);
1744 extern int dev_queue_xmit(struct sk_buff *skb);
1745 extern int register_netdevice(struct net_device *dev);
1746 extern void unregister_netdevice_queue(struct net_device *dev,
1747 struct list_head *head);
1748 extern void unregister_netdevice_many(struct list_head *head);
1749 static inline void unregister_netdevice(struct net_device *dev)
1750 {
1751 unregister_netdevice_queue(dev, NULL);
1752 }
1753
1754 extern int netdev_refcnt_read(const struct net_device *dev);
1755 extern void free_netdev(struct net_device *dev);
1756 extern void synchronize_net(void);
1757 extern int init_dummy_netdev(struct net_device *dev);
1758
1759 extern struct net_device *dev_get_by_index(struct net *net, int ifindex);
1760 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1761 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1762 extern int netdev_get_name(struct net *net, char *name, int ifindex);
1763 extern int dev_restart(struct net_device *dev);
1764 #ifdef CONFIG_NETPOLL_TRAP
1765 extern int netpoll_trap(void);
1766 #endif
1767 extern int skb_gro_receive(struct sk_buff **head,
1768 struct sk_buff *skb);
1769
1770 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1771 {
1772 return NAPI_GRO_CB(skb)->data_offset;
1773 }
1774
1775 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1776 {
1777 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1778 }
1779
1780 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1781 {
1782 NAPI_GRO_CB(skb)->data_offset += len;
1783 }
1784
1785 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1786 unsigned int offset)
1787 {
1788 return NAPI_GRO_CB(skb)->frag0 + offset;
1789 }
1790
1791 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1792 {
1793 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1794 }
1795
1796 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1797 unsigned int offset)
1798 {
1799 if (!pskb_may_pull(skb, hlen))
1800 return NULL;
1801
1802 NAPI_GRO_CB(skb)->frag0 = NULL;
1803 NAPI_GRO_CB(skb)->frag0_len = 0;
1804 return skb->data + offset;
1805 }
1806
1807 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1808 {
1809 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1810 }
1811
1812 static inline void *skb_gro_network_header(struct sk_buff *skb)
1813 {
1814 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1815 skb_network_offset(skb);
1816 }
1817
1818 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1819 unsigned short type,
1820 const void *daddr, const void *saddr,
1821 unsigned int len)
1822 {
1823 if (!dev->header_ops || !dev->header_ops->create)
1824 return 0;
1825
1826 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1827 }
1828
1829 static inline int dev_parse_header(const struct sk_buff *skb,
1830 unsigned char *haddr)
1831 {
1832 const struct net_device *dev = skb->dev;
1833
1834 if (!dev->header_ops || !dev->header_ops->parse)
1835 return 0;
1836 return dev->header_ops->parse(skb, haddr);
1837 }
1838
1839 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1840 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1841 static inline int unregister_gifconf(unsigned int family)
1842 {
1843 return register_gifconf(family, NULL);
1844 }
1845
1846 #ifdef CONFIG_NET_FLOW_LIMIT
1847 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
1848 struct sd_flow_limit {
1849 u64 count;
1850 unsigned int num_buckets;
1851 unsigned int history_head;
1852 u16 history[FLOW_LIMIT_HISTORY];
1853 u8 buckets[];
1854 };
1855
1856 extern int netdev_flow_limit_table_len;
1857 #endif /* CONFIG_NET_FLOW_LIMIT */
1858
1859 /*
1860 * Incoming packets are placed on per-cpu queues
1861 */
1862 struct softnet_data {
1863 struct Qdisc *output_queue;
1864 struct Qdisc **output_queue_tailp;
1865 struct list_head poll_list;
1866 struct sk_buff *completion_queue;
1867 struct sk_buff_head process_queue;
1868
1869 /* stats */
1870 unsigned int processed;
1871 unsigned int time_squeeze;
1872 unsigned int cpu_collision;
1873 unsigned int received_rps;
1874
1875 #ifdef CONFIG_RPS
1876 struct softnet_data *rps_ipi_list;
1877
1878 /* Elements below can be accessed between CPUs for RPS */
1879 struct call_single_data csd ____cacheline_aligned_in_smp;
1880 struct softnet_data *rps_ipi_next;
1881 unsigned int cpu;
1882 unsigned int input_queue_head;
1883 unsigned int input_queue_tail;
1884 #endif
1885 unsigned int dropped;
1886 struct sk_buff_head input_pkt_queue;
1887 struct napi_struct backlog;
1888
1889 #ifdef CONFIG_NET_FLOW_LIMIT
1890 struct sd_flow_limit __rcu *flow_limit;
1891 #endif
1892 };
1893
1894 static inline void input_queue_head_incr(struct softnet_data *sd)
1895 {
1896 #ifdef CONFIG_RPS
1897 sd->input_queue_head++;
1898 #endif
1899 }
1900
1901 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1902 unsigned int *qtail)
1903 {
1904 #ifdef CONFIG_RPS
1905 *qtail = ++sd->input_queue_tail;
1906 #endif
1907 }
1908
1909 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1910
1911 extern void __netif_schedule(struct Qdisc *q);
1912
1913 static inline void netif_schedule_queue(struct netdev_queue *txq)
1914 {
1915 if (!(txq->state & QUEUE_STATE_ANY_XOFF))
1916 __netif_schedule(txq->qdisc);
1917 }
1918
1919 static inline void netif_tx_schedule_all(struct net_device *dev)
1920 {
1921 unsigned int i;
1922
1923 for (i = 0; i < dev->num_tx_queues; i++)
1924 netif_schedule_queue(netdev_get_tx_queue(dev, i));
1925 }
1926
1927 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1928 {
1929 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1930 }
1931
1932 /**
1933 * netif_start_queue - allow transmit
1934 * @dev: network device
1935 *
1936 * Allow upper layers to call the device hard_start_xmit routine.
1937 */
1938 static inline void netif_start_queue(struct net_device *dev)
1939 {
1940 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1941 }
1942
1943 static inline void netif_tx_start_all_queues(struct net_device *dev)
1944 {
1945 unsigned int i;
1946
1947 for (i = 0; i < dev->num_tx_queues; i++) {
1948 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1949 netif_tx_start_queue(txq);
1950 }
1951 }
1952
1953 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1954 {
1955 #ifdef CONFIG_NETPOLL_TRAP
1956 if (netpoll_trap()) {
1957 netif_tx_start_queue(dev_queue);
1958 return;
1959 }
1960 #endif
1961 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
1962 __netif_schedule(dev_queue->qdisc);
1963 }
1964
1965 /**
1966 * netif_wake_queue - restart transmit
1967 * @dev: network device
1968 *
1969 * Allow upper layers to call the device hard_start_xmit routine.
1970 * Used for flow control when transmit resources are available.
1971 */
1972 static inline void netif_wake_queue(struct net_device *dev)
1973 {
1974 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1975 }
1976
1977 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1978 {
1979 unsigned int i;
1980
1981 for (i = 0; i < dev->num_tx_queues; i++) {
1982 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1983 netif_tx_wake_queue(txq);
1984 }
1985 }
1986
1987 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1988 {
1989 if (WARN_ON(!dev_queue)) {
1990 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1991 return;
1992 }
1993 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1994 }
1995
1996 /**
1997 * netif_stop_queue - stop transmitted packets
1998 * @dev: network device
1999 *
2000 * Stop upper layers calling the device hard_start_xmit routine.
2001 * Used for flow control when transmit resources are unavailable.
2002 */
2003 static inline void netif_stop_queue(struct net_device *dev)
2004 {
2005 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2006 }
2007
2008 static inline void netif_tx_stop_all_queues(struct net_device *dev)
2009 {
2010 unsigned int i;
2011
2012 for (i = 0; i < dev->num_tx_queues; i++) {
2013 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2014 netif_tx_stop_queue(txq);
2015 }
2016 }
2017
2018 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2019 {
2020 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2021 }
2022
2023 /**
2024 * netif_queue_stopped - test if transmit queue is flowblocked
2025 * @dev: network device
2026 *
2027 * Test if transmit queue on device is currently unable to send.
2028 */
2029 static inline bool netif_queue_stopped(const struct net_device *dev)
2030 {
2031 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2032 }
2033
2034 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2035 {
2036 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2037 }
2038
2039 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2040 {
2041 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2042 }
2043
2044 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2045 unsigned int bytes)
2046 {
2047 #ifdef CONFIG_BQL
2048 dql_queued(&dev_queue->dql, bytes);
2049
2050 if (likely(dql_avail(&dev_queue->dql) >= 0))
2051 return;
2052
2053 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2054
2055 /*
2056 * The XOFF flag must be set before checking the dql_avail below,
2057 * because in netdev_tx_completed_queue we update the dql_completed
2058 * before checking the XOFF flag.
2059 */
2060 smp_mb();
2061
2062 /* check again in case another CPU has just made room avail */
2063 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2064 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2065 #endif
2066 }
2067
2068 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2069 {
2070 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2071 }
2072
2073 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2074 unsigned int pkts, unsigned int bytes)
2075 {
2076 #ifdef CONFIG_BQL
2077 if (unlikely(!bytes))
2078 return;
2079
2080 dql_completed(&dev_queue->dql, bytes);
2081
2082 /*
2083 * Without the memory barrier there is a small possiblity that
2084 * netdev_tx_sent_queue will miss the update and cause the queue to
2085 * be stopped forever
2086 */
2087 smp_mb();
2088
2089 if (dql_avail(&dev_queue->dql) < 0)
2090 return;
2091
2092 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2093 netif_schedule_queue(dev_queue);
2094 #endif
2095 }
2096
2097 static inline void netdev_completed_queue(struct net_device *dev,
2098 unsigned int pkts, unsigned int bytes)
2099 {
2100 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2101 }
2102
2103 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2104 {
2105 #ifdef CONFIG_BQL
2106 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2107 dql_reset(&q->dql);
2108 #endif
2109 }
2110
2111 static inline void netdev_reset_queue(struct net_device *dev_queue)
2112 {
2113 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2114 }
2115
2116 /**
2117 * netif_running - test if up
2118 * @dev: network device
2119 *
2120 * Test if the device has been brought up.
2121 */
2122 static inline bool netif_running(const struct net_device *dev)
2123 {
2124 return test_bit(__LINK_STATE_START, &dev->state);
2125 }
2126
2127 /*
2128 * Routines to manage the subqueues on a device. We only need start
2129 * stop, and a check if it's stopped. All other device management is
2130 * done at the overall netdevice level.
2131 * Also test the device if we're multiqueue.
2132 */
2133
2134 /**
2135 * netif_start_subqueue - allow sending packets on subqueue
2136 * @dev: network device
2137 * @queue_index: sub queue index
2138 *
2139 * Start individual transmit queue of a device with multiple transmit queues.
2140 */
2141 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2142 {
2143 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2144
2145 netif_tx_start_queue(txq);
2146 }
2147
2148 /**
2149 * netif_stop_subqueue - stop sending packets on subqueue
2150 * @dev: network device
2151 * @queue_index: sub queue index
2152 *
2153 * Stop individual transmit queue of a device with multiple transmit queues.
2154 */
2155 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2156 {
2157 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2158 #ifdef CONFIG_NETPOLL_TRAP
2159 if (netpoll_trap())
2160 return;
2161 #endif
2162 netif_tx_stop_queue(txq);
2163 }
2164
2165 /**
2166 * netif_subqueue_stopped - test status of subqueue
2167 * @dev: network device
2168 * @queue_index: sub queue index
2169 *
2170 * Check individual transmit queue of a device with multiple transmit queues.
2171 */
2172 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2173 u16 queue_index)
2174 {
2175 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2176
2177 return netif_tx_queue_stopped(txq);
2178 }
2179
2180 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2181 struct sk_buff *skb)
2182 {
2183 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2184 }
2185
2186 /**
2187 * netif_wake_subqueue - allow sending packets on subqueue
2188 * @dev: network device
2189 * @queue_index: sub queue index
2190 *
2191 * Resume individual transmit queue of a device with multiple transmit queues.
2192 */
2193 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2194 {
2195 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2196 #ifdef CONFIG_NETPOLL_TRAP
2197 if (netpoll_trap())
2198 return;
2199 #endif
2200 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2201 __netif_schedule(txq->qdisc);
2202 }
2203
2204 #ifdef CONFIG_XPS
2205 extern int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask,
2206 u16 index);
2207 #else
2208 static inline int netif_set_xps_queue(struct net_device *dev,
2209 struct cpumask *mask,
2210 u16 index)
2211 {
2212 return 0;
2213 }
2214 #endif
2215
2216 /*
2217 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2218 * as a distribution range limit for the returned value.
2219 */
2220 static inline u16 skb_tx_hash(const struct net_device *dev,
2221 const struct sk_buff *skb)
2222 {
2223 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2224 }
2225
2226 /**
2227 * netif_is_multiqueue - test if device has multiple transmit queues
2228 * @dev: network device
2229 *
2230 * Check if device has multiple transmit queues
2231 */
2232 static inline bool netif_is_multiqueue(const struct net_device *dev)
2233 {
2234 return dev->num_tx_queues > 1;
2235 }
2236
2237 extern int netif_set_real_num_tx_queues(struct net_device *dev,
2238 unsigned int txq);
2239
2240 #ifdef CONFIG_RPS
2241 extern int netif_set_real_num_rx_queues(struct net_device *dev,
2242 unsigned int rxq);
2243 #else
2244 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2245 unsigned int rxq)
2246 {
2247 return 0;
2248 }
2249 #endif
2250
2251 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2252 const struct net_device *from_dev)
2253 {
2254 int err;
2255
2256 err = netif_set_real_num_tx_queues(to_dev,
2257 from_dev->real_num_tx_queues);
2258 if (err)
2259 return err;
2260 #ifdef CONFIG_RPS
2261 return netif_set_real_num_rx_queues(to_dev,
2262 from_dev->real_num_rx_queues);
2263 #else
2264 return 0;
2265 #endif
2266 }
2267
2268 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
2269 extern int netif_get_num_default_rss_queues(void);
2270
2271 /* Use this variant when it is known for sure that it
2272 * is executing from hardware interrupt context or with hardware interrupts
2273 * disabled.
2274 */
2275 extern void dev_kfree_skb_irq(struct sk_buff *skb);
2276
2277 /* Use this variant in places where it could be invoked
2278 * from either hardware interrupt or other context, with hardware interrupts
2279 * either disabled or enabled.
2280 */
2281 extern void dev_kfree_skb_any(struct sk_buff *skb);
2282
2283 extern int netif_rx(struct sk_buff *skb);
2284 extern int netif_rx_ni(struct sk_buff *skb);
2285 extern int netif_receive_skb(struct sk_buff *skb);
2286 extern gro_result_t napi_gro_receive(struct napi_struct *napi,
2287 struct sk_buff *skb);
2288 extern void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2289 extern struct sk_buff * napi_get_frags(struct napi_struct *napi);
2290 extern gro_result_t napi_gro_frags(struct napi_struct *napi);
2291
2292 static inline void napi_free_frags(struct napi_struct *napi)
2293 {
2294 kfree_skb(napi->skb);
2295 napi->skb = NULL;
2296 }
2297
2298 extern int netdev_rx_handler_register(struct net_device *dev,
2299 rx_handler_func_t *rx_handler,
2300 void *rx_handler_data);
2301 extern void netdev_rx_handler_unregister(struct net_device *dev);
2302
2303 extern bool dev_valid_name(const char *name);
2304 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2305 extern int dev_ethtool(struct net *net, struct ifreq *);
2306 extern unsigned int dev_get_flags(const struct net_device *);
2307 extern int __dev_change_flags(struct net_device *, unsigned int flags);
2308 extern int dev_change_flags(struct net_device *, unsigned int);
2309 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags);
2310 extern int dev_change_name(struct net_device *, const char *);
2311 extern int dev_set_alias(struct net_device *, const char *, size_t);
2312 extern int dev_change_net_namespace(struct net_device *,
2313 struct net *, const char *);
2314 extern int dev_set_mtu(struct net_device *, int);
2315 extern void dev_set_group(struct net_device *, int);
2316 extern int dev_set_mac_address(struct net_device *,
2317 struct sockaddr *);
2318 extern int dev_change_carrier(struct net_device *,
2319 bool new_carrier);
2320 extern int dev_hard_start_xmit(struct sk_buff *skb,
2321 struct net_device *dev,
2322 struct netdev_queue *txq);
2323 extern int dev_forward_skb(struct net_device *dev,
2324 struct sk_buff *skb);
2325
2326 extern int netdev_budget;
2327
2328 /* Called by rtnetlink.c:rtnl_unlock() */
2329 extern void netdev_run_todo(void);
2330
2331 /**
2332 * dev_put - release reference to device
2333 * @dev: network device
2334 *
2335 * Release reference to device to allow it to be freed.
2336 */
2337 static inline void dev_put(struct net_device *dev)
2338 {
2339 this_cpu_dec(*dev->pcpu_refcnt);
2340 }
2341
2342 /**
2343 * dev_hold - get reference to device
2344 * @dev: network device
2345 *
2346 * Hold reference to device to keep it from being freed.
2347 */
2348 static inline void dev_hold(struct net_device *dev)
2349 {
2350 this_cpu_inc(*dev->pcpu_refcnt);
2351 }
2352
2353 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2354 * and _off may be called from IRQ context, but it is caller
2355 * who is responsible for serialization of these calls.
2356 *
2357 * The name carrier is inappropriate, these functions should really be
2358 * called netif_lowerlayer_*() because they represent the state of any
2359 * kind of lower layer not just hardware media.
2360 */
2361
2362 extern void linkwatch_init_dev(struct net_device *dev);
2363 extern void linkwatch_fire_event(struct net_device *dev);
2364 extern void linkwatch_forget_dev(struct net_device *dev);
2365
2366 /**
2367 * netif_carrier_ok - test if carrier present
2368 * @dev: network device
2369 *
2370 * Check if carrier is present on device
2371 */
2372 static inline bool netif_carrier_ok(const struct net_device *dev)
2373 {
2374 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2375 }
2376
2377 extern unsigned long dev_trans_start(struct net_device *dev);
2378
2379 extern void __netdev_watchdog_up(struct net_device *dev);
2380
2381 extern void netif_carrier_on(struct net_device *dev);
2382
2383 extern void netif_carrier_off(struct net_device *dev);
2384
2385 /**
2386 * netif_dormant_on - mark device as dormant.
2387 * @dev: network device
2388 *
2389 * Mark device as dormant (as per RFC2863).
2390 *
2391 * The dormant state indicates that the relevant interface is not
2392 * actually in a condition to pass packets (i.e., it is not 'up') but is
2393 * in a "pending" state, waiting for some external event. For "on-
2394 * demand" interfaces, this new state identifies the situation where the
2395 * interface is waiting for events to place it in the up state.
2396 *
2397 */
2398 static inline void netif_dormant_on(struct net_device *dev)
2399 {
2400 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2401 linkwatch_fire_event(dev);
2402 }
2403
2404 /**
2405 * netif_dormant_off - set device as not dormant.
2406 * @dev: network device
2407 *
2408 * Device is not in dormant state.
2409 */
2410 static inline void netif_dormant_off(struct net_device *dev)
2411 {
2412 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2413 linkwatch_fire_event(dev);
2414 }
2415
2416 /**
2417 * netif_dormant - test if carrier present
2418 * @dev: network device
2419 *
2420 * Check if carrier is present on device
2421 */
2422 static inline bool netif_dormant(const struct net_device *dev)
2423 {
2424 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2425 }
2426
2427
2428 /**
2429 * netif_oper_up - test if device is operational
2430 * @dev: network device
2431 *
2432 * Check if carrier is operational
2433 */
2434 static inline bool netif_oper_up(const struct net_device *dev)
2435 {
2436 return (dev->operstate == IF_OPER_UP ||
2437 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2438 }
2439
2440 /**
2441 * netif_device_present - is device available or removed
2442 * @dev: network device
2443 *
2444 * Check if device has not been removed from system.
2445 */
2446 static inline bool netif_device_present(struct net_device *dev)
2447 {
2448 return test_bit(__LINK_STATE_PRESENT, &dev->state);
2449 }
2450
2451 extern void netif_device_detach(struct net_device *dev);
2452
2453 extern void netif_device_attach(struct net_device *dev);
2454
2455 /*
2456 * Network interface message level settings
2457 */
2458
2459 enum {
2460 NETIF_MSG_DRV = 0x0001,
2461 NETIF_MSG_PROBE = 0x0002,
2462 NETIF_MSG_LINK = 0x0004,
2463 NETIF_MSG_TIMER = 0x0008,
2464 NETIF_MSG_IFDOWN = 0x0010,
2465 NETIF_MSG_IFUP = 0x0020,
2466 NETIF_MSG_RX_ERR = 0x0040,
2467 NETIF_MSG_TX_ERR = 0x0080,
2468 NETIF_MSG_TX_QUEUED = 0x0100,
2469 NETIF_MSG_INTR = 0x0200,
2470 NETIF_MSG_TX_DONE = 0x0400,
2471 NETIF_MSG_RX_STATUS = 0x0800,
2472 NETIF_MSG_PKTDATA = 0x1000,
2473 NETIF_MSG_HW = 0x2000,
2474 NETIF_MSG_WOL = 0x4000,
2475 };
2476
2477 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2478 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2479 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2480 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2481 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2482 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2483 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2484 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2485 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2486 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2487 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2488 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2489 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2490 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2491 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2492
2493 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2494 {
2495 /* use default */
2496 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2497 return default_msg_enable_bits;
2498 if (debug_value == 0) /* no output */
2499 return 0;
2500 /* set low N bits */
2501 return (1 << debug_value) - 1;
2502 }
2503
2504 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2505 {
2506 spin_lock(&txq->_xmit_lock);
2507 txq->xmit_lock_owner = cpu;
2508 }
2509
2510 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2511 {
2512 spin_lock_bh(&txq->_xmit_lock);
2513 txq->xmit_lock_owner = smp_processor_id();
2514 }
2515
2516 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2517 {
2518 bool ok = spin_trylock(&txq->_xmit_lock);
2519 if (likely(ok))
2520 txq->xmit_lock_owner = smp_processor_id();
2521 return ok;
2522 }
2523
2524 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2525 {
2526 txq->xmit_lock_owner = -1;
2527 spin_unlock(&txq->_xmit_lock);
2528 }
2529
2530 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2531 {
2532 txq->xmit_lock_owner = -1;
2533 spin_unlock_bh(&txq->_xmit_lock);
2534 }
2535
2536 static inline void txq_trans_update(struct netdev_queue *txq)
2537 {
2538 if (txq->xmit_lock_owner != -1)
2539 txq->trans_start = jiffies;
2540 }
2541
2542 /**
2543 * netif_tx_lock - grab network device transmit lock
2544 * @dev: network device
2545 *
2546 * Get network device transmit lock
2547 */
2548 static inline void netif_tx_lock(struct net_device *dev)
2549 {
2550 unsigned int i;
2551 int cpu;
2552
2553 spin_lock(&dev->tx_global_lock);
2554 cpu = smp_processor_id();
2555 for (i = 0; i < dev->num_tx_queues; i++) {
2556 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2557
2558 /* We are the only thread of execution doing a
2559 * freeze, but we have to grab the _xmit_lock in
2560 * order to synchronize with threads which are in
2561 * the ->hard_start_xmit() handler and already
2562 * checked the frozen bit.
2563 */
2564 __netif_tx_lock(txq, cpu);
2565 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2566 __netif_tx_unlock(txq);
2567 }
2568 }
2569
2570 static inline void netif_tx_lock_bh(struct net_device *dev)
2571 {
2572 local_bh_disable();
2573 netif_tx_lock(dev);
2574 }
2575
2576 static inline void netif_tx_unlock(struct net_device *dev)
2577 {
2578 unsigned int i;
2579
2580 for (i = 0; i < dev->num_tx_queues; i++) {
2581 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2582
2583 /* No need to grab the _xmit_lock here. If the
2584 * queue is not stopped for another reason, we
2585 * force a schedule.
2586 */
2587 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2588 netif_schedule_queue(txq);
2589 }
2590 spin_unlock(&dev->tx_global_lock);
2591 }
2592
2593 static inline void netif_tx_unlock_bh(struct net_device *dev)
2594 {
2595 netif_tx_unlock(dev);
2596 local_bh_enable();
2597 }
2598
2599 #define HARD_TX_LOCK(dev, txq, cpu) { \
2600 if ((dev->features & NETIF_F_LLTX) == 0) { \
2601 __netif_tx_lock(txq, cpu); \
2602 } \
2603 }
2604
2605 #define HARD_TX_UNLOCK(dev, txq) { \
2606 if ((dev->features & NETIF_F_LLTX) == 0) { \
2607 __netif_tx_unlock(txq); \
2608 } \
2609 }
2610
2611 static inline void netif_tx_disable(struct net_device *dev)
2612 {
2613 unsigned int i;
2614 int cpu;
2615
2616 local_bh_disable();
2617 cpu = smp_processor_id();
2618 for (i = 0; i < dev->num_tx_queues; i++) {
2619 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2620
2621 __netif_tx_lock(txq, cpu);
2622 netif_tx_stop_queue(txq);
2623 __netif_tx_unlock(txq);
2624 }
2625 local_bh_enable();
2626 }
2627
2628 static inline void netif_addr_lock(struct net_device *dev)
2629 {
2630 spin_lock(&dev->addr_list_lock);
2631 }
2632
2633 static inline void netif_addr_lock_nested(struct net_device *dev)
2634 {
2635 spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2636 }
2637
2638 static inline void netif_addr_lock_bh(struct net_device *dev)
2639 {
2640 spin_lock_bh(&dev->addr_list_lock);
2641 }
2642
2643 static inline void netif_addr_unlock(struct net_device *dev)
2644 {
2645 spin_unlock(&dev->addr_list_lock);
2646 }
2647
2648 static inline void netif_addr_unlock_bh(struct net_device *dev)
2649 {
2650 spin_unlock_bh(&dev->addr_list_lock);
2651 }
2652
2653 /*
2654 * dev_addrs walker. Should be used only for read access. Call with
2655 * rcu_read_lock held.
2656 */
2657 #define for_each_dev_addr(dev, ha) \
2658 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2659
2660 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2661
2662 extern void ether_setup(struct net_device *dev);
2663
2664 /* Support for loadable net-drivers */
2665 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2666 void (*setup)(struct net_device *),
2667 unsigned int txqs, unsigned int rxqs);
2668 #define alloc_netdev(sizeof_priv, name, setup) \
2669 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2670
2671 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2672 alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2673
2674 extern int register_netdev(struct net_device *dev);
2675 extern void unregister_netdev(struct net_device *dev);
2676
2677 /* General hardware address lists handling functions */
2678 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2679 struct netdev_hw_addr_list *from_list,
2680 int addr_len, unsigned char addr_type);
2681 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2682 struct netdev_hw_addr_list *from_list,
2683 int addr_len, unsigned char addr_type);
2684 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2685 struct netdev_hw_addr_list *from_list,
2686 int addr_len);
2687 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2688 struct netdev_hw_addr_list *from_list,
2689 int addr_len);
2690 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2691 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2692
2693 /* Functions used for device addresses handling */
2694 extern int dev_addr_add(struct net_device *dev, const unsigned char *addr,
2695 unsigned char addr_type);
2696 extern int dev_addr_del(struct net_device *dev, const unsigned char *addr,
2697 unsigned char addr_type);
2698 extern int dev_addr_add_multiple(struct net_device *to_dev,
2699 struct net_device *from_dev,
2700 unsigned char addr_type);
2701 extern int dev_addr_del_multiple(struct net_device *to_dev,
2702 struct net_device *from_dev,
2703 unsigned char addr_type);
2704 extern void dev_addr_flush(struct net_device *dev);
2705 extern int dev_addr_init(struct net_device *dev);
2706
2707 /* Functions used for unicast addresses handling */
2708 extern int dev_uc_add(struct net_device *dev, const unsigned char *addr);
2709 extern int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
2710 extern int dev_uc_del(struct net_device *dev, const unsigned char *addr);
2711 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2712 extern int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
2713 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2714 extern void dev_uc_flush(struct net_device *dev);
2715 extern void dev_uc_init(struct net_device *dev);
2716
2717 /* Functions used for multicast addresses handling */
2718 extern int dev_mc_add(struct net_device *dev, const unsigned char *addr);
2719 extern int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
2720 extern int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
2721 extern int dev_mc_del(struct net_device *dev, const unsigned char *addr);
2722 extern int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
2723 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2724 extern int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
2725 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2726 extern void dev_mc_flush(struct net_device *dev);
2727 extern void dev_mc_init(struct net_device *dev);
2728
2729 /* Functions used for secondary unicast and multicast support */
2730 extern void dev_set_rx_mode(struct net_device *dev);
2731 extern void __dev_set_rx_mode(struct net_device *dev);
2732 extern int dev_set_promiscuity(struct net_device *dev, int inc);
2733 extern int dev_set_allmulti(struct net_device *dev, int inc);
2734 extern void netdev_state_change(struct net_device *dev);
2735 extern void netdev_notify_peers(struct net_device *dev);
2736 extern void netdev_features_change(struct net_device *dev);
2737 /* Load a device via the kmod */
2738 extern void dev_load(struct net *net, const char *name);
2739 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2740 struct rtnl_link_stats64 *storage);
2741 extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
2742 const struct net_device_stats *netdev_stats);
2743
2744 extern int netdev_max_backlog;
2745 extern int netdev_tstamp_prequeue;
2746 extern int weight_p;
2747 extern int bpf_jit_enable;
2748
2749 extern bool netdev_has_upper_dev(struct net_device *dev,
2750 struct net_device *upper_dev);
2751 extern bool netdev_has_any_upper_dev(struct net_device *dev);
2752 extern struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
2753 extern struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
2754 extern int netdev_upper_dev_link(struct net_device *dev,
2755 struct net_device *upper_dev);
2756 extern int netdev_master_upper_dev_link(struct net_device *dev,
2757 struct net_device *upper_dev);
2758 extern void netdev_upper_dev_unlink(struct net_device *dev,
2759 struct net_device *upper_dev);
2760 extern int skb_checksum_help(struct sk_buff *skb);
2761 extern struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2762 netdev_features_t features, bool tx_path);
2763 extern struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2764 netdev_features_t features);
2765
2766 static inline
2767 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
2768 {
2769 return __skb_gso_segment(skb, features, true);
2770 }
2771 __be16 skb_network_protocol(struct sk_buff *skb);
2772
2773 static inline bool can_checksum_protocol(netdev_features_t features,
2774 __be16 protocol)
2775 {
2776 return ((features & NETIF_F_GEN_CSUM) ||
2777 ((features & NETIF_F_V4_CSUM) &&
2778 protocol == htons(ETH_P_IP)) ||
2779 ((features & NETIF_F_V6_CSUM) &&
2780 protocol == htons(ETH_P_IPV6)) ||
2781 ((features & NETIF_F_FCOE_CRC) &&
2782 protocol == htons(ETH_P_FCOE)));
2783 }
2784
2785 #ifdef CONFIG_BUG
2786 extern void netdev_rx_csum_fault(struct net_device *dev);
2787 #else
2788 static inline void netdev_rx_csum_fault(struct net_device *dev)
2789 {
2790 }
2791 #endif
2792 /* rx skb timestamps */
2793 extern void net_enable_timestamp(void);
2794 extern void net_disable_timestamp(void);
2795
2796 #ifdef CONFIG_PROC_FS
2797 extern int __init dev_proc_init(void);
2798 #else
2799 #define dev_proc_init() 0
2800 #endif
2801
2802 extern int netdev_class_create_file(struct class_attribute *class_attr);
2803 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2804
2805 extern struct kobj_ns_type_operations net_ns_type_operations;
2806
2807 extern const char *netdev_drivername(const struct net_device *dev);
2808
2809 extern void linkwatch_run_queue(void);
2810
2811 static inline netdev_features_t netdev_get_wanted_features(
2812 struct net_device *dev)
2813 {
2814 return (dev->features & ~dev->hw_features) | dev->wanted_features;
2815 }
2816 netdev_features_t netdev_increment_features(netdev_features_t all,
2817 netdev_features_t one, netdev_features_t mask);
2818
2819 /* Allow TSO being used on stacked device :
2820 * Performing the GSO segmentation before last device
2821 * is a performance improvement.
2822 */
2823 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
2824 netdev_features_t mask)
2825 {
2826 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
2827 }
2828
2829 int __netdev_update_features(struct net_device *dev);
2830 void netdev_update_features(struct net_device *dev);
2831 void netdev_change_features(struct net_device *dev);
2832
2833 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2834 struct net_device *dev);
2835
2836 netdev_features_t netif_skb_features(struct sk_buff *skb);
2837
2838 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
2839 {
2840 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2841
2842 /* check flags correspondence */
2843 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2844 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2845 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2846 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2847 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2848 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2849
2850 return (features & feature) == feature;
2851 }
2852
2853 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2854 {
2855 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2856 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2857 }
2858
2859 static inline bool netif_needs_gso(struct sk_buff *skb,
2860 netdev_features_t features)
2861 {
2862 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2863 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
2864 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
2865 }
2866
2867 static inline void netif_set_gso_max_size(struct net_device *dev,
2868 unsigned int size)
2869 {
2870 dev->gso_max_size = size;
2871 }
2872
2873 static inline bool netif_is_bond_master(struct net_device *dev)
2874 {
2875 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
2876 }
2877
2878 static inline bool netif_is_bond_slave(struct net_device *dev)
2879 {
2880 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2881 }
2882
2883 static inline bool netif_supports_nofcs(struct net_device *dev)
2884 {
2885 return dev->priv_flags & IFF_SUPP_NOFCS;
2886 }
2887
2888 extern struct pernet_operations __net_initdata loopback_net_ops;
2889
2890 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2891
2892 /* netdev_printk helpers, similar to dev_printk */
2893
2894 static inline const char *netdev_name(const struct net_device *dev)
2895 {
2896 if (dev->reg_state != NETREG_REGISTERED)
2897 return "(unregistered net_device)";
2898 return dev->name;
2899 }
2900
2901 extern __printf(3, 4)
2902 int netdev_printk(const char *level, const struct net_device *dev,
2903 const char *format, ...);
2904 extern __printf(2, 3)
2905 int netdev_emerg(const struct net_device *dev, const char *format, ...);
2906 extern __printf(2, 3)
2907 int netdev_alert(const struct net_device *dev, const char *format, ...);
2908 extern __printf(2, 3)
2909 int netdev_crit(const struct net_device *dev, const char *format, ...);
2910 extern __printf(2, 3)
2911 int netdev_err(const struct net_device *dev, const char *format, ...);
2912 extern __printf(2, 3)
2913 int netdev_warn(const struct net_device *dev, const char *format, ...);
2914 extern __printf(2, 3)
2915 int netdev_notice(const struct net_device *dev, const char *format, ...);
2916 extern __printf(2, 3)
2917 int netdev_info(const struct net_device *dev, const char *format, ...);
2918
2919 #define MODULE_ALIAS_NETDEV(device) \
2920 MODULE_ALIAS("netdev-" device)
2921
2922 #if defined(CONFIG_DYNAMIC_DEBUG)
2923 #define netdev_dbg(__dev, format, args...) \
2924 do { \
2925 dynamic_netdev_dbg(__dev, format, ##args); \
2926 } while (0)
2927 #elif defined(DEBUG)
2928 #define netdev_dbg(__dev, format, args...) \
2929 netdev_printk(KERN_DEBUG, __dev, format, ##args)
2930 #else
2931 #define netdev_dbg(__dev, format, args...) \
2932 ({ \
2933 if (0) \
2934 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2935 0; \
2936 })
2937 #endif
2938
2939 #if defined(VERBOSE_DEBUG)
2940 #define netdev_vdbg netdev_dbg
2941 #else
2942
2943 #define netdev_vdbg(dev, format, args...) \
2944 ({ \
2945 if (0) \
2946 netdev_printk(KERN_DEBUG, dev, format, ##args); \
2947 0; \
2948 })
2949 #endif
2950
2951 /*
2952 * netdev_WARN() acts like dev_printk(), but with the key difference
2953 * of using a WARN/WARN_ON to get the message out, including the
2954 * file/line information and a backtrace.
2955 */
2956 #define netdev_WARN(dev, format, args...) \
2957 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2958
2959 /* netif printk helpers, similar to netdev_printk */
2960
2961 #define netif_printk(priv, type, level, dev, fmt, args...) \
2962 do { \
2963 if (netif_msg_##type(priv)) \
2964 netdev_printk(level, (dev), fmt, ##args); \
2965 } while (0)
2966
2967 #define netif_level(level, priv, type, dev, fmt, args...) \
2968 do { \
2969 if (netif_msg_##type(priv)) \
2970 netdev_##level(dev, fmt, ##args); \
2971 } while (0)
2972
2973 #define netif_emerg(priv, type, dev, fmt, args...) \
2974 netif_level(emerg, priv, type, dev, fmt, ##args)
2975 #define netif_alert(priv, type, dev, fmt, args...) \
2976 netif_level(alert, priv, type, dev, fmt, ##args)
2977 #define netif_crit(priv, type, dev, fmt, args...) \
2978 netif_level(crit, priv, type, dev, fmt, ##args)
2979 #define netif_err(priv, type, dev, fmt, args...) \
2980 netif_level(err, priv, type, dev, fmt, ##args)
2981 #define netif_warn(priv, type, dev, fmt, args...) \
2982 netif_level(warn, priv, type, dev, fmt, ##args)
2983 #define netif_notice(priv, type, dev, fmt, args...) \
2984 netif_level(notice, priv, type, dev, fmt, ##args)
2985 #define netif_info(priv, type, dev, fmt, args...) \
2986 netif_level(info, priv, type, dev, fmt, ##args)
2987
2988 #if defined(CONFIG_DYNAMIC_DEBUG)
2989 #define netif_dbg(priv, type, netdev, format, args...) \
2990 do { \
2991 if (netif_msg_##type(priv)) \
2992 dynamic_netdev_dbg(netdev, format, ##args); \
2993 } while (0)
2994 #elif defined(DEBUG)
2995 #define netif_dbg(priv, type, dev, format, args...) \
2996 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2997 #else
2998 #define netif_dbg(priv, type, dev, format, args...) \
2999 ({ \
3000 if (0) \
3001 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3002 0; \
3003 })
3004 #endif
3005
3006 #if defined(VERBOSE_DEBUG)
3007 #define netif_vdbg netif_dbg
3008 #else
3009 #define netif_vdbg(priv, type, dev, format, args...) \
3010 ({ \
3011 if (0) \
3012 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3013 0; \
3014 })
3015 #endif
3016
3017 /*
3018 * The list of packet types we will receive (as opposed to discard)
3019 * and the routines to invoke.
3020 *
3021 * Why 16. Because with 16 the only overlap we get on a hash of the
3022 * low nibble of the protocol value is RARP/SNAP/X.25.
3023 *
3024 * NOTE: That is no longer true with the addition of VLAN tags. Not
3025 * sure which should go first, but I bet it won't make much
3026 * difference if we are running VLANs. The good news is that
3027 * this protocol won't be in the list unless compiled in, so
3028 * the average user (w/out VLANs) will not be adversely affected.
3029 * --BLG
3030 *
3031 * 0800 IP
3032 * 8100 802.1Q VLAN
3033 * 0001 802.3
3034 * 0002 AX.25
3035 * 0004 802.2
3036 * 8035 RARP
3037 * 0005 SNAP
3038 * 0805 X.25
3039 * 0806 ARP
3040 * 8137 IPX
3041 * 0009 Localtalk
3042 * 86DD IPv6
3043 */
3044 #define PTYPE_HASH_SIZE (16)
3045 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
3046
3047 #endif /* _LINUX_NETDEVICE_H */
This page took 0.093384 seconds and 6 git commands to generate.