Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/klassert/ipsec...
[deliverable/linux.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/pm_qos.h>
29 #include <linux/timer.h>
30 #include <linux/bug.h>
31 #include <linux/delay.h>
32 #include <linux/atomic.h>
33 #include <linux/prefetch.h>
34 #include <asm/cache.h>
35 #include <asm/byteorder.h>
36
37 #include <linux/percpu.h>
38 #include <linux/rculist.h>
39 #include <linux/dmaengine.h>
40 #include <linux/workqueue.h>
41 #include <linux/dynamic_queue_limits.h>
42
43 #include <linux/ethtool.h>
44 #include <net/net_namespace.h>
45 #include <net/dsa.h>
46 #ifdef CONFIG_DCB
47 #include <net/dcbnl.h>
48 #endif
49 #include <net/netprio_cgroup.h>
50
51 #include <linux/netdev_features.h>
52 #include <linux/neighbour.h>
53 #include <uapi/linux/netdevice.h>
54 #include <uapi/linux/if_bonding.h>
55
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 /* 802.11 specific */
60 struct wireless_dev;
61 /* 802.15.4 specific */
62 struct wpan_dev;
63
64 void netdev_set_default_ethtool_ops(struct net_device *dev,
65 const struct ethtool_ops *ops);
66
67 /* Backlog congestion levels */
68 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
69 #define NET_RX_DROP 1 /* packet dropped */
70
71 /*
72 * Transmit return codes: transmit return codes originate from three different
73 * namespaces:
74 *
75 * - qdisc return codes
76 * - driver transmit return codes
77 * - errno values
78 *
79 * Drivers are allowed to return any one of those in their hard_start_xmit()
80 * function. Real network devices commonly used with qdiscs should only return
81 * the driver transmit return codes though - when qdiscs are used, the actual
82 * transmission happens asynchronously, so the value is not propagated to
83 * higher layers. Virtual network devices transmit synchronously, in this case
84 * the driver transmit return codes are consumed by dev_queue_xmit(), all
85 * others are propagated to higher layers.
86 */
87
88 /* qdisc ->enqueue() return codes. */
89 #define NET_XMIT_SUCCESS 0x00
90 #define NET_XMIT_DROP 0x01 /* skb dropped */
91 #define NET_XMIT_CN 0x02 /* congestion notification */
92 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
93 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
94
95 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
96 * indicates that the device will soon be dropping packets, or already drops
97 * some packets of the same priority; prompting us to send less aggressively. */
98 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
99 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
100
101 /* Driver transmit return codes */
102 #define NETDEV_TX_MASK 0xf0
103
104 enum netdev_tx {
105 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
106 NETDEV_TX_OK = 0x00, /* driver took care of packet */
107 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
108 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
109 };
110 typedef enum netdev_tx netdev_tx_t;
111
112 /*
113 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
114 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
115 */
116 static inline bool dev_xmit_complete(int rc)
117 {
118 /*
119 * Positive cases with an skb consumed by a driver:
120 * - successful transmission (rc == NETDEV_TX_OK)
121 * - error while transmitting (rc < 0)
122 * - error while queueing to a different device (rc & NET_XMIT_MASK)
123 */
124 if (likely(rc < NET_XMIT_MASK))
125 return true;
126
127 return false;
128 }
129
130 /*
131 * Compute the worst case header length according to the protocols
132 * used.
133 */
134
135 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
136 # if defined(CONFIG_MAC80211_MESH)
137 # define LL_MAX_HEADER 128
138 # else
139 # define LL_MAX_HEADER 96
140 # endif
141 #else
142 # define LL_MAX_HEADER 32
143 #endif
144
145 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
146 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
147 #define MAX_HEADER LL_MAX_HEADER
148 #else
149 #define MAX_HEADER (LL_MAX_HEADER + 48)
150 #endif
151
152 /*
153 * Old network device statistics. Fields are native words
154 * (unsigned long) so they can be read and written atomically.
155 */
156
157 struct net_device_stats {
158 unsigned long rx_packets;
159 unsigned long tx_packets;
160 unsigned long rx_bytes;
161 unsigned long tx_bytes;
162 unsigned long rx_errors;
163 unsigned long tx_errors;
164 unsigned long rx_dropped;
165 unsigned long tx_dropped;
166 unsigned long multicast;
167 unsigned long collisions;
168 unsigned long rx_length_errors;
169 unsigned long rx_over_errors;
170 unsigned long rx_crc_errors;
171 unsigned long rx_frame_errors;
172 unsigned long rx_fifo_errors;
173 unsigned long rx_missed_errors;
174 unsigned long tx_aborted_errors;
175 unsigned long tx_carrier_errors;
176 unsigned long tx_fifo_errors;
177 unsigned long tx_heartbeat_errors;
178 unsigned long tx_window_errors;
179 unsigned long rx_compressed;
180 unsigned long tx_compressed;
181 };
182
183
184 #include <linux/cache.h>
185 #include <linux/skbuff.h>
186
187 #ifdef CONFIG_RPS
188 #include <linux/static_key.h>
189 extern struct static_key rps_needed;
190 #endif
191
192 struct neighbour;
193 struct neigh_parms;
194 struct sk_buff;
195
196 struct netdev_hw_addr {
197 struct list_head list;
198 unsigned char addr[MAX_ADDR_LEN];
199 unsigned char type;
200 #define NETDEV_HW_ADDR_T_LAN 1
201 #define NETDEV_HW_ADDR_T_SAN 2
202 #define NETDEV_HW_ADDR_T_SLAVE 3
203 #define NETDEV_HW_ADDR_T_UNICAST 4
204 #define NETDEV_HW_ADDR_T_MULTICAST 5
205 bool global_use;
206 int sync_cnt;
207 int refcount;
208 int synced;
209 struct rcu_head rcu_head;
210 };
211
212 struct netdev_hw_addr_list {
213 struct list_head list;
214 int count;
215 };
216
217 #define netdev_hw_addr_list_count(l) ((l)->count)
218 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
219 #define netdev_hw_addr_list_for_each(ha, l) \
220 list_for_each_entry(ha, &(l)->list, list)
221
222 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
223 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
224 #define netdev_for_each_uc_addr(ha, dev) \
225 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
226
227 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
228 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
229 #define netdev_for_each_mc_addr(ha, dev) \
230 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
231
232 struct hh_cache {
233 u16 hh_len;
234 u16 __pad;
235 seqlock_t hh_lock;
236
237 /* cached hardware header; allow for machine alignment needs. */
238 #define HH_DATA_MOD 16
239 #define HH_DATA_OFF(__len) \
240 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
241 #define HH_DATA_ALIGN(__len) \
242 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
243 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
244 };
245
246 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
247 * Alternative is:
248 * dev->hard_header_len ? (dev->hard_header_len +
249 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
250 *
251 * We could use other alignment values, but we must maintain the
252 * relationship HH alignment <= LL alignment.
253 */
254 #define LL_RESERVED_SPACE(dev) \
255 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
256 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
257 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258
259 struct header_ops {
260 int (*create) (struct sk_buff *skb, struct net_device *dev,
261 unsigned short type, const void *daddr,
262 const void *saddr, unsigned int len);
263 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
264 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
265 void (*cache_update)(struct hh_cache *hh,
266 const struct net_device *dev,
267 const unsigned char *haddr);
268 };
269
270 /* These flag bits are private to the generic network queueing
271 * layer, they may not be explicitly referenced by any other
272 * code.
273 */
274
275 enum netdev_state_t {
276 __LINK_STATE_START,
277 __LINK_STATE_PRESENT,
278 __LINK_STATE_NOCARRIER,
279 __LINK_STATE_LINKWATCH_PENDING,
280 __LINK_STATE_DORMANT,
281 };
282
283
284 /*
285 * This structure holds at boot time configured netdevice settings. They
286 * are then used in the device probing.
287 */
288 struct netdev_boot_setup {
289 char name[IFNAMSIZ];
290 struct ifmap map;
291 };
292 #define NETDEV_BOOT_SETUP_MAX 8
293
294 int __init netdev_boot_setup(char *str);
295
296 /*
297 * Structure for NAPI scheduling similar to tasklet but with weighting
298 */
299 struct napi_struct {
300 /* The poll_list must only be managed by the entity which
301 * changes the state of the NAPI_STATE_SCHED bit. This means
302 * whoever atomically sets that bit can add this napi_struct
303 * to the per-cpu poll_list, and whoever clears that bit
304 * can remove from the list right before clearing the bit.
305 */
306 struct list_head poll_list;
307
308 unsigned long state;
309 int weight;
310 unsigned int gro_count;
311 int (*poll)(struct napi_struct *, int);
312 #ifdef CONFIG_NETPOLL
313 spinlock_t poll_lock;
314 int poll_owner;
315 #endif
316 struct net_device *dev;
317 struct sk_buff *gro_list;
318 struct sk_buff *skb;
319 struct hrtimer timer;
320 struct list_head dev_list;
321 struct hlist_node napi_hash_node;
322 unsigned int napi_id;
323 };
324
325 enum {
326 NAPI_STATE_SCHED, /* Poll is scheduled */
327 NAPI_STATE_DISABLE, /* Disable pending */
328 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
329 NAPI_STATE_HASHED, /* In NAPI hash */
330 };
331
332 enum gro_result {
333 GRO_MERGED,
334 GRO_MERGED_FREE,
335 GRO_HELD,
336 GRO_NORMAL,
337 GRO_DROP,
338 };
339 typedef enum gro_result gro_result_t;
340
341 /*
342 * enum rx_handler_result - Possible return values for rx_handlers.
343 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
344 * further.
345 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
346 * case skb->dev was changed by rx_handler.
347 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
348 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
349 *
350 * rx_handlers are functions called from inside __netif_receive_skb(), to do
351 * special processing of the skb, prior to delivery to protocol handlers.
352 *
353 * Currently, a net_device can only have a single rx_handler registered. Trying
354 * to register a second rx_handler will return -EBUSY.
355 *
356 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
357 * To unregister a rx_handler on a net_device, use
358 * netdev_rx_handler_unregister().
359 *
360 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
361 * do with the skb.
362 *
363 * If the rx_handler consumed to skb in some way, it should return
364 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
365 * the skb to be delivered in some other ways.
366 *
367 * If the rx_handler changed skb->dev, to divert the skb to another
368 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
369 * new device will be called if it exists.
370 *
371 * If the rx_handler consider the skb should be ignored, it should return
372 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
373 * are registered on exact device (ptype->dev == skb->dev).
374 *
375 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
376 * delivered, it should return RX_HANDLER_PASS.
377 *
378 * A device without a registered rx_handler will behave as if rx_handler
379 * returned RX_HANDLER_PASS.
380 */
381
382 enum rx_handler_result {
383 RX_HANDLER_CONSUMED,
384 RX_HANDLER_ANOTHER,
385 RX_HANDLER_EXACT,
386 RX_HANDLER_PASS,
387 };
388 typedef enum rx_handler_result rx_handler_result_t;
389 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
390
391 void __napi_schedule(struct napi_struct *n);
392 void __napi_schedule_irqoff(struct napi_struct *n);
393
394 static inline bool napi_disable_pending(struct napi_struct *n)
395 {
396 return test_bit(NAPI_STATE_DISABLE, &n->state);
397 }
398
399 /**
400 * napi_schedule_prep - check if napi can be scheduled
401 * @n: napi context
402 *
403 * Test if NAPI routine is already running, and if not mark
404 * it as running. This is used as a condition variable
405 * insure only one NAPI poll instance runs. We also make
406 * sure there is no pending NAPI disable.
407 */
408 static inline bool napi_schedule_prep(struct napi_struct *n)
409 {
410 return !napi_disable_pending(n) &&
411 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
412 }
413
414 /**
415 * napi_schedule - schedule NAPI poll
416 * @n: napi context
417 *
418 * Schedule NAPI poll routine to be called if it is not already
419 * running.
420 */
421 static inline void napi_schedule(struct napi_struct *n)
422 {
423 if (napi_schedule_prep(n))
424 __napi_schedule(n);
425 }
426
427 /**
428 * napi_schedule_irqoff - schedule NAPI poll
429 * @n: napi context
430 *
431 * Variant of napi_schedule(), assuming hard irqs are masked.
432 */
433 static inline void napi_schedule_irqoff(struct napi_struct *n)
434 {
435 if (napi_schedule_prep(n))
436 __napi_schedule_irqoff(n);
437 }
438
439 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
440 static inline bool napi_reschedule(struct napi_struct *napi)
441 {
442 if (napi_schedule_prep(napi)) {
443 __napi_schedule(napi);
444 return true;
445 }
446 return false;
447 }
448
449 void __napi_complete(struct napi_struct *n);
450 void napi_complete_done(struct napi_struct *n, int work_done);
451 /**
452 * napi_complete - NAPI processing complete
453 * @n: napi context
454 *
455 * Mark NAPI processing as complete.
456 * Consider using napi_complete_done() instead.
457 */
458 static inline void napi_complete(struct napi_struct *n)
459 {
460 return napi_complete_done(n, 0);
461 }
462
463 /**
464 * napi_by_id - lookup a NAPI by napi_id
465 * @napi_id: hashed napi_id
466 *
467 * lookup @napi_id in napi_hash table
468 * must be called under rcu_read_lock()
469 */
470 struct napi_struct *napi_by_id(unsigned int napi_id);
471
472 /**
473 * napi_hash_add - add a NAPI to global hashtable
474 * @napi: napi context
475 *
476 * generate a new napi_id and store a @napi under it in napi_hash
477 */
478 void napi_hash_add(struct napi_struct *napi);
479
480 /**
481 * napi_hash_del - remove a NAPI from global table
482 * @napi: napi context
483 *
484 * Warning: caller must observe rcu grace period
485 * before freeing memory containing @napi
486 */
487 void napi_hash_del(struct napi_struct *napi);
488
489 /**
490 * napi_disable - prevent NAPI from scheduling
491 * @n: napi context
492 *
493 * Stop NAPI from being scheduled on this context.
494 * Waits till any outstanding processing completes.
495 */
496 void napi_disable(struct napi_struct *n);
497
498 /**
499 * napi_enable - enable NAPI scheduling
500 * @n: napi context
501 *
502 * Resume NAPI from being scheduled on this context.
503 * Must be paired with napi_disable.
504 */
505 static inline void napi_enable(struct napi_struct *n)
506 {
507 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
508 smp_mb__before_atomic();
509 clear_bit(NAPI_STATE_SCHED, &n->state);
510 }
511
512 #ifdef CONFIG_SMP
513 /**
514 * napi_synchronize - wait until NAPI is not running
515 * @n: napi context
516 *
517 * Wait until NAPI is done being scheduled on this context.
518 * Waits till any outstanding processing completes but
519 * does not disable future activations.
520 */
521 static inline void napi_synchronize(const struct napi_struct *n)
522 {
523 while (test_bit(NAPI_STATE_SCHED, &n->state))
524 msleep(1);
525 }
526 #else
527 # define napi_synchronize(n) barrier()
528 #endif
529
530 enum netdev_queue_state_t {
531 __QUEUE_STATE_DRV_XOFF,
532 __QUEUE_STATE_STACK_XOFF,
533 __QUEUE_STATE_FROZEN,
534 };
535
536 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
537 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
538 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
539
540 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
541 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
542 QUEUE_STATE_FROZEN)
543 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
544 QUEUE_STATE_FROZEN)
545
546 /*
547 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
548 * netif_tx_* functions below are used to manipulate this flag. The
549 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
550 * queue independently. The netif_xmit_*stopped functions below are called
551 * to check if the queue has been stopped by the driver or stack (either
552 * of the XOFF bits are set in the state). Drivers should not need to call
553 * netif_xmit*stopped functions, they should only be using netif_tx_*.
554 */
555
556 struct netdev_queue {
557 /*
558 * read mostly part
559 */
560 struct net_device *dev;
561 struct Qdisc __rcu *qdisc;
562 struct Qdisc *qdisc_sleeping;
563 #ifdef CONFIG_SYSFS
564 struct kobject kobj;
565 #endif
566 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
567 int numa_node;
568 #endif
569 /*
570 * write mostly part
571 */
572 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
573 int xmit_lock_owner;
574 /*
575 * please use this field instead of dev->trans_start
576 */
577 unsigned long trans_start;
578
579 /*
580 * Number of TX timeouts for this queue
581 * (/sys/class/net/DEV/Q/trans_timeout)
582 */
583 unsigned long trans_timeout;
584
585 unsigned long state;
586
587 #ifdef CONFIG_BQL
588 struct dql dql;
589 #endif
590 unsigned long tx_maxrate;
591 } ____cacheline_aligned_in_smp;
592
593 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
594 {
595 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
596 return q->numa_node;
597 #else
598 return NUMA_NO_NODE;
599 #endif
600 }
601
602 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
603 {
604 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
605 q->numa_node = node;
606 #endif
607 }
608
609 #ifdef CONFIG_RPS
610 /*
611 * This structure holds an RPS map which can be of variable length. The
612 * map is an array of CPUs.
613 */
614 struct rps_map {
615 unsigned int len;
616 struct rcu_head rcu;
617 u16 cpus[0];
618 };
619 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
620
621 /*
622 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
623 * tail pointer for that CPU's input queue at the time of last enqueue, and
624 * a hardware filter index.
625 */
626 struct rps_dev_flow {
627 u16 cpu;
628 u16 filter;
629 unsigned int last_qtail;
630 };
631 #define RPS_NO_FILTER 0xffff
632
633 /*
634 * The rps_dev_flow_table structure contains a table of flow mappings.
635 */
636 struct rps_dev_flow_table {
637 unsigned int mask;
638 struct rcu_head rcu;
639 struct rps_dev_flow flows[0];
640 };
641 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
642 ((_num) * sizeof(struct rps_dev_flow)))
643
644 /*
645 * The rps_sock_flow_table contains mappings of flows to the last CPU
646 * on which they were processed by the application (set in recvmsg).
647 * Each entry is a 32bit value. Upper part is the high order bits
648 * of flow hash, lower part is cpu number.
649 * rps_cpu_mask is used to partition the space, depending on number of
650 * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
651 * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
652 * meaning we use 32-6=26 bits for the hash.
653 */
654 struct rps_sock_flow_table {
655 u32 mask;
656
657 u32 ents[0] ____cacheline_aligned_in_smp;
658 };
659 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
660
661 #define RPS_NO_CPU 0xffff
662
663 extern u32 rps_cpu_mask;
664 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
665
666 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
667 u32 hash)
668 {
669 if (table && hash) {
670 unsigned int index = hash & table->mask;
671 u32 val = hash & ~rps_cpu_mask;
672
673 /* We only give a hint, preemption can change cpu under us */
674 val |= raw_smp_processor_id();
675
676 if (table->ents[index] != val)
677 table->ents[index] = val;
678 }
679 }
680
681 #ifdef CONFIG_RFS_ACCEL
682 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
683 u16 filter_id);
684 #endif
685 #endif /* CONFIG_RPS */
686
687 /* This structure contains an instance of an RX queue. */
688 struct netdev_rx_queue {
689 #ifdef CONFIG_RPS
690 struct rps_map __rcu *rps_map;
691 struct rps_dev_flow_table __rcu *rps_flow_table;
692 #endif
693 struct kobject kobj;
694 struct net_device *dev;
695 } ____cacheline_aligned_in_smp;
696
697 /*
698 * RX queue sysfs structures and functions.
699 */
700 struct rx_queue_attribute {
701 struct attribute attr;
702 ssize_t (*show)(struct netdev_rx_queue *queue,
703 struct rx_queue_attribute *attr, char *buf);
704 ssize_t (*store)(struct netdev_rx_queue *queue,
705 struct rx_queue_attribute *attr, const char *buf, size_t len);
706 };
707
708 #ifdef CONFIG_XPS
709 /*
710 * This structure holds an XPS map which can be of variable length. The
711 * map is an array of queues.
712 */
713 struct xps_map {
714 unsigned int len;
715 unsigned int alloc_len;
716 struct rcu_head rcu;
717 u16 queues[0];
718 };
719 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
720 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
721 / sizeof(u16))
722
723 /*
724 * This structure holds all XPS maps for device. Maps are indexed by CPU.
725 */
726 struct xps_dev_maps {
727 struct rcu_head rcu;
728 struct xps_map __rcu *cpu_map[0];
729 };
730 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
731 (nr_cpu_ids * sizeof(struct xps_map *)))
732 #endif /* CONFIG_XPS */
733
734 #define TC_MAX_QUEUE 16
735 #define TC_BITMASK 15
736 /* HW offloaded queuing disciplines txq count and offset maps */
737 struct netdev_tc_txq {
738 u16 count;
739 u16 offset;
740 };
741
742 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
743 /*
744 * This structure is to hold information about the device
745 * configured to run FCoE protocol stack.
746 */
747 struct netdev_fcoe_hbainfo {
748 char manufacturer[64];
749 char serial_number[64];
750 char hardware_version[64];
751 char driver_version[64];
752 char optionrom_version[64];
753 char firmware_version[64];
754 char model[256];
755 char model_description[256];
756 };
757 #endif
758
759 #define MAX_PHYS_ITEM_ID_LEN 32
760
761 /* This structure holds a unique identifier to identify some
762 * physical item (port for example) used by a netdevice.
763 */
764 struct netdev_phys_item_id {
765 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
766 unsigned char id_len;
767 };
768
769 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
770 struct sk_buff *skb);
771
772 /*
773 * This structure defines the management hooks for network devices.
774 * The following hooks can be defined; unless noted otherwise, they are
775 * optional and can be filled with a null pointer.
776 *
777 * int (*ndo_init)(struct net_device *dev);
778 * This function is called once when network device is registered.
779 * The network device can use this to any late stage initializaton
780 * or semantic validattion. It can fail with an error code which will
781 * be propogated back to register_netdev
782 *
783 * void (*ndo_uninit)(struct net_device *dev);
784 * This function is called when device is unregistered or when registration
785 * fails. It is not called if init fails.
786 *
787 * int (*ndo_open)(struct net_device *dev);
788 * This function is called when network device transistions to the up
789 * state.
790 *
791 * int (*ndo_stop)(struct net_device *dev);
792 * This function is called when network device transistions to the down
793 * state.
794 *
795 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
796 * struct net_device *dev);
797 * Called when a packet needs to be transmitted.
798 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
799 * the queue before that can happen; it's for obsolete devices and weird
800 * corner cases, but the stack really does a non-trivial amount
801 * of useless work if you return NETDEV_TX_BUSY.
802 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
803 * Required can not be NULL.
804 *
805 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
806 * void *accel_priv, select_queue_fallback_t fallback);
807 * Called to decide which queue to when device supports multiple
808 * transmit queues.
809 *
810 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
811 * This function is called to allow device receiver to make
812 * changes to configuration when multicast or promiscious is enabled.
813 *
814 * void (*ndo_set_rx_mode)(struct net_device *dev);
815 * This function is called device changes address list filtering.
816 * If driver handles unicast address filtering, it should set
817 * IFF_UNICAST_FLT to its priv_flags.
818 *
819 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
820 * This function is called when the Media Access Control address
821 * needs to be changed. If this interface is not defined, the
822 * mac address can not be changed.
823 *
824 * int (*ndo_validate_addr)(struct net_device *dev);
825 * Test if Media Access Control address is valid for the device.
826 *
827 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
828 * Called when a user request an ioctl which can't be handled by
829 * the generic interface code. If not defined ioctl's return
830 * not supported error code.
831 *
832 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
833 * Used to set network devices bus interface parameters. This interface
834 * is retained for legacy reason, new devices should use the bus
835 * interface (PCI) for low level management.
836 *
837 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
838 * Called when a user wants to change the Maximum Transfer Unit
839 * of a device. If not defined, any request to change MTU will
840 * will return an error.
841 *
842 * void (*ndo_tx_timeout)(struct net_device *dev);
843 * Callback uses when the transmitter has not made any progress
844 * for dev->watchdog ticks.
845 *
846 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
847 * struct rtnl_link_stats64 *storage);
848 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
849 * Called when a user wants to get the network device usage
850 * statistics. Drivers must do one of the following:
851 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
852 * rtnl_link_stats64 structure passed by the caller.
853 * 2. Define @ndo_get_stats to update a net_device_stats structure
854 * (which should normally be dev->stats) and return a pointer to
855 * it. The structure may be changed asynchronously only if each
856 * field is written atomically.
857 * 3. Update dev->stats asynchronously and atomically, and define
858 * neither operation.
859 *
860 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
861 * If device support VLAN filtering this function is called when a
862 * VLAN id is registered.
863 *
864 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
865 * If device support VLAN filtering this function is called when a
866 * VLAN id is unregistered.
867 *
868 * void (*ndo_poll_controller)(struct net_device *dev);
869 *
870 * SR-IOV management functions.
871 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
872 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
873 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
874 * int max_tx_rate);
875 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
876 * int (*ndo_get_vf_config)(struct net_device *dev,
877 * int vf, struct ifla_vf_info *ivf);
878 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
879 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
880 * struct nlattr *port[]);
881 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
882 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
883 * Called to setup 'tc' number of traffic classes in the net device. This
884 * is always called from the stack with the rtnl lock held and netif tx
885 * queues stopped. This allows the netdevice to perform queue management
886 * safely.
887 *
888 * Fiber Channel over Ethernet (FCoE) offload functions.
889 * int (*ndo_fcoe_enable)(struct net_device *dev);
890 * Called when the FCoE protocol stack wants to start using LLD for FCoE
891 * so the underlying device can perform whatever needed configuration or
892 * initialization to support acceleration of FCoE traffic.
893 *
894 * int (*ndo_fcoe_disable)(struct net_device *dev);
895 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
896 * so the underlying device can perform whatever needed clean-ups to
897 * stop supporting acceleration of FCoE traffic.
898 *
899 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
900 * struct scatterlist *sgl, unsigned int sgc);
901 * Called when the FCoE Initiator wants to initialize an I/O that
902 * is a possible candidate for Direct Data Placement (DDP). The LLD can
903 * perform necessary setup and returns 1 to indicate the device is set up
904 * successfully to perform DDP on this I/O, otherwise this returns 0.
905 *
906 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
907 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
908 * indicated by the FC exchange id 'xid', so the underlying device can
909 * clean up and reuse resources for later DDP requests.
910 *
911 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
912 * struct scatterlist *sgl, unsigned int sgc);
913 * Called when the FCoE Target wants to initialize an I/O that
914 * is a possible candidate for Direct Data Placement (DDP). The LLD can
915 * perform necessary setup and returns 1 to indicate the device is set up
916 * successfully to perform DDP on this I/O, otherwise this returns 0.
917 *
918 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
919 * struct netdev_fcoe_hbainfo *hbainfo);
920 * Called when the FCoE Protocol stack wants information on the underlying
921 * device. This information is utilized by the FCoE protocol stack to
922 * register attributes with Fiber Channel management service as per the
923 * FC-GS Fabric Device Management Information(FDMI) specification.
924 *
925 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
926 * Called when the underlying device wants to override default World Wide
927 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
928 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
929 * protocol stack to use.
930 *
931 * RFS acceleration.
932 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
933 * u16 rxq_index, u32 flow_id);
934 * Set hardware filter for RFS. rxq_index is the target queue index;
935 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
936 * Return the filter ID on success, or a negative error code.
937 *
938 * Slave management functions (for bridge, bonding, etc).
939 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
940 * Called to make another netdev an underling.
941 *
942 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
943 * Called to release previously enslaved netdev.
944 *
945 * Feature/offload setting functions.
946 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
947 * netdev_features_t features);
948 * Adjusts the requested feature flags according to device-specific
949 * constraints, and returns the resulting flags. Must not modify
950 * the device state.
951 *
952 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
953 * Called to update device configuration to new features. Passed
954 * feature set might be less than what was returned by ndo_fix_features()).
955 * Must return >0 or -errno if it changed dev->features itself.
956 *
957 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
958 * struct net_device *dev,
959 * const unsigned char *addr, u16 vid, u16 flags)
960 * Adds an FDB entry to dev for addr.
961 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
962 * struct net_device *dev,
963 * const unsigned char *addr, u16 vid)
964 * Deletes the FDB entry from dev coresponding to addr.
965 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
966 * struct net_device *dev, struct net_device *filter_dev,
967 * int idx)
968 * Used to add FDB entries to dump requests. Implementers should add
969 * entries to skb and update idx with the number of entries.
970 *
971 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
972 * u16 flags)
973 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
974 * struct net_device *dev, u32 filter_mask)
975 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
976 * u16 flags);
977 *
978 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
979 * Called to change device carrier. Soft-devices (like dummy, team, etc)
980 * which do not represent real hardware may define this to allow their
981 * userspace components to manage their virtual carrier state. Devices
982 * that determine carrier state from physical hardware properties (eg
983 * network cables) or protocol-dependent mechanisms (eg
984 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
985 *
986 * int (*ndo_get_phys_port_id)(struct net_device *dev,
987 * struct netdev_phys_item_id *ppid);
988 * Called to get ID of physical port of this device. If driver does
989 * not implement this, it is assumed that the hw is not able to have
990 * multiple net devices on single physical port.
991 *
992 * void (*ndo_add_vxlan_port)(struct net_device *dev,
993 * sa_family_t sa_family, __be16 port);
994 * Called by vxlan to notiy a driver about the UDP port and socket
995 * address family that vxlan is listnening to. It is called only when
996 * a new port starts listening. The operation is protected by the
997 * vxlan_net->sock_lock.
998 *
999 * void (*ndo_del_vxlan_port)(struct net_device *dev,
1000 * sa_family_t sa_family, __be16 port);
1001 * Called by vxlan to notify the driver about a UDP port and socket
1002 * address family that vxlan is not listening to anymore. The operation
1003 * is protected by the vxlan_net->sock_lock.
1004 *
1005 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1006 * struct net_device *dev)
1007 * Called by upper layer devices to accelerate switching or other
1008 * station functionality into hardware. 'pdev is the lowerdev
1009 * to use for the offload and 'dev' is the net device that will
1010 * back the offload. Returns a pointer to the private structure
1011 * the upper layer will maintain.
1012 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1013 * Called by upper layer device to delete the station created
1014 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1015 * the station and priv is the structure returned by the add
1016 * operation.
1017 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1018 * struct net_device *dev,
1019 * void *priv);
1020 * Callback to use for xmit over the accelerated station. This
1021 * is used in place of ndo_start_xmit on accelerated net
1022 * devices.
1023 * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1024 * struct net_device *dev
1025 * netdev_features_t features);
1026 * Called by core transmit path to determine if device is capable of
1027 * performing offload operations on a given packet. This is to give
1028 * the device an opportunity to implement any restrictions that cannot
1029 * be otherwise expressed by feature flags. The check is called with
1030 * the set of features that the stack has calculated and it returns
1031 * those the driver believes to be appropriate.
1032 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1033 * int queue_index, u32 maxrate);
1034 * Called when a user wants to set a max-rate limitation of specific
1035 * TX queue.
1036 * int (*ndo_get_iflink)(const struct net_device *dev);
1037 * Called to get the iflink value of this device.
1038 */
1039 struct net_device_ops {
1040 int (*ndo_init)(struct net_device *dev);
1041 void (*ndo_uninit)(struct net_device *dev);
1042 int (*ndo_open)(struct net_device *dev);
1043 int (*ndo_stop)(struct net_device *dev);
1044 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
1045 struct net_device *dev);
1046 u16 (*ndo_select_queue)(struct net_device *dev,
1047 struct sk_buff *skb,
1048 void *accel_priv,
1049 select_queue_fallback_t fallback);
1050 void (*ndo_change_rx_flags)(struct net_device *dev,
1051 int flags);
1052 void (*ndo_set_rx_mode)(struct net_device *dev);
1053 int (*ndo_set_mac_address)(struct net_device *dev,
1054 void *addr);
1055 int (*ndo_validate_addr)(struct net_device *dev);
1056 int (*ndo_do_ioctl)(struct net_device *dev,
1057 struct ifreq *ifr, int cmd);
1058 int (*ndo_set_config)(struct net_device *dev,
1059 struct ifmap *map);
1060 int (*ndo_change_mtu)(struct net_device *dev,
1061 int new_mtu);
1062 int (*ndo_neigh_setup)(struct net_device *dev,
1063 struct neigh_parms *);
1064 void (*ndo_tx_timeout) (struct net_device *dev);
1065
1066 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1067 struct rtnl_link_stats64 *storage);
1068 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1069
1070 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1071 __be16 proto, u16 vid);
1072 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1073 __be16 proto, u16 vid);
1074 #ifdef CONFIG_NET_POLL_CONTROLLER
1075 void (*ndo_poll_controller)(struct net_device *dev);
1076 int (*ndo_netpoll_setup)(struct net_device *dev,
1077 struct netpoll_info *info);
1078 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1079 #endif
1080 #ifdef CONFIG_NET_RX_BUSY_POLL
1081 int (*ndo_busy_poll)(struct napi_struct *dev);
1082 #endif
1083 int (*ndo_set_vf_mac)(struct net_device *dev,
1084 int queue, u8 *mac);
1085 int (*ndo_set_vf_vlan)(struct net_device *dev,
1086 int queue, u16 vlan, u8 qos);
1087 int (*ndo_set_vf_rate)(struct net_device *dev,
1088 int vf, int min_tx_rate,
1089 int max_tx_rate);
1090 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1091 int vf, bool setting);
1092 int (*ndo_get_vf_config)(struct net_device *dev,
1093 int vf,
1094 struct ifla_vf_info *ivf);
1095 int (*ndo_set_vf_link_state)(struct net_device *dev,
1096 int vf, int link_state);
1097 int (*ndo_set_vf_port)(struct net_device *dev,
1098 int vf,
1099 struct nlattr *port[]);
1100 int (*ndo_get_vf_port)(struct net_device *dev,
1101 int vf, struct sk_buff *skb);
1102 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1103 #if IS_ENABLED(CONFIG_FCOE)
1104 int (*ndo_fcoe_enable)(struct net_device *dev);
1105 int (*ndo_fcoe_disable)(struct net_device *dev);
1106 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1107 u16 xid,
1108 struct scatterlist *sgl,
1109 unsigned int sgc);
1110 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1111 u16 xid);
1112 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1113 u16 xid,
1114 struct scatterlist *sgl,
1115 unsigned int sgc);
1116 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1117 struct netdev_fcoe_hbainfo *hbainfo);
1118 #endif
1119
1120 #if IS_ENABLED(CONFIG_LIBFCOE)
1121 #define NETDEV_FCOE_WWNN 0
1122 #define NETDEV_FCOE_WWPN 1
1123 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1124 u64 *wwn, int type);
1125 #endif
1126
1127 #ifdef CONFIG_RFS_ACCEL
1128 int (*ndo_rx_flow_steer)(struct net_device *dev,
1129 const struct sk_buff *skb,
1130 u16 rxq_index,
1131 u32 flow_id);
1132 #endif
1133 int (*ndo_add_slave)(struct net_device *dev,
1134 struct net_device *slave_dev);
1135 int (*ndo_del_slave)(struct net_device *dev,
1136 struct net_device *slave_dev);
1137 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1138 netdev_features_t features);
1139 int (*ndo_set_features)(struct net_device *dev,
1140 netdev_features_t features);
1141 int (*ndo_neigh_construct)(struct neighbour *n);
1142 void (*ndo_neigh_destroy)(struct neighbour *n);
1143
1144 int (*ndo_fdb_add)(struct ndmsg *ndm,
1145 struct nlattr *tb[],
1146 struct net_device *dev,
1147 const unsigned char *addr,
1148 u16 vid,
1149 u16 flags);
1150 int (*ndo_fdb_del)(struct ndmsg *ndm,
1151 struct nlattr *tb[],
1152 struct net_device *dev,
1153 const unsigned char *addr,
1154 u16 vid);
1155 int (*ndo_fdb_dump)(struct sk_buff *skb,
1156 struct netlink_callback *cb,
1157 struct net_device *dev,
1158 struct net_device *filter_dev,
1159 int idx);
1160
1161 int (*ndo_bridge_setlink)(struct net_device *dev,
1162 struct nlmsghdr *nlh,
1163 u16 flags);
1164 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1165 u32 pid, u32 seq,
1166 struct net_device *dev,
1167 u32 filter_mask);
1168 int (*ndo_bridge_dellink)(struct net_device *dev,
1169 struct nlmsghdr *nlh,
1170 u16 flags);
1171 int (*ndo_change_carrier)(struct net_device *dev,
1172 bool new_carrier);
1173 int (*ndo_get_phys_port_id)(struct net_device *dev,
1174 struct netdev_phys_item_id *ppid);
1175 int (*ndo_get_phys_port_name)(struct net_device *dev,
1176 char *name, size_t len);
1177 void (*ndo_add_vxlan_port)(struct net_device *dev,
1178 sa_family_t sa_family,
1179 __be16 port);
1180 void (*ndo_del_vxlan_port)(struct net_device *dev,
1181 sa_family_t sa_family,
1182 __be16 port);
1183
1184 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1185 struct net_device *dev);
1186 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1187 void *priv);
1188
1189 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1190 struct net_device *dev,
1191 void *priv);
1192 int (*ndo_get_lock_subclass)(struct net_device *dev);
1193 netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1194 struct net_device *dev,
1195 netdev_features_t features);
1196 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1197 int queue_index,
1198 u32 maxrate);
1199 int (*ndo_get_iflink)(const struct net_device *dev);
1200 };
1201
1202 /**
1203 * enum net_device_priv_flags - &struct net_device priv_flags
1204 *
1205 * These are the &struct net_device, they are only set internally
1206 * by drivers and used in the kernel. These flags are invisible to
1207 * userspace, this means that the order of these flags can change
1208 * during any kernel release.
1209 *
1210 * You should have a pretty good reason to be extending these flags.
1211 *
1212 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1213 * @IFF_EBRIDGE: Ethernet bridging device
1214 * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active
1215 * @IFF_MASTER_8023AD: bonding master, 802.3ad
1216 * @IFF_MASTER_ALB: bonding master, balance-alb
1217 * @IFF_BONDING: bonding master or slave
1218 * @IFF_SLAVE_NEEDARP: need ARPs for validation
1219 * @IFF_ISATAP: ISATAP interface (RFC4214)
1220 * @IFF_MASTER_ARPMON: bonding master, ARP mon in use
1221 * @IFF_WAN_HDLC: WAN HDLC device
1222 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1223 * release skb->dst
1224 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1225 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1226 * @IFF_MACVLAN_PORT: device used as macvlan port
1227 * @IFF_BRIDGE_PORT: device used as bridge port
1228 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1229 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1230 * @IFF_UNICAST_FLT: Supports unicast filtering
1231 * @IFF_TEAM_PORT: device used as team port
1232 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1233 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1234 * change when it's running
1235 * @IFF_MACVLAN: Macvlan device
1236 */
1237 enum netdev_priv_flags {
1238 IFF_802_1Q_VLAN = 1<<0,
1239 IFF_EBRIDGE = 1<<1,
1240 IFF_SLAVE_INACTIVE = 1<<2,
1241 IFF_MASTER_8023AD = 1<<3,
1242 IFF_MASTER_ALB = 1<<4,
1243 IFF_BONDING = 1<<5,
1244 IFF_SLAVE_NEEDARP = 1<<6,
1245 IFF_ISATAP = 1<<7,
1246 IFF_MASTER_ARPMON = 1<<8,
1247 IFF_WAN_HDLC = 1<<9,
1248 IFF_XMIT_DST_RELEASE = 1<<10,
1249 IFF_DONT_BRIDGE = 1<<11,
1250 IFF_DISABLE_NETPOLL = 1<<12,
1251 IFF_MACVLAN_PORT = 1<<13,
1252 IFF_BRIDGE_PORT = 1<<14,
1253 IFF_OVS_DATAPATH = 1<<15,
1254 IFF_TX_SKB_SHARING = 1<<16,
1255 IFF_UNICAST_FLT = 1<<17,
1256 IFF_TEAM_PORT = 1<<18,
1257 IFF_SUPP_NOFCS = 1<<19,
1258 IFF_LIVE_ADDR_CHANGE = 1<<20,
1259 IFF_MACVLAN = 1<<21,
1260 IFF_XMIT_DST_RELEASE_PERM = 1<<22,
1261 IFF_IPVLAN_MASTER = 1<<23,
1262 IFF_IPVLAN_SLAVE = 1<<24,
1263 };
1264
1265 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1266 #define IFF_EBRIDGE IFF_EBRIDGE
1267 #define IFF_SLAVE_INACTIVE IFF_SLAVE_INACTIVE
1268 #define IFF_MASTER_8023AD IFF_MASTER_8023AD
1269 #define IFF_MASTER_ALB IFF_MASTER_ALB
1270 #define IFF_BONDING IFF_BONDING
1271 #define IFF_SLAVE_NEEDARP IFF_SLAVE_NEEDARP
1272 #define IFF_ISATAP IFF_ISATAP
1273 #define IFF_MASTER_ARPMON IFF_MASTER_ARPMON
1274 #define IFF_WAN_HDLC IFF_WAN_HDLC
1275 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1276 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1277 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1278 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1279 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1280 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1281 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1282 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1283 #define IFF_TEAM_PORT IFF_TEAM_PORT
1284 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1285 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1286 #define IFF_MACVLAN IFF_MACVLAN
1287 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1288 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER
1289 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE
1290
1291 /**
1292 * struct net_device - The DEVICE structure.
1293 * Actually, this whole structure is a big mistake. It mixes I/O
1294 * data with strictly "high-level" data, and it has to know about
1295 * almost every data structure used in the INET module.
1296 *
1297 * @name: This is the first field of the "visible" part of this structure
1298 * (i.e. as seen by users in the "Space.c" file). It is the name
1299 * of the interface.
1300 *
1301 * @name_hlist: Device name hash chain, please keep it close to name[]
1302 * @ifalias: SNMP alias
1303 * @mem_end: Shared memory end
1304 * @mem_start: Shared memory start
1305 * @base_addr: Device I/O address
1306 * @irq: Device IRQ number
1307 *
1308 * @state: Generic network queuing layer state, see netdev_state_t
1309 * @dev_list: The global list of network devices
1310 * @napi_list: List entry, that is used for polling napi devices
1311 * @unreg_list: List entry, that is used, when we are unregistering the
1312 * device, see the function unregister_netdev
1313 * @close_list: List entry, that is used, when we are closing the device
1314 *
1315 * @adj_list: Directly linked devices, like slaves for bonding
1316 * @all_adj_list: All linked devices, *including* neighbours
1317 * @features: Currently active device features
1318 * @hw_features: User-changeable features
1319 *
1320 * @wanted_features: User-requested features
1321 * @vlan_features: Mask of features inheritable by VLAN devices
1322 *
1323 * @hw_enc_features: Mask of features inherited by encapsulating devices
1324 * This field indicates what encapsulation
1325 * offloads the hardware is capable of doing,
1326 * and drivers will need to set them appropriately.
1327 *
1328 * @mpls_features: Mask of features inheritable by MPLS
1329 *
1330 * @ifindex: interface index
1331 * @group: The group, that the device belongs to
1332 *
1333 * @stats: Statistics struct, which was left as a legacy, use
1334 * rtnl_link_stats64 instead
1335 *
1336 * @rx_dropped: Dropped packets by core network,
1337 * do not use this in drivers
1338 * @tx_dropped: Dropped packets by core network,
1339 * do not use this in drivers
1340 *
1341 * @carrier_changes: Stats to monitor carrier on<->off transitions
1342 *
1343 * @wireless_handlers: List of functions to handle Wireless Extensions,
1344 * instead of ioctl,
1345 * see <net/iw_handler.h> for details.
1346 * @wireless_data: Instance data managed by the core of wireless extensions
1347 *
1348 * @netdev_ops: Includes several pointers to callbacks,
1349 * if one wants to override the ndo_*() functions
1350 * @ethtool_ops: Management operations
1351 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1352 * of Layer 2 headers.
1353 *
1354 * @flags: Interface flags (a la BSD)
1355 * @priv_flags: Like 'flags' but invisible to userspace,
1356 * see if.h for the definitions
1357 * @gflags: Global flags ( kept as legacy )
1358 * @padded: How much padding added by alloc_netdev()
1359 * @operstate: RFC2863 operstate
1360 * @link_mode: Mapping policy to operstate
1361 * @if_port: Selectable AUI, TP, ...
1362 * @dma: DMA channel
1363 * @mtu: Interface MTU value
1364 * @type: Interface hardware type
1365 * @hard_header_len: Hardware header length
1366 *
1367 * @needed_headroom: Extra headroom the hardware may need, but not in all
1368 * cases can this be guaranteed
1369 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1370 * cases can this be guaranteed. Some cases also use
1371 * LL_MAX_HEADER instead to allocate the skb
1372 *
1373 * interface address info:
1374 *
1375 * @perm_addr: Permanent hw address
1376 * @addr_assign_type: Hw address assignment type
1377 * @addr_len: Hardware address length
1378 * @neigh_priv_len; Used in neigh_alloc(),
1379 * initialized only in atm/clip.c
1380 * @dev_id: Used to differentiate devices that share
1381 * the same link layer address
1382 * @dev_port: Used to differentiate devices that share
1383 * the same function
1384 * @addr_list_lock: XXX: need comments on this one
1385 * @uc: unicast mac addresses
1386 * @mc: multicast mac addresses
1387 * @dev_addrs: list of device hw addresses
1388 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1389 * @uc_promisc: Counter, that indicates, that promiscuous mode
1390 * has been enabled due to the need to listen to
1391 * additional unicast addresses in a device that
1392 * does not implement ndo_set_rx_mode()
1393 * @promiscuity: Number of times, the NIC is told to work in
1394 * Promiscuous mode, if it becomes 0 the NIC will
1395 * exit from working in Promiscuous mode
1396 * @allmulti: Counter, enables or disables allmulticast mode
1397 *
1398 * @vlan_info: VLAN info
1399 * @dsa_ptr: dsa specific data
1400 * @tipc_ptr: TIPC specific data
1401 * @atalk_ptr: AppleTalk link
1402 * @ip_ptr: IPv4 specific data
1403 * @dn_ptr: DECnet specific data
1404 * @ip6_ptr: IPv6 specific data
1405 * @ax25_ptr: AX.25 specific data
1406 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1407 *
1408 * @last_rx: Time of last Rx
1409 * @dev_addr: Hw address (before bcast,
1410 * because most packets are unicast)
1411 *
1412 * @_rx: Array of RX queues
1413 * @num_rx_queues: Number of RX queues
1414 * allocated at register_netdev() time
1415 * @real_num_rx_queues: Number of RX queues currently active in device
1416 *
1417 * @rx_handler: handler for received packets
1418 * @rx_handler_data: XXX: need comments on this one
1419 * @ingress_queue: XXX: need comments on this one
1420 * @broadcast: hw bcast address
1421 *
1422 * @_tx: Array of TX queues
1423 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1424 * @real_num_tx_queues: Number of TX queues currently active in device
1425 * @qdisc: Root qdisc from userspace point of view
1426 * @tx_queue_len: Max frames per queue allowed
1427 * @tx_global_lock: XXX: need comments on this one
1428 *
1429 * @xps_maps: XXX: need comments on this one
1430 *
1431 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1432 * indexed by RX queue number. Assigned by driver.
1433 * This must only be set if the ndo_rx_flow_steer
1434 * operation is defined
1435 *
1436 * @trans_start: Time (in jiffies) of last Tx
1437 * @watchdog_timeo: Represents the timeout that is used by
1438 * the watchdog ( see dev_watchdog() )
1439 * @watchdog_timer: List of timers
1440 *
1441 * @pcpu_refcnt: Number of references to this device
1442 * @todo_list: Delayed register/unregister
1443 * @index_hlist: Device index hash chain
1444 * @link_watch_list: XXX: need comments on this one
1445 *
1446 * @reg_state: Register/unregister state machine
1447 * @dismantle: Device is going to be freed
1448 * @rtnl_link_state: This enum represents the phases of creating
1449 * a new link
1450 *
1451 * @destructor: Called from unregister,
1452 * can be used to call free_netdev
1453 * @npinfo: XXX: need comments on this one
1454 * @nd_net: Network namespace this network device is inside
1455 *
1456 * @ml_priv: Mid-layer private
1457 * @lstats: Loopback statistics
1458 * @tstats: Tunnel statistics
1459 * @dstats: Dummy statistics
1460 * @vstats: Virtual ethernet statistics
1461 *
1462 * @garp_port: GARP
1463 * @mrp_port: MRP
1464 *
1465 * @dev: Class/net/name entry
1466 * @sysfs_groups: Space for optional device, statistics and wireless
1467 * sysfs groups
1468 *
1469 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1470 * @rtnl_link_ops: Rtnl_link_ops
1471 *
1472 * @gso_max_size: Maximum size of generic segmentation offload
1473 * @gso_max_segs: Maximum number of segments that can be passed to the
1474 * NIC for GSO
1475 * @gso_min_segs: Minimum number of segments that can be passed to the
1476 * NIC for GSO
1477 *
1478 * @dcbnl_ops: Data Center Bridging netlink ops
1479 * @num_tc: Number of traffic classes in the net device
1480 * @tc_to_txq: XXX: need comments on this one
1481 * @prio_tc_map XXX: need comments on this one
1482 *
1483 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1484 *
1485 * @priomap: XXX: need comments on this one
1486 * @phydev: Physical device may attach itself
1487 * for hardware timestamping
1488 *
1489 * @qdisc_tx_busylock: XXX: need comments on this one
1490 *
1491 * @pm_qos_req: Power Management QoS object
1492 *
1493 * FIXME: cleanup struct net_device such that network protocol info
1494 * moves out.
1495 */
1496
1497 struct net_device {
1498 char name[IFNAMSIZ];
1499 struct hlist_node name_hlist;
1500 char *ifalias;
1501 /*
1502 * I/O specific fields
1503 * FIXME: Merge these and struct ifmap into one
1504 */
1505 unsigned long mem_end;
1506 unsigned long mem_start;
1507 unsigned long base_addr;
1508 int irq;
1509
1510 /*
1511 * Some hardware also needs these fields (state,dev_list,
1512 * napi_list,unreg_list,close_list) but they are not
1513 * part of the usual set specified in Space.c.
1514 */
1515
1516 unsigned long state;
1517
1518 struct list_head dev_list;
1519 struct list_head napi_list;
1520 struct list_head unreg_list;
1521 struct list_head close_list;
1522 struct list_head ptype_all;
1523 struct list_head ptype_specific;
1524
1525 struct {
1526 struct list_head upper;
1527 struct list_head lower;
1528 } adj_list;
1529
1530 struct {
1531 struct list_head upper;
1532 struct list_head lower;
1533 } all_adj_list;
1534
1535 netdev_features_t features;
1536 netdev_features_t hw_features;
1537 netdev_features_t wanted_features;
1538 netdev_features_t vlan_features;
1539 netdev_features_t hw_enc_features;
1540 netdev_features_t mpls_features;
1541
1542 int ifindex;
1543 int group;
1544
1545 struct net_device_stats stats;
1546
1547 atomic_long_t rx_dropped;
1548 atomic_long_t tx_dropped;
1549
1550 atomic_t carrier_changes;
1551
1552 #ifdef CONFIG_WIRELESS_EXT
1553 const struct iw_handler_def * wireless_handlers;
1554 struct iw_public_data * wireless_data;
1555 #endif
1556 const struct net_device_ops *netdev_ops;
1557 const struct ethtool_ops *ethtool_ops;
1558 #ifdef CONFIG_NET_SWITCHDEV
1559 const struct swdev_ops *swdev_ops;
1560 #endif
1561
1562 const struct header_ops *header_ops;
1563
1564 unsigned int flags;
1565 unsigned int priv_flags;
1566
1567 unsigned short gflags;
1568 unsigned short padded;
1569
1570 unsigned char operstate;
1571 unsigned char link_mode;
1572
1573 unsigned char if_port;
1574 unsigned char dma;
1575
1576 unsigned int mtu;
1577 unsigned short type;
1578 unsigned short hard_header_len;
1579
1580 unsigned short needed_headroom;
1581 unsigned short needed_tailroom;
1582
1583 /* Interface address info. */
1584 unsigned char perm_addr[MAX_ADDR_LEN];
1585 unsigned char addr_assign_type;
1586 unsigned char addr_len;
1587 unsigned short neigh_priv_len;
1588 unsigned short dev_id;
1589 unsigned short dev_port;
1590 spinlock_t addr_list_lock;
1591 struct netdev_hw_addr_list uc;
1592 struct netdev_hw_addr_list mc;
1593 struct netdev_hw_addr_list dev_addrs;
1594
1595 #ifdef CONFIG_SYSFS
1596 struct kset *queues_kset;
1597 #endif
1598
1599 unsigned char name_assign_type;
1600
1601 bool uc_promisc;
1602 unsigned int promiscuity;
1603 unsigned int allmulti;
1604
1605
1606 /* Protocol specific pointers */
1607
1608 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1609 struct vlan_info __rcu *vlan_info;
1610 #endif
1611 #if IS_ENABLED(CONFIG_NET_DSA)
1612 struct dsa_switch_tree *dsa_ptr;
1613 #endif
1614 #if IS_ENABLED(CONFIG_TIPC)
1615 struct tipc_bearer __rcu *tipc_ptr;
1616 #endif
1617 void *atalk_ptr;
1618 struct in_device __rcu *ip_ptr;
1619 struct dn_dev __rcu *dn_ptr;
1620 struct inet6_dev __rcu *ip6_ptr;
1621 void *ax25_ptr;
1622 struct wireless_dev *ieee80211_ptr;
1623 struct wpan_dev *ieee802154_ptr;
1624
1625 /*
1626 * Cache lines mostly used on receive path (including eth_type_trans())
1627 */
1628 unsigned long last_rx;
1629
1630 /* Interface address info used in eth_type_trans() */
1631 unsigned char *dev_addr;
1632
1633
1634 #ifdef CONFIG_SYSFS
1635 struct netdev_rx_queue *_rx;
1636
1637 unsigned int num_rx_queues;
1638 unsigned int real_num_rx_queues;
1639
1640 #endif
1641
1642 unsigned long gro_flush_timeout;
1643 rx_handler_func_t __rcu *rx_handler;
1644 void __rcu *rx_handler_data;
1645
1646 struct netdev_queue __rcu *ingress_queue;
1647 unsigned char broadcast[MAX_ADDR_LEN];
1648
1649
1650 /*
1651 * Cache lines mostly used on transmit path
1652 */
1653 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1654 unsigned int num_tx_queues;
1655 unsigned int real_num_tx_queues;
1656 struct Qdisc *qdisc;
1657 unsigned long tx_queue_len;
1658 spinlock_t tx_global_lock;
1659
1660 #ifdef CONFIG_XPS
1661 struct xps_dev_maps __rcu *xps_maps;
1662 #endif
1663 #ifdef CONFIG_RFS_ACCEL
1664 struct cpu_rmap *rx_cpu_rmap;
1665 #endif
1666
1667 /* These may be needed for future network-power-down code. */
1668
1669 /*
1670 * trans_start here is expensive for high speed devices on SMP,
1671 * please use netdev_queue->trans_start instead.
1672 */
1673 unsigned long trans_start;
1674
1675 int watchdog_timeo;
1676 struct timer_list watchdog_timer;
1677
1678 int __percpu *pcpu_refcnt;
1679 struct list_head todo_list;
1680
1681 struct hlist_node index_hlist;
1682 struct list_head link_watch_list;
1683
1684 enum { NETREG_UNINITIALIZED=0,
1685 NETREG_REGISTERED, /* completed register_netdevice */
1686 NETREG_UNREGISTERING, /* called unregister_netdevice */
1687 NETREG_UNREGISTERED, /* completed unregister todo */
1688 NETREG_RELEASED, /* called free_netdev */
1689 NETREG_DUMMY, /* dummy device for NAPI poll */
1690 } reg_state:8;
1691
1692 bool dismantle;
1693
1694 enum {
1695 RTNL_LINK_INITIALIZED,
1696 RTNL_LINK_INITIALIZING,
1697 } rtnl_link_state:16;
1698
1699 void (*destructor)(struct net_device *dev);
1700
1701 #ifdef CONFIG_NETPOLL
1702 struct netpoll_info __rcu *npinfo;
1703 #endif
1704
1705 possible_net_t nd_net;
1706
1707 /* mid-layer private */
1708 union {
1709 void *ml_priv;
1710 struct pcpu_lstats __percpu *lstats;
1711 struct pcpu_sw_netstats __percpu *tstats;
1712 struct pcpu_dstats __percpu *dstats;
1713 struct pcpu_vstats __percpu *vstats;
1714 };
1715
1716 struct garp_port __rcu *garp_port;
1717 struct mrp_port __rcu *mrp_port;
1718
1719 struct device dev;
1720 const struct attribute_group *sysfs_groups[4];
1721 const struct attribute_group *sysfs_rx_queue_group;
1722
1723 const struct rtnl_link_ops *rtnl_link_ops;
1724
1725 /* for setting kernel sock attribute on TCP connection setup */
1726 #define GSO_MAX_SIZE 65536
1727 unsigned int gso_max_size;
1728 #define GSO_MAX_SEGS 65535
1729 u16 gso_max_segs;
1730 u16 gso_min_segs;
1731 #ifdef CONFIG_DCB
1732 const struct dcbnl_rtnl_ops *dcbnl_ops;
1733 #endif
1734 u8 num_tc;
1735 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1736 u8 prio_tc_map[TC_BITMASK + 1];
1737
1738 #if IS_ENABLED(CONFIG_FCOE)
1739 unsigned int fcoe_ddp_xid;
1740 #endif
1741 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1742 struct netprio_map __rcu *priomap;
1743 #endif
1744 struct phy_device *phydev;
1745 struct lock_class_key *qdisc_tx_busylock;
1746 struct pm_qos_request pm_qos_req;
1747 };
1748 #define to_net_dev(d) container_of(d, struct net_device, dev)
1749
1750 #define NETDEV_ALIGN 32
1751
1752 static inline
1753 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1754 {
1755 return dev->prio_tc_map[prio & TC_BITMASK];
1756 }
1757
1758 static inline
1759 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1760 {
1761 if (tc >= dev->num_tc)
1762 return -EINVAL;
1763
1764 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1765 return 0;
1766 }
1767
1768 static inline
1769 void netdev_reset_tc(struct net_device *dev)
1770 {
1771 dev->num_tc = 0;
1772 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1773 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1774 }
1775
1776 static inline
1777 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1778 {
1779 if (tc >= dev->num_tc)
1780 return -EINVAL;
1781
1782 dev->tc_to_txq[tc].count = count;
1783 dev->tc_to_txq[tc].offset = offset;
1784 return 0;
1785 }
1786
1787 static inline
1788 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1789 {
1790 if (num_tc > TC_MAX_QUEUE)
1791 return -EINVAL;
1792
1793 dev->num_tc = num_tc;
1794 return 0;
1795 }
1796
1797 static inline
1798 int netdev_get_num_tc(struct net_device *dev)
1799 {
1800 return dev->num_tc;
1801 }
1802
1803 static inline
1804 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1805 unsigned int index)
1806 {
1807 return &dev->_tx[index];
1808 }
1809
1810 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1811 const struct sk_buff *skb)
1812 {
1813 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1814 }
1815
1816 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1817 void (*f)(struct net_device *,
1818 struct netdev_queue *,
1819 void *),
1820 void *arg)
1821 {
1822 unsigned int i;
1823
1824 for (i = 0; i < dev->num_tx_queues; i++)
1825 f(dev, &dev->_tx[i], arg);
1826 }
1827
1828 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1829 struct sk_buff *skb,
1830 void *accel_priv);
1831
1832 /*
1833 * Net namespace inlines
1834 */
1835 static inline
1836 struct net *dev_net(const struct net_device *dev)
1837 {
1838 return read_pnet(&dev->nd_net);
1839 }
1840
1841 static inline
1842 void dev_net_set(struct net_device *dev, struct net *net)
1843 {
1844 write_pnet(&dev->nd_net, net);
1845 }
1846
1847 static inline bool netdev_uses_dsa(struct net_device *dev)
1848 {
1849 #if IS_ENABLED(CONFIG_NET_DSA)
1850 if (dev->dsa_ptr != NULL)
1851 return dsa_uses_tagged_protocol(dev->dsa_ptr);
1852 #endif
1853 return false;
1854 }
1855
1856 /**
1857 * netdev_priv - access network device private data
1858 * @dev: network device
1859 *
1860 * Get network device private data
1861 */
1862 static inline void *netdev_priv(const struct net_device *dev)
1863 {
1864 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1865 }
1866
1867 /* Set the sysfs physical device reference for the network logical device
1868 * if set prior to registration will cause a symlink during initialization.
1869 */
1870 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1871
1872 /* Set the sysfs device type for the network logical device to allow
1873 * fine-grained identification of different network device types. For
1874 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1875 */
1876 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1877
1878 /* Default NAPI poll() weight
1879 * Device drivers are strongly advised to not use bigger value
1880 */
1881 #define NAPI_POLL_WEIGHT 64
1882
1883 /**
1884 * netif_napi_add - initialize a napi context
1885 * @dev: network device
1886 * @napi: napi context
1887 * @poll: polling function
1888 * @weight: default weight
1889 *
1890 * netif_napi_add() must be used to initialize a napi context prior to calling
1891 * *any* of the other napi related functions.
1892 */
1893 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1894 int (*poll)(struct napi_struct *, int), int weight);
1895
1896 /**
1897 * netif_napi_del - remove a napi context
1898 * @napi: napi context
1899 *
1900 * netif_napi_del() removes a napi context from the network device napi list
1901 */
1902 void netif_napi_del(struct napi_struct *napi);
1903
1904 struct napi_gro_cb {
1905 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1906 void *frag0;
1907
1908 /* Length of frag0. */
1909 unsigned int frag0_len;
1910
1911 /* This indicates where we are processing relative to skb->data. */
1912 int data_offset;
1913
1914 /* This is non-zero if the packet cannot be merged with the new skb. */
1915 u16 flush;
1916
1917 /* Save the IP ID here and check when we get to the transport layer */
1918 u16 flush_id;
1919
1920 /* Number of segments aggregated. */
1921 u16 count;
1922
1923 /* Start offset for remote checksum offload */
1924 u16 gro_remcsum_start;
1925
1926 /* jiffies when first packet was created/queued */
1927 unsigned long age;
1928
1929 /* Used in ipv6_gro_receive() and foo-over-udp */
1930 u16 proto;
1931
1932 /* This is non-zero if the packet may be of the same flow. */
1933 u8 same_flow:1;
1934
1935 /* Used in udp_gro_receive */
1936 u8 udp_mark:1;
1937
1938 /* GRO checksum is valid */
1939 u8 csum_valid:1;
1940
1941 /* Number of checksums via CHECKSUM_UNNECESSARY */
1942 u8 csum_cnt:3;
1943
1944 /* Free the skb? */
1945 u8 free:2;
1946 #define NAPI_GRO_FREE 1
1947 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1948
1949 /* Used in foo-over-udp, set in udp[46]_gro_receive */
1950 u8 is_ipv6:1;
1951
1952 /* 7 bit hole */
1953
1954 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
1955 __wsum csum;
1956
1957 /* used in skb_gro_receive() slow path */
1958 struct sk_buff *last;
1959 };
1960
1961 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1962
1963 struct packet_type {
1964 __be16 type; /* This is really htons(ether_type). */
1965 struct net_device *dev; /* NULL is wildcarded here */
1966 int (*func) (struct sk_buff *,
1967 struct net_device *,
1968 struct packet_type *,
1969 struct net_device *);
1970 bool (*id_match)(struct packet_type *ptype,
1971 struct sock *sk);
1972 void *af_packet_priv;
1973 struct list_head list;
1974 };
1975
1976 struct offload_callbacks {
1977 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1978 netdev_features_t features);
1979 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1980 struct sk_buff *skb);
1981 int (*gro_complete)(struct sk_buff *skb, int nhoff);
1982 };
1983
1984 struct packet_offload {
1985 __be16 type; /* This is really htons(ether_type). */
1986 struct offload_callbacks callbacks;
1987 struct list_head list;
1988 };
1989
1990 struct udp_offload;
1991
1992 struct udp_offload_callbacks {
1993 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1994 struct sk_buff *skb,
1995 struct udp_offload *uoff);
1996 int (*gro_complete)(struct sk_buff *skb,
1997 int nhoff,
1998 struct udp_offload *uoff);
1999 };
2000
2001 struct udp_offload {
2002 __be16 port;
2003 u8 ipproto;
2004 struct udp_offload_callbacks callbacks;
2005 };
2006
2007 /* often modified stats are per cpu, other are shared (netdev->stats) */
2008 struct pcpu_sw_netstats {
2009 u64 rx_packets;
2010 u64 rx_bytes;
2011 u64 tx_packets;
2012 u64 tx_bytes;
2013 struct u64_stats_sync syncp;
2014 };
2015
2016 #define netdev_alloc_pcpu_stats(type) \
2017 ({ \
2018 typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
2019 if (pcpu_stats) { \
2020 int i; \
2021 for_each_possible_cpu(i) { \
2022 typeof(type) *stat; \
2023 stat = per_cpu_ptr(pcpu_stats, i); \
2024 u64_stats_init(&stat->syncp); \
2025 } \
2026 } \
2027 pcpu_stats; \
2028 })
2029
2030 #include <linux/notifier.h>
2031
2032 /* netdevice notifier chain. Please remember to update the rtnetlink
2033 * notification exclusion list in rtnetlink_event() when adding new
2034 * types.
2035 */
2036 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
2037 #define NETDEV_DOWN 0x0002
2038 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
2039 detected a hardware crash and restarted
2040 - we can use this eg to kick tcp sessions
2041 once done */
2042 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
2043 #define NETDEV_REGISTER 0x0005
2044 #define NETDEV_UNREGISTER 0x0006
2045 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
2046 #define NETDEV_CHANGEADDR 0x0008
2047 #define NETDEV_GOING_DOWN 0x0009
2048 #define NETDEV_CHANGENAME 0x000A
2049 #define NETDEV_FEAT_CHANGE 0x000B
2050 #define NETDEV_BONDING_FAILOVER 0x000C
2051 #define NETDEV_PRE_UP 0x000D
2052 #define NETDEV_PRE_TYPE_CHANGE 0x000E
2053 #define NETDEV_POST_TYPE_CHANGE 0x000F
2054 #define NETDEV_POST_INIT 0x0010
2055 #define NETDEV_UNREGISTER_FINAL 0x0011
2056 #define NETDEV_RELEASE 0x0012
2057 #define NETDEV_NOTIFY_PEERS 0x0013
2058 #define NETDEV_JOIN 0x0014
2059 #define NETDEV_CHANGEUPPER 0x0015
2060 #define NETDEV_RESEND_IGMP 0x0016
2061 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
2062 #define NETDEV_CHANGEINFODATA 0x0018
2063 #define NETDEV_BONDING_INFO 0x0019
2064
2065 int register_netdevice_notifier(struct notifier_block *nb);
2066 int unregister_netdevice_notifier(struct notifier_block *nb);
2067
2068 struct netdev_notifier_info {
2069 struct net_device *dev;
2070 };
2071
2072 struct netdev_notifier_change_info {
2073 struct netdev_notifier_info info; /* must be first */
2074 unsigned int flags_changed;
2075 };
2076
2077 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2078 struct net_device *dev)
2079 {
2080 info->dev = dev;
2081 }
2082
2083 static inline struct net_device *
2084 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2085 {
2086 return info->dev;
2087 }
2088
2089 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2090
2091
2092 extern rwlock_t dev_base_lock; /* Device list lock */
2093
2094 #define for_each_netdev(net, d) \
2095 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2096 #define for_each_netdev_reverse(net, d) \
2097 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2098 #define for_each_netdev_rcu(net, d) \
2099 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2100 #define for_each_netdev_safe(net, d, n) \
2101 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2102 #define for_each_netdev_continue(net, d) \
2103 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2104 #define for_each_netdev_continue_rcu(net, d) \
2105 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2106 #define for_each_netdev_in_bond_rcu(bond, slave) \
2107 for_each_netdev_rcu(&init_net, slave) \
2108 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2109 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2110
2111 static inline struct net_device *next_net_device(struct net_device *dev)
2112 {
2113 struct list_head *lh;
2114 struct net *net;
2115
2116 net = dev_net(dev);
2117 lh = dev->dev_list.next;
2118 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2119 }
2120
2121 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2122 {
2123 struct list_head *lh;
2124 struct net *net;
2125
2126 net = dev_net(dev);
2127 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2128 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2129 }
2130
2131 static inline struct net_device *first_net_device(struct net *net)
2132 {
2133 return list_empty(&net->dev_base_head) ? NULL :
2134 net_device_entry(net->dev_base_head.next);
2135 }
2136
2137 static inline struct net_device *first_net_device_rcu(struct net *net)
2138 {
2139 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2140
2141 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2142 }
2143
2144 int netdev_boot_setup_check(struct net_device *dev);
2145 unsigned long netdev_boot_base(const char *prefix, int unit);
2146 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2147 const char *hwaddr);
2148 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2149 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2150 void dev_add_pack(struct packet_type *pt);
2151 void dev_remove_pack(struct packet_type *pt);
2152 void __dev_remove_pack(struct packet_type *pt);
2153 void dev_add_offload(struct packet_offload *po);
2154 void dev_remove_offload(struct packet_offload *po);
2155
2156 int dev_get_iflink(const struct net_device *dev);
2157 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2158 unsigned short mask);
2159 struct net_device *dev_get_by_name(struct net *net, const char *name);
2160 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2161 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2162 int dev_alloc_name(struct net_device *dev, const char *name);
2163 int dev_open(struct net_device *dev);
2164 int dev_close(struct net_device *dev);
2165 int dev_close_many(struct list_head *head, bool unlink);
2166 void dev_disable_lro(struct net_device *dev);
2167 int dev_loopback_xmit(struct sock *sk, struct sk_buff *newskb);
2168 int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb);
2169 static inline int dev_queue_xmit(struct sk_buff *skb)
2170 {
2171 return dev_queue_xmit_sk(skb->sk, skb);
2172 }
2173 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2174 int register_netdevice(struct net_device *dev);
2175 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2176 void unregister_netdevice_many(struct list_head *head);
2177 static inline void unregister_netdevice(struct net_device *dev)
2178 {
2179 unregister_netdevice_queue(dev, NULL);
2180 }
2181
2182 int netdev_refcnt_read(const struct net_device *dev);
2183 void free_netdev(struct net_device *dev);
2184 void netdev_freemem(struct net_device *dev);
2185 void synchronize_net(void);
2186 int init_dummy_netdev(struct net_device *dev);
2187
2188 DECLARE_PER_CPU(int, xmit_recursion);
2189 static inline int dev_recursion_level(void)
2190 {
2191 return this_cpu_read(xmit_recursion);
2192 }
2193
2194 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2195 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2196 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2197 int netdev_get_name(struct net *net, char *name, int ifindex);
2198 int dev_restart(struct net_device *dev);
2199 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2200
2201 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2202 {
2203 return NAPI_GRO_CB(skb)->data_offset;
2204 }
2205
2206 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2207 {
2208 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2209 }
2210
2211 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2212 {
2213 NAPI_GRO_CB(skb)->data_offset += len;
2214 }
2215
2216 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2217 unsigned int offset)
2218 {
2219 return NAPI_GRO_CB(skb)->frag0 + offset;
2220 }
2221
2222 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2223 {
2224 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2225 }
2226
2227 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2228 unsigned int offset)
2229 {
2230 if (!pskb_may_pull(skb, hlen))
2231 return NULL;
2232
2233 NAPI_GRO_CB(skb)->frag0 = NULL;
2234 NAPI_GRO_CB(skb)->frag0_len = 0;
2235 return skb->data + offset;
2236 }
2237
2238 static inline void *skb_gro_network_header(struct sk_buff *skb)
2239 {
2240 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2241 skb_network_offset(skb);
2242 }
2243
2244 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2245 const void *start, unsigned int len)
2246 {
2247 if (NAPI_GRO_CB(skb)->csum_valid)
2248 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2249 csum_partial(start, len, 0));
2250 }
2251
2252 /* GRO checksum functions. These are logical equivalents of the normal
2253 * checksum functions (in skbuff.h) except that they operate on the GRO
2254 * offsets and fields in sk_buff.
2255 */
2256
2257 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2258
2259 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2260 {
2261 return (NAPI_GRO_CB(skb)->gro_remcsum_start - skb_headroom(skb) ==
2262 skb_gro_offset(skb));
2263 }
2264
2265 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2266 bool zero_okay,
2267 __sum16 check)
2268 {
2269 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2270 skb_checksum_start_offset(skb) <
2271 skb_gro_offset(skb)) &&
2272 !skb_at_gro_remcsum_start(skb) &&
2273 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2274 (!zero_okay || check));
2275 }
2276
2277 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2278 __wsum psum)
2279 {
2280 if (NAPI_GRO_CB(skb)->csum_valid &&
2281 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2282 return 0;
2283
2284 NAPI_GRO_CB(skb)->csum = psum;
2285
2286 return __skb_gro_checksum_complete(skb);
2287 }
2288
2289 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2290 {
2291 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2292 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2293 NAPI_GRO_CB(skb)->csum_cnt--;
2294 } else {
2295 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2296 * verified a new top level checksum or an encapsulated one
2297 * during GRO. This saves work if we fallback to normal path.
2298 */
2299 __skb_incr_checksum_unnecessary(skb);
2300 }
2301 }
2302
2303 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2304 compute_pseudo) \
2305 ({ \
2306 __sum16 __ret = 0; \
2307 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2308 __ret = __skb_gro_checksum_validate_complete(skb, \
2309 compute_pseudo(skb, proto)); \
2310 if (__ret) \
2311 __skb_mark_checksum_bad(skb); \
2312 else \
2313 skb_gro_incr_csum_unnecessary(skb); \
2314 __ret; \
2315 })
2316
2317 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2318 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2319
2320 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2321 compute_pseudo) \
2322 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2323
2324 #define skb_gro_checksum_simple_validate(skb) \
2325 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2326
2327 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2328 {
2329 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2330 !NAPI_GRO_CB(skb)->csum_valid);
2331 }
2332
2333 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2334 __sum16 check, __wsum pseudo)
2335 {
2336 NAPI_GRO_CB(skb)->csum = ~pseudo;
2337 NAPI_GRO_CB(skb)->csum_valid = 1;
2338 }
2339
2340 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2341 do { \
2342 if (__skb_gro_checksum_convert_check(skb)) \
2343 __skb_gro_checksum_convert(skb, check, \
2344 compute_pseudo(skb, proto)); \
2345 } while (0)
2346
2347 struct gro_remcsum {
2348 int offset;
2349 __wsum delta;
2350 };
2351
2352 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2353 {
2354 grc->offset = 0;
2355 grc->delta = 0;
2356 }
2357
2358 static inline void skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2359 int start, int offset,
2360 struct gro_remcsum *grc,
2361 bool nopartial)
2362 {
2363 __wsum delta;
2364
2365 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2366
2367 if (!nopartial) {
2368 NAPI_GRO_CB(skb)->gro_remcsum_start =
2369 ((unsigned char *)ptr + start) - skb->head;
2370 return;
2371 }
2372
2373 delta = remcsum_adjust(ptr, NAPI_GRO_CB(skb)->csum, start, offset);
2374
2375 /* Adjust skb->csum since we changed the packet */
2376 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2377
2378 grc->offset = (ptr + offset) - (void *)skb->head;
2379 grc->delta = delta;
2380 }
2381
2382 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2383 struct gro_remcsum *grc)
2384 {
2385 if (!grc->delta)
2386 return;
2387
2388 remcsum_unadjust((__sum16 *)(skb->head + grc->offset), grc->delta);
2389 }
2390
2391 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2392 unsigned short type,
2393 const void *daddr, const void *saddr,
2394 unsigned int len)
2395 {
2396 if (!dev->header_ops || !dev->header_ops->create)
2397 return 0;
2398
2399 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2400 }
2401
2402 static inline int dev_parse_header(const struct sk_buff *skb,
2403 unsigned char *haddr)
2404 {
2405 const struct net_device *dev = skb->dev;
2406
2407 if (!dev->header_ops || !dev->header_ops->parse)
2408 return 0;
2409 return dev->header_ops->parse(skb, haddr);
2410 }
2411
2412 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2413 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2414 static inline int unregister_gifconf(unsigned int family)
2415 {
2416 return register_gifconf(family, NULL);
2417 }
2418
2419 #ifdef CONFIG_NET_FLOW_LIMIT
2420 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2421 struct sd_flow_limit {
2422 u64 count;
2423 unsigned int num_buckets;
2424 unsigned int history_head;
2425 u16 history[FLOW_LIMIT_HISTORY];
2426 u8 buckets[];
2427 };
2428
2429 extern int netdev_flow_limit_table_len;
2430 #endif /* CONFIG_NET_FLOW_LIMIT */
2431
2432 /*
2433 * Incoming packets are placed on per-cpu queues
2434 */
2435 struct softnet_data {
2436 struct list_head poll_list;
2437 struct sk_buff_head process_queue;
2438
2439 /* stats */
2440 unsigned int processed;
2441 unsigned int time_squeeze;
2442 unsigned int cpu_collision;
2443 unsigned int received_rps;
2444 #ifdef CONFIG_RPS
2445 struct softnet_data *rps_ipi_list;
2446 #endif
2447 #ifdef CONFIG_NET_FLOW_LIMIT
2448 struct sd_flow_limit __rcu *flow_limit;
2449 #endif
2450 struct Qdisc *output_queue;
2451 struct Qdisc **output_queue_tailp;
2452 struct sk_buff *completion_queue;
2453
2454 #ifdef CONFIG_RPS
2455 /* Elements below can be accessed between CPUs for RPS */
2456 struct call_single_data csd ____cacheline_aligned_in_smp;
2457 struct softnet_data *rps_ipi_next;
2458 unsigned int cpu;
2459 unsigned int input_queue_head;
2460 unsigned int input_queue_tail;
2461 #endif
2462 unsigned int dropped;
2463 struct sk_buff_head input_pkt_queue;
2464 struct napi_struct backlog;
2465
2466 };
2467
2468 static inline void input_queue_head_incr(struct softnet_data *sd)
2469 {
2470 #ifdef CONFIG_RPS
2471 sd->input_queue_head++;
2472 #endif
2473 }
2474
2475 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2476 unsigned int *qtail)
2477 {
2478 #ifdef CONFIG_RPS
2479 *qtail = ++sd->input_queue_tail;
2480 #endif
2481 }
2482
2483 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2484
2485 void __netif_schedule(struct Qdisc *q);
2486 void netif_schedule_queue(struct netdev_queue *txq);
2487
2488 static inline void netif_tx_schedule_all(struct net_device *dev)
2489 {
2490 unsigned int i;
2491
2492 for (i = 0; i < dev->num_tx_queues; i++)
2493 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2494 }
2495
2496 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2497 {
2498 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2499 }
2500
2501 /**
2502 * netif_start_queue - allow transmit
2503 * @dev: network device
2504 *
2505 * Allow upper layers to call the device hard_start_xmit routine.
2506 */
2507 static inline void netif_start_queue(struct net_device *dev)
2508 {
2509 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2510 }
2511
2512 static inline void netif_tx_start_all_queues(struct net_device *dev)
2513 {
2514 unsigned int i;
2515
2516 for (i = 0; i < dev->num_tx_queues; i++) {
2517 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2518 netif_tx_start_queue(txq);
2519 }
2520 }
2521
2522 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2523
2524 /**
2525 * netif_wake_queue - restart transmit
2526 * @dev: network device
2527 *
2528 * Allow upper layers to call the device hard_start_xmit routine.
2529 * Used for flow control when transmit resources are available.
2530 */
2531 static inline void netif_wake_queue(struct net_device *dev)
2532 {
2533 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2534 }
2535
2536 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2537 {
2538 unsigned int i;
2539
2540 for (i = 0; i < dev->num_tx_queues; i++) {
2541 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2542 netif_tx_wake_queue(txq);
2543 }
2544 }
2545
2546 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2547 {
2548 if (WARN_ON(!dev_queue)) {
2549 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2550 return;
2551 }
2552 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2553 }
2554
2555 /**
2556 * netif_stop_queue - stop transmitted packets
2557 * @dev: network device
2558 *
2559 * Stop upper layers calling the device hard_start_xmit routine.
2560 * Used for flow control when transmit resources are unavailable.
2561 */
2562 static inline void netif_stop_queue(struct net_device *dev)
2563 {
2564 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2565 }
2566
2567 static inline void netif_tx_stop_all_queues(struct net_device *dev)
2568 {
2569 unsigned int i;
2570
2571 for (i = 0; i < dev->num_tx_queues; i++) {
2572 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2573 netif_tx_stop_queue(txq);
2574 }
2575 }
2576
2577 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2578 {
2579 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2580 }
2581
2582 /**
2583 * netif_queue_stopped - test if transmit queue is flowblocked
2584 * @dev: network device
2585 *
2586 * Test if transmit queue on device is currently unable to send.
2587 */
2588 static inline bool netif_queue_stopped(const struct net_device *dev)
2589 {
2590 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2591 }
2592
2593 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2594 {
2595 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2596 }
2597
2598 static inline bool
2599 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2600 {
2601 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2602 }
2603
2604 static inline bool
2605 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2606 {
2607 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2608 }
2609
2610 /**
2611 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2612 * @dev_queue: pointer to transmit queue
2613 *
2614 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2615 * to give appropriate hint to the cpu.
2616 */
2617 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2618 {
2619 #ifdef CONFIG_BQL
2620 prefetchw(&dev_queue->dql.num_queued);
2621 #endif
2622 }
2623
2624 /**
2625 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2626 * @dev_queue: pointer to transmit queue
2627 *
2628 * BQL enabled drivers might use this helper in their TX completion path,
2629 * to give appropriate hint to the cpu.
2630 */
2631 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2632 {
2633 #ifdef CONFIG_BQL
2634 prefetchw(&dev_queue->dql.limit);
2635 #endif
2636 }
2637
2638 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2639 unsigned int bytes)
2640 {
2641 #ifdef CONFIG_BQL
2642 dql_queued(&dev_queue->dql, bytes);
2643
2644 if (likely(dql_avail(&dev_queue->dql) >= 0))
2645 return;
2646
2647 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2648
2649 /*
2650 * The XOFF flag must be set before checking the dql_avail below,
2651 * because in netdev_tx_completed_queue we update the dql_completed
2652 * before checking the XOFF flag.
2653 */
2654 smp_mb();
2655
2656 /* check again in case another CPU has just made room avail */
2657 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2658 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2659 #endif
2660 }
2661
2662 /**
2663 * netdev_sent_queue - report the number of bytes queued to hardware
2664 * @dev: network device
2665 * @bytes: number of bytes queued to the hardware device queue
2666 *
2667 * Report the number of bytes queued for sending/completion to the network
2668 * device hardware queue. @bytes should be a good approximation and should
2669 * exactly match netdev_completed_queue() @bytes
2670 */
2671 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2672 {
2673 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2674 }
2675
2676 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2677 unsigned int pkts, unsigned int bytes)
2678 {
2679 #ifdef CONFIG_BQL
2680 if (unlikely(!bytes))
2681 return;
2682
2683 dql_completed(&dev_queue->dql, bytes);
2684
2685 /*
2686 * Without the memory barrier there is a small possiblity that
2687 * netdev_tx_sent_queue will miss the update and cause the queue to
2688 * be stopped forever
2689 */
2690 smp_mb();
2691
2692 if (dql_avail(&dev_queue->dql) < 0)
2693 return;
2694
2695 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2696 netif_schedule_queue(dev_queue);
2697 #endif
2698 }
2699
2700 /**
2701 * netdev_completed_queue - report bytes and packets completed by device
2702 * @dev: network device
2703 * @pkts: actual number of packets sent over the medium
2704 * @bytes: actual number of bytes sent over the medium
2705 *
2706 * Report the number of bytes and packets transmitted by the network device
2707 * hardware queue over the physical medium, @bytes must exactly match the
2708 * @bytes amount passed to netdev_sent_queue()
2709 */
2710 static inline void netdev_completed_queue(struct net_device *dev,
2711 unsigned int pkts, unsigned int bytes)
2712 {
2713 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2714 }
2715
2716 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2717 {
2718 #ifdef CONFIG_BQL
2719 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2720 dql_reset(&q->dql);
2721 #endif
2722 }
2723
2724 /**
2725 * netdev_reset_queue - reset the packets and bytes count of a network device
2726 * @dev_queue: network device
2727 *
2728 * Reset the bytes and packet count of a network device and clear the
2729 * software flow control OFF bit for this network device
2730 */
2731 static inline void netdev_reset_queue(struct net_device *dev_queue)
2732 {
2733 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2734 }
2735
2736 /**
2737 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
2738 * @dev: network device
2739 * @queue_index: given tx queue index
2740 *
2741 * Returns 0 if given tx queue index >= number of device tx queues,
2742 * otherwise returns the originally passed tx queue index.
2743 */
2744 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2745 {
2746 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2747 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2748 dev->name, queue_index,
2749 dev->real_num_tx_queues);
2750 return 0;
2751 }
2752
2753 return queue_index;
2754 }
2755
2756 /**
2757 * netif_running - test if up
2758 * @dev: network device
2759 *
2760 * Test if the device has been brought up.
2761 */
2762 static inline bool netif_running(const struct net_device *dev)
2763 {
2764 return test_bit(__LINK_STATE_START, &dev->state);
2765 }
2766
2767 /*
2768 * Routines to manage the subqueues on a device. We only need start
2769 * stop, and a check if it's stopped. All other device management is
2770 * done at the overall netdevice level.
2771 * Also test the device if we're multiqueue.
2772 */
2773
2774 /**
2775 * netif_start_subqueue - allow sending packets on subqueue
2776 * @dev: network device
2777 * @queue_index: sub queue index
2778 *
2779 * Start individual transmit queue of a device with multiple transmit queues.
2780 */
2781 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2782 {
2783 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2784
2785 netif_tx_start_queue(txq);
2786 }
2787
2788 /**
2789 * netif_stop_subqueue - stop sending packets on subqueue
2790 * @dev: network device
2791 * @queue_index: sub queue index
2792 *
2793 * Stop individual transmit queue of a device with multiple transmit queues.
2794 */
2795 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2796 {
2797 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2798 netif_tx_stop_queue(txq);
2799 }
2800
2801 /**
2802 * netif_subqueue_stopped - test status of subqueue
2803 * @dev: network device
2804 * @queue_index: sub queue index
2805 *
2806 * Check individual transmit queue of a device with multiple transmit queues.
2807 */
2808 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2809 u16 queue_index)
2810 {
2811 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2812
2813 return netif_tx_queue_stopped(txq);
2814 }
2815
2816 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2817 struct sk_buff *skb)
2818 {
2819 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2820 }
2821
2822 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2823
2824 #ifdef CONFIG_XPS
2825 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2826 u16 index);
2827 #else
2828 static inline int netif_set_xps_queue(struct net_device *dev,
2829 const struct cpumask *mask,
2830 u16 index)
2831 {
2832 return 0;
2833 }
2834 #endif
2835
2836 /*
2837 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2838 * as a distribution range limit for the returned value.
2839 */
2840 static inline u16 skb_tx_hash(const struct net_device *dev,
2841 struct sk_buff *skb)
2842 {
2843 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2844 }
2845
2846 /**
2847 * netif_is_multiqueue - test if device has multiple transmit queues
2848 * @dev: network device
2849 *
2850 * Check if device has multiple transmit queues
2851 */
2852 static inline bool netif_is_multiqueue(const struct net_device *dev)
2853 {
2854 return dev->num_tx_queues > 1;
2855 }
2856
2857 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2858
2859 #ifdef CONFIG_SYSFS
2860 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2861 #else
2862 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2863 unsigned int rxq)
2864 {
2865 return 0;
2866 }
2867 #endif
2868
2869 #ifdef CONFIG_SYSFS
2870 static inline unsigned int get_netdev_rx_queue_index(
2871 struct netdev_rx_queue *queue)
2872 {
2873 struct net_device *dev = queue->dev;
2874 int index = queue - dev->_rx;
2875
2876 BUG_ON(index >= dev->num_rx_queues);
2877 return index;
2878 }
2879 #endif
2880
2881 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
2882 int netif_get_num_default_rss_queues(void);
2883
2884 enum skb_free_reason {
2885 SKB_REASON_CONSUMED,
2886 SKB_REASON_DROPPED,
2887 };
2888
2889 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2890 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2891
2892 /*
2893 * It is not allowed to call kfree_skb() or consume_skb() from hardware
2894 * interrupt context or with hardware interrupts being disabled.
2895 * (in_irq() || irqs_disabled())
2896 *
2897 * We provide four helpers that can be used in following contexts :
2898 *
2899 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2900 * replacing kfree_skb(skb)
2901 *
2902 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2903 * Typically used in place of consume_skb(skb) in TX completion path
2904 *
2905 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2906 * replacing kfree_skb(skb)
2907 *
2908 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2909 * and consumed a packet. Used in place of consume_skb(skb)
2910 */
2911 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2912 {
2913 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2914 }
2915
2916 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2917 {
2918 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2919 }
2920
2921 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2922 {
2923 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2924 }
2925
2926 static inline void dev_consume_skb_any(struct sk_buff *skb)
2927 {
2928 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2929 }
2930
2931 int netif_rx(struct sk_buff *skb);
2932 int netif_rx_ni(struct sk_buff *skb);
2933 int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb);
2934 static inline int netif_receive_skb(struct sk_buff *skb)
2935 {
2936 return netif_receive_skb_sk(skb->sk, skb);
2937 }
2938 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2939 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2940 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2941 gro_result_t napi_gro_frags(struct napi_struct *napi);
2942 struct packet_offload *gro_find_receive_by_type(__be16 type);
2943 struct packet_offload *gro_find_complete_by_type(__be16 type);
2944
2945 static inline void napi_free_frags(struct napi_struct *napi)
2946 {
2947 kfree_skb(napi->skb);
2948 napi->skb = NULL;
2949 }
2950
2951 int netdev_rx_handler_register(struct net_device *dev,
2952 rx_handler_func_t *rx_handler,
2953 void *rx_handler_data);
2954 void netdev_rx_handler_unregister(struct net_device *dev);
2955
2956 bool dev_valid_name(const char *name);
2957 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2958 int dev_ethtool(struct net *net, struct ifreq *);
2959 unsigned int dev_get_flags(const struct net_device *);
2960 int __dev_change_flags(struct net_device *, unsigned int flags);
2961 int dev_change_flags(struct net_device *, unsigned int);
2962 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2963 unsigned int gchanges);
2964 int dev_change_name(struct net_device *, const char *);
2965 int dev_set_alias(struct net_device *, const char *, size_t);
2966 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2967 int dev_set_mtu(struct net_device *, int);
2968 void dev_set_group(struct net_device *, int);
2969 int dev_set_mac_address(struct net_device *, struct sockaddr *);
2970 int dev_change_carrier(struct net_device *, bool new_carrier);
2971 int dev_get_phys_port_id(struct net_device *dev,
2972 struct netdev_phys_item_id *ppid);
2973 int dev_get_phys_port_name(struct net_device *dev,
2974 char *name, size_t len);
2975 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
2976 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2977 struct netdev_queue *txq, int *ret);
2978 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2979 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2980 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
2981
2982 extern int netdev_budget;
2983
2984 /* Called by rtnetlink.c:rtnl_unlock() */
2985 void netdev_run_todo(void);
2986
2987 /**
2988 * dev_put - release reference to device
2989 * @dev: network device
2990 *
2991 * Release reference to device to allow it to be freed.
2992 */
2993 static inline void dev_put(struct net_device *dev)
2994 {
2995 this_cpu_dec(*dev->pcpu_refcnt);
2996 }
2997
2998 /**
2999 * dev_hold - get reference to device
3000 * @dev: network device
3001 *
3002 * Hold reference to device to keep it from being freed.
3003 */
3004 static inline void dev_hold(struct net_device *dev)
3005 {
3006 this_cpu_inc(*dev->pcpu_refcnt);
3007 }
3008
3009 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3010 * and _off may be called from IRQ context, but it is caller
3011 * who is responsible for serialization of these calls.
3012 *
3013 * The name carrier is inappropriate, these functions should really be
3014 * called netif_lowerlayer_*() because they represent the state of any
3015 * kind of lower layer not just hardware media.
3016 */
3017
3018 void linkwatch_init_dev(struct net_device *dev);
3019 void linkwatch_fire_event(struct net_device *dev);
3020 void linkwatch_forget_dev(struct net_device *dev);
3021
3022 /**
3023 * netif_carrier_ok - test if carrier present
3024 * @dev: network device
3025 *
3026 * Check if carrier is present on device
3027 */
3028 static inline bool netif_carrier_ok(const struct net_device *dev)
3029 {
3030 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3031 }
3032
3033 unsigned long dev_trans_start(struct net_device *dev);
3034
3035 void __netdev_watchdog_up(struct net_device *dev);
3036
3037 void netif_carrier_on(struct net_device *dev);
3038
3039 void netif_carrier_off(struct net_device *dev);
3040
3041 /**
3042 * netif_dormant_on - mark device as dormant.
3043 * @dev: network device
3044 *
3045 * Mark device as dormant (as per RFC2863).
3046 *
3047 * The dormant state indicates that the relevant interface is not
3048 * actually in a condition to pass packets (i.e., it is not 'up') but is
3049 * in a "pending" state, waiting for some external event. For "on-
3050 * demand" interfaces, this new state identifies the situation where the
3051 * interface is waiting for events to place it in the up state.
3052 *
3053 */
3054 static inline void netif_dormant_on(struct net_device *dev)
3055 {
3056 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3057 linkwatch_fire_event(dev);
3058 }
3059
3060 /**
3061 * netif_dormant_off - set device as not dormant.
3062 * @dev: network device
3063 *
3064 * Device is not in dormant state.
3065 */
3066 static inline void netif_dormant_off(struct net_device *dev)
3067 {
3068 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3069 linkwatch_fire_event(dev);
3070 }
3071
3072 /**
3073 * netif_dormant - test if carrier present
3074 * @dev: network device
3075 *
3076 * Check if carrier is present on device
3077 */
3078 static inline bool netif_dormant(const struct net_device *dev)
3079 {
3080 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3081 }
3082
3083
3084 /**
3085 * netif_oper_up - test if device is operational
3086 * @dev: network device
3087 *
3088 * Check if carrier is operational
3089 */
3090 static inline bool netif_oper_up(const struct net_device *dev)
3091 {
3092 return (dev->operstate == IF_OPER_UP ||
3093 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3094 }
3095
3096 /**
3097 * netif_device_present - is device available or removed
3098 * @dev: network device
3099 *
3100 * Check if device has not been removed from system.
3101 */
3102 static inline bool netif_device_present(struct net_device *dev)
3103 {
3104 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3105 }
3106
3107 void netif_device_detach(struct net_device *dev);
3108
3109 void netif_device_attach(struct net_device *dev);
3110
3111 /*
3112 * Network interface message level settings
3113 */
3114
3115 enum {
3116 NETIF_MSG_DRV = 0x0001,
3117 NETIF_MSG_PROBE = 0x0002,
3118 NETIF_MSG_LINK = 0x0004,
3119 NETIF_MSG_TIMER = 0x0008,
3120 NETIF_MSG_IFDOWN = 0x0010,
3121 NETIF_MSG_IFUP = 0x0020,
3122 NETIF_MSG_RX_ERR = 0x0040,
3123 NETIF_MSG_TX_ERR = 0x0080,
3124 NETIF_MSG_TX_QUEUED = 0x0100,
3125 NETIF_MSG_INTR = 0x0200,
3126 NETIF_MSG_TX_DONE = 0x0400,
3127 NETIF_MSG_RX_STATUS = 0x0800,
3128 NETIF_MSG_PKTDATA = 0x1000,
3129 NETIF_MSG_HW = 0x2000,
3130 NETIF_MSG_WOL = 0x4000,
3131 };
3132
3133 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3134 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3135 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3136 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3137 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3138 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3139 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3140 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3141 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3142 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3143 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3144 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3145 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3146 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3147 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3148
3149 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3150 {
3151 /* use default */
3152 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3153 return default_msg_enable_bits;
3154 if (debug_value == 0) /* no output */
3155 return 0;
3156 /* set low N bits */
3157 return (1 << debug_value) - 1;
3158 }
3159
3160 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3161 {
3162 spin_lock(&txq->_xmit_lock);
3163 txq->xmit_lock_owner = cpu;
3164 }
3165
3166 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3167 {
3168 spin_lock_bh(&txq->_xmit_lock);
3169 txq->xmit_lock_owner = smp_processor_id();
3170 }
3171
3172 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3173 {
3174 bool ok = spin_trylock(&txq->_xmit_lock);
3175 if (likely(ok))
3176 txq->xmit_lock_owner = smp_processor_id();
3177 return ok;
3178 }
3179
3180 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3181 {
3182 txq->xmit_lock_owner = -1;
3183 spin_unlock(&txq->_xmit_lock);
3184 }
3185
3186 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3187 {
3188 txq->xmit_lock_owner = -1;
3189 spin_unlock_bh(&txq->_xmit_lock);
3190 }
3191
3192 static inline void txq_trans_update(struct netdev_queue *txq)
3193 {
3194 if (txq->xmit_lock_owner != -1)
3195 txq->trans_start = jiffies;
3196 }
3197
3198 /**
3199 * netif_tx_lock - grab network device transmit lock
3200 * @dev: network device
3201 *
3202 * Get network device transmit lock
3203 */
3204 static inline void netif_tx_lock(struct net_device *dev)
3205 {
3206 unsigned int i;
3207 int cpu;
3208
3209 spin_lock(&dev->tx_global_lock);
3210 cpu = smp_processor_id();
3211 for (i = 0; i < dev->num_tx_queues; i++) {
3212 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3213
3214 /* We are the only thread of execution doing a
3215 * freeze, but we have to grab the _xmit_lock in
3216 * order to synchronize with threads which are in
3217 * the ->hard_start_xmit() handler and already
3218 * checked the frozen bit.
3219 */
3220 __netif_tx_lock(txq, cpu);
3221 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3222 __netif_tx_unlock(txq);
3223 }
3224 }
3225
3226 static inline void netif_tx_lock_bh(struct net_device *dev)
3227 {
3228 local_bh_disable();
3229 netif_tx_lock(dev);
3230 }
3231
3232 static inline void netif_tx_unlock(struct net_device *dev)
3233 {
3234 unsigned int i;
3235
3236 for (i = 0; i < dev->num_tx_queues; i++) {
3237 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3238
3239 /* No need to grab the _xmit_lock here. If the
3240 * queue is not stopped for another reason, we
3241 * force a schedule.
3242 */
3243 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3244 netif_schedule_queue(txq);
3245 }
3246 spin_unlock(&dev->tx_global_lock);
3247 }
3248
3249 static inline void netif_tx_unlock_bh(struct net_device *dev)
3250 {
3251 netif_tx_unlock(dev);
3252 local_bh_enable();
3253 }
3254
3255 #define HARD_TX_LOCK(dev, txq, cpu) { \
3256 if ((dev->features & NETIF_F_LLTX) == 0) { \
3257 __netif_tx_lock(txq, cpu); \
3258 } \
3259 }
3260
3261 #define HARD_TX_TRYLOCK(dev, txq) \
3262 (((dev->features & NETIF_F_LLTX) == 0) ? \
3263 __netif_tx_trylock(txq) : \
3264 true )
3265
3266 #define HARD_TX_UNLOCK(dev, txq) { \
3267 if ((dev->features & NETIF_F_LLTX) == 0) { \
3268 __netif_tx_unlock(txq); \
3269 } \
3270 }
3271
3272 static inline void netif_tx_disable(struct net_device *dev)
3273 {
3274 unsigned int i;
3275 int cpu;
3276
3277 local_bh_disable();
3278 cpu = smp_processor_id();
3279 for (i = 0; i < dev->num_tx_queues; i++) {
3280 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3281
3282 __netif_tx_lock(txq, cpu);
3283 netif_tx_stop_queue(txq);
3284 __netif_tx_unlock(txq);
3285 }
3286 local_bh_enable();
3287 }
3288
3289 static inline void netif_addr_lock(struct net_device *dev)
3290 {
3291 spin_lock(&dev->addr_list_lock);
3292 }
3293
3294 static inline void netif_addr_lock_nested(struct net_device *dev)
3295 {
3296 int subclass = SINGLE_DEPTH_NESTING;
3297
3298 if (dev->netdev_ops->ndo_get_lock_subclass)
3299 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3300
3301 spin_lock_nested(&dev->addr_list_lock, subclass);
3302 }
3303
3304 static inline void netif_addr_lock_bh(struct net_device *dev)
3305 {
3306 spin_lock_bh(&dev->addr_list_lock);
3307 }
3308
3309 static inline void netif_addr_unlock(struct net_device *dev)
3310 {
3311 spin_unlock(&dev->addr_list_lock);
3312 }
3313
3314 static inline void netif_addr_unlock_bh(struct net_device *dev)
3315 {
3316 spin_unlock_bh(&dev->addr_list_lock);
3317 }
3318
3319 /*
3320 * dev_addrs walker. Should be used only for read access. Call with
3321 * rcu_read_lock held.
3322 */
3323 #define for_each_dev_addr(dev, ha) \
3324 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3325
3326 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3327
3328 void ether_setup(struct net_device *dev);
3329
3330 /* Support for loadable net-drivers */
3331 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3332 unsigned char name_assign_type,
3333 void (*setup)(struct net_device *),
3334 unsigned int txqs, unsigned int rxqs);
3335 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3336 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3337
3338 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3339 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3340 count)
3341
3342 int register_netdev(struct net_device *dev);
3343 void unregister_netdev(struct net_device *dev);
3344
3345 /* General hardware address lists handling functions */
3346 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3347 struct netdev_hw_addr_list *from_list, int addr_len);
3348 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3349 struct netdev_hw_addr_list *from_list, int addr_len);
3350 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3351 struct net_device *dev,
3352 int (*sync)(struct net_device *, const unsigned char *),
3353 int (*unsync)(struct net_device *,
3354 const unsigned char *));
3355 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3356 struct net_device *dev,
3357 int (*unsync)(struct net_device *,
3358 const unsigned char *));
3359 void __hw_addr_init(struct netdev_hw_addr_list *list);
3360
3361 /* Functions used for device addresses handling */
3362 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3363 unsigned char addr_type);
3364 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3365 unsigned char addr_type);
3366 void dev_addr_flush(struct net_device *dev);
3367 int dev_addr_init(struct net_device *dev);
3368
3369 /* Functions used for unicast addresses handling */
3370 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3371 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3372 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3373 int dev_uc_sync(struct net_device *to, struct net_device *from);
3374 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3375 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3376 void dev_uc_flush(struct net_device *dev);
3377 void dev_uc_init(struct net_device *dev);
3378
3379 /**
3380 * __dev_uc_sync - Synchonize device's unicast list
3381 * @dev: device to sync
3382 * @sync: function to call if address should be added
3383 * @unsync: function to call if address should be removed
3384 *
3385 * Add newly added addresses to the interface, and release
3386 * addresses that have been deleted.
3387 **/
3388 static inline int __dev_uc_sync(struct net_device *dev,
3389 int (*sync)(struct net_device *,
3390 const unsigned char *),
3391 int (*unsync)(struct net_device *,
3392 const unsigned char *))
3393 {
3394 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3395 }
3396
3397 /**
3398 * __dev_uc_unsync - Remove synchronized addresses from device
3399 * @dev: device to sync
3400 * @unsync: function to call if address should be removed
3401 *
3402 * Remove all addresses that were added to the device by dev_uc_sync().
3403 **/
3404 static inline void __dev_uc_unsync(struct net_device *dev,
3405 int (*unsync)(struct net_device *,
3406 const unsigned char *))
3407 {
3408 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3409 }
3410
3411 /* Functions used for multicast addresses handling */
3412 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3413 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3414 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3415 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3416 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3417 int dev_mc_sync(struct net_device *to, struct net_device *from);
3418 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3419 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3420 void dev_mc_flush(struct net_device *dev);
3421 void dev_mc_init(struct net_device *dev);
3422
3423 /**
3424 * __dev_mc_sync - Synchonize device's multicast list
3425 * @dev: device to sync
3426 * @sync: function to call if address should be added
3427 * @unsync: function to call if address should be removed
3428 *
3429 * Add newly added addresses to the interface, and release
3430 * addresses that have been deleted.
3431 **/
3432 static inline int __dev_mc_sync(struct net_device *dev,
3433 int (*sync)(struct net_device *,
3434 const unsigned char *),
3435 int (*unsync)(struct net_device *,
3436 const unsigned char *))
3437 {
3438 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3439 }
3440
3441 /**
3442 * __dev_mc_unsync - Remove synchronized addresses from device
3443 * @dev: device to sync
3444 * @unsync: function to call if address should be removed
3445 *
3446 * Remove all addresses that were added to the device by dev_mc_sync().
3447 **/
3448 static inline void __dev_mc_unsync(struct net_device *dev,
3449 int (*unsync)(struct net_device *,
3450 const unsigned char *))
3451 {
3452 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3453 }
3454
3455 /* Functions used for secondary unicast and multicast support */
3456 void dev_set_rx_mode(struct net_device *dev);
3457 void __dev_set_rx_mode(struct net_device *dev);
3458 int dev_set_promiscuity(struct net_device *dev, int inc);
3459 int dev_set_allmulti(struct net_device *dev, int inc);
3460 void netdev_state_change(struct net_device *dev);
3461 void netdev_notify_peers(struct net_device *dev);
3462 void netdev_features_change(struct net_device *dev);
3463 /* Load a device via the kmod */
3464 void dev_load(struct net *net, const char *name);
3465 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3466 struct rtnl_link_stats64 *storage);
3467 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3468 const struct net_device_stats *netdev_stats);
3469
3470 extern int netdev_max_backlog;
3471 extern int netdev_tstamp_prequeue;
3472 extern int weight_p;
3473 extern int bpf_jit_enable;
3474
3475 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3476 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3477 struct list_head **iter);
3478 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3479 struct list_head **iter);
3480
3481 /* iterate through upper list, must be called under RCU read lock */
3482 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3483 for (iter = &(dev)->adj_list.upper, \
3484 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3485 updev; \
3486 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3487
3488 /* iterate through upper list, must be called under RCU read lock */
3489 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3490 for (iter = &(dev)->all_adj_list.upper, \
3491 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3492 updev; \
3493 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3494
3495 void *netdev_lower_get_next_private(struct net_device *dev,
3496 struct list_head **iter);
3497 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3498 struct list_head **iter);
3499
3500 #define netdev_for_each_lower_private(dev, priv, iter) \
3501 for (iter = (dev)->adj_list.lower.next, \
3502 priv = netdev_lower_get_next_private(dev, &(iter)); \
3503 priv; \
3504 priv = netdev_lower_get_next_private(dev, &(iter)))
3505
3506 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3507 for (iter = &(dev)->adj_list.lower, \
3508 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3509 priv; \
3510 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3511
3512 void *netdev_lower_get_next(struct net_device *dev,
3513 struct list_head **iter);
3514 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3515 for (iter = &(dev)->adj_list.lower, \
3516 ldev = netdev_lower_get_next(dev, &(iter)); \
3517 ldev; \
3518 ldev = netdev_lower_get_next(dev, &(iter)))
3519
3520 void *netdev_adjacent_get_private(struct list_head *adj_list);
3521 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3522 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3523 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3524 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3525 int netdev_master_upper_dev_link(struct net_device *dev,
3526 struct net_device *upper_dev);
3527 int netdev_master_upper_dev_link_private(struct net_device *dev,
3528 struct net_device *upper_dev,
3529 void *private);
3530 void netdev_upper_dev_unlink(struct net_device *dev,
3531 struct net_device *upper_dev);
3532 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3533 void *netdev_lower_dev_get_private(struct net_device *dev,
3534 struct net_device *lower_dev);
3535
3536 /* RSS keys are 40 or 52 bytes long */
3537 #define NETDEV_RSS_KEY_LEN 52
3538 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3539 void netdev_rss_key_fill(void *buffer, size_t len);
3540
3541 int dev_get_nest_level(struct net_device *dev,
3542 bool (*type_check)(struct net_device *dev));
3543 int skb_checksum_help(struct sk_buff *skb);
3544 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3545 netdev_features_t features, bool tx_path);
3546 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3547 netdev_features_t features);
3548
3549 struct netdev_bonding_info {
3550 ifslave slave;
3551 ifbond master;
3552 };
3553
3554 struct netdev_notifier_bonding_info {
3555 struct netdev_notifier_info info; /* must be first */
3556 struct netdev_bonding_info bonding_info;
3557 };
3558
3559 void netdev_bonding_info_change(struct net_device *dev,
3560 struct netdev_bonding_info *bonding_info);
3561
3562 static inline
3563 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3564 {
3565 return __skb_gso_segment(skb, features, true);
3566 }
3567 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3568
3569 static inline bool can_checksum_protocol(netdev_features_t features,
3570 __be16 protocol)
3571 {
3572 return ((features & NETIF_F_GEN_CSUM) ||
3573 ((features & NETIF_F_V4_CSUM) &&
3574 protocol == htons(ETH_P_IP)) ||
3575 ((features & NETIF_F_V6_CSUM) &&
3576 protocol == htons(ETH_P_IPV6)) ||
3577 ((features & NETIF_F_FCOE_CRC) &&
3578 protocol == htons(ETH_P_FCOE)));
3579 }
3580
3581 #ifdef CONFIG_BUG
3582 void netdev_rx_csum_fault(struct net_device *dev);
3583 #else
3584 static inline void netdev_rx_csum_fault(struct net_device *dev)
3585 {
3586 }
3587 #endif
3588 /* rx skb timestamps */
3589 void net_enable_timestamp(void);
3590 void net_disable_timestamp(void);
3591
3592 #ifdef CONFIG_PROC_FS
3593 int __init dev_proc_init(void);
3594 #else
3595 #define dev_proc_init() 0
3596 #endif
3597
3598 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3599 struct sk_buff *skb, struct net_device *dev,
3600 bool more)
3601 {
3602 skb->xmit_more = more ? 1 : 0;
3603 return ops->ndo_start_xmit(skb, dev);
3604 }
3605
3606 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3607 struct netdev_queue *txq, bool more)
3608 {
3609 const struct net_device_ops *ops = dev->netdev_ops;
3610 int rc;
3611
3612 rc = __netdev_start_xmit(ops, skb, dev, more);
3613 if (rc == NETDEV_TX_OK)
3614 txq_trans_update(txq);
3615
3616 return rc;
3617 }
3618
3619 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3620 const void *ns);
3621 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3622 const void *ns);
3623
3624 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3625 {
3626 return netdev_class_create_file_ns(class_attr, NULL);
3627 }
3628
3629 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3630 {
3631 netdev_class_remove_file_ns(class_attr, NULL);
3632 }
3633
3634 extern struct kobj_ns_type_operations net_ns_type_operations;
3635
3636 const char *netdev_drivername(const struct net_device *dev);
3637
3638 void linkwatch_run_queue(void);
3639
3640 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3641 netdev_features_t f2)
3642 {
3643 if (f1 & NETIF_F_GEN_CSUM)
3644 f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3645 if (f2 & NETIF_F_GEN_CSUM)
3646 f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3647 f1 &= f2;
3648 if (f1 & NETIF_F_GEN_CSUM)
3649 f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3650
3651 return f1;
3652 }
3653
3654 static inline netdev_features_t netdev_get_wanted_features(
3655 struct net_device *dev)
3656 {
3657 return (dev->features & ~dev->hw_features) | dev->wanted_features;
3658 }
3659 netdev_features_t netdev_increment_features(netdev_features_t all,
3660 netdev_features_t one, netdev_features_t mask);
3661
3662 /* Allow TSO being used on stacked device :
3663 * Performing the GSO segmentation before last device
3664 * is a performance improvement.
3665 */
3666 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3667 netdev_features_t mask)
3668 {
3669 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3670 }
3671
3672 int __netdev_update_features(struct net_device *dev);
3673 void netdev_update_features(struct net_device *dev);
3674 void netdev_change_features(struct net_device *dev);
3675
3676 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3677 struct net_device *dev);
3678
3679 netdev_features_t passthru_features_check(struct sk_buff *skb,
3680 struct net_device *dev,
3681 netdev_features_t features);
3682 netdev_features_t netif_skb_features(struct sk_buff *skb);
3683
3684 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3685 {
3686 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3687
3688 /* check flags correspondence */
3689 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3690 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3691 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3692 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3693 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3694 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3695 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3696 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3697 BUILD_BUG_ON(SKB_GSO_IPIP != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3698 BUILD_BUG_ON(SKB_GSO_SIT != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3699 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3700 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3701 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3702
3703 return (features & feature) == feature;
3704 }
3705
3706 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3707 {
3708 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3709 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3710 }
3711
3712 static inline bool netif_needs_gso(struct net_device *dev, struct sk_buff *skb,
3713 netdev_features_t features)
3714 {
3715 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3716 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3717 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3718 }
3719
3720 static inline void netif_set_gso_max_size(struct net_device *dev,
3721 unsigned int size)
3722 {
3723 dev->gso_max_size = size;
3724 }
3725
3726 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3727 int pulled_hlen, u16 mac_offset,
3728 int mac_len)
3729 {
3730 skb->protocol = protocol;
3731 skb->encapsulation = 1;
3732 skb_push(skb, pulled_hlen);
3733 skb_reset_transport_header(skb);
3734 skb->mac_header = mac_offset;
3735 skb->network_header = skb->mac_header + mac_len;
3736 skb->mac_len = mac_len;
3737 }
3738
3739 static inline bool netif_is_macvlan(struct net_device *dev)
3740 {
3741 return dev->priv_flags & IFF_MACVLAN;
3742 }
3743
3744 static inline bool netif_is_macvlan_port(struct net_device *dev)
3745 {
3746 return dev->priv_flags & IFF_MACVLAN_PORT;
3747 }
3748
3749 static inline bool netif_is_ipvlan(struct net_device *dev)
3750 {
3751 return dev->priv_flags & IFF_IPVLAN_SLAVE;
3752 }
3753
3754 static inline bool netif_is_ipvlan_port(struct net_device *dev)
3755 {
3756 return dev->priv_flags & IFF_IPVLAN_MASTER;
3757 }
3758
3759 static inline bool netif_is_bond_master(struct net_device *dev)
3760 {
3761 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3762 }
3763
3764 static inline bool netif_is_bond_slave(struct net_device *dev)
3765 {
3766 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3767 }
3768
3769 static inline bool netif_supports_nofcs(struct net_device *dev)
3770 {
3771 return dev->priv_flags & IFF_SUPP_NOFCS;
3772 }
3773
3774 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3775 static inline void netif_keep_dst(struct net_device *dev)
3776 {
3777 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3778 }
3779
3780 extern struct pernet_operations __net_initdata loopback_net_ops;
3781
3782 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3783
3784 /* netdev_printk helpers, similar to dev_printk */
3785
3786 static inline const char *netdev_name(const struct net_device *dev)
3787 {
3788 if (!dev->name[0] || strchr(dev->name, '%'))
3789 return "(unnamed net_device)";
3790 return dev->name;
3791 }
3792
3793 static inline const char *netdev_reg_state(const struct net_device *dev)
3794 {
3795 switch (dev->reg_state) {
3796 case NETREG_UNINITIALIZED: return " (uninitialized)";
3797 case NETREG_REGISTERED: return "";
3798 case NETREG_UNREGISTERING: return " (unregistering)";
3799 case NETREG_UNREGISTERED: return " (unregistered)";
3800 case NETREG_RELEASED: return " (released)";
3801 case NETREG_DUMMY: return " (dummy)";
3802 }
3803
3804 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3805 return " (unknown)";
3806 }
3807
3808 __printf(3, 4)
3809 void netdev_printk(const char *level, const struct net_device *dev,
3810 const char *format, ...);
3811 __printf(2, 3)
3812 void netdev_emerg(const struct net_device *dev, const char *format, ...);
3813 __printf(2, 3)
3814 void netdev_alert(const struct net_device *dev, const char *format, ...);
3815 __printf(2, 3)
3816 void netdev_crit(const struct net_device *dev, const char *format, ...);
3817 __printf(2, 3)
3818 void netdev_err(const struct net_device *dev, const char *format, ...);
3819 __printf(2, 3)
3820 void netdev_warn(const struct net_device *dev, const char *format, ...);
3821 __printf(2, 3)
3822 void netdev_notice(const struct net_device *dev, const char *format, ...);
3823 __printf(2, 3)
3824 void netdev_info(const struct net_device *dev, const char *format, ...);
3825
3826 #define MODULE_ALIAS_NETDEV(device) \
3827 MODULE_ALIAS("netdev-" device)
3828
3829 #if defined(CONFIG_DYNAMIC_DEBUG)
3830 #define netdev_dbg(__dev, format, args...) \
3831 do { \
3832 dynamic_netdev_dbg(__dev, format, ##args); \
3833 } while (0)
3834 #elif defined(DEBUG)
3835 #define netdev_dbg(__dev, format, args...) \
3836 netdev_printk(KERN_DEBUG, __dev, format, ##args)
3837 #else
3838 #define netdev_dbg(__dev, format, args...) \
3839 ({ \
3840 if (0) \
3841 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3842 })
3843 #endif
3844
3845 #if defined(VERBOSE_DEBUG)
3846 #define netdev_vdbg netdev_dbg
3847 #else
3848
3849 #define netdev_vdbg(dev, format, args...) \
3850 ({ \
3851 if (0) \
3852 netdev_printk(KERN_DEBUG, dev, format, ##args); \
3853 0; \
3854 })
3855 #endif
3856
3857 /*
3858 * netdev_WARN() acts like dev_printk(), but with the key difference
3859 * of using a WARN/WARN_ON to get the message out, including the
3860 * file/line information and a backtrace.
3861 */
3862 #define netdev_WARN(dev, format, args...) \
3863 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \
3864 netdev_reg_state(dev), ##args)
3865
3866 /* netif printk helpers, similar to netdev_printk */
3867
3868 #define netif_printk(priv, type, level, dev, fmt, args...) \
3869 do { \
3870 if (netif_msg_##type(priv)) \
3871 netdev_printk(level, (dev), fmt, ##args); \
3872 } while (0)
3873
3874 #define netif_level(level, priv, type, dev, fmt, args...) \
3875 do { \
3876 if (netif_msg_##type(priv)) \
3877 netdev_##level(dev, fmt, ##args); \
3878 } while (0)
3879
3880 #define netif_emerg(priv, type, dev, fmt, args...) \
3881 netif_level(emerg, priv, type, dev, fmt, ##args)
3882 #define netif_alert(priv, type, dev, fmt, args...) \
3883 netif_level(alert, priv, type, dev, fmt, ##args)
3884 #define netif_crit(priv, type, dev, fmt, args...) \
3885 netif_level(crit, priv, type, dev, fmt, ##args)
3886 #define netif_err(priv, type, dev, fmt, args...) \
3887 netif_level(err, priv, type, dev, fmt, ##args)
3888 #define netif_warn(priv, type, dev, fmt, args...) \
3889 netif_level(warn, priv, type, dev, fmt, ##args)
3890 #define netif_notice(priv, type, dev, fmt, args...) \
3891 netif_level(notice, priv, type, dev, fmt, ##args)
3892 #define netif_info(priv, type, dev, fmt, args...) \
3893 netif_level(info, priv, type, dev, fmt, ##args)
3894
3895 #if defined(CONFIG_DYNAMIC_DEBUG)
3896 #define netif_dbg(priv, type, netdev, format, args...) \
3897 do { \
3898 if (netif_msg_##type(priv)) \
3899 dynamic_netdev_dbg(netdev, format, ##args); \
3900 } while (0)
3901 #elif defined(DEBUG)
3902 #define netif_dbg(priv, type, dev, format, args...) \
3903 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3904 #else
3905 #define netif_dbg(priv, type, dev, format, args...) \
3906 ({ \
3907 if (0) \
3908 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3909 0; \
3910 })
3911 #endif
3912
3913 #if defined(VERBOSE_DEBUG)
3914 #define netif_vdbg netif_dbg
3915 #else
3916 #define netif_vdbg(priv, type, dev, format, args...) \
3917 ({ \
3918 if (0) \
3919 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3920 0; \
3921 })
3922 #endif
3923
3924 /*
3925 * The list of packet types we will receive (as opposed to discard)
3926 * and the routines to invoke.
3927 *
3928 * Why 16. Because with 16 the only overlap we get on a hash of the
3929 * low nibble of the protocol value is RARP/SNAP/X.25.
3930 *
3931 * NOTE: That is no longer true with the addition of VLAN tags. Not
3932 * sure which should go first, but I bet it won't make much
3933 * difference if we are running VLANs. The good news is that
3934 * this protocol won't be in the list unless compiled in, so
3935 * the average user (w/out VLANs) will not be adversely affected.
3936 * --BLG
3937 *
3938 * 0800 IP
3939 * 8100 802.1Q VLAN
3940 * 0001 802.3
3941 * 0002 AX.25
3942 * 0004 802.2
3943 * 8035 RARP
3944 * 0005 SNAP
3945 * 0805 X.25
3946 * 0806 ARP
3947 * 8137 IPX
3948 * 0009 Localtalk
3949 * 86DD IPv6
3950 */
3951 #define PTYPE_HASH_SIZE (16)
3952 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
3953
3954 #endif /* _LINUX_NETDEVICE_H */
This page took 0.155093 seconds and 6 git commands to generate.