Merge tag 'for-linus-merge-3.7' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/if.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_link.h>
32
33 #ifdef __KERNEL__
34 #include <linux/pm_qos.h>
35 #include <linux/timer.h>
36 #include <linux/bug.h>
37 #include <linux/delay.h>
38 #include <linux/atomic.h>
39 #include <asm/cache.h>
40 #include <asm/byteorder.h>
41
42 #include <linux/percpu.h>
43 #include <linux/rculist.h>
44 #include <linux/dmaengine.h>
45 #include <linux/workqueue.h>
46 #include <linux/dynamic_queue_limits.h>
47
48 #include <linux/ethtool.h>
49 #include <net/net_namespace.h>
50 #include <net/dsa.h>
51 #ifdef CONFIG_DCB
52 #include <net/dcbnl.h>
53 #endif
54 #include <net/netprio_cgroup.h>
55
56 #include <linux/netdev_features.h>
57 #include <linux/neighbour.h>
58
59 struct netpoll_info;
60 struct device;
61 struct phy_device;
62 /* 802.11 specific */
63 struct wireless_dev;
64 /* source back-compat hooks */
65 #define SET_ETHTOOL_OPS(netdev,ops) \
66 ( (netdev)->ethtool_ops = (ops) )
67
68 /* hardware address assignment types */
69 #define NET_ADDR_PERM 0 /* address is permanent (default) */
70 #define NET_ADDR_RANDOM 1 /* address is generated randomly */
71 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */
72
73 /* Backlog congestion levels */
74 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
75 #define NET_RX_DROP 1 /* packet dropped */
76
77 /*
78 * Transmit return codes: transmit return codes originate from three different
79 * namespaces:
80 *
81 * - qdisc return codes
82 * - driver transmit return codes
83 * - errno values
84 *
85 * Drivers are allowed to return any one of those in their hard_start_xmit()
86 * function. Real network devices commonly used with qdiscs should only return
87 * the driver transmit return codes though - when qdiscs are used, the actual
88 * transmission happens asynchronously, so the value is not propagated to
89 * higher layers. Virtual network devices transmit synchronously, in this case
90 * the driver transmit return codes are consumed by dev_queue_xmit(), all
91 * others are propagated to higher layers.
92 */
93
94 /* qdisc ->enqueue() return codes. */
95 #define NET_XMIT_SUCCESS 0x00
96 #define NET_XMIT_DROP 0x01 /* skb dropped */
97 #define NET_XMIT_CN 0x02 /* congestion notification */
98 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
99 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
100
101 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
102 * indicates that the device will soon be dropping packets, or already drops
103 * some packets of the same priority; prompting us to send less aggressively. */
104 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
105 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
106
107 /* Driver transmit return codes */
108 #define NETDEV_TX_MASK 0xf0
109
110 enum netdev_tx {
111 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
112 NETDEV_TX_OK = 0x00, /* driver took care of packet */
113 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
114 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
115 };
116 typedef enum netdev_tx netdev_tx_t;
117
118 /*
119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121 */
122 static inline bool dev_xmit_complete(int rc)
123 {
124 /*
125 * Positive cases with an skb consumed by a driver:
126 * - successful transmission (rc == NETDEV_TX_OK)
127 * - error while transmitting (rc < 0)
128 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 */
130 if (likely(rc < NET_XMIT_MASK))
131 return true;
132
133 return false;
134 }
135
136 #endif
137
138 #define MAX_ADDR_LEN 32 /* Largest hardware address length */
139
140 /* Initial net device group. All devices belong to group 0 by default. */
141 #define INIT_NETDEV_GROUP 0
142
143 #ifdef __KERNEL__
144 /*
145 * Compute the worst case header length according to the protocols
146 * used.
147 */
148
149 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
150 # if defined(CONFIG_MAC80211_MESH)
151 # define LL_MAX_HEADER 128
152 # else
153 # define LL_MAX_HEADER 96
154 # endif
155 #elif IS_ENABLED(CONFIG_TR)
156 # define LL_MAX_HEADER 48
157 #else
158 # define LL_MAX_HEADER 32
159 #endif
160
161 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
162 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
163 #define MAX_HEADER LL_MAX_HEADER
164 #else
165 #define MAX_HEADER (LL_MAX_HEADER + 48)
166 #endif
167
168 /*
169 * Old network device statistics. Fields are native words
170 * (unsigned long) so they can be read and written atomically.
171 */
172
173 struct net_device_stats {
174 unsigned long rx_packets;
175 unsigned long tx_packets;
176 unsigned long rx_bytes;
177 unsigned long tx_bytes;
178 unsigned long rx_errors;
179 unsigned long tx_errors;
180 unsigned long rx_dropped;
181 unsigned long tx_dropped;
182 unsigned long multicast;
183 unsigned long collisions;
184 unsigned long rx_length_errors;
185 unsigned long rx_over_errors;
186 unsigned long rx_crc_errors;
187 unsigned long rx_frame_errors;
188 unsigned long rx_fifo_errors;
189 unsigned long rx_missed_errors;
190 unsigned long tx_aborted_errors;
191 unsigned long tx_carrier_errors;
192 unsigned long tx_fifo_errors;
193 unsigned long tx_heartbeat_errors;
194 unsigned long tx_window_errors;
195 unsigned long rx_compressed;
196 unsigned long tx_compressed;
197 };
198
199 #endif /* __KERNEL__ */
200
201
202 /* Media selection options. */
203 enum {
204 IF_PORT_UNKNOWN = 0,
205 IF_PORT_10BASE2,
206 IF_PORT_10BASET,
207 IF_PORT_AUI,
208 IF_PORT_100BASET,
209 IF_PORT_100BASETX,
210 IF_PORT_100BASEFX
211 };
212
213 #ifdef __KERNEL__
214
215 #include <linux/cache.h>
216 #include <linux/skbuff.h>
217
218 #ifdef CONFIG_RPS
219 #include <linux/static_key.h>
220 extern struct static_key rps_needed;
221 #endif
222
223 struct neighbour;
224 struct neigh_parms;
225 struct sk_buff;
226
227 struct netdev_hw_addr {
228 struct list_head list;
229 unsigned char addr[MAX_ADDR_LEN];
230 unsigned char type;
231 #define NETDEV_HW_ADDR_T_LAN 1
232 #define NETDEV_HW_ADDR_T_SAN 2
233 #define NETDEV_HW_ADDR_T_SLAVE 3
234 #define NETDEV_HW_ADDR_T_UNICAST 4
235 #define NETDEV_HW_ADDR_T_MULTICAST 5
236 bool synced;
237 bool global_use;
238 int refcount;
239 struct rcu_head rcu_head;
240 };
241
242 struct netdev_hw_addr_list {
243 struct list_head list;
244 int count;
245 };
246
247 #define netdev_hw_addr_list_count(l) ((l)->count)
248 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
249 #define netdev_hw_addr_list_for_each(ha, l) \
250 list_for_each_entry(ha, &(l)->list, list)
251
252 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
253 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
254 #define netdev_for_each_uc_addr(ha, dev) \
255 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
256
257 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
258 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
259 #define netdev_for_each_mc_addr(ha, dev) \
260 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
261
262 struct hh_cache {
263 u16 hh_len;
264 u16 __pad;
265 seqlock_t hh_lock;
266
267 /* cached hardware header; allow for machine alignment needs. */
268 #define HH_DATA_MOD 16
269 #define HH_DATA_OFF(__len) \
270 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
271 #define HH_DATA_ALIGN(__len) \
272 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
273 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
274 };
275
276 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
277 * Alternative is:
278 * dev->hard_header_len ? (dev->hard_header_len +
279 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
280 *
281 * We could use other alignment values, but we must maintain the
282 * relationship HH alignment <= LL alignment.
283 */
284 #define LL_RESERVED_SPACE(dev) \
285 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
286 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
287 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
288
289 struct header_ops {
290 int (*create) (struct sk_buff *skb, struct net_device *dev,
291 unsigned short type, const void *daddr,
292 const void *saddr, unsigned int len);
293 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
294 int (*rebuild)(struct sk_buff *skb);
295 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
296 void (*cache_update)(struct hh_cache *hh,
297 const struct net_device *dev,
298 const unsigned char *haddr);
299 };
300
301 /* These flag bits are private to the generic network queueing
302 * layer, they may not be explicitly referenced by any other
303 * code.
304 */
305
306 enum netdev_state_t {
307 __LINK_STATE_START,
308 __LINK_STATE_PRESENT,
309 __LINK_STATE_NOCARRIER,
310 __LINK_STATE_LINKWATCH_PENDING,
311 __LINK_STATE_DORMANT,
312 };
313
314
315 /*
316 * This structure holds at boot time configured netdevice settings. They
317 * are then used in the device probing.
318 */
319 struct netdev_boot_setup {
320 char name[IFNAMSIZ];
321 struct ifmap map;
322 };
323 #define NETDEV_BOOT_SETUP_MAX 8
324
325 extern int __init netdev_boot_setup(char *str);
326
327 /*
328 * Structure for NAPI scheduling similar to tasklet but with weighting
329 */
330 struct napi_struct {
331 /* The poll_list must only be managed by the entity which
332 * changes the state of the NAPI_STATE_SCHED bit. This means
333 * whoever atomically sets that bit can add this napi_struct
334 * to the per-cpu poll_list, and whoever clears that bit
335 * can remove from the list right before clearing the bit.
336 */
337 struct list_head poll_list;
338
339 unsigned long state;
340 int weight;
341 unsigned int gro_count;
342 int (*poll)(struct napi_struct *, int);
343 #ifdef CONFIG_NETPOLL
344 spinlock_t poll_lock;
345 int poll_owner;
346 #endif
347 struct net_device *dev;
348 struct sk_buff *gro_list;
349 struct sk_buff *skb;
350 struct list_head dev_list;
351 };
352
353 enum {
354 NAPI_STATE_SCHED, /* Poll is scheduled */
355 NAPI_STATE_DISABLE, /* Disable pending */
356 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
357 };
358
359 enum gro_result {
360 GRO_MERGED,
361 GRO_MERGED_FREE,
362 GRO_HELD,
363 GRO_NORMAL,
364 GRO_DROP,
365 };
366 typedef enum gro_result gro_result_t;
367
368 /*
369 * enum rx_handler_result - Possible return values for rx_handlers.
370 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
371 * further.
372 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
373 * case skb->dev was changed by rx_handler.
374 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
375 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
376 *
377 * rx_handlers are functions called from inside __netif_receive_skb(), to do
378 * special processing of the skb, prior to delivery to protocol handlers.
379 *
380 * Currently, a net_device can only have a single rx_handler registered. Trying
381 * to register a second rx_handler will return -EBUSY.
382 *
383 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
384 * To unregister a rx_handler on a net_device, use
385 * netdev_rx_handler_unregister().
386 *
387 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
388 * do with the skb.
389 *
390 * If the rx_handler consumed to skb in some way, it should return
391 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
392 * the skb to be delivered in some other ways.
393 *
394 * If the rx_handler changed skb->dev, to divert the skb to another
395 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
396 * new device will be called if it exists.
397 *
398 * If the rx_handler consider the skb should be ignored, it should return
399 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
400 * are registred on exact device (ptype->dev == skb->dev).
401 *
402 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
403 * delivered, it should return RX_HANDLER_PASS.
404 *
405 * A device without a registered rx_handler will behave as if rx_handler
406 * returned RX_HANDLER_PASS.
407 */
408
409 enum rx_handler_result {
410 RX_HANDLER_CONSUMED,
411 RX_HANDLER_ANOTHER,
412 RX_HANDLER_EXACT,
413 RX_HANDLER_PASS,
414 };
415 typedef enum rx_handler_result rx_handler_result_t;
416 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
417
418 extern void __napi_schedule(struct napi_struct *n);
419
420 static inline bool napi_disable_pending(struct napi_struct *n)
421 {
422 return test_bit(NAPI_STATE_DISABLE, &n->state);
423 }
424
425 /**
426 * napi_schedule_prep - check if napi can be scheduled
427 * @n: napi context
428 *
429 * Test if NAPI routine is already running, and if not mark
430 * it as running. This is used as a condition variable
431 * insure only one NAPI poll instance runs. We also make
432 * sure there is no pending NAPI disable.
433 */
434 static inline bool napi_schedule_prep(struct napi_struct *n)
435 {
436 return !napi_disable_pending(n) &&
437 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
438 }
439
440 /**
441 * napi_schedule - schedule NAPI poll
442 * @n: napi context
443 *
444 * Schedule NAPI poll routine to be called if it is not already
445 * running.
446 */
447 static inline void napi_schedule(struct napi_struct *n)
448 {
449 if (napi_schedule_prep(n))
450 __napi_schedule(n);
451 }
452
453 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
454 static inline bool napi_reschedule(struct napi_struct *napi)
455 {
456 if (napi_schedule_prep(napi)) {
457 __napi_schedule(napi);
458 return true;
459 }
460 return false;
461 }
462
463 /**
464 * napi_complete - NAPI processing complete
465 * @n: napi context
466 *
467 * Mark NAPI processing as complete.
468 */
469 extern void __napi_complete(struct napi_struct *n);
470 extern void napi_complete(struct napi_struct *n);
471
472 /**
473 * napi_disable - prevent NAPI from scheduling
474 * @n: napi context
475 *
476 * Stop NAPI from being scheduled on this context.
477 * Waits till any outstanding processing completes.
478 */
479 static inline void napi_disable(struct napi_struct *n)
480 {
481 set_bit(NAPI_STATE_DISABLE, &n->state);
482 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
483 msleep(1);
484 clear_bit(NAPI_STATE_DISABLE, &n->state);
485 }
486
487 /**
488 * napi_enable - enable NAPI scheduling
489 * @n: napi context
490 *
491 * Resume NAPI from being scheduled on this context.
492 * Must be paired with napi_disable.
493 */
494 static inline void napi_enable(struct napi_struct *n)
495 {
496 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
497 smp_mb__before_clear_bit();
498 clear_bit(NAPI_STATE_SCHED, &n->state);
499 }
500
501 #ifdef CONFIG_SMP
502 /**
503 * napi_synchronize - wait until NAPI is not running
504 * @n: napi context
505 *
506 * Wait until NAPI is done being scheduled on this context.
507 * Waits till any outstanding processing completes but
508 * does not disable future activations.
509 */
510 static inline void napi_synchronize(const struct napi_struct *n)
511 {
512 while (test_bit(NAPI_STATE_SCHED, &n->state))
513 msleep(1);
514 }
515 #else
516 # define napi_synchronize(n) barrier()
517 #endif
518
519 enum netdev_queue_state_t {
520 __QUEUE_STATE_DRV_XOFF,
521 __QUEUE_STATE_STACK_XOFF,
522 __QUEUE_STATE_FROZEN,
523 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \
524 (1 << __QUEUE_STATE_STACK_XOFF))
525 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
526 (1 << __QUEUE_STATE_FROZEN))
527 };
528 /*
529 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
530 * netif_tx_* functions below are used to manipulate this flag. The
531 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
532 * queue independently. The netif_xmit_*stopped functions below are called
533 * to check if the queue has been stopped by the driver or stack (either
534 * of the XOFF bits are set in the state). Drivers should not need to call
535 * netif_xmit*stopped functions, they should only be using netif_tx_*.
536 */
537
538 struct netdev_queue {
539 /*
540 * read mostly part
541 */
542 struct net_device *dev;
543 struct Qdisc *qdisc;
544 struct Qdisc *qdisc_sleeping;
545 #ifdef CONFIG_SYSFS
546 struct kobject kobj;
547 #endif
548 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
549 int numa_node;
550 #endif
551 /*
552 * write mostly part
553 */
554 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
555 int xmit_lock_owner;
556 /*
557 * please use this field instead of dev->trans_start
558 */
559 unsigned long trans_start;
560
561 /*
562 * Number of TX timeouts for this queue
563 * (/sys/class/net/DEV/Q/trans_timeout)
564 */
565 unsigned long trans_timeout;
566
567 unsigned long state;
568
569 #ifdef CONFIG_BQL
570 struct dql dql;
571 #endif
572 } ____cacheline_aligned_in_smp;
573
574 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
575 {
576 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
577 return q->numa_node;
578 #else
579 return NUMA_NO_NODE;
580 #endif
581 }
582
583 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
584 {
585 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
586 q->numa_node = node;
587 #endif
588 }
589
590 #ifdef CONFIG_RPS
591 /*
592 * This structure holds an RPS map which can be of variable length. The
593 * map is an array of CPUs.
594 */
595 struct rps_map {
596 unsigned int len;
597 struct rcu_head rcu;
598 u16 cpus[0];
599 };
600 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
601
602 /*
603 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
604 * tail pointer for that CPU's input queue at the time of last enqueue, and
605 * a hardware filter index.
606 */
607 struct rps_dev_flow {
608 u16 cpu;
609 u16 filter;
610 unsigned int last_qtail;
611 };
612 #define RPS_NO_FILTER 0xffff
613
614 /*
615 * The rps_dev_flow_table structure contains a table of flow mappings.
616 */
617 struct rps_dev_flow_table {
618 unsigned int mask;
619 struct rcu_head rcu;
620 struct work_struct free_work;
621 struct rps_dev_flow flows[0];
622 };
623 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
624 ((_num) * sizeof(struct rps_dev_flow)))
625
626 /*
627 * The rps_sock_flow_table contains mappings of flows to the last CPU
628 * on which they were processed by the application (set in recvmsg).
629 */
630 struct rps_sock_flow_table {
631 unsigned int mask;
632 u16 ents[0];
633 };
634 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
635 ((_num) * sizeof(u16)))
636
637 #define RPS_NO_CPU 0xffff
638
639 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
640 u32 hash)
641 {
642 if (table && hash) {
643 unsigned int cpu, index = hash & table->mask;
644
645 /* We only give a hint, preemption can change cpu under us */
646 cpu = raw_smp_processor_id();
647
648 if (table->ents[index] != cpu)
649 table->ents[index] = cpu;
650 }
651 }
652
653 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
654 u32 hash)
655 {
656 if (table && hash)
657 table->ents[hash & table->mask] = RPS_NO_CPU;
658 }
659
660 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
661
662 #ifdef CONFIG_RFS_ACCEL
663 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
664 u32 flow_id, u16 filter_id);
665 #endif
666
667 /* This structure contains an instance of an RX queue. */
668 struct netdev_rx_queue {
669 struct rps_map __rcu *rps_map;
670 struct rps_dev_flow_table __rcu *rps_flow_table;
671 struct kobject kobj;
672 struct net_device *dev;
673 } ____cacheline_aligned_in_smp;
674 #endif /* CONFIG_RPS */
675
676 #ifdef CONFIG_XPS
677 /*
678 * This structure holds an XPS map which can be of variable length. The
679 * map is an array of queues.
680 */
681 struct xps_map {
682 unsigned int len;
683 unsigned int alloc_len;
684 struct rcu_head rcu;
685 u16 queues[0];
686 };
687 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
688 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
689 / sizeof(u16))
690
691 /*
692 * This structure holds all XPS maps for device. Maps are indexed by CPU.
693 */
694 struct xps_dev_maps {
695 struct rcu_head rcu;
696 struct xps_map __rcu *cpu_map[0];
697 };
698 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
699 (nr_cpu_ids * sizeof(struct xps_map *)))
700 #endif /* CONFIG_XPS */
701
702 #define TC_MAX_QUEUE 16
703 #define TC_BITMASK 15
704 /* HW offloaded queuing disciplines txq count and offset maps */
705 struct netdev_tc_txq {
706 u16 count;
707 u16 offset;
708 };
709
710 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
711 /*
712 * This structure is to hold information about the device
713 * configured to run FCoE protocol stack.
714 */
715 struct netdev_fcoe_hbainfo {
716 char manufacturer[64];
717 char serial_number[64];
718 char hardware_version[64];
719 char driver_version[64];
720 char optionrom_version[64];
721 char firmware_version[64];
722 char model[256];
723 char model_description[256];
724 };
725 #endif
726
727 /*
728 * This structure defines the management hooks for network devices.
729 * The following hooks can be defined; unless noted otherwise, they are
730 * optional and can be filled with a null pointer.
731 *
732 * int (*ndo_init)(struct net_device *dev);
733 * This function is called once when network device is registered.
734 * The network device can use this to any late stage initializaton
735 * or semantic validattion. It can fail with an error code which will
736 * be propogated back to register_netdev
737 *
738 * void (*ndo_uninit)(struct net_device *dev);
739 * This function is called when device is unregistered or when registration
740 * fails. It is not called if init fails.
741 *
742 * int (*ndo_open)(struct net_device *dev);
743 * This function is called when network device transistions to the up
744 * state.
745 *
746 * int (*ndo_stop)(struct net_device *dev);
747 * This function is called when network device transistions to the down
748 * state.
749 *
750 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
751 * struct net_device *dev);
752 * Called when a packet needs to be transmitted.
753 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
754 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
755 * Required can not be NULL.
756 *
757 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
758 * Called to decide which queue to when device supports multiple
759 * transmit queues.
760 *
761 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
762 * This function is called to allow device receiver to make
763 * changes to configuration when multicast or promiscious is enabled.
764 *
765 * void (*ndo_set_rx_mode)(struct net_device *dev);
766 * This function is called device changes address list filtering.
767 * If driver handles unicast address filtering, it should set
768 * IFF_UNICAST_FLT to its priv_flags.
769 *
770 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
771 * This function is called when the Media Access Control address
772 * needs to be changed. If this interface is not defined, the
773 * mac address can not be changed.
774 *
775 * int (*ndo_validate_addr)(struct net_device *dev);
776 * Test if Media Access Control address is valid for the device.
777 *
778 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
779 * Called when a user request an ioctl which can't be handled by
780 * the generic interface code. If not defined ioctl's return
781 * not supported error code.
782 *
783 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
784 * Used to set network devices bus interface parameters. This interface
785 * is retained for legacy reason, new devices should use the bus
786 * interface (PCI) for low level management.
787 *
788 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
789 * Called when a user wants to change the Maximum Transfer Unit
790 * of a device. If not defined, any request to change MTU will
791 * will return an error.
792 *
793 * void (*ndo_tx_timeout)(struct net_device *dev);
794 * Callback uses when the transmitter has not made any progress
795 * for dev->watchdog ticks.
796 *
797 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
798 * struct rtnl_link_stats64 *storage);
799 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
800 * Called when a user wants to get the network device usage
801 * statistics. Drivers must do one of the following:
802 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
803 * rtnl_link_stats64 structure passed by the caller.
804 * 2. Define @ndo_get_stats to update a net_device_stats structure
805 * (which should normally be dev->stats) and return a pointer to
806 * it. The structure may be changed asynchronously only if each
807 * field is written atomically.
808 * 3. Update dev->stats asynchronously and atomically, and define
809 * neither operation.
810 *
811 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
812 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
813 * this function is called when a VLAN id is registered.
814 *
815 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
816 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
817 * this function is called when a VLAN id is unregistered.
818 *
819 * void (*ndo_poll_controller)(struct net_device *dev);
820 *
821 * SR-IOV management functions.
822 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
823 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
824 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
825 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
826 * int (*ndo_get_vf_config)(struct net_device *dev,
827 * int vf, struct ifla_vf_info *ivf);
828 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
829 * struct nlattr *port[]);
830 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
831 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
832 * Called to setup 'tc' number of traffic classes in the net device. This
833 * is always called from the stack with the rtnl lock held and netif tx
834 * queues stopped. This allows the netdevice to perform queue management
835 * safely.
836 *
837 * Fiber Channel over Ethernet (FCoE) offload functions.
838 * int (*ndo_fcoe_enable)(struct net_device *dev);
839 * Called when the FCoE protocol stack wants to start using LLD for FCoE
840 * so the underlying device can perform whatever needed configuration or
841 * initialization to support acceleration of FCoE traffic.
842 *
843 * int (*ndo_fcoe_disable)(struct net_device *dev);
844 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
845 * so the underlying device can perform whatever needed clean-ups to
846 * stop supporting acceleration of FCoE traffic.
847 *
848 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
849 * struct scatterlist *sgl, unsigned int sgc);
850 * Called when the FCoE Initiator wants to initialize an I/O that
851 * is a possible candidate for Direct Data Placement (DDP). The LLD can
852 * perform necessary setup and returns 1 to indicate the device is set up
853 * successfully to perform DDP on this I/O, otherwise this returns 0.
854 *
855 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
856 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
857 * indicated by the FC exchange id 'xid', so the underlying device can
858 * clean up and reuse resources for later DDP requests.
859 *
860 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
861 * struct scatterlist *sgl, unsigned int sgc);
862 * Called when the FCoE Target wants to initialize an I/O that
863 * is a possible candidate for Direct Data Placement (DDP). The LLD can
864 * perform necessary setup and returns 1 to indicate the device is set up
865 * successfully to perform DDP on this I/O, otherwise this returns 0.
866 *
867 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
868 * struct netdev_fcoe_hbainfo *hbainfo);
869 * Called when the FCoE Protocol stack wants information on the underlying
870 * device. This information is utilized by the FCoE protocol stack to
871 * register attributes with Fiber Channel management service as per the
872 * FC-GS Fabric Device Management Information(FDMI) specification.
873 *
874 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
875 * Called when the underlying device wants to override default World Wide
876 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
877 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
878 * protocol stack to use.
879 *
880 * RFS acceleration.
881 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
882 * u16 rxq_index, u32 flow_id);
883 * Set hardware filter for RFS. rxq_index is the target queue index;
884 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
885 * Return the filter ID on success, or a negative error code.
886 *
887 * Slave management functions (for bridge, bonding, etc). User should
888 * call netdev_set_master() to set dev->master properly.
889 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
890 * Called to make another netdev an underling.
891 *
892 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
893 * Called to release previously enslaved netdev.
894 *
895 * Feature/offload setting functions.
896 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
897 * netdev_features_t features);
898 * Adjusts the requested feature flags according to device-specific
899 * constraints, and returns the resulting flags. Must not modify
900 * the device state.
901 *
902 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
903 * Called to update device configuration to new features. Passed
904 * feature set might be less than what was returned by ndo_fix_features()).
905 * Must return >0 or -errno if it changed dev->features itself.
906 *
907 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
908 * struct net_device *dev,
909 * const unsigned char *addr, u16 flags)
910 * Adds an FDB entry to dev for addr.
911 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct net_device *dev,
912 * const unsigned char *addr)
913 * Deletes the FDB entry from dev coresponding to addr.
914 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
915 * struct net_device *dev, int idx)
916 * Used to add FDB entries to dump requests. Implementers should add
917 * entries to skb and update idx with the number of entries.
918 */
919 struct net_device_ops {
920 int (*ndo_init)(struct net_device *dev);
921 void (*ndo_uninit)(struct net_device *dev);
922 int (*ndo_open)(struct net_device *dev);
923 int (*ndo_stop)(struct net_device *dev);
924 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
925 struct net_device *dev);
926 u16 (*ndo_select_queue)(struct net_device *dev,
927 struct sk_buff *skb);
928 void (*ndo_change_rx_flags)(struct net_device *dev,
929 int flags);
930 void (*ndo_set_rx_mode)(struct net_device *dev);
931 int (*ndo_set_mac_address)(struct net_device *dev,
932 void *addr);
933 int (*ndo_validate_addr)(struct net_device *dev);
934 int (*ndo_do_ioctl)(struct net_device *dev,
935 struct ifreq *ifr, int cmd);
936 int (*ndo_set_config)(struct net_device *dev,
937 struct ifmap *map);
938 int (*ndo_change_mtu)(struct net_device *dev,
939 int new_mtu);
940 int (*ndo_neigh_setup)(struct net_device *dev,
941 struct neigh_parms *);
942 void (*ndo_tx_timeout) (struct net_device *dev);
943
944 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
945 struct rtnl_link_stats64 *storage);
946 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
947
948 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
949 unsigned short vid);
950 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
951 unsigned short vid);
952 #ifdef CONFIG_NET_POLL_CONTROLLER
953 void (*ndo_poll_controller)(struct net_device *dev);
954 int (*ndo_netpoll_setup)(struct net_device *dev,
955 struct netpoll_info *info,
956 gfp_t gfp);
957 void (*ndo_netpoll_cleanup)(struct net_device *dev);
958 #endif
959 int (*ndo_set_vf_mac)(struct net_device *dev,
960 int queue, u8 *mac);
961 int (*ndo_set_vf_vlan)(struct net_device *dev,
962 int queue, u16 vlan, u8 qos);
963 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
964 int vf, int rate);
965 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
966 int vf, bool setting);
967 int (*ndo_get_vf_config)(struct net_device *dev,
968 int vf,
969 struct ifla_vf_info *ivf);
970 int (*ndo_set_vf_port)(struct net_device *dev,
971 int vf,
972 struct nlattr *port[]);
973 int (*ndo_get_vf_port)(struct net_device *dev,
974 int vf, struct sk_buff *skb);
975 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
976 #if IS_ENABLED(CONFIG_FCOE)
977 int (*ndo_fcoe_enable)(struct net_device *dev);
978 int (*ndo_fcoe_disable)(struct net_device *dev);
979 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
980 u16 xid,
981 struct scatterlist *sgl,
982 unsigned int sgc);
983 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
984 u16 xid);
985 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
986 u16 xid,
987 struct scatterlist *sgl,
988 unsigned int sgc);
989 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
990 struct netdev_fcoe_hbainfo *hbainfo);
991 #endif
992
993 #if IS_ENABLED(CONFIG_LIBFCOE)
994 #define NETDEV_FCOE_WWNN 0
995 #define NETDEV_FCOE_WWPN 1
996 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
997 u64 *wwn, int type);
998 #endif
999
1000 #ifdef CONFIG_RFS_ACCEL
1001 int (*ndo_rx_flow_steer)(struct net_device *dev,
1002 const struct sk_buff *skb,
1003 u16 rxq_index,
1004 u32 flow_id);
1005 #endif
1006 int (*ndo_add_slave)(struct net_device *dev,
1007 struct net_device *slave_dev);
1008 int (*ndo_del_slave)(struct net_device *dev,
1009 struct net_device *slave_dev);
1010 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1011 netdev_features_t features);
1012 int (*ndo_set_features)(struct net_device *dev,
1013 netdev_features_t features);
1014 int (*ndo_neigh_construct)(struct neighbour *n);
1015 void (*ndo_neigh_destroy)(struct neighbour *n);
1016
1017 int (*ndo_fdb_add)(struct ndmsg *ndm,
1018 struct nlattr *tb[],
1019 struct net_device *dev,
1020 const unsigned char *addr,
1021 u16 flags);
1022 int (*ndo_fdb_del)(struct ndmsg *ndm,
1023 struct net_device *dev,
1024 const unsigned char *addr);
1025 int (*ndo_fdb_dump)(struct sk_buff *skb,
1026 struct netlink_callback *cb,
1027 struct net_device *dev,
1028 int idx);
1029 };
1030
1031 /*
1032 * The DEVICE structure.
1033 * Actually, this whole structure is a big mistake. It mixes I/O
1034 * data with strictly "high-level" data, and it has to know about
1035 * almost every data structure used in the INET module.
1036 *
1037 * FIXME: cleanup struct net_device such that network protocol info
1038 * moves out.
1039 */
1040
1041 struct net_device {
1042
1043 /*
1044 * This is the first field of the "visible" part of this structure
1045 * (i.e. as seen by users in the "Space.c" file). It is the name
1046 * of the interface.
1047 */
1048 char name[IFNAMSIZ];
1049
1050 /* device name hash chain, please keep it close to name[] */
1051 struct hlist_node name_hlist;
1052
1053 /* snmp alias */
1054 char *ifalias;
1055
1056 /*
1057 * I/O specific fields
1058 * FIXME: Merge these and struct ifmap into one
1059 */
1060 unsigned long mem_end; /* shared mem end */
1061 unsigned long mem_start; /* shared mem start */
1062 unsigned long base_addr; /* device I/O address */
1063 unsigned int irq; /* device IRQ number */
1064
1065 /*
1066 * Some hardware also needs these fields, but they are not
1067 * part of the usual set specified in Space.c.
1068 */
1069
1070 unsigned long state;
1071
1072 struct list_head dev_list;
1073 struct list_head napi_list;
1074 struct list_head unreg_list;
1075
1076 /* currently active device features */
1077 netdev_features_t features;
1078 /* user-changeable features */
1079 netdev_features_t hw_features;
1080 /* user-requested features */
1081 netdev_features_t wanted_features;
1082 /* mask of features inheritable by VLAN devices */
1083 netdev_features_t vlan_features;
1084
1085 /* Interface index. Unique device identifier */
1086 int ifindex;
1087 int iflink;
1088
1089 struct net_device_stats stats;
1090 atomic_long_t rx_dropped; /* dropped packets by core network
1091 * Do not use this in drivers.
1092 */
1093
1094 #ifdef CONFIG_WIRELESS_EXT
1095 /* List of functions to handle Wireless Extensions (instead of ioctl).
1096 * See <net/iw_handler.h> for details. Jean II */
1097 const struct iw_handler_def * wireless_handlers;
1098 /* Instance data managed by the core of Wireless Extensions. */
1099 struct iw_public_data * wireless_data;
1100 #endif
1101 /* Management operations */
1102 const struct net_device_ops *netdev_ops;
1103 const struct ethtool_ops *ethtool_ops;
1104
1105 /* Hardware header description */
1106 const struct header_ops *header_ops;
1107
1108 unsigned int flags; /* interface flags (a la BSD) */
1109 unsigned int priv_flags; /* Like 'flags' but invisible to userspace.
1110 * See if.h for definitions. */
1111 unsigned short gflags;
1112 unsigned short padded; /* How much padding added by alloc_netdev() */
1113
1114 unsigned char operstate; /* RFC2863 operstate */
1115 unsigned char link_mode; /* mapping policy to operstate */
1116
1117 unsigned char if_port; /* Selectable AUI, TP,..*/
1118 unsigned char dma; /* DMA channel */
1119
1120 unsigned int mtu; /* interface MTU value */
1121 unsigned short type; /* interface hardware type */
1122 unsigned short hard_header_len; /* hardware hdr length */
1123
1124 /* extra head- and tailroom the hardware may need, but not in all cases
1125 * can this be guaranteed, especially tailroom. Some cases also use
1126 * LL_MAX_HEADER instead to allocate the skb.
1127 */
1128 unsigned short needed_headroom;
1129 unsigned short needed_tailroom;
1130
1131 /* Interface address info. */
1132 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1133 unsigned char addr_assign_type; /* hw address assignment type */
1134 unsigned char addr_len; /* hardware address length */
1135 unsigned char neigh_priv_len;
1136 unsigned short dev_id; /* for shared network cards */
1137
1138 spinlock_t addr_list_lock;
1139 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
1140 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
1141 bool uc_promisc;
1142 unsigned int promiscuity;
1143 unsigned int allmulti;
1144
1145
1146 /* Protocol specific pointers */
1147
1148 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1149 struct vlan_info __rcu *vlan_info; /* VLAN info */
1150 #endif
1151 #if IS_ENABLED(CONFIG_NET_DSA)
1152 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */
1153 #endif
1154 void *atalk_ptr; /* AppleTalk link */
1155 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1156 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1157 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1158 void *ax25_ptr; /* AX.25 specific data */
1159 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1160 assign before registering */
1161
1162 /*
1163 * Cache lines mostly used on receive path (including eth_type_trans())
1164 */
1165 unsigned long last_rx; /* Time of last Rx
1166 * This should not be set in
1167 * drivers, unless really needed,
1168 * because network stack (bonding)
1169 * use it if/when necessary, to
1170 * avoid dirtying this cache line.
1171 */
1172
1173 struct net_device *master; /* Pointer to master device of a group,
1174 * which this device is member of.
1175 */
1176
1177 /* Interface address info used in eth_type_trans() */
1178 unsigned char *dev_addr; /* hw address, (before bcast
1179 because most packets are
1180 unicast) */
1181
1182 struct netdev_hw_addr_list dev_addrs; /* list of device
1183 hw addresses */
1184
1185 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1186
1187 #ifdef CONFIG_SYSFS
1188 struct kset *queues_kset;
1189 #endif
1190
1191 #ifdef CONFIG_RPS
1192 struct netdev_rx_queue *_rx;
1193
1194 /* Number of RX queues allocated at register_netdev() time */
1195 unsigned int num_rx_queues;
1196
1197 /* Number of RX queues currently active in device */
1198 unsigned int real_num_rx_queues;
1199
1200 #ifdef CONFIG_RFS_ACCEL
1201 /* CPU reverse-mapping for RX completion interrupts, indexed
1202 * by RX queue number. Assigned by driver. This must only be
1203 * set if the ndo_rx_flow_steer operation is defined. */
1204 struct cpu_rmap *rx_cpu_rmap;
1205 #endif
1206 #endif
1207
1208 rx_handler_func_t __rcu *rx_handler;
1209 void __rcu *rx_handler_data;
1210
1211 struct netdev_queue __rcu *ingress_queue;
1212
1213 /*
1214 * Cache lines mostly used on transmit path
1215 */
1216 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1217
1218 /* Number of TX queues allocated at alloc_netdev_mq() time */
1219 unsigned int num_tx_queues;
1220
1221 /* Number of TX queues currently active in device */
1222 unsigned int real_num_tx_queues;
1223
1224 /* root qdisc from userspace point of view */
1225 struct Qdisc *qdisc;
1226
1227 unsigned long tx_queue_len; /* Max frames per queue allowed */
1228 spinlock_t tx_global_lock;
1229
1230 #ifdef CONFIG_XPS
1231 struct xps_dev_maps __rcu *xps_maps;
1232 #endif
1233
1234 /* These may be needed for future network-power-down code. */
1235
1236 /*
1237 * trans_start here is expensive for high speed devices on SMP,
1238 * please use netdev_queue->trans_start instead.
1239 */
1240 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1241
1242 int watchdog_timeo; /* used by dev_watchdog() */
1243 struct timer_list watchdog_timer;
1244
1245 /* Number of references to this device */
1246 int __percpu *pcpu_refcnt;
1247
1248 /* delayed register/unregister */
1249 struct list_head todo_list;
1250 /* device index hash chain */
1251 struct hlist_node index_hlist;
1252
1253 struct list_head link_watch_list;
1254
1255 /* register/unregister state machine */
1256 enum { NETREG_UNINITIALIZED=0,
1257 NETREG_REGISTERED, /* completed register_netdevice */
1258 NETREG_UNREGISTERING, /* called unregister_netdevice */
1259 NETREG_UNREGISTERED, /* completed unregister todo */
1260 NETREG_RELEASED, /* called free_netdev */
1261 NETREG_DUMMY, /* dummy device for NAPI poll */
1262 } reg_state:8;
1263
1264 bool dismantle; /* device is going do be freed */
1265
1266 enum {
1267 RTNL_LINK_INITIALIZED,
1268 RTNL_LINK_INITIALIZING,
1269 } rtnl_link_state:16;
1270
1271 /* Called from unregister, can be used to call free_netdev */
1272 void (*destructor)(struct net_device *dev);
1273
1274 #ifdef CONFIG_NETPOLL
1275 struct netpoll_info *npinfo;
1276 #endif
1277
1278 #ifdef CONFIG_NET_NS
1279 /* Network namespace this network device is inside */
1280 struct net *nd_net;
1281 #endif
1282
1283 /* mid-layer private */
1284 union {
1285 void *ml_priv;
1286 struct pcpu_lstats __percpu *lstats; /* loopback stats */
1287 struct pcpu_tstats __percpu *tstats; /* tunnel stats */
1288 struct pcpu_dstats __percpu *dstats; /* dummy stats */
1289 };
1290 /* GARP */
1291 struct garp_port __rcu *garp_port;
1292
1293 /* class/net/name entry */
1294 struct device dev;
1295 /* space for optional device, statistics, and wireless sysfs groups */
1296 const struct attribute_group *sysfs_groups[4];
1297
1298 /* rtnetlink link ops */
1299 const struct rtnl_link_ops *rtnl_link_ops;
1300
1301 /* for setting kernel sock attribute on TCP connection setup */
1302 #define GSO_MAX_SIZE 65536
1303 unsigned int gso_max_size;
1304 #define GSO_MAX_SEGS 65535
1305 u16 gso_max_segs;
1306
1307 #ifdef CONFIG_DCB
1308 /* Data Center Bridging netlink ops */
1309 const struct dcbnl_rtnl_ops *dcbnl_ops;
1310 #endif
1311 u8 num_tc;
1312 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1313 u8 prio_tc_map[TC_BITMASK + 1];
1314
1315 #if IS_ENABLED(CONFIG_FCOE)
1316 /* max exchange id for FCoE LRO by ddp */
1317 unsigned int fcoe_ddp_xid;
1318 #endif
1319 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1320 struct netprio_map __rcu *priomap;
1321 #endif
1322 /* phy device may attach itself for hardware timestamping */
1323 struct phy_device *phydev;
1324
1325 struct lock_class_key *qdisc_tx_busylock;
1326
1327 /* group the device belongs to */
1328 int group;
1329
1330 struct pm_qos_request pm_qos_req;
1331 };
1332 #define to_net_dev(d) container_of(d, struct net_device, dev)
1333
1334 #define NETDEV_ALIGN 32
1335
1336 static inline
1337 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1338 {
1339 return dev->prio_tc_map[prio & TC_BITMASK];
1340 }
1341
1342 static inline
1343 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1344 {
1345 if (tc >= dev->num_tc)
1346 return -EINVAL;
1347
1348 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1349 return 0;
1350 }
1351
1352 static inline
1353 void netdev_reset_tc(struct net_device *dev)
1354 {
1355 dev->num_tc = 0;
1356 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1357 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1358 }
1359
1360 static inline
1361 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1362 {
1363 if (tc >= dev->num_tc)
1364 return -EINVAL;
1365
1366 dev->tc_to_txq[tc].count = count;
1367 dev->tc_to_txq[tc].offset = offset;
1368 return 0;
1369 }
1370
1371 static inline
1372 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1373 {
1374 if (num_tc > TC_MAX_QUEUE)
1375 return -EINVAL;
1376
1377 dev->num_tc = num_tc;
1378 return 0;
1379 }
1380
1381 static inline
1382 int netdev_get_num_tc(struct net_device *dev)
1383 {
1384 return dev->num_tc;
1385 }
1386
1387 static inline
1388 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1389 unsigned int index)
1390 {
1391 return &dev->_tx[index];
1392 }
1393
1394 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1395 void (*f)(struct net_device *,
1396 struct netdev_queue *,
1397 void *),
1398 void *arg)
1399 {
1400 unsigned int i;
1401
1402 for (i = 0; i < dev->num_tx_queues; i++)
1403 f(dev, &dev->_tx[i], arg);
1404 }
1405
1406 extern struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1407 struct sk_buff *skb);
1408
1409 /*
1410 * Net namespace inlines
1411 */
1412 static inline
1413 struct net *dev_net(const struct net_device *dev)
1414 {
1415 return read_pnet(&dev->nd_net);
1416 }
1417
1418 static inline
1419 void dev_net_set(struct net_device *dev, struct net *net)
1420 {
1421 #ifdef CONFIG_NET_NS
1422 release_net(dev->nd_net);
1423 dev->nd_net = hold_net(net);
1424 #endif
1425 }
1426
1427 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1428 {
1429 #ifdef CONFIG_NET_DSA_TAG_DSA
1430 if (dev->dsa_ptr != NULL)
1431 return dsa_uses_dsa_tags(dev->dsa_ptr);
1432 #endif
1433
1434 return 0;
1435 }
1436
1437 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1438 {
1439 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1440 if (dev->dsa_ptr != NULL)
1441 return dsa_uses_trailer_tags(dev->dsa_ptr);
1442 #endif
1443
1444 return 0;
1445 }
1446
1447 /**
1448 * netdev_priv - access network device private data
1449 * @dev: network device
1450 *
1451 * Get network device private data
1452 */
1453 static inline void *netdev_priv(const struct net_device *dev)
1454 {
1455 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1456 }
1457
1458 /* Set the sysfs physical device reference for the network logical device
1459 * if set prior to registration will cause a symlink during initialization.
1460 */
1461 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1462
1463 /* Set the sysfs device type for the network logical device to allow
1464 * fin grained indentification of different network device types. For
1465 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1466 */
1467 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1468
1469 /**
1470 * netif_napi_add - initialize a napi context
1471 * @dev: network device
1472 * @napi: napi context
1473 * @poll: polling function
1474 * @weight: default weight
1475 *
1476 * netif_napi_add() must be used to initialize a napi context prior to calling
1477 * *any* of the other napi related functions.
1478 */
1479 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1480 int (*poll)(struct napi_struct *, int), int weight);
1481
1482 /**
1483 * netif_napi_del - remove a napi context
1484 * @napi: napi context
1485 *
1486 * netif_napi_del() removes a napi context from the network device napi list
1487 */
1488 void netif_napi_del(struct napi_struct *napi);
1489
1490 struct napi_gro_cb {
1491 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1492 void *frag0;
1493
1494 /* Length of frag0. */
1495 unsigned int frag0_len;
1496
1497 /* This indicates where we are processing relative to skb->data. */
1498 int data_offset;
1499
1500 /* This is non-zero if the packet cannot be merged with the new skb. */
1501 int flush;
1502
1503 /* Number of segments aggregated. */
1504 u16 count;
1505
1506 /* This is non-zero if the packet may be of the same flow. */
1507 u8 same_flow;
1508
1509 /* Free the skb? */
1510 u8 free;
1511 #define NAPI_GRO_FREE 1
1512 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1513
1514 /* jiffies when first packet was created/queued */
1515 unsigned long age;
1516
1517 /* Used in ipv6_gro_receive() */
1518 int proto;
1519 };
1520
1521 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1522
1523 struct packet_type {
1524 __be16 type; /* This is really htons(ether_type). */
1525 struct net_device *dev; /* NULL is wildcarded here */
1526 int (*func) (struct sk_buff *,
1527 struct net_device *,
1528 struct packet_type *,
1529 struct net_device *);
1530 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1531 netdev_features_t features);
1532 int (*gso_send_check)(struct sk_buff *skb);
1533 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1534 struct sk_buff *skb);
1535 int (*gro_complete)(struct sk_buff *skb);
1536 bool (*id_match)(struct packet_type *ptype,
1537 struct sock *sk);
1538 void *af_packet_priv;
1539 struct list_head list;
1540 };
1541
1542 #include <linux/notifier.h>
1543
1544 /* netdevice notifier chain. Please remember to update the rtnetlink
1545 * notification exclusion list in rtnetlink_event() when adding new
1546 * types.
1547 */
1548 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
1549 #define NETDEV_DOWN 0x0002
1550 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
1551 detected a hardware crash and restarted
1552 - we can use this eg to kick tcp sessions
1553 once done */
1554 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
1555 #define NETDEV_REGISTER 0x0005
1556 #define NETDEV_UNREGISTER 0x0006
1557 #define NETDEV_CHANGEMTU 0x0007
1558 #define NETDEV_CHANGEADDR 0x0008
1559 #define NETDEV_GOING_DOWN 0x0009
1560 #define NETDEV_CHANGENAME 0x000A
1561 #define NETDEV_FEAT_CHANGE 0x000B
1562 #define NETDEV_BONDING_FAILOVER 0x000C
1563 #define NETDEV_PRE_UP 0x000D
1564 #define NETDEV_PRE_TYPE_CHANGE 0x000E
1565 #define NETDEV_POST_TYPE_CHANGE 0x000F
1566 #define NETDEV_POST_INIT 0x0010
1567 #define NETDEV_UNREGISTER_FINAL 0x0011
1568 #define NETDEV_RELEASE 0x0012
1569 #define NETDEV_NOTIFY_PEERS 0x0013
1570 #define NETDEV_JOIN 0x0014
1571
1572 extern int register_netdevice_notifier(struct notifier_block *nb);
1573 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1574 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1575
1576
1577 extern rwlock_t dev_base_lock; /* Device list lock */
1578
1579
1580 #define for_each_netdev(net, d) \
1581 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1582 #define for_each_netdev_reverse(net, d) \
1583 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1584 #define for_each_netdev_rcu(net, d) \
1585 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1586 #define for_each_netdev_safe(net, d, n) \
1587 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1588 #define for_each_netdev_continue(net, d) \
1589 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1590 #define for_each_netdev_continue_rcu(net, d) \
1591 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1592 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1593
1594 static inline struct net_device *next_net_device(struct net_device *dev)
1595 {
1596 struct list_head *lh;
1597 struct net *net;
1598
1599 net = dev_net(dev);
1600 lh = dev->dev_list.next;
1601 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1602 }
1603
1604 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1605 {
1606 struct list_head *lh;
1607 struct net *net;
1608
1609 net = dev_net(dev);
1610 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1611 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1612 }
1613
1614 static inline struct net_device *first_net_device(struct net *net)
1615 {
1616 return list_empty(&net->dev_base_head) ? NULL :
1617 net_device_entry(net->dev_base_head.next);
1618 }
1619
1620 static inline struct net_device *first_net_device_rcu(struct net *net)
1621 {
1622 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1623
1624 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1625 }
1626
1627 extern int netdev_boot_setup_check(struct net_device *dev);
1628 extern unsigned long netdev_boot_base(const char *prefix, int unit);
1629 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1630 const char *hwaddr);
1631 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1632 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1633 extern void dev_add_pack(struct packet_type *pt);
1634 extern void dev_remove_pack(struct packet_type *pt);
1635 extern void __dev_remove_pack(struct packet_type *pt);
1636
1637 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1638 unsigned short mask);
1639 extern struct net_device *dev_get_by_name(struct net *net, const char *name);
1640 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1641 extern struct net_device *__dev_get_by_name(struct net *net, const char *name);
1642 extern int dev_alloc_name(struct net_device *dev, const char *name);
1643 extern int dev_open(struct net_device *dev);
1644 extern int dev_close(struct net_device *dev);
1645 extern void dev_disable_lro(struct net_device *dev);
1646 extern int dev_loopback_xmit(struct sk_buff *newskb);
1647 extern int dev_queue_xmit(struct sk_buff *skb);
1648 extern int register_netdevice(struct net_device *dev);
1649 extern void unregister_netdevice_queue(struct net_device *dev,
1650 struct list_head *head);
1651 extern void unregister_netdevice_many(struct list_head *head);
1652 static inline void unregister_netdevice(struct net_device *dev)
1653 {
1654 unregister_netdevice_queue(dev, NULL);
1655 }
1656
1657 extern int netdev_refcnt_read(const struct net_device *dev);
1658 extern void free_netdev(struct net_device *dev);
1659 extern void synchronize_net(void);
1660 extern int init_dummy_netdev(struct net_device *dev);
1661 extern void netdev_resync_ops(struct net_device *dev);
1662
1663 extern struct net_device *dev_get_by_index(struct net *net, int ifindex);
1664 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1665 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1666 extern int dev_restart(struct net_device *dev);
1667 #ifdef CONFIG_NETPOLL_TRAP
1668 extern int netpoll_trap(void);
1669 #endif
1670 extern int skb_gro_receive(struct sk_buff **head,
1671 struct sk_buff *skb);
1672
1673 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1674 {
1675 return NAPI_GRO_CB(skb)->data_offset;
1676 }
1677
1678 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1679 {
1680 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1681 }
1682
1683 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1684 {
1685 NAPI_GRO_CB(skb)->data_offset += len;
1686 }
1687
1688 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1689 unsigned int offset)
1690 {
1691 return NAPI_GRO_CB(skb)->frag0 + offset;
1692 }
1693
1694 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1695 {
1696 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1697 }
1698
1699 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1700 unsigned int offset)
1701 {
1702 if (!pskb_may_pull(skb, hlen))
1703 return NULL;
1704
1705 NAPI_GRO_CB(skb)->frag0 = NULL;
1706 NAPI_GRO_CB(skb)->frag0_len = 0;
1707 return skb->data + offset;
1708 }
1709
1710 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1711 {
1712 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1713 }
1714
1715 static inline void *skb_gro_network_header(struct sk_buff *skb)
1716 {
1717 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1718 skb_network_offset(skb);
1719 }
1720
1721 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1722 unsigned short type,
1723 const void *daddr, const void *saddr,
1724 unsigned int len)
1725 {
1726 if (!dev->header_ops || !dev->header_ops->create)
1727 return 0;
1728
1729 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1730 }
1731
1732 static inline int dev_parse_header(const struct sk_buff *skb,
1733 unsigned char *haddr)
1734 {
1735 const struct net_device *dev = skb->dev;
1736
1737 if (!dev->header_ops || !dev->header_ops->parse)
1738 return 0;
1739 return dev->header_ops->parse(skb, haddr);
1740 }
1741
1742 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1743 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1744 static inline int unregister_gifconf(unsigned int family)
1745 {
1746 return register_gifconf(family, NULL);
1747 }
1748
1749 /*
1750 * Incoming packets are placed on per-cpu queues
1751 */
1752 struct softnet_data {
1753 struct Qdisc *output_queue;
1754 struct Qdisc **output_queue_tailp;
1755 struct list_head poll_list;
1756 struct sk_buff *completion_queue;
1757 struct sk_buff_head process_queue;
1758
1759 /* stats */
1760 unsigned int processed;
1761 unsigned int time_squeeze;
1762 unsigned int cpu_collision;
1763 unsigned int received_rps;
1764
1765 #ifdef CONFIG_RPS
1766 struct softnet_data *rps_ipi_list;
1767
1768 /* Elements below can be accessed between CPUs for RPS */
1769 struct call_single_data csd ____cacheline_aligned_in_smp;
1770 struct softnet_data *rps_ipi_next;
1771 unsigned int cpu;
1772 unsigned int input_queue_head;
1773 unsigned int input_queue_tail;
1774 #endif
1775 unsigned int dropped;
1776 struct sk_buff_head input_pkt_queue;
1777 struct napi_struct backlog;
1778 };
1779
1780 static inline void input_queue_head_incr(struct softnet_data *sd)
1781 {
1782 #ifdef CONFIG_RPS
1783 sd->input_queue_head++;
1784 #endif
1785 }
1786
1787 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1788 unsigned int *qtail)
1789 {
1790 #ifdef CONFIG_RPS
1791 *qtail = ++sd->input_queue_tail;
1792 #endif
1793 }
1794
1795 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1796
1797 extern void __netif_schedule(struct Qdisc *q);
1798
1799 static inline void netif_schedule_queue(struct netdev_queue *txq)
1800 {
1801 if (!(txq->state & QUEUE_STATE_ANY_XOFF))
1802 __netif_schedule(txq->qdisc);
1803 }
1804
1805 static inline void netif_tx_schedule_all(struct net_device *dev)
1806 {
1807 unsigned int i;
1808
1809 for (i = 0; i < dev->num_tx_queues; i++)
1810 netif_schedule_queue(netdev_get_tx_queue(dev, i));
1811 }
1812
1813 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1814 {
1815 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1816 }
1817
1818 /**
1819 * netif_start_queue - allow transmit
1820 * @dev: network device
1821 *
1822 * Allow upper layers to call the device hard_start_xmit routine.
1823 */
1824 static inline void netif_start_queue(struct net_device *dev)
1825 {
1826 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1827 }
1828
1829 static inline void netif_tx_start_all_queues(struct net_device *dev)
1830 {
1831 unsigned int i;
1832
1833 for (i = 0; i < dev->num_tx_queues; i++) {
1834 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1835 netif_tx_start_queue(txq);
1836 }
1837 }
1838
1839 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1840 {
1841 #ifdef CONFIG_NETPOLL_TRAP
1842 if (netpoll_trap()) {
1843 netif_tx_start_queue(dev_queue);
1844 return;
1845 }
1846 #endif
1847 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
1848 __netif_schedule(dev_queue->qdisc);
1849 }
1850
1851 /**
1852 * netif_wake_queue - restart transmit
1853 * @dev: network device
1854 *
1855 * Allow upper layers to call the device hard_start_xmit routine.
1856 * Used for flow control when transmit resources are available.
1857 */
1858 static inline void netif_wake_queue(struct net_device *dev)
1859 {
1860 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1861 }
1862
1863 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1864 {
1865 unsigned int i;
1866
1867 for (i = 0; i < dev->num_tx_queues; i++) {
1868 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1869 netif_tx_wake_queue(txq);
1870 }
1871 }
1872
1873 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1874 {
1875 if (WARN_ON(!dev_queue)) {
1876 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1877 return;
1878 }
1879 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1880 }
1881
1882 /**
1883 * netif_stop_queue - stop transmitted packets
1884 * @dev: network device
1885 *
1886 * Stop upper layers calling the device hard_start_xmit routine.
1887 * Used for flow control when transmit resources are unavailable.
1888 */
1889 static inline void netif_stop_queue(struct net_device *dev)
1890 {
1891 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1892 }
1893
1894 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1895 {
1896 unsigned int i;
1897
1898 for (i = 0; i < dev->num_tx_queues; i++) {
1899 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1900 netif_tx_stop_queue(txq);
1901 }
1902 }
1903
1904 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1905 {
1906 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1907 }
1908
1909 /**
1910 * netif_queue_stopped - test if transmit queue is flowblocked
1911 * @dev: network device
1912 *
1913 * Test if transmit queue on device is currently unable to send.
1914 */
1915 static inline bool netif_queue_stopped(const struct net_device *dev)
1916 {
1917 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1918 }
1919
1920 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
1921 {
1922 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
1923 }
1924
1925 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
1926 {
1927 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
1928 }
1929
1930 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
1931 unsigned int bytes)
1932 {
1933 #ifdef CONFIG_BQL
1934 dql_queued(&dev_queue->dql, bytes);
1935
1936 if (likely(dql_avail(&dev_queue->dql) >= 0))
1937 return;
1938
1939 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1940
1941 /*
1942 * The XOFF flag must be set before checking the dql_avail below,
1943 * because in netdev_tx_completed_queue we update the dql_completed
1944 * before checking the XOFF flag.
1945 */
1946 smp_mb();
1947
1948 /* check again in case another CPU has just made room avail */
1949 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
1950 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1951 #endif
1952 }
1953
1954 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
1955 {
1956 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
1957 }
1958
1959 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
1960 unsigned int pkts, unsigned int bytes)
1961 {
1962 #ifdef CONFIG_BQL
1963 if (unlikely(!bytes))
1964 return;
1965
1966 dql_completed(&dev_queue->dql, bytes);
1967
1968 /*
1969 * Without the memory barrier there is a small possiblity that
1970 * netdev_tx_sent_queue will miss the update and cause the queue to
1971 * be stopped forever
1972 */
1973 smp_mb();
1974
1975 if (dql_avail(&dev_queue->dql) < 0)
1976 return;
1977
1978 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
1979 netif_schedule_queue(dev_queue);
1980 #endif
1981 }
1982
1983 static inline void netdev_completed_queue(struct net_device *dev,
1984 unsigned int pkts, unsigned int bytes)
1985 {
1986 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
1987 }
1988
1989 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
1990 {
1991 #ifdef CONFIG_BQL
1992 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
1993 dql_reset(&q->dql);
1994 #endif
1995 }
1996
1997 static inline void netdev_reset_queue(struct net_device *dev_queue)
1998 {
1999 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2000 }
2001
2002 /**
2003 * netif_running - test if up
2004 * @dev: network device
2005 *
2006 * Test if the device has been brought up.
2007 */
2008 static inline bool netif_running(const struct net_device *dev)
2009 {
2010 return test_bit(__LINK_STATE_START, &dev->state);
2011 }
2012
2013 /*
2014 * Routines to manage the subqueues on a device. We only need start
2015 * stop, and a check if it's stopped. All other device management is
2016 * done at the overall netdevice level.
2017 * Also test the device if we're multiqueue.
2018 */
2019
2020 /**
2021 * netif_start_subqueue - allow sending packets on subqueue
2022 * @dev: network device
2023 * @queue_index: sub queue index
2024 *
2025 * Start individual transmit queue of a device with multiple transmit queues.
2026 */
2027 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2028 {
2029 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2030
2031 netif_tx_start_queue(txq);
2032 }
2033
2034 /**
2035 * netif_stop_subqueue - stop sending packets on subqueue
2036 * @dev: network device
2037 * @queue_index: sub queue index
2038 *
2039 * Stop individual transmit queue of a device with multiple transmit queues.
2040 */
2041 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2042 {
2043 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2044 #ifdef CONFIG_NETPOLL_TRAP
2045 if (netpoll_trap())
2046 return;
2047 #endif
2048 netif_tx_stop_queue(txq);
2049 }
2050
2051 /**
2052 * netif_subqueue_stopped - test status of subqueue
2053 * @dev: network device
2054 * @queue_index: sub queue index
2055 *
2056 * Check individual transmit queue of a device with multiple transmit queues.
2057 */
2058 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2059 u16 queue_index)
2060 {
2061 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2062
2063 return netif_tx_queue_stopped(txq);
2064 }
2065
2066 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2067 struct sk_buff *skb)
2068 {
2069 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2070 }
2071
2072 /**
2073 * netif_wake_subqueue - allow sending packets on subqueue
2074 * @dev: network device
2075 * @queue_index: sub queue index
2076 *
2077 * Resume individual transmit queue of a device with multiple transmit queues.
2078 */
2079 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2080 {
2081 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2082 #ifdef CONFIG_NETPOLL_TRAP
2083 if (netpoll_trap())
2084 return;
2085 #endif
2086 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2087 __netif_schedule(txq->qdisc);
2088 }
2089
2090 /*
2091 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2092 * as a distribution range limit for the returned value.
2093 */
2094 static inline u16 skb_tx_hash(const struct net_device *dev,
2095 const struct sk_buff *skb)
2096 {
2097 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2098 }
2099
2100 /**
2101 * netif_is_multiqueue - test if device has multiple transmit queues
2102 * @dev: network device
2103 *
2104 * Check if device has multiple transmit queues
2105 */
2106 static inline bool netif_is_multiqueue(const struct net_device *dev)
2107 {
2108 return dev->num_tx_queues > 1;
2109 }
2110
2111 extern int netif_set_real_num_tx_queues(struct net_device *dev,
2112 unsigned int txq);
2113
2114 #ifdef CONFIG_RPS
2115 extern int netif_set_real_num_rx_queues(struct net_device *dev,
2116 unsigned int rxq);
2117 #else
2118 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2119 unsigned int rxq)
2120 {
2121 return 0;
2122 }
2123 #endif
2124
2125 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2126 const struct net_device *from_dev)
2127 {
2128 int err;
2129
2130 err = netif_set_real_num_tx_queues(to_dev,
2131 from_dev->real_num_tx_queues);
2132 if (err)
2133 return err;
2134 #ifdef CONFIG_RPS
2135 return netif_set_real_num_rx_queues(to_dev,
2136 from_dev->real_num_rx_queues);
2137 #else
2138 return 0;
2139 #endif
2140 }
2141
2142 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
2143 extern int netif_get_num_default_rss_queues(void);
2144
2145 /* Use this variant when it is known for sure that it
2146 * is executing from hardware interrupt context or with hardware interrupts
2147 * disabled.
2148 */
2149 extern void dev_kfree_skb_irq(struct sk_buff *skb);
2150
2151 /* Use this variant in places where it could be invoked
2152 * from either hardware interrupt or other context, with hardware interrupts
2153 * either disabled or enabled.
2154 */
2155 extern void dev_kfree_skb_any(struct sk_buff *skb);
2156
2157 extern int netif_rx(struct sk_buff *skb);
2158 extern int netif_rx_ni(struct sk_buff *skb);
2159 extern int netif_receive_skb(struct sk_buff *skb);
2160 extern gro_result_t dev_gro_receive(struct napi_struct *napi,
2161 struct sk_buff *skb);
2162 extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
2163 extern gro_result_t napi_gro_receive(struct napi_struct *napi,
2164 struct sk_buff *skb);
2165 extern void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2166 extern struct sk_buff * napi_get_frags(struct napi_struct *napi);
2167 extern gro_result_t napi_frags_finish(struct napi_struct *napi,
2168 struct sk_buff *skb,
2169 gro_result_t ret);
2170 extern gro_result_t napi_gro_frags(struct napi_struct *napi);
2171
2172 static inline void napi_free_frags(struct napi_struct *napi)
2173 {
2174 kfree_skb(napi->skb);
2175 napi->skb = NULL;
2176 }
2177
2178 extern int netdev_rx_handler_register(struct net_device *dev,
2179 rx_handler_func_t *rx_handler,
2180 void *rx_handler_data);
2181 extern void netdev_rx_handler_unregister(struct net_device *dev);
2182
2183 extern bool dev_valid_name(const char *name);
2184 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2185 extern int dev_ethtool(struct net *net, struct ifreq *);
2186 extern unsigned int dev_get_flags(const struct net_device *);
2187 extern int __dev_change_flags(struct net_device *, unsigned int flags);
2188 extern int dev_change_flags(struct net_device *, unsigned int);
2189 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags);
2190 extern int dev_change_name(struct net_device *, const char *);
2191 extern int dev_set_alias(struct net_device *, const char *, size_t);
2192 extern int dev_change_net_namespace(struct net_device *,
2193 struct net *, const char *);
2194 extern int dev_set_mtu(struct net_device *, int);
2195 extern void dev_set_group(struct net_device *, int);
2196 extern int dev_set_mac_address(struct net_device *,
2197 struct sockaddr *);
2198 extern int dev_hard_start_xmit(struct sk_buff *skb,
2199 struct net_device *dev,
2200 struct netdev_queue *txq);
2201 extern int dev_forward_skb(struct net_device *dev,
2202 struct sk_buff *skb);
2203
2204 extern int netdev_budget;
2205
2206 /* Called by rtnetlink.c:rtnl_unlock() */
2207 extern void netdev_run_todo(void);
2208
2209 /**
2210 * dev_put - release reference to device
2211 * @dev: network device
2212 *
2213 * Release reference to device to allow it to be freed.
2214 */
2215 static inline void dev_put(struct net_device *dev)
2216 {
2217 this_cpu_dec(*dev->pcpu_refcnt);
2218 }
2219
2220 /**
2221 * dev_hold - get reference to device
2222 * @dev: network device
2223 *
2224 * Hold reference to device to keep it from being freed.
2225 */
2226 static inline void dev_hold(struct net_device *dev)
2227 {
2228 this_cpu_inc(*dev->pcpu_refcnt);
2229 }
2230
2231 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2232 * and _off may be called from IRQ context, but it is caller
2233 * who is responsible for serialization of these calls.
2234 *
2235 * The name carrier is inappropriate, these functions should really be
2236 * called netif_lowerlayer_*() because they represent the state of any
2237 * kind of lower layer not just hardware media.
2238 */
2239
2240 extern void linkwatch_init_dev(struct net_device *dev);
2241 extern void linkwatch_fire_event(struct net_device *dev);
2242 extern void linkwatch_forget_dev(struct net_device *dev);
2243
2244 /**
2245 * netif_carrier_ok - test if carrier present
2246 * @dev: network device
2247 *
2248 * Check if carrier is present on device
2249 */
2250 static inline bool netif_carrier_ok(const struct net_device *dev)
2251 {
2252 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2253 }
2254
2255 extern unsigned long dev_trans_start(struct net_device *dev);
2256
2257 extern void __netdev_watchdog_up(struct net_device *dev);
2258
2259 extern void netif_carrier_on(struct net_device *dev);
2260
2261 extern void netif_carrier_off(struct net_device *dev);
2262
2263 /**
2264 * netif_dormant_on - mark device as dormant.
2265 * @dev: network device
2266 *
2267 * Mark device as dormant (as per RFC2863).
2268 *
2269 * The dormant state indicates that the relevant interface is not
2270 * actually in a condition to pass packets (i.e., it is not 'up') but is
2271 * in a "pending" state, waiting for some external event. For "on-
2272 * demand" interfaces, this new state identifies the situation where the
2273 * interface is waiting for events to place it in the up state.
2274 *
2275 */
2276 static inline void netif_dormant_on(struct net_device *dev)
2277 {
2278 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2279 linkwatch_fire_event(dev);
2280 }
2281
2282 /**
2283 * netif_dormant_off - set device as not dormant.
2284 * @dev: network device
2285 *
2286 * Device is not in dormant state.
2287 */
2288 static inline void netif_dormant_off(struct net_device *dev)
2289 {
2290 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2291 linkwatch_fire_event(dev);
2292 }
2293
2294 /**
2295 * netif_dormant - test if carrier present
2296 * @dev: network device
2297 *
2298 * Check if carrier is present on device
2299 */
2300 static inline bool netif_dormant(const struct net_device *dev)
2301 {
2302 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2303 }
2304
2305
2306 /**
2307 * netif_oper_up - test if device is operational
2308 * @dev: network device
2309 *
2310 * Check if carrier is operational
2311 */
2312 static inline bool netif_oper_up(const struct net_device *dev)
2313 {
2314 return (dev->operstate == IF_OPER_UP ||
2315 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2316 }
2317
2318 /**
2319 * netif_device_present - is device available or removed
2320 * @dev: network device
2321 *
2322 * Check if device has not been removed from system.
2323 */
2324 static inline bool netif_device_present(struct net_device *dev)
2325 {
2326 return test_bit(__LINK_STATE_PRESENT, &dev->state);
2327 }
2328
2329 extern void netif_device_detach(struct net_device *dev);
2330
2331 extern void netif_device_attach(struct net_device *dev);
2332
2333 /*
2334 * Network interface message level settings
2335 */
2336
2337 enum {
2338 NETIF_MSG_DRV = 0x0001,
2339 NETIF_MSG_PROBE = 0x0002,
2340 NETIF_MSG_LINK = 0x0004,
2341 NETIF_MSG_TIMER = 0x0008,
2342 NETIF_MSG_IFDOWN = 0x0010,
2343 NETIF_MSG_IFUP = 0x0020,
2344 NETIF_MSG_RX_ERR = 0x0040,
2345 NETIF_MSG_TX_ERR = 0x0080,
2346 NETIF_MSG_TX_QUEUED = 0x0100,
2347 NETIF_MSG_INTR = 0x0200,
2348 NETIF_MSG_TX_DONE = 0x0400,
2349 NETIF_MSG_RX_STATUS = 0x0800,
2350 NETIF_MSG_PKTDATA = 0x1000,
2351 NETIF_MSG_HW = 0x2000,
2352 NETIF_MSG_WOL = 0x4000,
2353 };
2354
2355 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2356 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2357 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2358 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2359 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2360 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2361 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2362 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2363 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2364 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2365 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2366 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2367 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2368 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2369 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2370
2371 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2372 {
2373 /* use default */
2374 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2375 return default_msg_enable_bits;
2376 if (debug_value == 0) /* no output */
2377 return 0;
2378 /* set low N bits */
2379 return (1 << debug_value) - 1;
2380 }
2381
2382 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2383 {
2384 spin_lock(&txq->_xmit_lock);
2385 txq->xmit_lock_owner = cpu;
2386 }
2387
2388 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2389 {
2390 spin_lock_bh(&txq->_xmit_lock);
2391 txq->xmit_lock_owner = smp_processor_id();
2392 }
2393
2394 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2395 {
2396 bool ok = spin_trylock(&txq->_xmit_lock);
2397 if (likely(ok))
2398 txq->xmit_lock_owner = smp_processor_id();
2399 return ok;
2400 }
2401
2402 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2403 {
2404 txq->xmit_lock_owner = -1;
2405 spin_unlock(&txq->_xmit_lock);
2406 }
2407
2408 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2409 {
2410 txq->xmit_lock_owner = -1;
2411 spin_unlock_bh(&txq->_xmit_lock);
2412 }
2413
2414 static inline void txq_trans_update(struct netdev_queue *txq)
2415 {
2416 if (txq->xmit_lock_owner != -1)
2417 txq->trans_start = jiffies;
2418 }
2419
2420 /**
2421 * netif_tx_lock - grab network device transmit lock
2422 * @dev: network device
2423 *
2424 * Get network device transmit lock
2425 */
2426 static inline void netif_tx_lock(struct net_device *dev)
2427 {
2428 unsigned int i;
2429 int cpu;
2430
2431 spin_lock(&dev->tx_global_lock);
2432 cpu = smp_processor_id();
2433 for (i = 0; i < dev->num_tx_queues; i++) {
2434 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2435
2436 /* We are the only thread of execution doing a
2437 * freeze, but we have to grab the _xmit_lock in
2438 * order to synchronize with threads which are in
2439 * the ->hard_start_xmit() handler and already
2440 * checked the frozen bit.
2441 */
2442 __netif_tx_lock(txq, cpu);
2443 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2444 __netif_tx_unlock(txq);
2445 }
2446 }
2447
2448 static inline void netif_tx_lock_bh(struct net_device *dev)
2449 {
2450 local_bh_disable();
2451 netif_tx_lock(dev);
2452 }
2453
2454 static inline void netif_tx_unlock(struct net_device *dev)
2455 {
2456 unsigned int i;
2457
2458 for (i = 0; i < dev->num_tx_queues; i++) {
2459 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2460
2461 /* No need to grab the _xmit_lock here. If the
2462 * queue is not stopped for another reason, we
2463 * force a schedule.
2464 */
2465 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2466 netif_schedule_queue(txq);
2467 }
2468 spin_unlock(&dev->tx_global_lock);
2469 }
2470
2471 static inline void netif_tx_unlock_bh(struct net_device *dev)
2472 {
2473 netif_tx_unlock(dev);
2474 local_bh_enable();
2475 }
2476
2477 #define HARD_TX_LOCK(dev, txq, cpu) { \
2478 if ((dev->features & NETIF_F_LLTX) == 0) { \
2479 __netif_tx_lock(txq, cpu); \
2480 } \
2481 }
2482
2483 #define HARD_TX_UNLOCK(dev, txq) { \
2484 if ((dev->features & NETIF_F_LLTX) == 0) { \
2485 __netif_tx_unlock(txq); \
2486 } \
2487 }
2488
2489 static inline void netif_tx_disable(struct net_device *dev)
2490 {
2491 unsigned int i;
2492 int cpu;
2493
2494 local_bh_disable();
2495 cpu = smp_processor_id();
2496 for (i = 0; i < dev->num_tx_queues; i++) {
2497 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2498
2499 __netif_tx_lock(txq, cpu);
2500 netif_tx_stop_queue(txq);
2501 __netif_tx_unlock(txq);
2502 }
2503 local_bh_enable();
2504 }
2505
2506 static inline void netif_addr_lock(struct net_device *dev)
2507 {
2508 spin_lock(&dev->addr_list_lock);
2509 }
2510
2511 static inline void netif_addr_lock_nested(struct net_device *dev)
2512 {
2513 spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2514 }
2515
2516 static inline void netif_addr_lock_bh(struct net_device *dev)
2517 {
2518 spin_lock_bh(&dev->addr_list_lock);
2519 }
2520
2521 static inline void netif_addr_unlock(struct net_device *dev)
2522 {
2523 spin_unlock(&dev->addr_list_lock);
2524 }
2525
2526 static inline void netif_addr_unlock_bh(struct net_device *dev)
2527 {
2528 spin_unlock_bh(&dev->addr_list_lock);
2529 }
2530
2531 /*
2532 * dev_addrs walker. Should be used only for read access. Call with
2533 * rcu_read_lock held.
2534 */
2535 #define for_each_dev_addr(dev, ha) \
2536 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2537
2538 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2539
2540 extern void ether_setup(struct net_device *dev);
2541
2542 /* Support for loadable net-drivers */
2543 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2544 void (*setup)(struct net_device *),
2545 unsigned int txqs, unsigned int rxqs);
2546 #define alloc_netdev(sizeof_priv, name, setup) \
2547 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2548
2549 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2550 alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2551
2552 extern int register_netdev(struct net_device *dev);
2553 extern void unregister_netdev(struct net_device *dev);
2554
2555 /* General hardware address lists handling functions */
2556 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2557 struct netdev_hw_addr_list *from_list,
2558 int addr_len, unsigned char addr_type);
2559 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2560 struct netdev_hw_addr_list *from_list,
2561 int addr_len, unsigned char addr_type);
2562 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2563 struct netdev_hw_addr_list *from_list,
2564 int addr_len);
2565 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2566 struct netdev_hw_addr_list *from_list,
2567 int addr_len);
2568 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2569 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2570
2571 /* Functions used for device addresses handling */
2572 extern int dev_addr_add(struct net_device *dev, const unsigned char *addr,
2573 unsigned char addr_type);
2574 extern int dev_addr_del(struct net_device *dev, const unsigned char *addr,
2575 unsigned char addr_type);
2576 extern int dev_addr_add_multiple(struct net_device *to_dev,
2577 struct net_device *from_dev,
2578 unsigned char addr_type);
2579 extern int dev_addr_del_multiple(struct net_device *to_dev,
2580 struct net_device *from_dev,
2581 unsigned char addr_type);
2582 extern void dev_addr_flush(struct net_device *dev);
2583 extern int dev_addr_init(struct net_device *dev);
2584
2585 /* Functions used for unicast addresses handling */
2586 extern int dev_uc_add(struct net_device *dev, const unsigned char *addr);
2587 extern int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
2588 extern int dev_uc_del(struct net_device *dev, const unsigned char *addr);
2589 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2590 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2591 extern void dev_uc_flush(struct net_device *dev);
2592 extern void dev_uc_init(struct net_device *dev);
2593
2594 /* Functions used for multicast addresses handling */
2595 extern int dev_mc_add(struct net_device *dev, const unsigned char *addr);
2596 extern int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
2597 extern int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
2598 extern int dev_mc_del(struct net_device *dev, const unsigned char *addr);
2599 extern int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
2600 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2601 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2602 extern void dev_mc_flush(struct net_device *dev);
2603 extern void dev_mc_init(struct net_device *dev);
2604
2605 /* Functions used for secondary unicast and multicast support */
2606 extern void dev_set_rx_mode(struct net_device *dev);
2607 extern void __dev_set_rx_mode(struct net_device *dev);
2608 extern int dev_set_promiscuity(struct net_device *dev, int inc);
2609 extern int dev_set_allmulti(struct net_device *dev, int inc);
2610 extern void netdev_state_change(struct net_device *dev);
2611 extern void netdev_notify_peers(struct net_device *dev);
2612 extern void netdev_features_change(struct net_device *dev);
2613 /* Load a device via the kmod */
2614 extern void dev_load(struct net *net, const char *name);
2615 extern void dev_mcast_init(void);
2616 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2617 struct rtnl_link_stats64 *storage);
2618 extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
2619 const struct net_device_stats *netdev_stats);
2620
2621 extern int netdev_max_backlog;
2622 extern int netdev_tstamp_prequeue;
2623 extern int weight_p;
2624 extern int bpf_jit_enable;
2625 extern int netdev_set_master(struct net_device *dev, struct net_device *master);
2626 extern int netdev_set_bond_master(struct net_device *dev,
2627 struct net_device *master);
2628 extern int skb_checksum_help(struct sk_buff *skb);
2629 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb,
2630 netdev_features_t features);
2631 #ifdef CONFIG_BUG
2632 extern void netdev_rx_csum_fault(struct net_device *dev);
2633 #else
2634 static inline void netdev_rx_csum_fault(struct net_device *dev)
2635 {
2636 }
2637 #endif
2638 /* rx skb timestamps */
2639 extern void net_enable_timestamp(void);
2640 extern void net_disable_timestamp(void);
2641
2642 #ifdef CONFIG_PROC_FS
2643 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2644 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2645 extern void dev_seq_stop(struct seq_file *seq, void *v);
2646 #endif
2647
2648 extern int netdev_class_create_file(struct class_attribute *class_attr);
2649 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2650
2651 extern struct kobj_ns_type_operations net_ns_type_operations;
2652
2653 extern const char *netdev_drivername(const struct net_device *dev);
2654
2655 extern void linkwatch_run_queue(void);
2656
2657 static inline netdev_features_t netdev_get_wanted_features(
2658 struct net_device *dev)
2659 {
2660 return (dev->features & ~dev->hw_features) | dev->wanted_features;
2661 }
2662 netdev_features_t netdev_increment_features(netdev_features_t all,
2663 netdev_features_t one, netdev_features_t mask);
2664 int __netdev_update_features(struct net_device *dev);
2665 void netdev_update_features(struct net_device *dev);
2666 void netdev_change_features(struct net_device *dev);
2667
2668 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2669 struct net_device *dev);
2670
2671 netdev_features_t netif_skb_features(struct sk_buff *skb);
2672
2673 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
2674 {
2675 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2676
2677 /* check flags correspondence */
2678 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2679 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2680 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2681 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2682 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2683 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2684
2685 return (features & feature) == feature;
2686 }
2687
2688 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2689 {
2690 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2691 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2692 }
2693
2694 static inline bool netif_needs_gso(struct sk_buff *skb,
2695 netdev_features_t features)
2696 {
2697 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2698 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
2699 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
2700 }
2701
2702 static inline void netif_set_gso_max_size(struct net_device *dev,
2703 unsigned int size)
2704 {
2705 dev->gso_max_size = size;
2706 }
2707
2708 static inline bool netif_is_bond_slave(struct net_device *dev)
2709 {
2710 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2711 }
2712
2713 static inline bool netif_supports_nofcs(struct net_device *dev)
2714 {
2715 return dev->priv_flags & IFF_SUPP_NOFCS;
2716 }
2717
2718 extern struct pernet_operations __net_initdata loopback_net_ops;
2719
2720 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2721
2722 /* netdev_printk helpers, similar to dev_printk */
2723
2724 static inline const char *netdev_name(const struct net_device *dev)
2725 {
2726 if (dev->reg_state != NETREG_REGISTERED)
2727 return "(unregistered net_device)";
2728 return dev->name;
2729 }
2730
2731 extern __printf(3, 4)
2732 int netdev_printk(const char *level, const struct net_device *dev,
2733 const char *format, ...);
2734 extern __printf(2, 3)
2735 int netdev_emerg(const struct net_device *dev, const char *format, ...);
2736 extern __printf(2, 3)
2737 int netdev_alert(const struct net_device *dev, const char *format, ...);
2738 extern __printf(2, 3)
2739 int netdev_crit(const struct net_device *dev, const char *format, ...);
2740 extern __printf(2, 3)
2741 int netdev_err(const struct net_device *dev, const char *format, ...);
2742 extern __printf(2, 3)
2743 int netdev_warn(const struct net_device *dev, const char *format, ...);
2744 extern __printf(2, 3)
2745 int netdev_notice(const struct net_device *dev, const char *format, ...);
2746 extern __printf(2, 3)
2747 int netdev_info(const struct net_device *dev, const char *format, ...);
2748
2749 #define MODULE_ALIAS_NETDEV(device) \
2750 MODULE_ALIAS("netdev-" device)
2751
2752 #if defined(CONFIG_DYNAMIC_DEBUG)
2753 #define netdev_dbg(__dev, format, args...) \
2754 do { \
2755 dynamic_netdev_dbg(__dev, format, ##args); \
2756 } while (0)
2757 #elif defined(DEBUG)
2758 #define netdev_dbg(__dev, format, args...) \
2759 netdev_printk(KERN_DEBUG, __dev, format, ##args)
2760 #else
2761 #define netdev_dbg(__dev, format, args...) \
2762 ({ \
2763 if (0) \
2764 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2765 0; \
2766 })
2767 #endif
2768
2769 #if defined(VERBOSE_DEBUG)
2770 #define netdev_vdbg netdev_dbg
2771 #else
2772
2773 #define netdev_vdbg(dev, format, args...) \
2774 ({ \
2775 if (0) \
2776 netdev_printk(KERN_DEBUG, dev, format, ##args); \
2777 0; \
2778 })
2779 #endif
2780
2781 /*
2782 * netdev_WARN() acts like dev_printk(), but with the key difference
2783 * of using a WARN/WARN_ON to get the message out, including the
2784 * file/line information and a backtrace.
2785 */
2786 #define netdev_WARN(dev, format, args...) \
2787 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2788
2789 /* netif printk helpers, similar to netdev_printk */
2790
2791 #define netif_printk(priv, type, level, dev, fmt, args...) \
2792 do { \
2793 if (netif_msg_##type(priv)) \
2794 netdev_printk(level, (dev), fmt, ##args); \
2795 } while (0)
2796
2797 #define netif_level(level, priv, type, dev, fmt, args...) \
2798 do { \
2799 if (netif_msg_##type(priv)) \
2800 netdev_##level(dev, fmt, ##args); \
2801 } while (0)
2802
2803 #define netif_emerg(priv, type, dev, fmt, args...) \
2804 netif_level(emerg, priv, type, dev, fmt, ##args)
2805 #define netif_alert(priv, type, dev, fmt, args...) \
2806 netif_level(alert, priv, type, dev, fmt, ##args)
2807 #define netif_crit(priv, type, dev, fmt, args...) \
2808 netif_level(crit, priv, type, dev, fmt, ##args)
2809 #define netif_err(priv, type, dev, fmt, args...) \
2810 netif_level(err, priv, type, dev, fmt, ##args)
2811 #define netif_warn(priv, type, dev, fmt, args...) \
2812 netif_level(warn, priv, type, dev, fmt, ##args)
2813 #define netif_notice(priv, type, dev, fmt, args...) \
2814 netif_level(notice, priv, type, dev, fmt, ##args)
2815 #define netif_info(priv, type, dev, fmt, args...) \
2816 netif_level(info, priv, type, dev, fmt, ##args)
2817
2818 #if defined(CONFIG_DYNAMIC_DEBUG)
2819 #define netif_dbg(priv, type, netdev, format, args...) \
2820 do { \
2821 if (netif_msg_##type(priv)) \
2822 dynamic_netdev_dbg(netdev, format, ##args); \
2823 } while (0)
2824 #elif defined(DEBUG)
2825 #define netif_dbg(priv, type, dev, format, args...) \
2826 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2827 #else
2828 #define netif_dbg(priv, type, dev, format, args...) \
2829 ({ \
2830 if (0) \
2831 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2832 0; \
2833 })
2834 #endif
2835
2836 #if defined(VERBOSE_DEBUG)
2837 #define netif_vdbg netif_dbg
2838 #else
2839 #define netif_vdbg(priv, type, dev, format, args...) \
2840 ({ \
2841 if (0) \
2842 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2843 0; \
2844 })
2845 #endif
2846
2847 #endif /* __KERNEL__ */
2848
2849 #endif /* _LINUX_NETDEVICE_H */
This page took 0.11562 seconds and 6 git commands to generate.