Merge branch 'for-next' of git://git.samba.org/sfrench/cifs-2.6
[deliverable/linux.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/pm_qos.h>
29 #include <linux/timer.h>
30 #include <linux/bug.h>
31 #include <linux/delay.h>
32 #include <linux/atomic.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53
54 struct netpoll_info;
55 struct device;
56 struct phy_device;
57 /* 802.11 specific */
58 struct wireless_dev;
59 /* source back-compat hooks */
60 #define SET_ETHTOOL_OPS(netdev,ops) \
61 ( (netdev)->ethtool_ops = (ops) )
62
63 void netdev_set_default_ethtool_ops(struct net_device *dev,
64 const struct ethtool_ops *ops);
65
66 /* Backlog congestion levels */
67 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
68 #define NET_RX_DROP 1 /* packet dropped */
69
70 /*
71 * Transmit return codes: transmit return codes originate from three different
72 * namespaces:
73 *
74 * - qdisc return codes
75 * - driver transmit return codes
76 * - errno values
77 *
78 * Drivers are allowed to return any one of those in their hard_start_xmit()
79 * function. Real network devices commonly used with qdiscs should only return
80 * the driver transmit return codes though - when qdiscs are used, the actual
81 * transmission happens asynchronously, so the value is not propagated to
82 * higher layers. Virtual network devices transmit synchronously, in this case
83 * the driver transmit return codes are consumed by dev_queue_xmit(), all
84 * others are propagated to higher layers.
85 */
86
87 /* qdisc ->enqueue() return codes. */
88 #define NET_XMIT_SUCCESS 0x00
89 #define NET_XMIT_DROP 0x01 /* skb dropped */
90 #define NET_XMIT_CN 0x02 /* congestion notification */
91 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
92 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
93
94 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
95 * indicates that the device will soon be dropping packets, or already drops
96 * some packets of the same priority; prompting us to send less aggressively. */
97 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
98 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
99
100 /* Driver transmit return codes */
101 #define NETDEV_TX_MASK 0xf0
102
103 enum netdev_tx {
104 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
105 NETDEV_TX_OK = 0x00, /* driver took care of packet */
106 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
107 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
108 };
109 typedef enum netdev_tx netdev_tx_t;
110
111 /*
112 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
113 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
114 */
115 static inline bool dev_xmit_complete(int rc)
116 {
117 /*
118 * Positive cases with an skb consumed by a driver:
119 * - successful transmission (rc == NETDEV_TX_OK)
120 * - error while transmitting (rc < 0)
121 * - error while queueing to a different device (rc & NET_XMIT_MASK)
122 */
123 if (likely(rc < NET_XMIT_MASK))
124 return true;
125
126 return false;
127 }
128
129 /*
130 * Compute the worst case header length according to the protocols
131 * used.
132 */
133
134 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
135 # if defined(CONFIG_MAC80211_MESH)
136 # define LL_MAX_HEADER 128
137 # else
138 # define LL_MAX_HEADER 96
139 # endif
140 #else
141 # define LL_MAX_HEADER 32
142 #endif
143
144 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
145 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
146 #define MAX_HEADER LL_MAX_HEADER
147 #else
148 #define MAX_HEADER (LL_MAX_HEADER + 48)
149 #endif
150
151 /*
152 * Old network device statistics. Fields are native words
153 * (unsigned long) so they can be read and written atomically.
154 */
155
156 struct net_device_stats {
157 unsigned long rx_packets;
158 unsigned long tx_packets;
159 unsigned long rx_bytes;
160 unsigned long tx_bytes;
161 unsigned long rx_errors;
162 unsigned long tx_errors;
163 unsigned long rx_dropped;
164 unsigned long tx_dropped;
165 unsigned long multicast;
166 unsigned long collisions;
167 unsigned long rx_length_errors;
168 unsigned long rx_over_errors;
169 unsigned long rx_crc_errors;
170 unsigned long rx_frame_errors;
171 unsigned long rx_fifo_errors;
172 unsigned long rx_missed_errors;
173 unsigned long tx_aborted_errors;
174 unsigned long tx_carrier_errors;
175 unsigned long tx_fifo_errors;
176 unsigned long tx_heartbeat_errors;
177 unsigned long tx_window_errors;
178 unsigned long rx_compressed;
179 unsigned long tx_compressed;
180 };
181
182
183 #include <linux/cache.h>
184 #include <linux/skbuff.h>
185
186 #ifdef CONFIG_RPS
187 #include <linux/static_key.h>
188 extern struct static_key rps_needed;
189 #endif
190
191 struct neighbour;
192 struct neigh_parms;
193 struct sk_buff;
194
195 struct netdev_hw_addr {
196 struct list_head list;
197 unsigned char addr[MAX_ADDR_LEN];
198 unsigned char type;
199 #define NETDEV_HW_ADDR_T_LAN 1
200 #define NETDEV_HW_ADDR_T_SAN 2
201 #define NETDEV_HW_ADDR_T_SLAVE 3
202 #define NETDEV_HW_ADDR_T_UNICAST 4
203 #define NETDEV_HW_ADDR_T_MULTICAST 5
204 bool global_use;
205 int sync_cnt;
206 int refcount;
207 int synced;
208 struct rcu_head rcu_head;
209 };
210
211 struct netdev_hw_addr_list {
212 struct list_head list;
213 int count;
214 };
215
216 #define netdev_hw_addr_list_count(l) ((l)->count)
217 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
218 #define netdev_hw_addr_list_for_each(ha, l) \
219 list_for_each_entry(ha, &(l)->list, list)
220
221 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
222 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
223 #define netdev_for_each_uc_addr(ha, dev) \
224 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
225
226 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
227 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
228 #define netdev_for_each_mc_addr(ha, dev) \
229 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
230
231 struct hh_cache {
232 u16 hh_len;
233 u16 __pad;
234 seqlock_t hh_lock;
235
236 /* cached hardware header; allow for machine alignment needs. */
237 #define HH_DATA_MOD 16
238 #define HH_DATA_OFF(__len) \
239 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
240 #define HH_DATA_ALIGN(__len) \
241 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
242 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
243 };
244
245 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
246 * Alternative is:
247 * dev->hard_header_len ? (dev->hard_header_len +
248 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
249 *
250 * We could use other alignment values, but we must maintain the
251 * relationship HH alignment <= LL alignment.
252 */
253 #define LL_RESERVED_SPACE(dev) \
254 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
255 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
256 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
257
258 struct header_ops {
259 int (*create) (struct sk_buff *skb, struct net_device *dev,
260 unsigned short type, const void *daddr,
261 const void *saddr, unsigned int len);
262 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
263 int (*rebuild)(struct sk_buff *skb);
264 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
265 void (*cache_update)(struct hh_cache *hh,
266 const struct net_device *dev,
267 const unsigned char *haddr);
268 };
269
270 /* These flag bits are private to the generic network queueing
271 * layer, they may not be explicitly referenced by any other
272 * code.
273 */
274
275 enum netdev_state_t {
276 __LINK_STATE_START,
277 __LINK_STATE_PRESENT,
278 __LINK_STATE_NOCARRIER,
279 __LINK_STATE_LINKWATCH_PENDING,
280 __LINK_STATE_DORMANT,
281 };
282
283
284 /*
285 * This structure holds at boot time configured netdevice settings. They
286 * are then used in the device probing.
287 */
288 struct netdev_boot_setup {
289 char name[IFNAMSIZ];
290 struct ifmap map;
291 };
292 #define NETDEV_BOOT_SETUP_MAX 8
293
294 int __init netdev_boot_setup(char *str);
295
296 /*
297 * Structure for NAPI scheduling similar to tasklet but with weighting
298 */
299 struct napi_struct {
300 /* The poll_list must only be managed by the entity which
301 * changes the state of the NAPI_STATE_SCHED bit. This means
302 * whoever atomically sets that bit can add this napi_struct
303 * to the per-cpu poll_list, and whoever clears that bit
304 * can remove from the list right before clearing the bit.
305 */
306 struct list_head poll_list;
307
308 unsigned long state;
309 int weight;
310 unsigned int gro_count;
311 int (*poll)(struct napi_struct *, int);
312 #ifdef CONFIG_NETPOLL
313 spinlock_t poll_lock;
314 int poll_owner;
315 #endif
316 struct net_device *dev;
317 struct sk_buff *gro_list;
318 struct sk_buff *skb;
319 struct list_head dev_list;
320 struct hlist_node napi_hash_node;
321 unsigned int napi_id;
322 };
323
324 enum {
325 NAPI_STATE_SCHED, /* Poll is scheduled */
326 NAPI_STATE_DISABLE, /* Disable pending */
327 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
328 NAPI_STATE_HASHED, /* In NAPI hash */
329 };
330
331 enum gro_result {
332 GRO_MERGED,
333 GRO_MERGED_FREE,
334 GRO_HELD,
335 GRO_NORMAL,
336 GRO_DROP,
337 };
338 typedef enum gro_result gro_result_t;
339
340 /*
341 * enum rx_handler_result - Possible return values for rx_handlers.
342 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
343 * further.
344 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
345 * case skb->dev was changed by rx_handler.
346 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
347 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
348 *
349 * rx_handlers are functions called from inside __netif_receive_skb(), to do
350 * special processing of the skb, prior to delivery to protocol handlers.
351 *
352 * Currently, a net_device can only have a single rx_handler registered. Trying
353 * to register a second rx_handler will return -EBUSY.
354 *
355 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
356 * To unregister a rx_handler on a net_device, use
357 * netdev_rx_handler_unregister().
358 *
359 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
360 * do with the skb.
361 *
362 * If the rx_handler consumed to skb in some way, it should return
363 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
364 * the skb to be delivered in some other ways.
365 *
366 * If the rx_handler changed skb->dev, to divert the skb to another
367 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
368 * new device will be called if it exists.
369 *
370 * If the rx_handler consider the skb should be ignored, it should return
371 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
372 * are registered on exact device (ptype->dev == skb->dev).
373 *
374 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
375 * delivered, it should return RX_HANDLER_PASS.
376 *
377 * A device without a registered rx_handler will behave as if rx_handler
378 * returned RX_HANDLER_PASS.
379 */
380
381 enum rx_handler_result {
382 RX_HANDLER_CONSUMED,
383 RX_HANDLER_ANOTHER,
384 RX_HANDLER_EXACT,
385 RX_HANDLER_PASS,
386 };
387 typedef enum rx_handler_result rx_handler_result_t;
388 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
389
390 void __napi_schedule(struct napi_struct *n);
391
392 static inline bool napi_disable_pending(struct napi_struct *n)
393 {
394 return test_bit(NAPI_STATE_DISABLE, &n->state);
395 }
396
397 /**
398 * napi_schedule_prep - check if napi can be scheduled
399 * @n: napi context
400 *
401 * Test if NAPI routine is already running, and if not mark
402 * it as running. This is used as a condition variable
403 * insure only one NAPI poll instance runs. We also make
404 * sure there is no pending NAPI disable.
405 */
406 static inline bool napi_schedule_prep(struct napi_struct *n)
407 {
408 return !napi_disable_pending(n) &&
409 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
410 }
411
412 /**
413 * napi_schedule - schedule NAPI poll
414 * @n: napi context
415 *
416 * Schedule NAPI poll routine to be called if it is not already
417 * running.
418 */
419 static inline void napi_schedule(struct napi_struct *n)
420 {
421 if (napi_schedule_prep(n))
422 __napi_schedule(n);
423 }
424
425 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
426 static inline bool napi_reschedule(struct napi_struct *napi)
427 {
428 if (napi_schedule_prep(napi)) {
429 __napi_schedule(napi);
430 return true;
431 }
432 return false;
433 }
434
435 /**
436 * napi_complete - NAPI processing complete
437 * @n: napi context
438 *
439 * Mark NAPI processing as complete.
440 */
441 void __napi_complete(struct napi_struct *n);
442 void napi_complete(struct napi_struct *n);
443
444 /**
445 * napi_by_id - lookup a NAPI by napi_id
446 * @napi_id: hashed napi_id
447 *
448 * lookup @napi_id in napi_hash table
449 * must be called under rcu_read_lock()
450 */
451 struct napi_struct *napi_by_id(unsigned int napi_id);
452
453 /**
454 * napi_hash_add - add a NAPI to global hashtable
455 * @napi: napi context
456 *
457 * generate a new napi_id and store a @napi under it in napi_hash
458 */
459 void napi_hash_add(struct napi_struct *napi);
460
461 /**
462 * napi_hash_del - remove a NAPI from global table
463 * @napi: napi context
464 *
465 * Warning: caller must observe rcu grace period
466 * before freeing memory containing @napi
467 */
468 void napi_hash_del(struct napi_struct *napi);
469
470 /**
471 * napi_disable - prevent NAPI from scheduling
472 * @n: napi context
473 *
474 * Stop NAPI from being scheduled on this context.
475 * Waits till any outstanding processing completes.
476 */
477 static inline void napi_disable(struct napi_struct *n)
478 {
479 might_sleep();
480 set_bit(NAPI_STATE_DISABLE, &n->state);
481 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
482 msleep(1);
483 clear_bit(NAPI_STATE_DISABLE, &n->state);
484 }
485
486 /**
487 * napi_enable - enable NAPI scheduling
488 * @n: napi context
489 *
490 * Resume NAPI from being scheduled on this context.
491 * Must be paired with napi_disable.
492 */
493 static inline void napi_enable(struct napi_struct *n)
494 {
495 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
496 smp_mb__before_atomic();
497 clear_bit(NAPI_STATE_SCHED, &n->state);
498 }
499
500 #ifdef CONFIG_SMP
501 /**
502 * napi_synchronize - wait until NAPI is not running
503 * @n: napi context
504 *
505 * Wait until NAPI is done being scheduled on this context.
506 * Waits till any outstanding processing completes but
507 * does not disable future activations.
508 */
509 static inline void napi_synchronize(const struct napi_struct *n)
510 {
511 while (test_bit(NAPI_STATE_SCHED, &n->state))
512 msleep(1);
513 }
514 #else
515 # define napi_synchronize(n) barrier()
516 #endif
517
518 enum netdev_queue_state_t {
519 __QUEUE_STATE_DRV_XOFF,
520 __QUEUE_STATE_STACK_XOFF,
521 __QUEUE_STATE_FROZEN,
522 };
523
524 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
525 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
526 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
527
528 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
529 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
530 QUEUE_STATE_FROZEN)
531 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
532 QUEUE_STATE_FROZEN)
533
534 /*
535 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
536 * netif_tx_* functions below are used to manipulate this flag. The
537 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
538 * queue independently. The netif_xmit_*stopped functions below are called
539 * to check if the queue has been stopped by the driver or stack (either
540 * of the XOFF bits are set in the state). Drivers should not need to call
541 * netif_xmit*stopped functions, they should only be using netif_tx_*.
542 */
543
544 struct netdev_queue {
545 /*
546 * read mostly part
547 */
548 struct net_device *dev;
549 struct Qdisc *qdisc;
550 struct Qdisc *qdisc_sleeping;
551 #ifdef CONFIG_SYSFS
552 struct kobject kobj;
553 #endif
554 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
555 int numa_node;
556 #endif
557 /*
558 * write mostly part
559 */
560 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
561 int xmit_lock_owner;
562 /*
563 * please use this field instead of dev->trans_start
564 */
565 unsigned long trans_start;
566
567 /*
568 * Number of TX timeouts for this queue
569 * (/sys/class/net/DEV/Q/trans_timeout)
570 */
571 unsigned long trans_timeout;
572
573 unsigned long state;
574
575 #ifdef CONFIG_BQL
576 struct dql dql;
577 #endif
578 } ____cacheline_aligned_in_smp;
579
580 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
581 {
582 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
583 return q->numa_node;
584 #else
585 return NUMA_NO_NODE;
586 #endif
587 }
588
589 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
590 {
591 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
592 q->numa_node = node;
593 #endif
594 }
595
596 #ifdef CONFIG_RPS
597 /*
598 * This structure holds an RPS map which can be of variable length. The
599 * map is an array of CPUs.
600 */
601 struct rps_map {
602 unsigned int len;
603 struct rcu_head rcu;
604 u16 cpus[0];
605 };
606 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
607
608 /*
609 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
610 * tail pointer for that CPU's input queue at the time of last enqueue, and
611 * a hardware filter index.
612 */
613 struct rps_dev_flow {
614 u16 cpu;
615 u16 filter;
616 unsigned int last_qtail;
617 };
618 #define RPS_NO_FILTER 0xffff
619
620 /*
621 * The rps_dev_flow_table structure contains a table of flow mappings.
622 */
623 struct rps_dev_flow_table {
624 unsigned int mask;
625 struct rcu_head rcu;
626 struct rps_dev_flow flows[0];
627 };
628 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
629 ((_num) * sizeof(struct rps_dev_flow)))
630
631 /*
632 * The rps_sock_flow_table contains mappings of flows to the last CPU
633 * on which they were processed by the application (set in recvmsg).
634 */
635 struct rps_sock_flow_table {
636 unsigned int mask;
637 u16 ents[0];
638 };
639 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
640 ((_num) * sizeof(u16)))
641
642 #define RPS_NO_CPU 0xffff
643
644 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
645 u32 hash)
646 {
647 if (table && hash) {
648 unsigned int cpu, index = hash & table->mask;
649
650 /* We only give a hint, preemption can change cpu under us */
651 cpu = raw_smp_processor_id();
652
653 if (table->ents[index] != cpu)
654 table->ents[index] = cpu;
655 }
656 }
657
658 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
659 u32 hash)
660 {
661 if (table && hash)
662 table->ents[hash & table->mask] = RPS_NO_CPU;
663 }
664
665 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
666
667 #ifdef CONFIG_RFS_ACCEL
668 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
669 u16 filter_id);
670 #endif
671 #endif /* CONFIG_RPS */
672
673 /* This structure contains an instance of an RX queue. */
674 struct netdev_rx_queue {
675 #ifdef CONFIG_RPS
676 struct rps_map __rcu *rps_map;
677 struct rps_dev_flow_table __rcu *rps_flow_table;
678 #endif
679 struct kobject kobj;
680 struct net_device *dev;
681 } ____cacheline_aligned_in_smp;
682
683 /*
684 * RX queue sysfs structures and functions.
685 */
686 struct rx_queue_attribute {
687 struct attribute attr;
688 ssize_t (*show)(struct netdev_rx_queue *queue,
689 struct rx_queue_attribute *attr, char *buf);
690 ssize_t (*store)(struct netdev_rx_queue *queue,
691 struct rx_queue_attribute *attr, const char *buf, size_t len);
692 };
693
694 #ifdef CONFIG_XPS
695 /*
696 * This structure holds an XPS map which can be of variable length. The
697 * map is an array of queues.
698 */
699 struct xps_map {
700 unsigned int len;
701 unsigned int alloc_len;
702 struct rcu_head rcu;
703 u16 queues[0];
704 };
705 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
706 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
707 / sizeof(u16))
708
709 /*
710 * This structure holds all XPS maps for device. Maps are indexed by CPU.
711 */
712 struct xps_dev_maps {
713 struct rcu_head rcu;
714 struct xps_map __rcu *cpu_map[0];
715 };
716 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
717 (nr_cpu_ids * sizeof(struct xps_map *)))
718 #endif /* CONFIG_XPS */
719
720 #define TC_MAX_QUEUE 16
721 #define TC_BITMASK 15
722 /* HW offloaded queuing disciplines txq count and offset maps */
723 struct netdev_tc_txq {
724 u16 count;
725 u16 offset;
726 };
727
728 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
729 /*
730 * This structure is to hold information about the device
731 * configured to run FCoE protocol stack.
732 */
733 struct netdev_fcoe_hbainfo {
734 char manufacturer[64];
735 char serial_number[64];
736 char hardware_version[64];
737 char driver_version[64];
738 char optionrom_version[64];
739 char firmware_version[64];
740 char model[256];
741 char model_description[256];
742 };
743 #endif
744
745 #define MAX_PHYS_PORT_ID_LEN 32
746
747 /* This structure holds a unique identifier to identify the
748 * physical port used by a netdevice.
749 */
750 struct netdev_phys_port_id {
751 unsigned char id[MAX_PHYS_PORT_ID_LEN];
752 unsigned char id_len;
753 };
754
755 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
756 struct sk_buff *skb);
757
758 /*
759 * This structure defines the management hooks for network devices.
760 * The following hooks can be defined; unless noted otherwise, they are
761 * optional and can be filled with a null pointer.
762 *
763 * int (*ndo_init)(struct net_device *dev);
764 * This function is called once when network device is registered.
765 * The network device can use this to any late stage initializaton
766 * or semantic validattion. It can fail with an error code which will
767 * be propogated back to register_netdev
768 *
769 * void (*ndo_uninit)(struct net_device *dev);
770 * This function is called when device is unregistered or when registration
771 * fails. It is not called if init fails.
772 *
773 * int (*ndo_open)(struct net_device *dev);
774 * This function is called when network device transistions to the up
775 * state.
776 *
777 * int (*ndo_stop)(struct net_device *dev);
778 * This function is called when network device transistions to the down
779 * state.
780 *
781 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
782 * struct net_device *dev);
783 * Called when a packet needs to be transmitted.
784 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
785 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
786 * Required can not be NULL.
787 *
788 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
789 * void *accel_priv, select_queue_fallback_t fallback);
790 * Called to decide which queue to when device supports multiple
791 * transmit queues.
792 *
793 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
794 * This function is called to allow device receiver to make
795 * changes to configuration when multicast or promiscious is enabled.
796 *
797 * void (*ndo_set_rx_mode)(struct net_device *dev);
798 * This function is called device changes address list filtering.
799 * If driver handles unicast address filtering, it should set
800 * IFF_UNICAST_FLT to its priv_flags.
801 *
802 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
803 * This function is called when the Media Access Control address
804 * needs to be changed. If this interface is not defined, the
805 * mac address can not be changed.
806 *
807 * int (*ndo_validate_addr)(struct net_device *dev);
808 * Test if Media Access Control address is valid for the device.
809 *
810 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
811 * Called when a user request an ioctl which can't be handled by
812 * the generic interface code. If not defined ioctl's return
813 * not supported error code.
814 *
815 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
816 * Used to set network devices bus interface parameters. This interface
817 * is retained for legacy reason, new devices should use the bus
818 * interface (PCI) for low level management.
819 *
820 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
821 * Called when a user wants to change the Maximum Transfer Unit
822 * of a device. If not defined, any request to change MTU will
823 * will return an error.
824 *
825 * void (*ndo_tx_timeout)(struct net_device *dev);
826 * Callback uses when the transmitter has not made any progress
827 * for dev->watchdog ticks.
828 *
829 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
830 * struct rtnl_link_stats64 *storage);
831 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
832 * Called when a user wants to get the network device usage
833 * statistics. Drivers must do one of the following:
834 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
835 * rtnl_link_stats64 structure passed by the caller.
836 * 2. Define @ndo_get_stats to update a net_device_stats structure
837 * (which should normally be dev->stats) and return a pointer to
838 * it. The structure may be changed asynchronously only if each
839 * field is written atomically.
840 * 3. Update dev->stats asynchronously and atomically, and define
841 * neither operation.
842 *
843 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16t vid);
844 * If device support VLAN filtering this function is called when a
845 * VLAN id is registered.
846 *
847 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
848 * If device support VLAN filtering this function is called when a
849 * VLAN id is unregistered.
850 *
851 * void (*ndo_poll_controller)(struct net_device *dev);
852 *
853 * SR-IOV management functions.
854 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
855 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
856 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
857 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
858 * int (*ndo_get_vf_config)(struct net_device *dev,
859 * int vf, struct ifla_vf_info *ivf);
860 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
861 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
862 * struct nlattr *port[]);
863 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
864 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
865 * Called to setup 'tc' number of traffic classes in the net device. This
866 * is always called from the stack with the rtnl lock held and netif tx
867 * queues stopped. This allows the netdevice to perform queue management
868 * safely.
869 *
870 * Fiber Channel over Ethernet (FCoE) offload functions.
871 * int (*ndo_fcoe_enable)(struct net_device *dev);
872 * Called when the FCoE protocol stack wants to start using LLD for FCoE
873 * so the underlying device can perform whatever needed configuration or
874 * initialization to support acceleration of FCoE traffic.
875 *
876 * int (*ndo_fcoe_disable)(struct net_device *dev);
877 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
878 * so the underlying device can perform whatever needed clean-ups to
879 * stop supporting acceleration of FCoE traffic.
880 *
881 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
882 * struct scatterlist *sgl, unsigned int sgc);
883 * Called when the FCoE Initiator wants to initialize an I/O that
884 * is a possible candidate for Direct Data Placement (DDP). The LLD can
885 * perform necessary setup and returns 1 to indicate the device is set up
886 * successfully to perform DDP on this I/O, otherwise this returns 0.
887 *
888 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
889 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
890 * indicated by the FC exchange id 'xid', so the underlying device can
891 * clean up and reuse resources for later DDP requests.
892 *
893 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
894 * struct scatterlist *sgl, unsigned int sgc);
895 * Called when the FCoE Target wants to initialize an I/O that
896 * is a possible candidate for Direct Data Placement (DDP). The LLD can
897 * perform necessary setup and returns 1 to indicate the device is set up
898 * successfully to perform DDP on this I/O, otherwise this returns 0.
899 *
900 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
901 * struct netdev_fcoe_hbainfo *hbainfo);
902 * Called when the FCoE Protocol stack wants information on the underlying
903 * device. This information is utilized by the FCoE protocol stack to
904 * register attributes with Fiber Channel management service as per the
905 * FC-GS Fabric Device Management Information(FDMI) specification.
906 *
907 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
908 * Called when the underlying device wants to override default World Wide
909 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
910 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
911 * protocol stack to use.
912 *
913 * RFS acceleration.
914 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
915 * u16 rxq_index, u32 flow_id);
916 * Set hardware filter for RFS. rxq_index is the target queue index;
917 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
918 * Return the filter ID on success, or a negative error code.
919 *
920 * Slave management functions (for bridge, bonding, etc).
921 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
922 * Called to make another netdev an underling.
923 *
924 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
925 * Called to release previously enslaved netdev.
926 *
927 * Feature/offload setting functions.
928 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
929 * netdev_features_t features);
930 * Adjusts the requested feature flags according to device-specific
931 * constraints, and returns the resulting flags. Must not modify
932 * the device state.
933 *
934 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
935 * Called to update device configuration to new features. Passed
936 * feature set might be less than what was returned by ndo_fix_features()).
937 * Must return >0 or -errno if it changed dev->features itself.
938 *
939 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
940 * struct net_device *dev,
941 * const unsigned char *addr, u16 flags)
942 * Adds an FDB entry to dev for addr.
943 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
944 * struct net_device *dev,
945 * const unsigned char *addr)
946 * Deletes the FDB entry from dev coresponding to addr.
947 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
948 * struct net_device *dev, int idx)
949 * Used to add FDB entries to dump requests. Implementers should add
950 * entries to skb and update idx with the number of entries.
951 *
952 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
953 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
954 * struct net_device *dev, u32 filter_mask)
955 *
956 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
957 * Called to change device carrier. Soft-devices (like dummy, team, etc)
958 * which do not represent real hardware may define this to allow their
959 * userspace components to manage their virtual carrier state. Devices
960 * that determine carrier state from physical hardware properties (eg
961 * network cables) or protocol-dependent mechanisms (eg
962 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
963 *
964 * int (*ndo_get_phys_port_id)(struct net_device *dev,
965 * struct netdev_phys_port_id *ppid);
966 * Called to get ID of physical port of this device. If driver does
967 * not implement this, it is assumed that the hw is not able to have
968 * multiple net devices on single physical port.
969 *
970 * void (*ndo_add_vxlan_port)(struct net_device *dev,
971 * sa_family_t sa_family, __be16 port);
972 * Called by vxlan to notiy a driver about the UDP port and socket
973 * address family that vxlan is listnening to. It is called only when
974 * a new port starts listening. The operation is protected by the
975 * vxlan_net->sock_lock.
976 *
977 * void (*ndo_del_vxlan_port)(struct net_device *dev,
978 * sa_family_t sa_family, __be16 port);
979 * Called by vxlan to notify the driver about a UDP port and socket
980 * address family that vxlan is not listening to anymore. The operation
981 * is protected by the vxlan_net->sock_lock.
982 *
983 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
984 * struct net_device *dev)
985 * Called by upper layer devices to accelerate switching or other
986 * station functionality into hardware. 'pdev is the lowerdev
987 * to use for the offload and 'dev' is the net device that will
988 * back the offload. Returns a pointer to the private structure
989 * the upper layer will maintain.
990 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
991 * Called by upper layer device to delete the station created
992 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
993 * the station and priv is the structure returned by the add
994 * operation.
995 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
996 * struct net_device *dev,
997 * void *priv);
998 * Callback to use for xmit over the accelerated station. This
999 * is used in place of ndo_start_xmit on accelerated net
1000 * devices.
1001 */
1002 struct net_device_ops {
1003 int (*ndo_init)(struct net_device *dev);
1004 void (*ndo_uninit)(struct net_device *dev);
1005 int (*ndo_open)(struct net_device *dev);
1006 int (*ndo_stop)(struct net_device *dev);
1007 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
1008 struct net_device *dev);
1009 u16 (*ndo_select_queue)(struct net_device *dev,
1010 struct sk_buff *skb,
1011 void *accel_priv,
1012 select_queue_fallback_t fallback);
1013 void (*ndo_change_rx_flags)(struct net_device *dev,
1014 int flags);
1015 void (*ndo_set_rx_mode)(struct net_device *dev);
1016 int (*ndo_set_mac_address)(struct net_device *dev,
1017 void *addr);
1018 int (*ndo_validate_addr)(struct net_device *dev);
1019 int (*ndo_do_ioctl)(struct net_device *dev,
1020 struct ifreq *ifr, int cmd);
1021 int (*ndo_set_config)(struct net_device *dev,
1022 struct ifmap *map);
1023 int (*ndo_change_mtu)(struct net_device *dev,
1024 int new_mtu);
1025 int (*ndo_neigh_setup)(struct net_device *dev,
1026 struct neigh_parms *);
1027 void (*ndo_tx_timeout) (struct net_device *dev);
1028
1029 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1030 struct rtnl_link_stats64 *storage);
1031 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1032
1033 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1034 __be16 proto, u16 vid);
1035 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1036 __be16 proto, u16 vid);
1037 #ifdef CONFIG_NET_POLL_CONTROLLER
1038 void (*ndo_poll_controller)(struct net_device *dev);
1039 int (*ndo_netpoll_setup)(struct net_device *dev,
1040 struct netpoll_info *info);
1041 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1042 #endif
1043 #ifdef CONFIG_NET_RX_BUSY_POLL
1044 int (*ndo_busy_poll)(struct napi_struct *dev);
1045 #endif
1046 int (*ndo_set_vf_mac)(struct net_device *dev,
1047 int queue, u8 *mac);
1048 int (*ndo_set_vf_vlan)(struct net_device *dev,
1049 int queue, u16 vlan, u8 qos);
1050 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
1051 int vf, int rate);
1052 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1053 int vf, bool setting);
1054 int (*ndo_get_vf_config)(struct net_device *dev,
1055 int vf,
1056 struct ifla_vf_info *ivf);
1057 int (*ndo_set_vf_link_state)(struct net_device *dev,
1058 int vf, int link_state);
1059 int (*ndo_set_vf_port)(struct net_device *dev,
1060 int vf,
1061 struct nlattr *port[]);
1062 int (*ndo_get_vf_port)(struct net_device *dev,
1063 int vf, struct sk_buff *skb);
1064 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1065 #if IS_ENABLED(CONFIG_FCOE)
1066 int (*ndo_fcoe_enable)(struct net_device *dev);
1067 int (*ndo_fcoe_disable)(struct net_device *dev);
1068 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1069 u16 xid,
1070 struct scatterlist *sgl,
1071 unsigned int sgc);
1072 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1073 u16 xid);
1074 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1075 u16 xid,
1076 struct scatterlist *sgl,
1077 unsigned int sgc);
1078 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1079 struct netdev_fcoe_hbainfo *hbainfo);
1080 #endif
1081
1082 #if IS_ENABLED(CONFIG_LIBFCOE)
1083 #define NETDEV_FCOE_WWNN 0
1084 #define NETDEV_FCOE_WWPN 1
1085 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1086 u64 *wwn, int type);
1087 #endif
1088
1089 #ifdef CONFIG_RFS_ACCEL
1090 int (*ndo_rx_flow_steer)(struct net_device *dev,
1091 const struct sk_buff *skb,
1092 u16 rxq_index,
1093 u32 flow_id);
1094 #endif
1095 int (*ndo_add_slave)(struct net_device *dev,
1096 struct net_device *slave_dev);
1097 int (*ndo_del_slave)(struct net_device *dev,
1098 struct net_device *slave_dev);
1099 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1100 netdev_features_t features);
1101 int (*ndo_set_features)(struct net_device *dev,
1102 netdev_features_t features);
1103 int (*ndo_neigh_construct)(struct neighbour *n);
1104 void (*ndo_neigh_destroy)(struct neighbour *n);
1105
1106 int (*ndo_fdb_add)(struct ndmsg *ndm,
1107 struct nlattr *tb[],
1108 struct net_device *dev,
1109 const unsigned char *addr,
1110 u16 flags);
1111 int (*ndo_fdb_del)(struct ndmsg *ndm,
1112 struct nlattr *tb[],
1113 struct net_device *dev,
1114 const unsigned char *addr);
1115 int (*ndo_fdb_dump)(struct sk_buff *skb,
1116 struct netlink_callback *cb,
1117 struct net_device *dev,
1118 int idx);
1119
1120 int (*ndo_bridge_setlink)(struct net_device *dev,
1121 struct nlmsghdr *nlh);
1122 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1123 u32 pid, u32 seq,
1124 struct net_device *dev,
1125 u32 filter_mask);
1126 int (*ndo_bridge_dellink)(struct net_device *dev,
1127 struct nlmsghdr *nlh);
1128 int (*ndo_change_carrier)(struct net_device *dev,
1129 bool new_carrier);
1130 int (*ndo_get_phys_port_id)(struct net_device *dev,
1131 struct netdev_phys_port_id *ppid);
1132 void (*ndo_add_vxlan_port)(struct net_device *dev,
1133 sa_family_t sa_family,
1134 __be16 port);
1135 void (*ndo_del_vxlan_port)(struct net_device *dev,
1136 sa_family_t sa_family,
1137 __be16 port);
1138
1139 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1140 struct net_device *dev);
1141 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1142 void *priv);
1143
1144 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1145 struct net_device *dev,
1146 void *priv);
1147 int (*ndo_get_lock_subclass)(struct net_device *dev);
1148 };
1149
1150 /**
1151 * enum net_device_priv_flags - &struct net_device priv_flags
1152 *
1153 * These are the &struct net_device, they are only set internally
1154 * by drivers and used in the kernel. These flags are invisible to
1155 * userspace, this means that the order of these flags can change
1156 * during any kernel release.
1157 *
1158 * You should have a pretty good reason to be extending these flags.
1159 *
1160 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1161 * @IFF_EBRIDGE: Ethernet bridging device
1162 * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active
1163 * @IFF_MASTER_8023AD: bonding master, 802.3ad
1164 * @IFF_MASTER_ALB: bonding master, balance-alb
1165 * @IFF_BONDING: bonding master or slave
1166 * @IFF_SLAVE_NEEDARP: need ARPs for validation
1167 * @IFF_ISATAP: ISATAP interface (RFC4214)
1168 * @IFF_MASTER_ARPMON: bonding master, ARP mon in use
1169 * @IFF_WAN_HDLC: WAN HDLC device
1170 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1171 * release skb->dst
1172 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1173 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1174 * @IFF_MACVLAN_PORT: device used as macvlan port
1175 * @IFF_BRIDGE_PORT: device used as bridge port
1176 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1177 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1178 * @IFF_UNICAST_FLT: Supports unicast filtering
1179 * @IFF_TEAM_PORT: device used as team port
1180 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1181 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1182 * change when it's running
1183 * @IFF_MACVLAN: Macvlan device
1184 */
1185 enum netdev_priv_flags {
1186 IFF_802_1Q_VLAN = 1<<0,
1187 IFF_EBRIDGE = 1<<1,
1188 IFF_SLAVE_INACTIVE = 1<<2,
1189 IFF_MASTER_8023AD = 1<<3,
1190 IFF_MASTER_ALB = 1<<4,
1191 IFF_BONDING = 1<<5,
1192 IFF_SLAVE_NEEDARP = 1<<6,
1193 IFF_ISATAP = 1<<7,
1194 IFF_MASTER_ARPMON = 1<<8,
1195 IFF_WAN_HDLC = 1<<9,
1196 IFF_XMIT_DST_RELEASE = 1<<10,
1197 IFF_DONT_BRIDGE = 1<<11,
1198 IFF_DISABLE_NETPOLL = 1<<12,
1199 IFF_MACVLAN_PORT = 1<<13,
1200 IFF_BRIDGE_PORT = 1<<14,
1201 IFF_OVS_DATAPATH = 1<<15,
1202 IFF_TX_SKB_SHARING = 1<<16,
1203 IFF_UNICAST_FLT = 1<<17,
1204 IFF_TEAM_PORT = 1<<18,
1205 IFF_SUPP_NOFCS = 1<<19,
1206 IFF_LIVE_ADDR_CHANGE = 1<<20,
1207 IFF_MACVLAN = 1<<21,
1208 };
1209
1210 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1211 #define IFF_EBRIDGE IFF_EBRIDGE
1212 #define IFF_SLAVE_INACTIVE IFF_SLAVE_INACTIVE
1213 #define IFF_MASTER_8023AD IFF_MASTER_8023AD
1214 #define IFF_MASTER_ALB IFF_MASTER_ALB
1215 #define IFF_BONDING IFF_BONDING
1216 #define IFF_SLAVE_NEEDARP IFF_SLAVE_NEEDARP
1217 #define IFF_ISATAP IFF_ISATAP
1218 #define IFF_MASTER_ARPMON IFF_MASTER_ARPMON
1219 #define IFF_WAN_HDLC IFF_WAN_HDLC
1220 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1221 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1222 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1223 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1224 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1225 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1226 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1227 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1228 #define IFF_TEAM_PORT IFF_TEAM_PORT
1229 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1230 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1231 #define IFF_MACVLAN IFF_MACVLAN
1232
1233 /*
1234 * The DEVICE structure.
1235 * Actually, this whole structure is a big mistake. It mixes I/O
1236 * data with strictly "high-level" data, and it has to know about
1237 * almost every data structure used in the INET module.
1238 *
1239 * FIXME: cleanup struct net_device such that network protocol info
1240 * moves out.
1241 */
1242
1243 struct net_device {
1244
1245 /*
1246 * This is the first field of the "visible" part of this structure
1247 * (i.e. as seen by users in the "Space.c" file). It is the name
1248 * of the interface.
1249 */
1250 char name[IFNAMSIZ];
1251
1252 /* device name hash chain, please keep it close to name[] */
1253 struct hlist_node name_hlist;
1254
1255 /* snmp alias */
1256 char *ifalias;
1257
1258 /*
1259 * I/O specific fields
1260 * FIXME: Merge these and struct ifmap into one
1261 */
1262 unsigned long mem_end; /* shared mem end */
1263 unsigned long mem_start; /* shared mem start */
1264 unsigned long base_addr; /* device I/O address */
1265 int irq; /* device IRQ number */
1266
1267 /*
1268 * Some hardware also needs these fields, but they are not
1269 * part of the usual set specified in Space.c.
1270 */
1271
1272 unsigned long state;
1273
1274 struct list_head dev_list;
1275 struct list_head napi_list;
1276 struct list_head unreg_list;
1277 struct list_head close_list;
1278
1279 /* directly linked devices, like slaves for bonding */
1280 struct {
1281 struct list_head upper;
1282 struct list_head lower;
1283 } adj_list;
1284
1285 /* all linked devices, *including* neighbours */
1286 struct {
1287 struct list_head upper;
1288 struct list_head lower;
1289 } all_adj_list;
1290
1291
1292 /* currently active device features */
1293 netdev_features_t features;
1294 /* user-changeable features */
1295 netdev_features_t hw_features;
1296 /* user-requested features */
1297 netdev_features_t wanted_features;
1298 /* mask of features inheritable by VLAN devices */
1299 netdev_features_t vlan_features;
1300 /* mask of features inherited by encapsulating devices
1301 * This field indicates what encapsulation offloads
1302 * the hardware is capable of doing, and drivers will
1303 * need to set them appropriately.
1304 */
1305 netdev_features_t hw_enc_features;
1306 /* mask of fetures inheritable by MPLS */
1307 netdev_features_t mpls_features;
1308
1309 /* Interface index. Unique device identifier */
1310 int ifindex;
1311 int iflink;
1312
1313 struct net_device_stats stats;
1314
1315 /* dropped packets by core network, Do not use this in drivers */
1316 atomic_long_t rx_dropped;
1317 atomic_long_t tx_dropped;
1318
1319 /* Stats to monitor carrier on<->off transitions */
1320 atomic_t carrier_changes;
1321
1322 #ifdef CONFIG_WIRELESS_EXT
1323 /* List of functions to handle Wireless Extensions (instead of ioctl).
1324 * See <net/iw_handler.h> for details. Jean II */
1325 const struct iw_handler_def * wireless_handlers;
1326 /* Instance data managed by the core of Wireless Extensions. */
1327 struct iw_public_data * wireless_data;
1328 #endif
1329 /* Management operations */
1330 const struct net_device_ops *netdev_ops;
1331 const struct ethtool_ops *ethtool_ops;
1332 const struct forwarding_accel_ops *fwd_ops;
1333
1334 /* Hardware header description */
1335 const struct header_ops *header_ops;
1336
1337 unsigned int flags; /* interface flags (a la BSD) */
1338 unsigned int priv_flags; /* Like 'flags' but invisible to userspace.
1339 * See if.h for definitions. */
1340 unsigned short gflags;
1341 unsigned short padded; /* How much padding added by alloc_netdev() */
1342
1343 unsigned char operstate; /* RFC2863 operstate */
1344 unsigned char link_mode; /* mapping policy to operstate */
1345
1346 unsigned char if_port; /* Selectable AUI, TP,..*/
1347 unsigned char dma; /* DMA channel */
1348
1349 unsigned int mtu; /* interface MTU value */
1350 unsigned short type; /* interface hardware type */
1351 unsigned short hard_header_len; /* hardware hdr length */
1352
1353 /* extra head- and tailroom the hardware may need, but not in all cases
1354 * can this be guaranteed, especially tailroom. Some cases also use
1355 * LL_MAX_HEADER instead to allocate the skb.
1356 */
1357 unsigned short needed_headroom;
1358 unsigned short needed_tailroom;
1359
1360 /* Interface address info. */
1361 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1362 unsigned char addr_assign_type; /* hw address assignment type */
1363 unsigned char addr_len; /* hardware address length */
1364 unsigned short neigh_priv_len;
1365 unsigned short dev_id; /* Used to differentiate devices
1366 * that share the same link
1367 * layer address
1368 */
1369 unsigned short dev_port; /* Used to differentiate
1370 * devices that share the same
1371 * function
1372 */
1373 spinlock_t addr_list_lock;
1374 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
1375 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
1376 struct netdev_hw_addr_list dev_addrs; /* list of device
1377 * hw addresses
1378 */
1379 #ifdef CONFIG_SYSFS
1380 struct kset *queues_kset;
1381 #endif
1382
1383 bool uc_promisc;
1384 unsigned int promiscuity;
1385 unsigned int allmulti;
1386
1387
1388 /* Protocol specific pointers */
1389
1390 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1391 struct vlan_info __rcu *vlan_info; /* VLAN info */
1392 #endif
1393 #if IS_ENABLED(CONFIG_NET_DSA)
1394 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */
1395 #endif
1396 #if IS_ENABLED(CONFIG_TIPC)
1397 struct tipc_bearer __rcu *tipc_ptr; /* TIPC specific data */
1398 #endif
1399 void *atalk_ptr; /* AppleTalk link */
1400 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1401 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1402 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1403 void *ax25_ptr; /* AX.25 specific data */
1404 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1405 assign before registering */
1406
1407 /*
1408 * Cache lines mostly used on receive path (including eth_type_trans())
1409 */
1410 unsigned long last_rx; /* Time of last Rx */
1411
1412 /* Interface address info used in eth_type_trans() */
1413 unsigned char *dev_addr; /* hw address, (before bcast
1414 because most packets are
1415 unicast) */
1416
1417
1418 #ifdef CONFIG_SYSFS
1419 struct netdev_rx_queue *_rx;
1420
1421 /* Number of RX queues allocated at register_netdev() time */
1422 unsigned int num_rx_queues;
1423
1424 /* Number of RX queues currently active in device */
1425 unsigned int real_num_rx_queues;
1426
1427 #endif
1428
1429 rx_handler_func_t __rcu *rx_handler;
1430 void __rcu *rx_handler_data;
1431
1432 struct netdev_queue __rcu *ingress_queue;
1433 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1434
1435
1436 /*
1437 * Cache lines mostly used on transmit path
1438 */
1439 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1440
1441 /* Number of TX queues allocated at alloc_netdev_mq() time */
1442 unsigned int num_tx_queues;
1443
1444 /* Number of TX queues currently active in device */
1445 unsigned int real_num_tx_queues;
1446
1447 /* root qdisc from userspace point of view */
1448 struct Qdisc *qdisc;
1449
1450 unsigned long tx_queue_len; /* Max frames per queue allowed */
1451 spinlock_t tx_global_lock;
1452
1453 #ifdef CONFIG_XPS
1454 struct xps_dev_maps __rcu *xps_maps;
1455 #endif
1456 #ifdef CONFIG_RFS_ACCEL
1457 /* CPU reverse-mapping for RX completion interrupts, indexed
1458 * by RX queue number. Assigned by driver. This must only be
1459 * set if the ndo_rx_flow_steer operation is defined. */
1460 struct cpu_rmap *rx_cpu_rmap;
1461 #endif
1462
1463 /* These may be needed for future network-power-down code. */
1464
1465 /*
1466 * trans_start here is expensive for high speed devices on SMP,
1467 * please use netdev_queue->trans_start instead.
1468 */
1469 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1470
1471 int watchdog_timeo; /* used by dev_watchdog() */
1472 struct timer_list watchdog_timer;
1473
1474 /* Number of references to this device */
1475 int __percpu *pcpu_refcnt;
1476
1477 /* delayed register/unregister */
1478 struct list_head todo_list;
1479 /* device index hash chain */
1480 struct hlist_node index_hlist;
1481
1482 struct list_head link_watch_list;
1483
1484 /* register/unregister state machine */
1485 enum { NETREG_UNINITIALIZED=0,
1486 NETREG_REGISTERED, /* completed register_netdevice */
1487 NETREG_UNREGISTERING, /* called unregister_netdevice */
1488 NETREG_UNREGISTERED, /* completed unregister todo */
1489 NETREG_RELEASED, /* called free_netdev */
1490 NETREG_DUMMY, /* dummy device for NAPI poll */
1491 } reg_state:8;
1492
1493 bool dismantle; /* device is going do be freed */
1494
1495 enum {
1496 RTNL_LINK_INITIALIZED,
1497 RTNL_LINK_INITIALIZING,
1498 } rtnl_link_state:16;
1499
1500 /* Called from unregister, can be used to call free_netdev */
1501 void (*destructor)(struct net_device *dev);
1502
1503 #ifdef CONFIG_NETPOLL
1504 struct netpoll_info __rcu *npinfo;
1505 #endif
1506
1507 #ifdef CONFIG_NET_NS
1508 /* Network namespace this network device is inside */
1509 struct net *nd_net;
1510 #endif
1511
1512 /* mid-layer private */
1513 union {
1514 void *ml_priv;
1515 struct pcpu_lstats __percpu *lstats; /* loopback stats */
1516 struct pcpu_sw_netstats __percpu *tstats;
1517 struct pcpu_dstats __percpu *dstats; /* dummy stats */
1518 struct pcpu_vstats __percpu *vstats; /* veth stats */
1519 };
1520 /* GARP */
1521 struct garp_port __rcu *garp_port;
1522 /* MRP */
1523 struct mrp_port __rcu *mrp_port;
1524
1525 /* class/net/name entry */
1526 struct device dev;
1527 /* space for optional device, statistics, and wireless sysfs groups */
1528 const struct attribute_group *sysfs_groups[4];
1529 /* space for optional per-rx queue attributes */
1530 const struct attribute_group *sysfs_rx_queue_group;
1531
1532 /* rtnetlink link ops */
1533 const struct rtnl_link_ops *rtnl_link_ops;
1534
1535 /* for setting kernel sock attribute on TCP connection setup */
1536 #define GSO_MAX_SIZE 65536
1537 unsigned int gso_max_size;
1538 #define GSO_MAX_SEGS 65535
1539 u16 gso_max_segs;
1540
1541 #ifdef CONFIG_DCB
1542 /* Data Center Bridging netlink ops */
1543 const struct dcbnl_rtnl_ops *dcbnl_ops;
1544 #endif
1545 u8 num_tc;
1546 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1547 u8 prio_tc_map[TC_BITMASK + 1];
1548
1549 #if IS_ENABLED(CONFIG_FCOE)
1550 /* max exchange id for FCoE LRO by ddp */
1551 unsigned int fcoe_ddp_xid;
1552 #endif
1553 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1554 struct netprio_map __rcu *priomap;
1555 #endif
1556 /* phy device may attach itself for hardware timestamping */
1557 struct phy_device *phydev;
1558
1559 struct lock_class_key *qdisc_tx_busylock;
1560
1561 /* group the device belongs to */
1562 int group;
1563
1564 struct pm_qos_request pm_qos_req;
1565 };
1566 #define to_net_dev(d) container_of(d, struct net_device, dev)
1567
1568 #define NETDEV_ALIGN 32
1569
1570 static inline
1571 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1572 {
1573 return dev->prio_tc_map[prio & TC_BITMASK];
1574 }
1575
1576 static inline
1577 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1578 {
1579 if (tc >= dev->num_tc)
1580 return -EINVAL;
1581
1582 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1583 return 0;
1584 }
1585
1586 static inline
1587 void netdev_reset_tc(struct net_device *dev)
1588 {
1589 dev->num_tc = 0;
1590 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1591 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1592 }
1593
1594 static inline
1595 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1596 {
1597 if (tc >= dev->num_tc)
1598 return -EINVAL;
1599
1600 dev->tc_to_txq[tc].count = count;
1601 dev->tc_to_txq[tc].offset = offset;
1602 return 0;
1603 }
1604
1605 static inline
1606 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1607 {
1608 if (num_tc > TC_MAX_QUEUE)
1609 return -EINVAL;
1610
1611 dev->num_tc = num_tc;
1612 return 0;
1613 }
1614
1615 static inline
1616 int netdev_get_num_tc(struct net_device *dev)
1617 {
1618 return dev->num_tc;
1619 }
1620
1621 static inline
1622 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1623 unsigned int index)
1624 {
1625 return &dev->_tx[index];
1626 }
1627
1628 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1629 void (*f)(struct net_device *,
1630 struct netdev_queue *,
1631 void *),
1632 void *arg)
1633 {
1634 unsigned int i;
1635
1636 for (i = 0; i < dev->num_tx_queues; i++)
1637 f(dev, &dev->_tx[i], arg);
1638 }
1639
1640 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1641 struct sk_buff *skb,
1642 void *accel_priv);
1643
1644 /*
1645 * Net namespace inlines
1646 */
1647 static inline
1648 struct net *dev_net(const struct net_device *dev)
1649 {
1650 return read_pnet(&dev->nd_net);
1651 }
1652
1653 static inline
1654 void dev_net_set(struct net_device *dev, struct net *net)
1655 {
1656 #ifdef CONFIG_NET_NS
1657 release_net(dev->nd_net);
1658 dev->nd_net = hold_net(net);
1659 #endif
1660 }
1661
1662 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1663 {
1664 #ifdef CONFIG_NET_DSA_TAG_DSA
1665 if (dev->dsa_ptr != NULL)
1666 return dsa_uses_dsa_tags(dev->dsa_ptr);
1667 #endif
1668
1669 return 0;
1670 }
1671
1672 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1673 {
1674 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1675 if (dev->dsa_ptr != NULL)
1676 return dsa_uses_trailer_tags(dev->dsa_ptr);
1677 #endif
1678
1679 return 0;
1680 }
1681
1682 /**
1683 * netdev_priv - access network device private data
1684 * @dev: network device
1685 *
1686 * Get network device private data
1687 */
1688 static inline void *netdev_priv(const struct net_device *dev)
1689 {
1690 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1691 }
1692
1693 /* Set the sysfs physical device reference for the network logical device
1694 * if set prior to registration will cause a symlink during initialization.
1695 */
1696 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1697
1698 /* Set the sysfs device type for the network logical device to allow
1699 * fine-grained identification of different network device types. For
1700 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1701 */
1702 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1703
1704 /* Default NAPI poll() weight
1705 * Device drivers are strongly advised to not use bigger value
1706 */
1707 #define NAPI_POLL_WEIGHT 64
1708
1709 /**
1710 * netif_napi_add - initialize a napi context
1711 * @dev: network device
1712 * @napi: napi context
1713 * @poll: polling function
1714 * @weight: default weight
1715 *
1716 * netif_napi_add() must be used to initialize a napi context prior to calling
1717 * *any* of the other napi related functions.
1718 */
1719 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1720 int (*poll)(struct napi_struct *, int), int weight);
1721
1722 /**
1723 * netif_napi_del - remove a napi context
1724 * @napi: napi context
1725 *
1726 * netif_napi_del() removes a napi context from the network device napi list
1727 */
1728 void netif_napi_del(struct napi_struct *napi);
1729
1730 struct napi_gro_cb {
1731 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1732 void *frag0;
1733
1734 /* Length of frag0. */
1735 unsigned int frag0_len;
1736
1737 /* This indicates where we are processing relative to skb->data. */
1738 int data_offset;
1739
1740 /* This is non-zero if the packet cannot be merged with the new skb. */
1741 u16 flush;
1742
1743 /* Save the IP ID here and check when we get to the transport layer */
1744 u16 flush_id;
1745
1746 /* Number of segments aggregated. */
1747 u16 count;
1748
1749 /* This is non-zero if the packet may be of the same flow. */
1750 u8 same_flow;
1751
1752 /* Free the skb? */
1753 u8 free;
1754 #define NAPI_GRO_FREE 1
1755 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1756
1757 /* jiffies when first packet was created/queued */
1758 unsigned long age;
1759
1760 /* Used in ipv6_gro_receive() */
1761 u16 proto;
1762
1763 /* Used in udp_gro_receive */
1764 u16 udp_mark;
1765
1766 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
1767 __wsum csum;
1768
1769 /* used in skb_gro_receive() slow path */
1770 struct sk_buff *last;
1771 };
1772
1773 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1774
1775 struct packet_type {
1776 __be16 type; /* This is really htons(ether_type). */
1777 struct net_device *dev; /* NULL is wildcarded here */
1778 int (*func) (struct sk_buff *,
1779 struct net_device *,
1780 struct packet_type *,
1781 struct net_device *);
1782 bool (*id_match)(struct packet_type *ptype,
1783 struct sock *sk);
1784 void *af_packet_priv;
1785 struct list_head list;
1786 };
1787
1788 struct offload_callbacks {
1789 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1790 netdev_features_t features);
1791 int (*gso_send_check)(struct sk_buff *skb);
1792 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1793 struct sk_buff *skb);
1794 int (*gro_complete)(struct sk_buff *skb, int nhoff);
1795 };
1796
1797 struct packet_offload {
1798 __be16 type; /* This is really htons(ether_type). */
1799 struct offload_callbacks callbacks;
1800 struct list_head list;
1801 };
1802
1803 struct udp_offload {
1804 __be16 port;
1805 struct offload_callbacks callbacks;
1806 };
1807
1808 /* often modified stats are per cpu, other are shared (netdev->stats) */
1809 struct pcpu_sw_netstats {
1810 u64 rx_packets;
1811 u64 rx_bytes;
1812 u64 tx_packets;
1813 u64 tx_bytes;
1814 struct u64_stats_sync syncp;
1815 };
1816
1817 #define netdev_alloc_pcpu_stats(type) \
1818 ({ \
1819 typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
1820 if (pcpu_stats) { \
1821 int i; \
1822 for_each_possible_cpu(i) { \
1823 typeof(type) *stat; \
1824 stat = per_cpu_ptr(pcpu_stats, i); \
1825 u64_stats_init(&stat->syncp); \
1826 } \
1827 } \
1828 pcpu_stats; \
1829 })
1830
1831 #include <linux/notifier.h>
1832
1833 /* netdevice notifier chain. Please remember to update the rtnetlink
1834 * notification exclusion list in rtnetlink_event() when adding new
1835 * types.
1836 */
1837 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
1838 #define NETDEV_DOWN 0x0002
1839 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
1840 detected a hardware crash and restarted
1841 - we can use this eg to kick tcp sessions
1842 once done */
1843 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
1844 #define NETDEV_REGISTER 0x0005
1845 #define NETDEV_UNREGISTER 0x0006
1846 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
1847 #define NETDEV_CHANGEADDR 0x0008
1848 #define NETDEV_GOING_DOWN 0x0009
1849 #define NETDEV_CHANGENAME 0x000A
1850 #define NETDEV_FEAT_CHANGE 0x000B
1851 #define NETDEV_BONDING_FAILOVER 0x000C
1852 #define NETDEV_PRE_UP 0x000D
1853 #define NETDEV_PRE_TYPE_CHANGE 0x000E
1854 #define NETDEV_POST_TYPE_CHANGE 0x000F
1855 #define NETDEV_POST_INIT 0x0010
1856 #define NETDEV_UNREGISTER_FINAL 0x0011
1857 #define NETDEV_RELEASE 0x0012
1858 #define NETDEV_NOTIFY_PEERS 0x0013
1859 #define NETDEV_JOIN 0x0014
1860 #define NETDEV_CHANGEUPPER 0x0015
1861 #define NETDEV_RESEND_IGMP 0x0016
1862 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
1863
1864 int register_netdevice_notifier(struct notifier_block *nb);
1865 int unregister_netdevice_notifier(struct notifier_block *nb);
1866
1867 struct netdev_notifier_info {
1868 struct net_device *dev;
1869 };
1870
1871 struct netdev_notifier_change_info {
1872 struct netdev_notifier_info info; /* must be first */
1873 unsigned int flags_changed;
1874 };
1875
1876 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
1877 struct net_device *dev)
1878 {
1879 info->dev = dev;
1880 }
1881
1882 static inline struct net_device *
1883 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
1884 {
1885 return info->dev;
1886 }
1887
1888 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1889
1890
1891 extern rwlock_t dev_base_lock; /* Device list lock */
1892
1893 #define for_each_netdev(net, d) \
1894 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1895 #define for_each_netdev_reverse(net, d) \
1896 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1897 #define for_each_netdev_rcu(net, d) \
1898 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1899 #define for_each_netdev_safe(net, d, n) \
1900 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1901 #define for_each_netdev_continue(net, d) \
1902 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1903 #define for_each_netdev_continue_rcu(net, d) \
1904 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1905 #define for_each_netdev_in_bond_rcu(bond, slave) \
1906 for_each_netdev_rcu(&init_net, slave) \
1907 if (netdev_master_upper_dev_get_rcu(slave) == bond)
1908 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1909
1910 static inline struct net_device *next_net_device(struct net_device *dev)
1911 {
1912 struct list_head *lh;
1913 struct net *net;
1914
1915 net = dev_net(dev);
1916 lh = dev->dev_list.next;
1917 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1918 }
1919
1920 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1921 {
1922 struct list_head *lh;
1923 struct net *net;
1924
1925 net = dev_net(dev);
1926 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1927 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1928 }
1929
1930 static inline struct net_device *first_net_device(struct net *net)
1931 {
1932 return list_empty(&net->dev_base_head) ? NULL :
1933 net_device_entry(net->dev_base_head.next);
1934 }
1935
1936 static inline struct net_device *first_net_device_rcu(struct net *net)
1937 {
1938 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1939
1940 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1941 }
1942
1943 int netdev_boot_setup_check(struct net_device *dev);
1944 unsigned long netdev_boot_base(const char *prefix, int unit);
1945 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1946 const char *hwaddr);
1947 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1948 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1949 void dev_add_pack(struct packet_type *pt);
1950 void dev_remove_pack(struct packet_type *pt);
1951 void __dev_remove_pack(struct packet_type *pt);
1952 void dev_add_offload(struct packet_offload *po);
1953 void dev_remove_offload(struct packet_offload *po);
1954
1955 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1956 unsigned short mask);
1957 struct net_device *dev_get_by_name(struct net *net, const char *name);
1958 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1959 struct net_device *__dev_get_by_name(struct net *net, const char *name);
1960 int dev_alloc_name(struct net_device *dev, const char *name);
1961 int dev_open(struct net_device *dev);
1962 int dev_close(struct net_device *dev);
1963 void dev_disable_lro(struct net_device *dev);
1964 int dev_loopback_xmit(struct sk_buff *newskb);
1965 int dev_queue_xmit(struct sk_buff *skb);
1966 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
1967 int register_netdevice(struct net_device *dev);
1968 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
1969 void unregister_netdevice_many(struct list_head *head);
1970 static inline void unregister_netdevice(struct net_device *dev)
1971 {
1972 unregister_netdevice_queue(dev, NULL);
1973 }
1974
1975 int netdev_refcnt_read(const struct net_device *dev);
1976 void free_netdev(struct net_device *dev);
1977 void netdev_freemem(struct net_device *dev);
1978 void synchronize_net(void);
1979 int init_dummy_netdev(struct net_device *dev);
1980
1981 struct net_device *dev_get_by_index(struct net *net, int ifindex);
1982 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1983 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1984 int netdev_get_name(struct net *net, char *name, int ifindex);
1985 int dev_restart(struct net_device *dev);
1986 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1987
1988 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1989 {
1990 return NAPI_GRO_CB(skb)->data_offset;
1991 }
1992
1993 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1994 {
1995 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1996 }
1997
1998 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1999 {
2000 NAPI_GRO_CB(skb)->data_offset += len;
2001 }
2002
2003 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2004 unsigned int offset)
2005 {
2006 return NAPI_GRO_CB(skb)->frag0 + offset;
2007 }
2008
2009 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2010 {
2011 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2012 }
2013
2014 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2015 unsigned int offset)
2016 {
2017 if (!pskb_may_pull(skb, hlen))
2018 return NULL;
2019
2020 NAPI_GRO_CB(skb)->frag0 = NULL;
2021 NAPI_GRO_CB(skb)->frag0_len = 0;
2022 return skb->data + offset;
2023 }
2024
2025 static inline void *skb_gro_network_header(struct sk_buff *skb)
2026 {
2027 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2028 skb_network_offset(skb);
2029 }
2030
2031 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2032 const void *start, unsigned int len)
2033 {
2034 if (skb->ip_summed == CHECKSUM_COMPLETE)
2035 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2036 csum_partial(start, len, 0));
2037 }
2038
2039 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2040 unsigned short type,
2041 const void *daddr, const void *saddr,
2042 unsigned int len)
2043 {
2044 if (!dev->header_ops || !dev->header_ops->create)
2045 return 0;
2046
2047 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2048 }
2049
2050 static inline int dev_parse_header(const struct sk_buff *skb,
2051 unsigned char *haddr)
2052 {
2053 const struct net_device *dev = skb->dev;
2054
2055 if (!dev->header_ops || !dev->header_ops->parse)
2056 return 0;
2057 return dev->header_ops->parse(skb, haddr);
2058 }
2059
2060 static inline int dev_rebuild_header(struct sk_buff *skb)
2061 {
2062 const struct net_device *dev = skb->dev;
2063
2064 if (!dev->header_ops || !dev->header_ops->rebuild)
2065 return 0;
2066 return dev->header_ops->rebuild(skb);
2067 }
2068
2069 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2070 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2071 static inline int unregister_gifconf(unsigned int family)
2072 {
2073 return register_gifconf(family, NULL);
2074 }
2075
2076 #ifdef CONFIG_NET_FLOW_LIMIT
2077 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2078 struct sd_flow_limit {
2079 u64 count;
2080 unsigned int num_buckets;
2081 unsigned int history_head;
2082 u16 history[FLOW_LIMIT_HISTORY];
2083 u8 buckets[];
2084 };
2085
2086 extern int netdev_flow_limit_table_len;
2087 #endif /* CONFIG_NET_FLOW_LIMIT */
2088
2089 /*
2090 * Incoming packets are placed on per-cpu queues
2091 */
2092 struct softnet_data {
2093 struct Qdisc *output_queue;
2094 struct Qdisc **output_queue_tailp;
2095 struct list_head poll_list;
2096 struct sk_buff *completion_queue;
2097 struct sk_buff_head process_queue;
2098
2099 /* stats */
2100 unsigned int processed;
2101 unsigned int time_squeeze;
2102 unsigned int cpu_collision;
2103 unsigned int received_rps;
2104
2105 #ifdef CONFIG_RPS
2106 struct softnet_data *rps_ipi_list;
2107
2108 /* Elements below can be accessed between CPUs for RPS */
2109 struct call_single_data csd ____cacheline_aligned_in_smp;
2110 struct softnet_data *rps_ipi_next;
2111 unsigned int cpu;
2112 unsigned int input_queue_head;
2113 unsigned int input_queue_tail;
2114 #endif
2115 unsigned int dropped;
2116 struct sk_buff_head input_pkt_queue;
2117 struct napi_struct backlog;
2118
2119 #ifdef CONFIG_NET_FLOW_LIMIT
2120 struct sd_flow_limit __rcu *flow_limit;
2121 #endif
2122 };
2123
2124 static inline void input_queue_head_incr(struct softnet_data *sd)
2125 {
2126 #ifdef CONFIG_RPS
2127 sd->input_queue_head++;
2128 #endif
2129 }
2130
2131 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2132 unsigned int *qtail)
2133 {
2134 #ifdef CONFIG_RPS
2135 *qtail = ++sd->input_queue_tail;
2136 #endif
2137 }
2138
2139 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2140
2141 void __netif_schedule(struct Qdisc *q);
2142
2143 static inline void netif_schedule_queue(struct netdev_queue *txq)
2144 {
2145 if (!(txq->state & QUEUE_STATE_ANY_XOFF))
2146 __netif_schedule(txq->qdisc);
2147 }
2148
2149 static inline void netif_tx_schedule_all(struct net_device *dev)
2150 {
2151 unsigned int i;
2152
2153 for (i = 0; i < dev->num_tx_queues; i++)
2154 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2155 }
2156
2157 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2158 {
2159 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2160 }
2161
2162 /**
2163 * netif_start_queue - allow transmit
2164 * @dev: network device
2165 *
2166 * Allow upper layers to call the device hard_start_xmit routine.
2167 */
2168 static inline void netif_start_queue(struct net_device *dev)
2169 {
2170 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2171 }
2172
2173 static inline void netif_tx_start_all_queues(struct net_device *dev)
2174 {
2175 unsigned int i;
2176
2177 for (i = 0; i < dev->num_tx_queues; i++) {
2178 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2179 netif_tx_start_queue(txq);
2180 }
2181 }
2182
2183 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2184 {
2185 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
2186 __netif_schedule(dev_queue->qdisc);
2187 }
2188
2189 /**
2190 * netif_wake_queue - restart transmit
2191 * @dev: network device
2192 *
2193 * Allow upper layers to call the device hard_start_xmit routine.
2194 * Used for flow control when transmit resources are available.
2195 */
2196 static inline void netif_wake_queue(struct net_device *dev)
2197 {
2198 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2199 }
2200
2201 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2202 {
2203 unsigned int i;
2204
2205 for (i = 0; i < dev->num_tx_queues; i++) {
2206 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2207 netif_tx_wake_queue(txq);
2208 }
2209 }
2210
2211 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2212 {
2213 if (WARN_ON(!dev_queue)) {
2214 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2215 return;
2216 }
2217 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2218 }
2219
2220 /**
2221 * netif_stop_queue - stop transmitted packets
2222 * @dev: network device
2223 *
2224 * Stop upper layers calling the device hard_start_xmit routine.
2225 * Used for flow control when transmit resources are unavailable.
2226 */
2227 static inline void netif_stop_queue(struct net_device *dev)
2228 {
2229 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2230 }
2231
2232 static inline void netif_tx_stop_all_queues(struct net_device *dev)
2233 {
2234 unsigned int i;
2235
2236 for (i = 0; i < dev->num_tx_queues; i++) {
2237 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2238 netif_tx_stop_queue(txq);
2239 }
2240 }
2241
2242 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2243 {
2244 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2245 }
2246
2247 /**
2248 * netif_queue_stopped - test if transmit queue is flowblocked
2249 * @dev: network device
2250 *
2251 * Test if transmit queue on device is currently unable to send.
2252 */
2253 static inline bool netif_queue_stopped(const struct net_device *dev)
2254 {
2255 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2256 }
2257
2258 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2259 {
2260 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2261 }
2262
2263 static inline bool
2264 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2265 {
2266 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2267 }
2268
2269 static inline bool
2270 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2271 {
2272 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2273 }
2274
2275 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2276 unsigned int bytes)
2277 {
2278 #ifdef CONFIG_BQL
2279 dql_queued(&dev_queue->dql, bytes);
2280
2281 if (likely(dql_avail(&dev_queue->dql) >= 0))
2282 return;
2283
2284 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2285
2286 /*
2287 * The XOFF flag must be set before checking the dql_avail below,
2288 * because in netdev_tx_completed_queue we update the dql_completed
2289 * before checking the XOFF flag.
2290 */
2291 smp_mb();
2292
2293 /* check again in case another CPU has just made room avail */
2294 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2295 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2296 #endif
2297 }
2298
2299 /**
2300 * netdev_sent_queue - report the number of bytes queued to hardware
2301 * @dev: network device
2302 * @bytes: number of bytes queued to the hardware device queue
2303 *
2304 * Report the number of bytes queued for sending/completion to the network
2305 * device hardware queue. @bytes should be a good approximation and should
2306 * exactly match netdev_completed_queue() @bytes
2307 */
2308 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2309 {
2310 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2311 }
2312
2313 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2314 unsigned int pkts, unsigned int bytes)
2315 {
2316 #ifdef CONFIG_BQL
2317 if (unlikely(!bytes))
2318 return;
2319
2320 dql_completed(&dev_queue->dql, bytes);
2321
2322 /*
2323 * Without the memory barrier there is a small possiblity that
2324 * netdev_tx_sent_queue will miss the update and cause the queue to
2325 * be stopped forever
2326 */
2327 smp_mb();
2328
2329 if (dql_avail(&dev_queue->dql) < 0)
2330 return;
2331
2332 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2333 netif_schedule_queue(dev_queue);
2334 #endif
2335 }
2336
2337 /**
2338 * netdev_completed_queue - report bytes and packets completed by device
2339 * @dev: network device
2340 * @pkts: actual number of packets sent over the medium
2341 * @bytes: actual number of bytes sent over the medium
2342 *
2343 * Report the number of bytes and packets transmitted by the network device
2344 * hardware queue over the physical medium, @bytes must exactly match the
2345 * @bytes amount passed to netdev_sent_queue()
2346 */
2347 static inline void netdev_completed_queue(struct net_device *dev,
2348 unsigned int pkts, unsigned int bytes)
2349 {
2350 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2351 }
2352
2353 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2354 {
2355 #ifdef CONFIG_BQL
2356 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2357 dql_reset(&q->dql);
2358 #endif
2359 }
2360
2361 /**
2362 * netdev_reset_queue - reset the packets and bytes count of a network device
2363 * @dev_queue: network device
2364 *
2365 * Reset the bytes and packet count of a network device and clear the
2366 * software flow control OFF bit for this network device
2367 */
2368 static inline void netdev_reset_queue(struct net_device *dev_queue)
2369 {
2370 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2371 }
2372
2373 /**
2374 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
2375 * @dev: network device
2376 * @queue_index: given tx queue index
2377 *
2378 * Returns 0 if given tx queue index >= number of device tx queues,
2379 * otherwise returns the originally passed tx queue index.
2380 */
2381 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2382 {
2383 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2384 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2385 dev->name, queue_index,
2386 dev->real_num_tx_queues);
2387 return 0;
2388 }
2389
2390 return queue_index;
2391 }
2392
2393 /**
2394 * netif_running - test if up
2395 * @dev: network device
2396 *
2397 * Test if the device has been brought up.
2398 */
2399 static inline bool netif_running(const struct net_device *dev)
2400 {
2401 return test_bit(__LINK_STATE_START, &dev->state);
2402 }
2403
2404 /*
2405 * Routines to manage the subqueues on a device. We only need start
2406 * stop, and a check if it's stopped. All other device management is
2407 * done at the overall netdevice level.
2408 * Also test the device if we're multiqueue.
2409 */
2410
2411 /**
2412 * netif_start_subqueue - allow sending packets on subqueue
2413 * @dev: network device
2414 * @queue_index: sub queue index
2415 *
2416 * Start individual transmit queue of a device with multiple transmit queues.
2417 */
2418 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2419 {
2420 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2421
2422 netif_tx_start_queue(txq);
2423 }
2424
2425 /**
2426 * netif_stop_subqueue - stop sending packets on subqueue
2427 * @dev: network device
2428 * @queue_index: sub queue index
2429 *
2430 * Stop individual transmit queue of a device with multiple transmit queues.
2431 */
2432 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2433 {
2434 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2435 netif_tx_stop_queue(txq);
2436 }
2437
2438 /**
2439 * netif_subqueue_stopped - test status of subqueue
2440 * @dev: network device
2441 * @queue_index: sub queue index
2442 *
2443 * Check individual transmit queue of a device with multiple transmit queues.
2444 */
2445 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2446 u16 queue_index)
2447 {
2448 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2449
2450 return netif_tx_queue_stopped(txq);
2451 }
2452
2453 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2454 struct sk_buff *skb)
2455 {
2456 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2457 }
2458
2459 /**
2460 * netif_wake_subqueue - allow sending packets on subqueue
2461 * @dev: network device
2462 * @queue_index: sub queue index
2463 *
2464 * Resume individual transmit queue of a device with multiple transmit queues.
2465 */
2466 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2467 {
2468 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2469 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2470 __netif_schedule(txq->qdisc);
2471 }
2472
2473 #ifdef CONFIG_XPS
2474 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2475 u16 index);
2476 #else
2477 static inline int netif_set_xps_queue(struct net_device *dev,
2478 const struct cpumask *mask,
2479 u16 index)
2480 {
2481 return 0;
2482 }
2483 #endif
2484
2485 /*
2486 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2487 * as a distribution range limit for the returned value.
2488 */
2489 static inline u16 skb_tx_hash(const struct net_device *dev,
2490 const struct sk_buff *skb)
2491 {
2492 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2493 }
2494
2495 /**
2496 * netif_is_multiqueue - test if device has multiple transmit queues
2497 * @dev: network device
2498 *
2499 * Check if device has multiple transmit queues
2500 */
2501 static inline bool netif_is_multiqueue(const struct net_device *dev)
2502 {
2503 return dev->num_tx_queues > 1;
2504 }
2505
2506 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2507
2508 #ifdef CONFIG_SYSFS
2509 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2510 #else
2511 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2512 unsigned int rxq)
2513 {
2514 return 0;
2515 }
2516 #endif
2517
2518 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2519 const struct net_device *from_dev)
2520 {
2521 int err;
2522
2523 err = netif_set_real_num_tx_queues(to_dev,
2524 from_dev->real_num_tx_queues);
2525 if (err)
2526 return err;
2527 #ifdef CONFIG_SYSFS
2528 return netif_set_real_num_rx_queues(to_dev,
2529 from_dev->real_num_rx_queues);
2530 #else
2531 return 0;
2532 #endif
2533 }
2534
2535 #ifdef CONFIG_SYSFS
2536 static inline unsigned int get_netdev_rx_queue_index(
2537 struct netdev_rx_queue *queue)
2538 {
2539 struct net_device *dev = queue->dev;
2540 int index = queue - dev->_rx;
2541
2542 BUG_ON(index >= dev->num_rx_queues);
2543 return index;
2544 }
2545 #endif
2546
2547 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
2548 int netif_get_num_default_rss_queues(void);
2549
2550 enum skb_free_reason {
2551 SKB_REASON_CONSUMED,
2552 SKB_REASON_DROPPED,
2553 };
2554
2555 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2556 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2557
2558 /*
2559 * It is not allowed to call kfree_skb() or consume_skb() from hardware
2560 * interrupt context or with hardware interrupts being disabled.
2561 * (in_irq() || irqs_disabled())
2562 *
2563 * We provide four helpers that can be used in following contexts :
2564 *
2565 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2566 * replacing kfree_skb(skb)
2567 *
2568 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2569 * Typically used in place of consume_skb(skb) in TX completion path
2570 *
2571 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2572 * replacing kfree_skb(skb)
2573 *
2574 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2575 * and consumed a packet. Used in place of consume_skb(skb)
2576 */
2577 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2578 {
2579 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2580 }
2581
2582 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2583 {
2584 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2585 }
2586
2587 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2588 {
2589 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2590 }
2591
2592 static inline void dev_consume_skb_any(struct sk_buff *skb)
2593 {
2594 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2595 }
2596
2597 int netif_rx(struct sk_buff *skb);
2598 int netif_rx_ni(struct sk_buff *skb);
2599 int netif_receive_skb(struct sk_buff *skb);
2600 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2601 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2602 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2603 gro_result_t napi_gro_frags(struct napi_struct *napi);
2604 struct packet_offload *gro_find_receive_by_type(__be16 type);
2605 struct packet_offload *gro_find_complete_by_type(__be16 type);
2606
2607 static inline void napi_free_frags(struct napi_struct *napi)
2608 {
2609 kfree_skb(napi->skb);
2610 napi->skb = NULL;
2611 }
2612
2613 int netdev_rx_handler_register(struct net_device *dev,
2614 rx_handler_func_t *rx_handler,
2615 void *rx_handler_data);
2616 void netdev_rx_handler_unregister(struct net_device *dev);
2617
2618 bool dev_valid_name(const char *name);
2619 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2620 int dev_ethtool(struct net *net, struct ifreq *);
2621 unsigned int dev_get_flags(const struct net_device *);
2622 int __dev_change_flags(struct net_device *, unsigned int flags);
2623 int dev_change_flags(struct net_device *, unsigned int);
2624 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2625 unsigned int gchanges);
2626 int dev_change_name(struct net_device *, const char *);
2627 int dev_set_alias(struct net_device *, const char *, size_t);
2628 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2629 int dev_set_mtu(struct net_device *, int);
2630 void dev_set_group(struct net_device *, int);
2631 int dev_set_mac_address(struct net_device *, struct sockaddr *);
2632 int dev_change_carrier(struct net_device *, bool new_carrier);
2633 int dev_get_phys_port_id(struct net_device *dev,
2634 struct netdev_phys_port_id *ppid);
2635 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2636 struct netdev_queue *txq);
2637 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2638 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
2639
2640 extern int netdev_budget;
2641
2642 /* Called by rtnetlink.c:rtnl_unlock() */
2643 void netdev_run_todo(void);
2644
2645 /**
2646 * dev_put - release reference to device
2647 * @dev: network device
2648 *
2649 * Release reference to device to allow it to be freed.
2650 */
2651 static inline void dev_put(struct net_device *dev)
2652 {
2653 this_cpu_dec(*dev->pcpu_refcnt);
2654 }
2655
2656 /**
2657 * dev_hold - get reference to device
2658 * @dev: network device
2659 *
2660 * Hold reference to device to keep it from being freed.
2661 */
2662 static inline void dev_hold(struct net_device *dev)
2663 {
2664 this_cpu_inc(*dev->pcpu_refcnt);
2665 }
2666
2667 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2668 * and _off may be called from IRQ context, but it is caller
2669 * who is responsible for serialization of these calls.
2670 *
2671 * The name carrier is inappropriate, these functions should really be
2672 * called netif_lowerlayer_*() because they represent the state of any
2673 * kind of lower layer not just hardware media.
2674 */
2675
2676 void linkwatch_init_dev(struct net_device *dev);
2677 void linkwatch_fire_event(struct net_device *dev);
2678 void linkwatch_forget_dev(struct net_device *dev);
2679
2680 /**
2681 * netif_carrier_ok - test if carrier present
2682 * @dev: network device
2683 *
2684 * Check if carrier is present on device
2685 */
2686 static inline bool netif_carrier_ok(const struct net_device *dev)
2687 {
2688 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2689 }
2690
2691 unsigned long dev_trans_start(struct net_device *dev);
2692
2693 void __netdev_watchdog_up(struct net_device *dev);
2694
2695 void netif_carrier_on(struct net_device *dev);
2696
2697 void netif_carrier_off(struct net_device *dev);
2698
2699 /**
2700 * netif_dormant_on - mark device as dormant.
2701 * @dev: network device
2702 *
2703 * Mark device as dormant (as per RFC2863).
2704 *
2705 * The dormant state indicates that the relevant interface is not
2706 * actually in a condition to pass packets (i.e., it is not 'up') but is
2707 * in a "pending" state, waiting for some external event. For "on-
2708 * demand" interfaces, this new state identifies the situation where the
2709 * interface is waiting for events to place it in the up state.
2710 *
2711 */
2712 static inline void netif_dormant_on(struct net_device *dev)
2713 {
2714 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2715 linkwatch_fire_event(dev);
2716 }
2717
2718 /**
2719 * netif_dormant_off - set device as not dormant.
2720 * @dev: network device
2721 *
2722 * Device is not in dormant state.
2723 */
2724 static inline void netif_dormant_off(struct net_device *dev)
2725 {
2726 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2727 linkwatch_fire_event(dev);
2728 }
2729
2730 /**
2731 * netif_dormant - test if carrier present
2732 * @dev: network device
2733 *
2734 * Check if carrier is present on device
2735 */
2736 static inline bool netif_dormant(const struct net_device *dev)
2737 {
2738 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2739 }
2740
2741
2742 /**
2743 * netif_oper_up - test if device is operational
2744 * @dev: network device
2745 *
2746 * Check if carrier is operational
2747 */
2748 static inline bool netif_oper_up(const struct net_device *dev)
2749 {
2750 return (dev->operstate == IF_OPER_UP ||
2751 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2752 }
2753
2754 /**
2755 * netif_device_present - is device available or removed
2756 * @dev: network device
2757 *
2758 * Check if device has not been removed from system.
2759 */
2760 static inline bool netif_device_present(struct net_device *dev)
2761 {
2762 return test_bit(__LINK_STATE_PRESENT, &dev->state);
2763 }
2764
2765 void netif_device_detach(struct net_device *dev);
2766
2767 void netif_device_attach(struct net_device *dev);
2768
2769 /*
2770 * Network interface message level settings
2771 */
2772
2773 enum {
2774 NETIF_MSG_DRV = 0x0001,
2775 NETIF_MSG_PROBE = 0x0002,
2776 NETIF_MSG_LINK = 0x0004,
2777 NETIF_MSG_TIMER = 0x0008,
2778 NETIF_MSG_IFDOWN = 0x0010,
2779 NETIF_MSG_IFUP = 0x0020,
2780 NETIF_MSG_RX_ERR = 0x0040,
2781 NETIF_MSG_TX_ERR = 0x0080,
2782 NETIF_MSG_TX_QUEUED = 0x0100,
2783 NETIF_MSG_INTR = 0x0200,
2784 NETIF_MSG_TX_DONE = 0x0400,
2785 NETIF_MSG_RX_STATUS = 0x0800,
2786 NETIF_MSG_PKTDATA = 0x1000,
2787 NETIF_MSG_HW = 0x2000,
2788 NETIF_MSG_WOL = 0x4000,
2789 };
2790
2791 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2792 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2793 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2794 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2795 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2796 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2797 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2798 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2799 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2800 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2801 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2802 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2803 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2804 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2805 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2806
2807 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2808 {
2809 /* use default */
2810 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2811 return default_msg_enable_bits;
2812 if (debug_value == 0) /* no output */
2813 return 0;
2814 /* set low N bits */
2815 return (1 << debug_value) - 1;
2816 }
2817
2818 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2819 {
2820 spin_lock(&txq->_xmit_lock);
2821 txq->xmit_lock_owner = cpu;
2822 }
2823
2824 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2825 {
2826 spin_lock_bh(&txq->_xmit_lock);
2827 txq->xmit_lock_owner = smp_processor_id();
2828 }
2829
2830 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2831 {
2832 bool ok = spin_trylock(&txq->_xmit_lock);
2833 if (likely(ok))
2834 txq->xmit_lock_owner = smp_processor_id();
2835 return ok;
2836 }
2837
2838 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2839 {
2840 txq->xmit_lock_owner = -1;
2841 spin_unlock(&txq->_xmit_lock);
2842 }
2843
2844 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2845 {
2846 txq->xmit_lock_owner = -1;
2847 spin_unlock_bh(&txq->_xmit_lock);
2848 }
2849
2850 static inline void txq_trans_update(struct netdev_queue *txq)
2851 {
2852 if (txq->xmit_lock_owner != -1)
2853 txq->trans_start = jiffies;
2854 }
2855
2856 /**
2857 * netif_tx_lock - grab network device transmit lock
2858 * @dev: network device
2859 *
2860 * Get network device transmit lock
2861 */
2862 static inline void netif_tx_lock(struct net_device *dev)
2863 {
2864 unsigned int i;
2865 int cpu;
2866
2867 spin_lock(&dev->tx_global_lock);
2868 cpu = smp_processor_id();
2869 for (i = 0; i < dev->num_tx_queues; i++) {
2870 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2871
2872 /* We are the only thread of execution doing a
2873 * freeze, but we have to grab the _xmit_lock in
2874 * order to synchronize with threads which are in
2875 * the ->hard_start_xmit() handler and already
2876 * checked the frozen bit.
2877 */
2878 __netif_tx_lock(txq, cpu);
2879 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2880 __netif_tx_unlock(txq);
2881 }
2882 }
2883
2884 static inline void netif_tx_lock_bh(struct net_device *dev)
2885 {
2886 local_bh_disable();
2887 netif_tx_lock(dev);
2888 }
2889
2890 static inline void netif_tx_unlock(struct net_device *dev)
2891 {
2892 unsigned int i;
2893
2894 for (i = 0; i < dev->num_tx_queues; i++) {
2895 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2896
2897 /* No need to grab the _xmit_lock here. If the
2898 * queue is not stopped for another reason, we
2899 * force a schedule.
2900 */
2901 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2902 netif_schedule_queue(txq);
2903 }
2904 spin_unlock(&dev->tx_global_lock);
2905 }
2906
2907 static inline void netif_tx_unlock_bh(struct net_device *dev)
2908 {
2909 netif_tx_unlock(dev);
2910 local_bh_enable();
2911 }
2912
2913 #define HARD_TX_LOCK(dev, txq, cpu) { \
2914 if ((dev->features & NETIF_F_LLTX) == 0) { \
2915 __netif_tx_lock(txq, cpu); \
2916 } \
2917 }
2918
2919 #define HARD_TX_TRYLOCK(dev, txq) \
2920 (((dev->features & NETIF_F_LLTX) == 0) ? \
2921 __netif_tx_trylock(txq) : \
2922 true )
2923
2924 #define HARD_TX_UNLOCK(dev, txq) { \
2925 if ((dev->features & NETIF_F_LLTX) == 0) { \
2926 __netif_tx_unlock(txq); \
2927 } \
2928 }
2929
2930 static inline void netif_tx_disable(struct net_device *dev)
2931 {
2932 unsigned int i;
2933 int cpu;
2934
2935 local_bh_disable();
2936 cpu = smp_processor_id();
2937 for (i = 0; i < dev->num_tx_queues; i++) {
2938 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2939
2940 __netif_tx_lock(txq, cpu);
2941 netif_tx_stop_queue(txq);
2942 __netif_tx_unlock(txq);
2943 }
2944 local_bh_enable();
2945 }
2946
2947 static inline void netif_addr_lock(struct net_device *dev)
2948 {
2949 spin_lock(&dev->addr_list_lock);
2950 }
2951
2952 static inline void netif_addr_lock_nested(struct net_device *dev)
2953 {
2954 int subclass = SINGLE_DEPTH_NESTING;
2955
2956 if (dev->netdev_ops->ndo_get_lock_subclass)
2957 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
2958
2959 spin_lock_nested(&dev->addr_list_lock, subclass);
2960 }
2961
2962 static inline void netif_addr_lock_bh(struct net_device *dev)
2963 {
2964 spin_lock_bh(&dev->addr_list_lock);
2965 }
2966
2967 static inline void netif_addr_unlock(struct net_device *dev)
2968 {
2969 spin_unlock(&dev->addr_list_lock);
2970 }
2971
2972 static inline void netif_addr_unlock_bh(struct net_device *dev)
2973 {
2974 spin_unlock_bh(&dev->addr_list_lock);
2975 }
2976
2977 /*
2978 * dev_addrs walker. Should be used only for read access. Call with
2979 * rcu_read_lock held.
2980 */
2981 #define for_each_dev_addr(dev, ha) \
2982 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2983
2984 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2985
2986 void ether_setup(struct net_device *dev);
2987
2988 /* Support for loadable net-drivers */
2989 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2990 void (*setup)(struct net_device *),
2991 unsigned int txqs, unsigned int rxqs);
2992 #define alloc_netdev(sizeof_priv, name, setup) \
2993 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2994
2995 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2996 alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2997
2998 int register_netdev(struct net_device *dev);
2999 void unregister_netdev(struct net_device *dev);
3000
3001 /* General hardware address lists handling functions */
3002 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3003 struct netdev_hw_addr_list *from_list, int addr_len);
3004 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3005 struct netdev_hw_addr_list *from_list, int addr_len);
3006 void __hw_addr_init(struct netdev_hw_addr_list *list);
3007
3008 /* Functions used for device addresses handling */
3009 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3010 unsigned char addr_type);
3011 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3012 unsigned char addr_type);
3013 void dev_addr_flush(struct net_device *dev);
3014 int dev_addr_init(struct net_device *dev);
3015
3016 /* Functions used for unicast addresses handling */
3017 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3018 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3019 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3020 int dev_uc_sync(struct net_device *to, struct net_device *from);
3021 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3022 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3023 void dev_uc_flush(struct net_device *dev);
3024 void dev_uc_init(struct net_device *dev);
3025
3026 /* Functions used for multicast addresses handling */
3027 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3028 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3029 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3030 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3031 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3032 int dev_mc_sync(struct net_device *to, struct net_device *from);
3033 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3034 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3035 void dev_mc_flush(struct net_device *dev);
3036 void dev_mc_init(struct net_device *dev);
3037
3038 /* Functions used for secondary unicast and multicast support */
3039 void dev_set_rx_mode(struct net_device *dev);
3040 void __dev_set_rx_mode(struct net_device *dev);
3041 int dev_set_promiscuity(struct net_device *dev, int inc);
3042 int dev_set_allmulti(struct net_device *dev, int inc);
3043 void netdev_state_change(struct net_device *dev);
3044 void netdev_notify_peers(struct net_device *dev);
3045 void netdev_features_change(struct net_device *dev);
3046 /* Load a device via the kmod */
3047 void dev_load(struct net *net, const char *name);
3048 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3049 struct rtnl_link_stats64 *storage);
3050 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3051 const struct net_device_stats *netdev_stats);
3052
3053 extern int netdev_max_backlog;
3054 extern int netdev_tstamp_prequeue;
3055 extern int weight_p;
3056 extern int bpf_jit_enable;
3057
3058 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3059 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3060 struct list_head **iter);
3061 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3062 struct list_head **iter);
3063
3064 /* iterate through upper list, must be called under RCU read lock */
3065 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3066 for (iter = &(dev)->adj_list.upper, \
3067 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3068 updev; \
3069 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3070
3071 /* iterate through upper list, must be called under RCU read lock */
3072 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3073 for (iter = &(dev)->all_adj_list.upper, \
3074 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3075 updev; \
3076 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3077
3078 void *netdev_lower_get_next_private(struct net_device *dev,
3079 struct list_head **iter);
3080 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3081 struct list_head **iter);
3082
3083 #define netdev_for_each_lower_private(dev, priv, iter) \
3084 for (iter = (dev)->adj_list.lower.next, \
3085 priv = netdev_lower_get_next_private(dev, &(iter)); \
3086 priv; \
3087 priv = netdev_lower_get_next_private(dev, &(iter)))
3088
3089 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3090 for (iter = &(dev)->adj_list.lower, \
3091 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3092 priv; \
3093 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3094
3095 void *netdev_lower_get_next(struct net_device *dev,
3096 struct list_head **iter);
3097 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3098 for (iter = &(dev)->adj_list.lower, \
3099 ldev = netdev_lower_get_next(dev, &(iter)); \
3100 ldev; \
3101 ldev = netdev_lower_get_next(dev, &(iter)))
3102
3103 void *netdev_adjacent_get_private(struct list_head *adj_list);
3104 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3105 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3106 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3107 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3108 int netdev_master_upper_dev_link(struct net_device *dev,
3109 struct net_device *upper_dev);
3110 int netdev_master_upper_dev_link_private(struct net_device *dev,
3111 struct net_device *upper_dev,
3112 void *private);
3113 void netdev_upper_dev_unlink(struct net_device *dev,
3114 struct net_device *upper_dev);
3115 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3116 void *netdev_lower_dev_get_private(struct net_device *dev,
3117 struct net_device *lower_dev);
3118 int dev_get_nest_level(struct net_device *dev,
3119 bool (*type_check)(struct net_device *dev));
3120 int skb_checksum_help(struct sk_buff *skb);
3121 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3122 netdev_features_t features, bool tx_path);
3123 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3124 netdev_features_t features);
3125
3126 static inline
3127 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3128 {
3129 return __skb_gso_segment(skb, features, true);
3130 }
3131 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3132
3133 static inline bool can_checksum_protocol(netdev_features_t features,
3134 __be16 protocol)
3135 {
3136 return ((features & NETIF_F_GEN_CSUM) ||
3137 ((features & NETIF_F_V4_CSUM) &&
3138 protocol == htons(ETH_P_IP)) ||
3139 ((features & NETIF_F_V6_CSUM) &&
3140 protocol == htons(ETH_P_IPV6)) ||
3141 ((features & NETIF_F_FCOE_CRC) &&
3142 protocol == htons(ETH_P_FCOE)));
3143 }
3144
3145 #ifdef CONFIG_BUG
3146 void netdev_rx_csum_fault(struct net_device *dev);
3147 #else
3148 static inline void netdev_rx_csum_fault(struct net_device *dev)
3149 {
3150 }
3151 #endif
3152 /* rx skb timestamps */
3153 void net_enable_timestamp(void);
3154 void net_disable_timestamp(void);
3155
3156 #ifdef CONFIG_PROC_FS
3157 int __init dev_proc_init(void);
3158 #else
3159 #define dev_proc_init() 0
3160 #endif
3161
3162 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3163 const void *ns);
3164 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3165 const void *ns);
3166
3167 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3168 {
3169 return netdev_class_create_file_ns(class_attr, NULL);
3170 }
3171
3172 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3173 {
3174 netdev_class_remove_file_ns(class_attr, NULL);
3175 }
3176
3177 extern struct kobj_ns_type_operations net_ns_type_operations;
3178
3179 const char *netdev_drivername(const struct net_device *dev);
3180
3181 void linkwatch_run_queue(void);
3182
3183 static inline netdev_features_t netdev_get_wanted_features(
3184 struct net_device *dev)
3185 {
3186 return (dev->features & ~dev->hw_features) | dev->wanted_features;
3187 }
3188 netdev_features_t netdev_increment_features(netdev_features_t all,
3189 netdev_features_t one, netdev_features_t mask);
3190
3191 /* Allow TSO being used on stacked device :
3192 * Performing the GSO segmentation before last device
3193 * is a performance improvement.
3194 */
3195 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3196 netdev_features_t mask)
3197 {
3198 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3199 }
3200
3201 int __netdev_update_features(struct net_device *dev);
3202 void netdev_update_features(struct net_device *dev);
3203 void netdev_change_features(struct net_device *dev);
3204
3205 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3206 struct net_device *dev);
3207
3208 netdev_features_t netif_skb_features(struct sk_buff *skb);
3209
3210 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3211 {
3212 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3213
3214 /* check flags correspondence */
3215 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3216 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3217 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3218 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3219 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3220 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3221
3222 return (features & feature) == feature;
3223 }
3224
3225 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3226 {
3227 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3228 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3229 }
3230
3231 static inline bool netif_needs_gso(struct sk_buff *skb,
3232 netdev_features_t features)
3233 {
3234 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3235 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3236 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3237 }
3238
3239 static inline void netif_set_gso_max_size(struct net_device *dev,
3240 unsigned int size)
3241 {
3242 dev->gso_max_size = size;
3243 }
3244
3245 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3246 int pulled_hlen, u16 mac_offset,
3247 int mac_len)
3248 {
3249 skb->protocol = protocol;
3250 skb->encapsulation = 1;
3251 skb_push(skb, pulled_hlen);
3252 skb_reset_transport_header(skb);
3253 skb->mac_header = mac_offset;
3254 skb->network_header = skb->mac_header + mac_len;
3255 skb->mac_len = mac_len;
3256 }
3257
3258 static inline bool netif_is_macvlan(struct net_device *dev)
3259 {
3260 return dev->priv_flags & IFF_MACVLAN;
3261 }
3262
3263 static inline bool netif_is_bond_master(struct net_device *dev)
3264 {
3265 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3266 }
3267
3268 static inline bool netif_is_bond_slave(struct net_device *dev)
3269 {
3270 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3271 }
3272
3273 static inline bool netif_supports_nofcs(struct net_device *dev)
3274 {
3275 return dev->priv_flags & IFF_SUPP_NOFCS;
3276 }
3277
3278 extern struct pernet_operations __net_initdata loopback_net_ops;
3279
3280 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3281
3282 /* netdev_printk helpers, similar to dev_printk */
3283
3284 static inline const char *netdev_name(const struct net_device *dev)
3285 {
3286 if (dev->reg_state != NETREG_REGISTERED)
3287 return "(unregistered net_device)";
3288 return dev->name;
3289 }
3290
3291 __printf(3, 4)
3292 int netdev_printk(const char *level, const struct net_device *dev,
3293 const char *format, ...);
3294 __printf(2, 3)
3295 int netdev_emerg(const struct net_device *dev, const char *format, ...);
3296 __printf(2, 3)
3297 int netdev_alert(const struct net_device *dev, const char *format, ...);
3298 __printf(2, 3)
3299 int netdev_crit(const struct net_device *dev, const char *format, ...);
3300 __printf(2, 3)
3301 int netdev_err(const struct net_device *dev, const char *format, ...);
3302 __printf(2, 3)
3303 int netdev_warn(const struct net_device *dev, const char *format, ...);
3304 __printf(2, 3)
3305 int netdev_notice(const struct net_device *dev, const char *format, ...);
3306 __printf(2, 3)
3307 int netdev_info(const struct net_device *dev, const char *format, ...);
3308
3309 #define MODULE_ALIAS_NETDEV(device) \
3310 MODULE_ALIAS("netdev-" device)
3311
3312 #if defined(CONFIG_DYNAMIC_DEBUG)
3313 #define netdev_dbg(__dev, format, args...) \
3314 do { \
3315 dynamic_netdev_dbg(__dev, format, ##args); \
3316 } while (0)
3317 #elif defined(DEBUG)
3318 #define netdev_dbg(__dev, format, args...) \
3319 netdev_printk(KERN_DEBUG, __dev, format, ##args)
3320 #else
3321 #define netdev_dbg(__dev, format, args...) \
3322 ({ \
3323 if (0) \
3324 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3325 0; \
3326 })
3327 #endif
3328
3329 #if defined(VERBOSE_DEBUG)
3330 #define netdev_vdbg netdev_dbg
3331 #else
3332
3333 #define netdev_vdbg(dev, format, args...) \
3334 ({ \
3335 if (0) \
3336 netdev_printk(KERN_DEBUG, dev, format, ##args); \
3337 0; \
3338 })
3339 #endif
3340
3341 /*
3342 * netdev_WARN() acts like dev_printk(), but with the key difference
3343 * of using a WARN/WARN_ON to get the message out, including the
3344 * file/line information and a backtrace.
3345 */
3346 #define netdev_WARN(dev, format, args...) \
3347 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args)
3348
3349 /* netif printk helpers, similar to netdev_printk */
3350
3351 #define netif_printk(priv, type, level, dev, fmt, args...) \
3352 do { \
3353 if (netif_msg_##type(priv)) \
3354 netdev_printk(level, (dev), fmt, ##args); \
3355 } while (0)
3356
3357 #define netif_level(level, priv, type, dev, fmt, args...) \
3358 do { \
3359 if (netif_msg_##type(priv)) \
3360 netdev_##level(dev, fmt, ##args); \
3361 } while (0)
3362
3363 #define netif_emerg(priv, type, dev, fmt, args...) \
3364 netif_level(emerg, priv, type, dev, fmt, ##args)
3365 #define netif_alert(priv, type, dev, fmt, args...) \
3366 netif_level(alert, priv, type, dev, fmt, ##args)
3367 #define netif_crit(priv, type, dev, fmt, args...) \
3368 netif_level(crit, priv, type, dev, fmt, ##args)
3369 #define netif_err(priv, type, dev, fmt, args...) \
3370 netif_level(err, priv, type, dev, fmt, ##args)
3371 #define netif_warn(priv, type, dev, fmt, args...) \
3372 netif_level(warn, priv, type, dev, fmt, ##args)
3373 #define netif_notice(priv, type, dev, fmt, args...) \
3374 netif_level(notice, priv, type, dev, fmt, ##args)
3375 #define netif_info(priv, type, dev, fmt, args...) \
3376 netif_level(info, priv, type, dev, fmt, ##args)
3377
3378 #if defined(CONFIG_DYNAMIC_DEBUG)
3379 #define netif_dbg(priv, type, netdev, format, args...) \
3380 do { \
3381 if (netif_msg_##type(priv)) \
3382 dynamic_netdev_dbg(netdev, format, ##args); \
3383 } while (0)
3384 #elif defined(DEBUG)
3385 #define netif_dbg(priv, type, dev, format, args...) \
3386 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3387 #else
3388 #define netif_dbg(priv, type, dev, format, args...) \
3389 ({ \
3390 if (0) \
3391 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3392 0; \
3393 })
3394 #endif
3395
3396 #if defined(VERBOSE_DEBUG)
3397 #define netif_vdbg netif_dbg
3398 #else
3399 #define netif_vdbg(priv, type, dev, format, args...) \
3400 ({ \
3401 if (0) \
3402 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3403 0; \
3404 })
3405 #endif
3406
3407 /*
3408 * The list of packet types we will receive (as opposed to discard)
3409 * and the routines to invoke.
3410 *
3411 * Why 16. Because with 16 the only overlap we get on a hash of the
3412 * low nibble of the protocol value is RARP/SNAP/X.25.
3413 *
3414 * NOTE: That is no longer true with the addition of VLAN tags. Not
3415 * sure which should go first, but I bet it won't make much
3416 * difference if we are running VLANs. The good news is that
3417 * this protocol won't be in the list unless compiled in, so
3418 * the average user (w/out VLANs) will not be adversely affected.
3419 * --BLG
3420 *
3421 * 0800 IP
3422 * 8100 802.1Q VLAN
3423 * 0001 802.3
3424 * 0002 AX.25
3425 * 0004 802.2
3426 * 8035 RARP
3427 * 0005 SNAP
3428 * 0805 X.25
3429 * 0806 ARP
3430 * 8137 IPX
3431 * 0009 Localtalk
3432 * 86DD IPv6
3433 */
3434 #define PTYPE_HASH_SIZE (16)
3435 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
3436
3437 #endif /* _LINUX_NETDEVICE_H */
This page took 0.101395 seconds and 6 git commands to generate.