net: Embed hh_cache inside of struct neighbour.
[deliverable/linux.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/if.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_link.h>
32
33 #ifdef __KERNEL__
34 #include <linux/pm_qos_params.h>
35 #include <linux/timer.h>
36 #include <linux/delay.h>
37 #include <asm/atomic.h>
38 #include <asm/cache.h>
39 #include <asm/byteorder.h>
40
41 #include <linux/device.h>
42 #include <linux/percpu.h>
43 #include <linux/rculist.h>
44 #include <linux/dmaengine.h>
45 #include <linux/workqueue.h>
46
47 #include <linux/ethtool.h>
48 #include <net/net_namespace.h>
49 #include <net/dsa.h>
50 #ifdef CONFIG_DCB
51 #include <net/dcbnl.h>
52 #endif
53
54 struct vlan_group;
55 struct netpoll_info;
56 struct phy_device;
57 /* 802.11 specific */
58 struct wireless_dev;
59 /* source back-compat hooks */
60 #define SET_ETHTOOL_OPS(netdev,ops) \
61 ( (netdev)->ethtool_ops = (ops) )
62
63 /* hardware address assignment types */
64 #define NET_ADDR_PERM 0 /* address is permanent (default) */
65 #define NET_ADDR_RANDOM 1 /* address is generated randomly */
66 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */
67
68 /* Backlog congestion levels */
69 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
70 #define NET_RX_DROP 1 /* packet dropped */
71
72 /*
73 * Transmit return codes: transmit return codes originate from three different
74 * namespaces:
75 *
76 * - qdisc return codes
77 * - driver transmit return codes
78 * - errno values
79 *
80 * Drivers are allowed to return any one of those in their hard_start_xmit()
81 * function. Real network devices commonly used with qdiscs should only return
82 * the driver transmit return codes though - when qdiscs are used, the actual
83 * transmission happens asynchronously, so the value is not propagated to
84 * higher layers. Virtual network devices transmit synchronously, in this case
85 * the driver transmit return codes are consumed by dev_queue_xmit(), all
86 * others are propagated to higher layers.
87 */
88
89 /* qdisc ->enqueue() return codes. */
90 #define NET_XMIT_SUCCESS 0x00
91 #define NET_XMIT_DROP 0x01 /* skb dropped */
92 #define NET_XMIT_CN 0x02 /* congestion notification */
93 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
94 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
95
96 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
97 * indicates that the device will soon be dropping packets, or already drops
98 * some packets of the same priority; prompting us to send less aggressively. */
99 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
100 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
101
102 /* Driver transmit return codes */
103 #define NETDEV_TX_MASK 0xf0
104
105 enum netdev_tx {
106 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
107 NETDEV_TX_OK = 0x00, /* driver took care of packet */
108 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
109 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
110 };
111 typedef enum netdev_tx netdev_tx_t;
112
113 /*
114 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
115 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
116 */
117 static inline bool dev_xmit_complete(int rc)
118 {
119 /*
120 * Positive cases with an skb consumed by a driver:
121 * - successful transmission (rc == NETDEV_TX_OK)
122 * - error while transmitting (rc < 0)
123 * - error while queueing to a different device (rc & NET_XMIT_MASK)
124 */
125 if (likely(rc < NET_XMIT_MASK))
126 return true;
127
128 return false;
129 }
130
131 #endif
132
133 #define MAX_ADDR_LEN 32 /* Largest hardware address length */
134
135 /* Initial net device group. All devices belong to group 0 by default. */
136 #define INIT_NETDEV_GROUP 0
137
138 #ifdef __KERNEL__
139 /*
140 * Compute the worst case header length according to the protocols
141 * used.
142 */
143
144 #if defined(CONFIG_WLAN) || defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
145 # if defined(CONFIG_MAC80211_MESH)
146 # define LL_MAX_HEADER 128
147 # else
148 # define LL_MAX_HEADER 96
149 # endif
150 #elif defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
151 # define LL_MAX_HEADER 48
152 #else
153 # define LL_MAX_HEADER 32
154 #endif
155
156 #if !defined(CONFIG_NET_IPIP) && !defined(CONFIG_NET_IPIP_MODULE) && \
157 !defined(CONFIG_NET_IPGRE) && !defined(CONFIG_NET_IPGRE_MODULE) && \
158 !defined(CONFIG_IPV6_SIT) && !defined(CONFIG_IPV6_SIT_MODULE) && \
159 !defined(CONFIG_IPV6_TUNNEL) && !defined(CONFIG_IPV6_TUNNEL_MODULE)
160 #define MAX_HEADER LL_MAX_HEADER
161 #else
162 #define MAX_HEADER (LL_MAX_HEADER + 48)
163 #endif
164
165 /*
166 * Old network device statistics. Fields are native words
167 * (unsigned long) so they can be read and written atomically.
168 */
169
170 struct net_device_stats {
171 unsigned long rx_packets;
172 unsigned long tx_packets;
173 unsigned long rx_bytes;
174 unsigned long tx_bytes;
175 unsigned long rx_errors;
176 unsigned long tx_errors;
177 unsigned long rx_dropped;
178 unsigned long tx_dropped;
179 unsigned long multicast;
180 unsigned long collisions;
181 unsigned long rx_length_errors;
182 unsigned long rx_over_errors;
183 unsigned long rx_crc_errors;
184 unsigned long rx_frame_errors;
185 unsigned long rx_fifo_errors;
186 unsigned long rx_missed_errors;
187 unsigned long tx_aborted_errors;
188 unsigned long tx_carrier_errors;
189 unsigned long tx_fifo_errors;
190 unsigned long tx_heartbeat_errors;
191 unsigned long tx_window_errors;
192 unsigned long rx_compressed;
193 unsigned long tx_compressed;
194 };
195
196 #endif /* __KERNEL__ */
197
198
199 /* Media selection options. */
200 enum {
201 IF_PORT_UNKNOWN = 0,
202 IF_PORT_10BASE2,
203 IF_PORT_10BASET,
204 IF_PORT_AUI,
205 IF_PORT_100BASET,
206 IF_PORT_100BASETX,
207 IF_PORT_100BASEFX
208 };
209
210 #ifdef __KERNEL__
211
212 #include <linux/cache.h>
213 #include <linux/skbuff.h>
214
215 struct neighbour;
216 struct neigh_parms;
217 struct sk_buff;
218
219 struct netdev_hw_addr {
220 struct list_head list;
221 unsigned char addr[MAX_ADDR_LEN];
222 unsigned char type;
223 #define NETDEV_HW_ADDR_T_LAN 1
224 #define NETDEV_HW_ADDR_T_SAN 2
225 #define NETDEV_HW_ADDR_T_SLAVE 3
226 #define NETDEV_HW_ADDR_T_UNICAST 4
227 #define NETDEV_HW_ADDR_T_MULTICAST 5
228 bool synced;
229 bool global_use;
230 int refcount;
231 struct rcu_head rcu_head;
232 };
233
234 struct netdev_hw_addr_list {
235 struct list_head list;
236 int count;
237 };
238
239 #define netdev_hw_addr_list_count(l) ((l)->count)
240 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
241 #define netdev_hw_addr_list_for_each(ha, l) \
242 list_for_each_entry(ha, &(l)->list, list)
243
244 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
245 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
246 #define netdev_for_each_uc_addr(ha, dev) \
247 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
248
249 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
250 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
251 #define netdev_for_each_mc_addr(ha, dev) \
252 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
253
254 struct hh_cache {
255 u16 hh_len;
256 u16 __pad;
257 int (*hh_output)(struct sk_buff *skb);
258 seqlock_t hh_lock;
259
260 /* cached hardware header; allow for machine alignment needs. */
261 #define HH_DATA_MOD 16
262 #define HH_DATA_OFF(__len) \
263 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
264 #define HH_DATA_ALIGN(__len) \
265 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
266 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
267 };
268
269 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
270 * Alternative is:
271 * dev->hard_header_len ? (dev->hard_header_len +
272 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
273 *
274 * We could use other alignment values, but we must maintain the
275 * relationship HH alignment <= LL alignment.
276 *
277 * LL_ALLOCATED_SPACE also takes into account the tailroom the device
278 * may need.
279 */
280 #define LL_RESERVED_SPACE(dev) \
281 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
282 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
283 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
284 #define LL_ALLOCATED_SPACE(dev) \
285 ((((dev)->hard_header_len+(dev)->needed_headroom+(dev)->needed_tailroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
286
287 struct header_ops {
288 int (*create) (struct sk_buff *skb, struct net_device *dev,
289 unsigned short type, const void *daddr,
290 const void *saddr, unsigned len);
291 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
292 int (*rebuild)(struct sk_buff *skb);
293 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
294 void (*cache_update)(struct hh_cache *hh,
295 const struct net_device *dev,
296 const unsigned char *haddr);
297 };
298
299 /* These flag bits are private to the generic network queueing
300 * layer, they may not be explicitly referenced by any other
301 * code.
302 */
303
304 enum netdev_state_t {
305 __LINK_STATE_START,
306 __LINK_STATE_PRESENT,
307 __LINK_STATE_NOCARRIER,
308 __LINK_STATE_LINKWATCH_PENDING,
309 __LINK_STATE_DORMANT,
310 };
311
312
313 /*
314 * This structure holds at boot time configured netdevice settings. They
315 * are then used in the device probing.
316 */
317 struct netdev_boot_setup {
318 char name[IFNAMSIZ];
319 struct ifmap map;
320 };
321 #define NETDEV_BOOT_SETUP_MAX 8
322
323 extern int __init netdev_boot_setup(char *str);
324
325 /*
326 * Structure for NAPI scheduling similar to tasklet but with weighting
327 */
328 struct napi_struct {
329 /* The poll_list must only be managed by the entity which
330 * changes the state of the NAPI_STATE_SCHED bit. This means
331 * whoever atomically sets that bit can add this napi_struct
332 * to the per-cpu poll_list, and whoever clears that bit
333 * can remove from the list right before clearing the bit.
334 */
335 struct list_head poll_list;
336
337 unsigned long state;
338 int weight;
339 int (*poll)(struct napi_struct *, int);
340 #ifdef CONFIG_NETPOLL
341 spinlock_t poll_lock;
342 int poll_owner;
343 #endif
344
345 unsigned int gro_count;
346
347 struct net_device *dev;
348 struct list_head dev_list;
349 struct sk_buff *gro_list;
350 struct sk_buff *skb;
351 };
352
353 enum {
354 NAPI_STATE_SCHED, /* Poll is scheduled */
355 NAPI_STATE_DISABLE, /* Disable pending */
356 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
357 };
358
359 enum gro_result {
360 GRO_MERGED,
361 GRO_MERGED_FREE,
362 GRO_HELD,
363 GRO_NORMAL,
364 GRO_DROP,
365 };
366 typedef enum gro_result gro_result_t;
367
368 /*
369 * enum rx_handler_result - Possible return values for rx_handlers.
370 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
371 * further.
372 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
373 * case skb->dev was changed by rx_handler.
374 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
375 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
376 *
377 * rx_handlers are functions called from inside __netif_receive_skb(), to do
378 * special processing of the skb, prior to delivery to protocol handlers.
379 *
380 * Currently, a net_device can only have a single rx_handler registered. Trying
381 * to register a second rx_handler will return -EBUSY.
382 *
383 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
384 * To unregister a rx_handler on a net_device, use
385 * netdev_rx_handler_unregister().
386 *
387 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
388 * do with the skb.
389 *
390 * If the rx_handler consumed to skb in some way, it should return
391 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
392 * the skb to be delivered in some other ways.
393 *
394 * If the rx_handler changed skb->dev, to divert the skb to another
395 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
396 * new device will be called if it exists.
397 *
398 * If the rx_handler consider the skb should be ignored, it should return
399 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
400 * are registred on exact device (ptype->dev == skb->dev).
401 *
402 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
403 * delivered, it should return RX_HANDLER_PASS.
404 *
405 * A device without a registered rx_handler will behave as if rx_handler
406 * returned RX_HANDLER_PASS.
407 */
408
409 enum rx_handler_result {
410 RX_HANDLER_CONSUMED,
411 RX_HANDLER_ANOTHER,
412 RX_HANDLER_EXACT,
413 RX_HANDLER_PASS,
414 };
415 typedef enum rx_handler_result rx_handler_result_t;
416 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
417
418 extern void __napi_schedule(struct napi_struct *n);
419
420 static inline int napi_disable_pending(struct napi_struct *n)
421 {
422 return test_bit(NAPI_STATE_DISABLE, &n->state);
423 }
424
425 /**
426 * napi_schedule_prep - check if napi can be scheduled
427 * @n: napi context
428 *
429 * Test if NAPI routine is already running, and if not mark
430 * it as running. This is used as a condition variable
431 * insure only one NAPI poll instance runs. We also make
432 * sure there is no pending NAPI disable.
433 */
434 static inline int napi_schedule_prep(struct napi_struct *n)
435 {
436 return !napi_disable_pending(n) &&
437 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
438 }
439
440 /**
441 * napi_schedule - schedule NAPI poll
442 * @n: napi context
443 *
444 * Schedule NAPI poll routine to be called if it is not already
445 * running.
446 */
447 static inline void napi_schedule(struct napi_struct *n)
448 {
449 if (napi_schedule_prep(n))
450 __napi_schedule(n);
451 }
452
453 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
454 static inline int napi_reschedule(struct napi_struct *napi)
455 {
456 if (napi_schedule_prep(napi)) {
457 __napi_schedule(napi);
458 return 1;
459 }
460 return 0;
461 }
462
463 /**
464 * napi_complete - NAPI processing complete
465 * @n: napi context
466 *
467 * Mark NAPI processing as complete.
468 */
469 extern void __napi_complete(struct napi_struct *n);
470 extern void napi_complete(struct napi_struct *n);
471
472 /**
473 * napi_disable - prevent NAPI from scheduling
474 * @n: napi context
475 *
476 * Stop NAPI from being scheduled on this context.
477 * Waits till any outstanding processing completes.
478 */
479 static inline void napi_disable(struct napi_struct *n)
480 {
481 set_bit(NAPI_STATE_DISABLE, &n->state);
482 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
483 msleep(1);
484 clear_bit(NAPI_STATE_DISABLE, &n->state);
485 }
486
487 /**
488 * napi_enable - enable NAPI scheduling
489 * @n: napi context
490 *
491 * Resume NAPI from being scheduled on this context.
492 * Must be paired with napi_disable.
493 */
494 static inline void napi_enable(struct napi_struct *n)
495 {
496 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
497 smp_mb__before_clear_bit();
498 clear_bit(NAPI_STATE_SCHED, &n->state);
499 }
500
501 #ifdef CONFIG_SMP
502 /**
503 * napi_synchronize - wait until NAPI is not running
504 * @n: napi context
505 *
506 * Wait until NAPI is done being scheduled on this context.
507 * Waits till any outstanding processing completes but
508 * does not disable future activations.
509 */
510 static inline void napi_synchronize(const struct napi_struct *n)
511 {
512 while (test_bit(NAPI_STATE_SCHED, &n->state))
513 msleep(1);
514 }
515 #else
516 # define napi_synchronize(n) barrier()
517 #endif
518
519 enum netdev_queue_state_t {
520 __QUEUE_STATE_XOFF,
521 __QUEUE_STATE_FROZEN,
522 #define QUEUE_STATE_XOFF_OR_FROZEN ((1 << __QUEUE_STATE_XOFF) | \
523 (1 << __QUEUE_STATE_FROZEN))
524 };
525
526 struct netdev_queue {
527 /*
528 * read mostly part
529 */
530 struct net_device *dev;
531 struct Qdisc *qdisc;
532 unsigned long state;
533 struct Qdisc *qdisc_sleeping;
534 #ifdef CONFIG_RPS
535 struct kobject kobj;
536 #endif
537 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
538 int numa_node;
539 #endif
540 /*
541 * write mostly part
542 */
543 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
544 int xmit_lock_owner;
545 /*
546 * please use this field instead of dev->trans_start
547 */
548 unsigned long trans_start;
549 } ____cacheline_aligned_in_smp;
550
551 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
552 {
553 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
554 return q->numa_node;
555 #else
556 return NUMA_NO_NODE;
557 #endif
558 }
559
560 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
561 {
562 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
563 q->numa_node = node;
564 #endif
565 }
566
567 #ifdef CONFIG_RPS
568 /*
569 * This structure holds an RPS map which can be of variable length. The
570 * map is an array of CPUs.
571 */
572 struct rps_map {
573 unsigned int len;
574 struct rcu_head rcu;
575 u16 cpus[0];
576 };
577 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + (_num * sizeof(u16)))
578
579 /*
580 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
581 * tail pointer for that CPU's input queue at the time of last enqueue, and
582 * a hardware filter index.
583 */
584 struct rps_dev_flow {
585 u16 cpu;
586 u16 filter;
587 unsigned int last_qtail;
588 };
589 #define RPS_NO_FILTER 0xffff
590
591 /*
592 * The rps_dev_flow_table structure contains a table of flow mappings.
593 */
594 struct rps_dev_flow_table {
595 unsigned int mask;
596 struct rcu_head rcu;
597 struct work_struct free_work;
598 struct rps_dev_flow flows[0];
599 };
600 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
601 (_num * sizeof(struct rps_dev_flow)))
602
603 /*
604 * The rps_sock_flow_table contains mappings of flows to the last CPU
605 * on which they were processed by the application (set in recvmsg).
606 */
607 struct rps_sock_flow_table {
608 unsigned int mask;
609 u16 ents[0];
610 };
611 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
612 (_num * sizeof(u16)))
613
614 #define RPS_NO_CPU 0xffff
615
616 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
617 u32 hash)
618 {
619 if (table && hash) {
620 unsigned int cpu, index = hash & table->mask;
621
622 /* We only give a hint, preemption can change cpu under us */
623 cpu = raw_smp_processor_id();
624
625 if (table->ents[index] != cpu)
626 table->ents[index] = cpu;
627 }
628 }
629
630 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
631 u32 hash)
632 {
633 if (table && hash)
634 table->ents[hash & table->mask] = RPS_NO_CPU;
635 }
636
637 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
638
639 #ifdef CONFIG_RFS_ACCEL
640 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
641 u32 flow_id, u16 filter_id);
642 #endif
643
644 /* This structure contains an instance of an RX queue. */
645 struct netdev_rx_queue {
646 struct rps_map __rcu *rps_map;
647 struct rps_dev_flow_table __rcu *rps_flow_table;
648 struct kobject kobj;
649 struct net_device *dev;
650 } ____cacheline_aligned_in_smp;
651 #endif /* CONFIG_RPS */
652
653 #ifdef CONFIG_XPS
654 /*
655 * This structure holds an XPS map which can be of variable length. The
656 * map is an array of queues.
657 */
658 struct xps_map {
659 unsigned int len;
660 unsigned int alloc_len;
661 struct rcu_head rcu;
662 u16 queues[0];
663 };
664 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + (_num * sizeof(u16)))
665 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
666 / sizeof(u16))
667
668 /*
669 * This structure holds all XPS maps for device. Maps are indexed by CPU.
670 */
671 struct xps_dev_maps {
672 struct rcu_head rcu;
673 struct xps_map __rcu *cpu_map[0];
674 };
675 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
676 (nr_cpu_ids * sizeof(struct xps_map *)))
677 #endif /* CONFIG_XPS */
678
679 #define TC_MAX_QUEUE 16
680 #define TC_BITMASK 15
681 /* HW offloaded queuing disciplines txq count and offset maps */
682 struct netdev_tc_txq {
683 u16 count;
684 u16 offset;
685 };
686
687 /*
688 * This structure defines the management hooks for network devices.
689 * The following hooks can be defined; unless noted otherwise, they are
690 * optional and can be filled with a null pointer.
691 *
692 * int (*ndo_init)(struct net_device *dev);
693 * This function is called once when network device is registered.
694 * The network device can use this to any late stage initializaton
695 * or semantic validattion. It can fail with an error code which will
696 * be propogated back to register_netdev
697 *
698 * void (*ndo_uninit)(struct net_device *dev);
699 * This function is called when device is unregistered or when registration
700 * fails. It is not called if init fails.
701 *
702 * int (*ndo_open)(struct net_device *dev);
703 * This function is called when network device transistions to the up
704 * state.
705 *
706 * int (*ndo_stop)(struct net_device *dev);
707 * This function is called when network device transistions to the down
708 * state.
709 *
710 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
711 * struct net_device *dev);
712 * Called when a packet needs to be transmitted.
713 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
714 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
715 * Required can not be NULL.
716 *
717 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
718 * Called to decide which queue to when device supports multiple
719 * transmit queues.
720 *
721 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
722 * This function is called to allow device receiver to make
723 * changes to configuration when multicast or promiscious is enabled.
724 *
725 * void (*ndo_set_rx_mode)(struct net_device *dev);
726 * This function is called device changes address list filtering.
727 *
728 * void (*ndo_set_multicast_list)(struct net_device *dev);
729 * This function is called when the multicast address list changes.
730 *
731 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
732 * This function is called when the Media Access Control address
733 * needs to be changed. If this interface is not defined, the
734 * mac address can not be changed.
735 *
736 * int (*ndo_validate_addr)(struct net_device *dev);
737 * Test if Media Access Control address is valid for the device.
738 *
739 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
740 * Called when a user request an ioctl which can't be handled by
741 * the generic interface code. If not defined ioctl's return
742 * not supported error code.
743 *
744 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
745 * Used to set network devices bus interface parameters. This interface
746 * is retained for legacy reason, new devices should use the bus
747 * interface (PCI) for low level management.
748 *
749 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
750 * Called when a user wants to change the Maximum Transfer Unit
751 * of a device. If not defined, any request to change MTU will
752 * will return an error.
753 *
754 * void (*ndo_tx_timeout)(struct net_device *dev);
755 * Callback uses when the transmitter has not made any progress
756 * for dev->watchdog ticks.
757 *
758 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
759 * struct rtnl_link_stats64 *storage);
760 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
761 * Called when a user wants to get the network device usage
762 * statistics. Drivers must do one of the following:
763 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
764 * rtnl_link_stats64 structure passed by the caller.
765 * 2. Define @ndo_get_stats to update a net_device_stats structure
766 * (which should normally be dev->stats) and return a pointer to
767 * it. The structure may be changed asynchronously only if each
768 * field is written atomically.
769 * 3. Update dev->stats asynchronously and atomically, and define
770 * neither operation.
771 *
772 * void (*ndo_vlan_rx_register)(struct net_device *dev, struct vlan_group *grp);
773 * If device support VLAN receive acceleration
774 * (ie. dev->features & NETIF_F_HW_VLAN_RX), then this function is called
775 * when vlan groups for the device changes. Note: grp is NULL
776 * if no vlan's groups are being used.
777 *
778 * void (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
779 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
780 * this function is called when a VLAN id is registered.
781 *
782 * void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
783 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
784 * this function is called when a VLAN id is unregistered.
785 *
786 * void (*ndo_poll_controller)(struct net_device *dev);
787 *
788 * SR-IOV management functions.
789 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
790 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
791 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
792 * int (*ndo_get_vf_config)(struct net_device *dev,
793 * int vf, struct ifla_vf_info *ivf);
794 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
795 * struct nlattr *port[]);
796 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
797 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
798 * Called to setup 'tc' number of traffic classes in the net device. This
799 * is always called from the stack with the rtnl lock held and netif tx
800 * queues stopped. This allows the netdevice to perform queue management
801 * safely.
802 *
803 * Fiber Channel over Ethernet (FCoE) offload functions.
804 * int (*ndo_fcoe_enable)(struct net_device *dev);
805 * Called when the FCoE protocol stack wants to start using LLD for FCoE
806 * so the underlying device can perform whatever needed configuration or
807 * initialization to support acceleration of FCoE traffic.
808 *
809 * int (*ndo_fcoe_disable)(struct net_device *dev);
810 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
811 * so the underlying device can perform whatever needed clean-ups to
812 * stop supporting acceleration of FCoE traffic.
813 *
814 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
815 * struct scatterlist *sgl, unsigned int sgc);
816 * Called when the FCoE Initiator wants to initialize an I/O that
817 * is a possible candidate for Direct Data Placement (DDP). The LLD can
818 * perform necessary setup and returns 1 to indicate the device is set up
819 * successfully to perform DDP on this I/O, otherwise this returns 0.
820 *
821 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
822 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
823 * indicated by the FC exchange id 'xid', so the underlying device can
824 * clean up and reuse resources for later DDP requests.
825 *
826 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
827 * struct scatterlist *sgl, unsigned int sgc);
828 * Called when the FCoE Target wants to initialize an I/O that
829 * is a possible candidate for Direct Data Placement (DDP). The LLD can
830 * perform necessary setup and returns 1 to indicate the device is set up
831 * successfully to perform DDP on this I/O, otherwise this returns 0.
832 *
833 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
834 * Called when the underlying device wants to override default World Wide
835 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
836 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
837 * protocol stack to use.
838 *
839 * RFS acceleration.
840 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
841 * u16 rxq_index, u32 flow_id);
842 * Set hardware filter for RFS. rxq_index is the target queue index;
843 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
844 * Return the filter ID on success, or a negative error code.
845 *
846 * Slave management functions (for bridge, bonding, etc). User should
847 * call netdev_set_master() to set dev->master properly.
848 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
849 * Called to make another netdev an underling.
850 *
851 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
852 * Called to release previously enslaved netdev.
853 *
854 * Feature/offload setting functions.
855 * u32 (*ndo_fix_features)(struct net_device *dev, u32 features);
856 * Adjusts the requested feature flags according to device-specific
857 * constraints, and returns the resulting flags. Must not modify
858 * the device state.
859 *
860 * int (*ndo_set_features)(struct net_device *dev, u32 features);
861 * Called to update device configuration to new features. Passed
862 * feature set might be less than what was returned by ndo_fix_features()).
863 * Must return >0 or -errno if it changed dev->features itself.
864 *
865 */
866 struct net_device_ops {
867 int (*ndo_init)(struct net_device *dev);
868 void (*ndo_uninit)(struct net_device *dev);
869 int (*ndo_open)(struct net_device *dev);
870 int (*ndo_stop)(struct net_device *dev);
871 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
872 struct net_device *dev);
873 u16 (*ndo_select_queue)(struct net_device *dev,
874 struct sk_buff *skb);
875 void (*ndo_change_rx_flags)(struct net_device *dev,
876 int flags);
877 void (*ndo_set_rx_mode)(struct net_device *dev);
878 void (*ndo_set_multicast_list)(struct net_device *dev);
879 int (*ndo_set_mac_address)(struct net_device *dev,
880 void *addr);
881 int (*ndo_validate_addr)(struct net_device *dev);
882 int (*ndo_do_ioctl)(struct net_device *dev,
883 struct ifreq *ifr, int cmd);
884 int (*ndo_set_config)(struct net_device *dev,
885 struct ifmap *map);
886 int (*ndo_change_mtu)(struct net_device *dev,
887 int new_mtu);
888 int (*ndo_neigh_setup)(struct net_device *dev,
889 struct neigh_parms *);
890 void (*ndo_tx_timeout) (struct net_device *dev);
891
892 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
893 struct rtnl_link_stats64 *storage);
894 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
895
896 void (*ndo_vlan_rx_register)(struct net_device *dev,
897 struct vlan_group *grp);
898 void (*ndo_vlan_rx_add_vid)(struct net_device *dev,
899 unsigned short vid);
900 void (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
901 unsigned short vid);
902 #ifdef CONFIG_NET_POLL_CONTROLLER
903 void (*ndo_poll_controller)(struct net_device *dev);
904 int (*ndo_netpoll_setup)(struct net_device *dev,
905 struct netpoll_info *info);
906 void (*ndo_netpoll_cleanup)(struct net_device *dev);
907 #endif
908 int (*ndo_set_vf_mac)(struct net_device *dev,
909 int queue, u8 *mac);
910 int (*ndo_set_vf_vlan)(struct net_device *dev,
911 int queue, u16 vlan, u8 qos);
912 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
913 int vf, int rate);
914 int (*ndo_get_vf_config)(struct net_device *dev,
915 int vf,
916 struct ifla_vf_info *ivf);
917 int (*ndo_set_vf_port)(struct net_device *dev,
918 int vf,
919 struct nlattr *port[]);
920 int (*ndo_get_vf_port)(struct net_device *dev,
921 int vf, struct sk_buff *skb);
922 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
923 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
924 int (*ndo_fcoe_enable)(struct net_device *dev);
925 int (*ndo_fcoe_disable)(struct net_device *dev);
926 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
927 u16 xid,
928 struct scatterlist *sgl,
929 unsigned int sgc);
930 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
931 u16 xid);
932 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
933 u16 xid,
934 struct scatterlist *sgl,
935 unsigned int sgc);
936 #define NETDEV_FCOE_WWNN 0
937 #define NETDEV_FCOE_WWPN 1
938 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
939 u64 *wwn, int type);
940 #endif
941 #ifdef CONFIG_RFS_ACCEL
942 int (*ndo_rx_flow_steer)(struct net_device *dev,
943 const struct sk_buff *skb,
944 u16 rxq_index,
945 u32 flow_id);
946 #endif
947 int (*ndo_add_slave)(struct net_device *dev,
948 struct net_device *slave_dev);
949 int (*ndo_del_slave)(struct net_device *dev,
950 struct net_device *slave_dev);
951 u32 (*ndo_fix_features)(struct net_device *dev,
952 u32 features);
953 int (*ndo_set_features)(struct net_device *dev,
954 u32 features);
955 };
956
957 /*
958 * The DEVICE structure.
959 * Actually, this whole structure is a big mistake. It mixes I/O
960 * data with strictly "high-level" data, and it has to know about
961 * almost every data structure used in the INET module.
962 *
963 * FIXME: cleanup struct net_device such that network protocol info
964 * moves out.
965 */
966
967 struct net_device {
968
969 /*
970 * This is the first field of the "visible" part of this structure
971 * (i.e. as seen by users in the "Space.c" file). It is the name
972 * of the interface.
973 */
974 char name[IFNAMSIZ];
975
976 struct pm_qos_request_list pm_qos_req;
977
978 /* device name hash chain */
979 struct hlist_node name_hlist;
980 /* snmp alias */
981 char *ifalias;
982
983 /*
984 * I/O specific fields
985 * FIXME: Merge these and struct ifmap into one
986 */
987 unsigned long mem_end; /* shared mem end */
988 unsigned long mem_start; /* shared mem start */
989 unsigned long base_addr; /* device I/O address */
990 unsigned int irq; /* device IRQ number */
991
992 /*
993 * Some hardware also needs these fields, but they are not
994 * part of the usual set specified in Space.c.
995 */
996
997 unsigned long state;
998
999 struct list_head dev_list;
1000 struct list_head napi_list;
1001 struct list_head unreg_list;
1002
1003 /* currently active device features */
1004 u32 features;
1005 /* user-changeable features */
1006 u32 hw_features;
1007 /* user-requested features */
1008 u32 wanted_features;
1009 /* mask of features inheritable by VLAN devices */
1010 u32 vlan_features;
1011
1012 /* Net device feature bits; if you change something,
1013 * also update netdev_features_strings[] in ethtool.c */
1014
1015 #define NETIF_F_SG 1 /* Scatter/gather IO. */
1016 #define NETIF_F_IP_CSUM 2 /* Can checksum TCP/UDP over IPv4. */
1017 #define NETIF_F_NO_CSUM 4 /* Does not require checksum. F.e. loopack. */
1018 #define NETIF_F_HW_CSUM 8 /* Can checksum all the packets. */
1019 #define NETIF_F_IPV6_CSUM 16 /* Can checksum TCP/UDP over IPV6 */
1020 #define NETIF_F_HIGHDMA 32 /* Can DMA to high memory. */
1021 #define NETIF_F_FRAGLIST 64 /* Scatter/gather IO. */
1022 #define NETIF_F_HW_VLAN_TX 128 /* Transmit VLAN hw acceleration */
1023 #define NETIF_F_HW_VLAN_RX 256 /* Receive VLAN hw acceleration */
1024 #define NETIF_F_HW_VLAN_FILTER 512 /* Receive filtering on VLAN */
1025 #define NETIF_F_VLAN_CHALLENGED 1024 /* Device cannot handle VLAN packets */
1026 #define NETIF_F_GSO 2048 /* Enable software GSO. */
1027 #define NETIF_F_LLTX 4096 /* LockLess TX - deprecated. Please */
1028 /* do not use LLTX in new drivers */
1029 #define NETIF_F_NETNS_LOCAL 8192 /* Does not change network namespaces */
1030 #define NETIF_F_GRO 16384 /* Generic receive offload */
1031 #define NETIF_F_LRO 32768 /* large receive offload */
1032
1033 /* the GSO_MASK reserves bits 16 through 23 */
1034 #define NETIF_F_FCOE_CRC (1 << 24) /* FCoE CRC32 */
1035 #define NETIF_F_SCTP_CSUM (1 << 25) /* SCTP checksum offload */
1036 #define NETIF_F_FCOE_MTU (1 << 26) /* Supports max FCoE MTU, 2158 bytes*/
1037 #define NETIF_F_NTUPLE (1 << 27) /* N-tuple filters supported */
1038 #define NETIF_F_RXHASH (1 << 28) /* Receive hashing offload */
1039 #define NETIF_F_RXCSUM (1 << 29) /* Receive checksumming offload */
1040 #define NETIF_F_NOCACHE_COPY (1 << 30) /* Use no-cache copyfromuser */
1041 #define NETIF_F_LOOPBACK (1 << 31) /* Enable loopback */
1042
1043 /* Segmentation offload features */
1044 #define NETIF_F_GSO_SHIFT 16
1045 #define NETIF_F_GSO_MASK 0x00ff0000
1046 #define NETIF_F_TSO (SKB_GSO_TCPV4 << NETIF_F_GSO_SHIFT)
1047 #define NETIF_F_UFO (SKB_GSO_UDP << NETIF_F_GSO_SHIFT)
1048 #define NETIF_F_GSO_ROBUST (SKB_GSO_DODGY << NETIF_F_GSO_SHIFT)
1049 #define NETIF_F_TSO_ECN (SKB_GSO_TCP_ECN << NETIF_F_GSO_SHIFT)
1050 #define NETIF_F_TSO6 (SKB_GSO_TCPV6 << NETIF_F_GSO_SHIFT)
1051 #define NETIF_F_FSO (SKB_GSO_FCOE << NETIF_F_GSO_SHIFT)
1052
1053 /* Features valid for ethtool to change */
1054 /* = all defined minus driver/device-class-related */
1055 #define NETIF_F_NEVER_CHANGE (NETIF_F_VLAN_CHALLENGED | \
1056 NETIF_F_LLTX | NETIF_F_NETNS_LOCAL)
1057 #define NETIF_F_ETHTOOL_BITS (0xff3fffff & ~NETIF_F_NEVER_CHANGE)
1058
1059 /* List of features with software fallbacks. */
1060 #define NETIF_F_GSO_SOFTWARE (NETIF_F_TSO | NETIF_F_TSO_ECN | \
1061 NETIF_F_TSO6 | NETIF_F_UFO)
1062
1063
1064 #define NETIF_F_GEN_CSUM (NETIF_F_NO_CSUM | NETIF_F_HW_CSUM)
1065 #define NETIF_F_V4_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IP_CSUM)
1066 #define NETIF_F_V6_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IPV6_CSUM)
1067 #define NETIF_F_ALL_CSUM (NETIF_F_V4_CSUM | NETIF_F_V6_CSUM)
1068
1069 #define NETIF_F_ALL_TSO (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1070
1071 #define NETIF_F_ALL_FCOE (NETIF_F_FCOE_CRC | NETIF_F_FCOE_MTU | \
1072 NETIF_F_FSO)
1073
1074 #define NETIF_F_ALL_TX_OFFLOADS (NETIF_F_ALL_CSUM | NETIF_F_SG | \
1075 NETIF_F_FRAGLIST | NETIF_F_ALL_TSO | \
1076 NETIF_F_HIGHDMA | \
1077 NETIF_F_SCTP_CSUM | \
1078 NETIF_F_ALL_FCOE)
1079
1080 /*
1081 * If one device supports one of these features, then enable them
1082 * for all in netdev_increment_features.
1083 */
1084 #define NETIF_F_ONE_FOR_ALL (NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ROBUST | \
1085 NETIF_F_SG | NETIF_F_HIGHDMA | \
1086 NETIF_F_FRAGLIST | NETIF_F_VLAN_CHALLENGED)
1087 /*
1088 * If one device doesn't support one of these features, then disable it
1089 * for all in netdev_increment_features.
1090 */
1091 #define NETIF_F_ALL_FOR_ALL (NETIF_F_NOCACHE_COPY | NETIF_F_FSO)
1092
1093 /* changeable features with no special hardware requirements */
1094 #define NETIF_F_SOFT_FEATURES (NETIF_F_GSO | NETIF_F_GRO)
1095
1096 /* Interface index. Unique device identifier */
1097 int ifindex;
1098 int iflink;
1099
1100 struct net_device_stats stats;
1101 atomic_long_t rx_dropped; /* dropped packets by core network
1102 * Do not use this in drivers.
1103 */
1104
1105 #ifdef CONFIG_WIRELESS_EXT
1106 /* List of functions to handle Wireless Extensions (instead of ioctl).
1107 * See <net/iw_handler.h> for details. Jean II */
1108 const struct iw_handler_def * wireless_handlers;
1109 /* Instance data managed by the core of Wireless Extensions. */
1110 struct iw_public_data * wireless_data;
1111 #endif
1112 /* Management operations */
1113 const struct net_device_ops *netdev_ops;
1114 const struct ethtool_ops *ethtool_ops;
1115
1116 /* Hardware header description */
1117 const struct header_ops *header_ops;
1118
1119 unsigned int flags; /* interface flags (a la BSD) */
1120 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. */
1121 unsigned short gflags;
1122 unsigned short padded; /* How much padding added by alloc_netdev() */
1123
1124 unsigned char operstate; /* RFC2863 operstate */
1125 unsigned char link_mode; /* mapping policy to operstate */
1126
1127 unsigned char if_port; /* Selectable AUI, TP,..*/
1128 unsigned char dma; /* DMA channel */
1129
1130 unsigned int mtu; /* interface MTU value */
1131 unsigned short type; /* interface hardware type */
1132 unsigned short hard_header_len; /* hardware hdr length */
1133
1134 /* extra head- and tailroom the hardware may need, but not in all cases
1135 * can this be guaranteed, especially tailroom. Some cases also use
1136 * LL_MAX_HEADER instead to allocate the skb.
1137 */
1138 unsigned short needed_headroom;
1139 unsigned short needed_tailroom;
1140
1141 /* Interface address info. */
1142 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1143 unsigned char addr_assign_type; /* hw address assignment type */
1144 unsigned char addr_len; /* hardware address length */
1145 unsigned short dev_id; /* for shared network cards */
1146
1147 spinlock_t addr_list_lock;
1148 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
1149 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
1150 int uc_promisc;
1151 unsigned int promiscuity;
1152 unsigned int allmulti;
1153
1154
1155 /* Protocol specific pointers */
1156
1157 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1158 struct vlan_group __rcu *vlgrp; /* VLAN group */
1159 #endif
1160 #ifdef CONFIG_NET_DSA
1161 void *dsa_ptr; /* dsa specific data */
1162 #endif
1163 void *atalk_ptr; /* AppleTalk link */
1164 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1165 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1166 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1167 void *ec_ptr; /* Econet specific data */
1168 void *ax25_ptr; /* AX.25 specific data */
1169 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1170 assign before registering */
1171
1172 /*
1173 * Cache lines mostly used on receive path (including eth_type_trans())
1174 */
1175 unsigned long last_rx; /* Time of last Rx
1176 * This should not be set in
1177 * drivers, unless really needed,
1178 * because network stack (bonding)
1179 * use it if/when necessary, to
1180 * avoid dirtying this cache line.
1181 */
1182
1183 struct net_device *master; /* Pointer to master device of a group,
1184 * which this device is member of.
1185 */
1186
1187 /* Interface address info used in eth_type_trans() */
1188 unsigned char *dev_addr; /* hw address, (before bcast
1189 because most packets are
1190 unicast) */
1191
1192 struct netdev_hw_addr_list dev_addrs; /* list of device
1193 hw addresses */
1194
1195 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1196
1197 #ifdef CONFIG_RPS
1198 struct kset *queues_kset;
1199
1200 struct netdev_rx_queue *_rx;
1201
1202 /* Number of RX queues allocated at register_netdev() time */
1203 unsigned int num_rx_queues;
1204
1205 /* Number of RX queues currently active in device */
1206 unsigned int real_num_rx_queues;
1207
1208 #ifdef CONFIG_RFS_ACCEL
1209 /* CPU reverse-mapping for RX completion interrupts, indexed
1210 * by RX queue number. Assigned by driver. This must only be
1211 * set if the ndo_rx_flow_steer operation is defined. */
1212 struct cpu_rmap *rx_cpu_rmap;
1213 #endif
1214 #endif
1215
1216 rx_handler_func_t __rcu *rx_handler;
1217 void __rcu *rx_handler_data;
1218
1219 struct netdev_queue __rcu *ingress_queue;
1220
1221 /*
1222 * Cache lines mostly used on transmit path
1223 */
1224 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1225
1226 /* Number of TX queues allocated at alloc_netdev_mq() time */
1227 unsigned int num_tx_queues;
1228
1229 /* Number of TX queues currently active in device */
1230 unsigned int real_num_tx_queues;
1231
1232 /* root qdisc from userspace point of view */
1233 struct Qdisc *qdisc;
1234
1235 unsigned long tx_queue_len; /* Max frames per queue allowed */
1236 spinlock_t tx_global_lock;
1237
1238 #ifdef CONFIG_XPS
1239 struct xps_dev_maps __rcu *xps_maps;
1240 #endif
1241
1242 /* These may be needed for future network-power-down code. */
1243
1244 /*
1245 * trans_start here is expensive for high speed devices on SMP,
1246 * please use netdev_queue->trans_start instead.
1247 */
1248 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1249
1250 int watchdog_timeo; /* used by dev_watchdog() */
1251 struct timer_list watchdog_timer;
1252
1253 /* Number of references to this device */
1254 int __percpu *pcpu_refcnt;
1255
1256 /* delayed register/unregister */
1257 struct list_head todo_list;
1258 /* device index hash chain */
1259 struct hlist_node index_hlist;
1260
1261 struct list_head link_watch_list;
1262
1263 /* register/unregister state machine */
1264 enum { NETREG_UNINITIALIZED=0,
1265 NETREG_REGISTERED, /* completed register_netdevice */
1266 NETREG_UNREGISTERING, /* called unregister_netdevice */
1267 NETREG_UNREGISTERED, /* completed unregister todo */
1268 NETREG_RELEASED, /* called free_netdev */
1269 NETREG_DUMMY, /* dummy device for NAPI poll */
1270 } reg_state:8;
1271
1272 bool dismantle; /* device is going do be freed */
1273
1274 enum {
1275 RTNL_LINK_INITIALIZED,
1276 RTNL_LINK_INITIALIZING,
1277 } rtnl_link_state:16;
1278
1279 /* Called from unregister, can be used to call free_netdev */
1280 void (*destructor)(struct net_device *dev);
1281
1282 #ifdef CONFIG_NETPOLL
1283 struct netpoll_info *npinfo;
1284 #endif
1285
1286 #ifdef CONFIG_NET_NS
1287 /* Network namespace this network device is inside */
1288 struct net *nd_net;
1289 #endif
1290
1291 /* mid-layer private */
1292 union {
1293 void *ml_priv;
1294 struct pcpu_lstats __percpu *lstats; /* loopback stats */
1295 struct pcpu_tstats __percpu *tstats; /* tunnel stats */
1296 struct pcpu_dstats __percpu *dstats; /* dummy stats */
1297 };
1298 /* GARP */
1299 struct garp_port __rcu *garp_port;
1300
1301 /* class/net/name entry */
1302 struct device dev;
1303 /* space for optional device, statistics, and wireless sysfs groups */
1304 const struct attribute_group *sysfs_groups[4];
1305
1306 /* rtnetlink link ops */
1307 const struct rtnl_link_ops *rtnl_link_ops;
1308
1309 /* for setting kernel sock attribute on TCP connection setup */
1310 #define GSO_MAX_SIZE 65536
1311 unsigned int gso_max_size;
1312
1313 #ifdef CONFIG_DCB
1314 /* Data Center Bridging netlink ops */
1315 const struct dcbnl_rtnl_ops *dcbnl_ops;
1316 #endif
1317 u8 num_tc;
1318 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1319 u8 prio_tc_map[TC_BITMASK + 1];
1320
1321 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
1322 /* max exchange id for FCoE LRO by ddp */
1323 unsigned int fcoe_ddp_xid;
1324 #endif
1325 /* phy device may attach itself for hardware timestamping */
1326 struct phy_device *phydev;
1327
1328 /* group the device belongs to */
1329 int group;
1330 };
1331 #define to_net_dev(d) container_of(d, struct net_device, dev)
1332
1333 #define NETDEV_ALIGN 32
1334
1335 static inline
1336 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1337 {
1338 return dev->prio_tc_map[prio & TC_BITMASK];
1339 }
1340
1341 static inline
1342 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1343 {
1344 if (tc >= dev->num_tc)
1345 return -EINVAL;
1346
1347 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1348 return 0;
1349 }
1350
1351 static inline
1352 void netdev_reset_tc(struct net_device *dev)
1353 {
1354 dev->num_tc = 0;
1355 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1356 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1357 }
1358
1359 static inline
1360 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1361 {
1362 if (tc >= dev->num_tc)
1363 return -EINVAL;
1364
1365 dev->tc_to_txq[tc].count = count;
1366 dev->tc_to_txq[tc].offset = offset;
1367 return 0;
1368 }
1369
1370 static inline
1371 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1372 {
1373 if (num_tc > TC_MAX_QUEUE)
1374 return -EINVAL;
1375
1376 dev->num_tc = num_tc;
1377 return 0;
1378 }
1379
1380 static inline
1381 int netdev_get_num_tc(struct net_device *dev)
1382 {
1383 return dev->num_tc;
1384 }
1385
1386 static inline
1387 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1388 unsigned int index)
1389 {
1390 return &dev->_tx[index];
1391 }
1392
1393 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1394 void (*f)(struct net_device *,
1395 struct netdev_queue *,
1396 void *),
1397 void *arg)
1398 {
1399 unsigned int i;
1400
1401 for (i = 0; i < dev->num_tx_queues; i++)
1402 f(dev, &dev->_tx[i], arg);
1403 }
1404
1405 /*
1406 * Net namespace inlines
1407 */
1408 static inline
1409 struct net *dev_net(const struct net_device *dev)
1410 {
1411 return read_pnet(&dev->nd_net);
1412 }
1413
1414 static inline
1415 void dev_net_set(struct net_device *dev, struct net *net)
1416 {
1417 #ifdef CONFIG_NET_NS
1418 release_net(dev->nd_net);
1419 dev->nd_net = hold_net(net);
1420 #endif
1421 }
1422
1423 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1424 {
1425 #ifdef CONFIG_NET_DSA_TAG_DSA
1426 if (dev->dsa_ptr != NULL)
1427 return dsa_uses_dsa_tags(dev->dsa_ptr);
1428 #endif
1429
1430 return 0;
1431 }
1432
1433 #ifndef CONFIG_NET_NS
1434 static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1435 {
1436 skb->dev = dev;
1437 }
1438 #else /* CONFIG_NET_NS */
1439 void skb_set_dev(struct sk_buff *skb, struct net_device *dev);
1440 #endif
1441
1442 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1443 {
1444 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1445 if (dev->dsa_ptr != NULL)
1446 return dsa_uses_trailer_tags(dev->dsa_ptr);
1447 #endif
1448
1449 return 0;
1450 }
1451
1452 /**
1453 * netdev_priv - access network device private data
1454 * @dev: network device
1455 *
1456 * Get network device private data
1457 */
1458 static inline void *netdev_priv(const struct net_device *dev)
1459 {
1460 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1461 }
1462
1463 /* Set the sysfs physical device reference for the network logical device
1464 * if set prior to registration will cause a symlink during initialization.
1465 */
1466 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1467
1468 /* Set the sysfs device type for the network logical device to allow
1469 * fin grained indentification of different network device types. For
1470 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1471 */
1472 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1473
1474 /**
1475 * netif_napi_add - initialize a napi context
1476 * @dev: network device
1477 * @napi: napi context
1478 * @poll: polling function
1479 * @weight: default weight
1480 *
1481 * netif_napi_add() must be used to initialize a napi context prior to calling
1482 * *any* of the other napi related functions.
1483 */
1484 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1485 int (*poll)(struct napi_struct *, int), int weight);
1486
1487 /**
1488 * netif_napi_del - remove a napi context
1489 * @napi: napi context
1490 *
1491 * netif_napi_del() removes a napi context from the network device napi list
1492 */
1493 void netif_napi_del(struct napi_struct *napi);
1494
1495 struct napi_gro_cb {
1496 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1497 void *frag0;
1498
1499 /* Length of frag0. */
1500 unsigned int frag0_len;
1501
1502 /* This indicates where we are processing relative to skb->data. */
1503 int data_offset;
1504
1505 /* This is non-zero if the packet may be of the same flow. */
1506 int same_flow;
1507
1508 /* This is non-zero if the packet cannot be merged with the new skb. */
1509 int flush;
1510
1511 /* Number of segments aggregated. */
1512 int count;
1513
1514 /* Free the skb? */
1515 int free;
1516 };
1517
1518 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1519
1520 struct packet_type {
1521 __be16 type; /* This is really htons(ether_type). */
1522 struct net_device *dev; /* NULL is wildcarded here */
1523 int (*func) (struct sk_buff *,
1524 struct net_device *,
1525 struct packet_type *,
1526 struct net_device *);
1527 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1528 u32 features);
1529 int (*gso_send_check)(struct sk_buff *skb);
1530 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1531 struct sk_buff *skb);
1532 int (*gro_complete)(struct sk_buff *skb);
1533 void *af_packet_priv;
1534 struct list_head list;
1535 };
1536
1537 #include <linux/notifier.h>
1538
1539 extern rwlock_t dev_base_lock; /* Device list lock */
1540
1541
1542 #define for_each_netdev(net, d) \
1543 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1544 #define for_each_netdev_reverse(net, d) \
1545 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1546 #define for_each_netdev_rcu(net, d) \
1547 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1548 #define for_each_netdev_safe(net, d, n) \
1549 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1550 #define for_each_netdev_continue(net, d) \
1551 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1552 #define for_each_netdev_continue_rcu(net, d) \
1553 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1554 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1555
1556 static inline struct net_device *next_net_device(struct net_device *dev)
1557 {
1558 struct list_head *lh;
1559 struct net *net;
1560
1561 net = dev_net(dev);
1562 lh = dev->dev_list.next;
1563 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1564 }
1565
1566 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1567 {
1568 struct list_head *lh;
1569 struct net *net;
1570
1571 net = dev_net(dev);
1572 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1573 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1574 }
1575
1576 static inline struct net_device *first_net_device(struct net *net)
1577 {
1578 return list_empty(&net->dev_base_head) ? NULL :
1579 net_device_entry(net->dev_base_head.next);
1580 }
1581
1582 static inline struct net_device *first_net_device_rcu(struct net *net)
1583 {
1584 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1585
1586 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1587 }
1588
1589 extern int netdev_boot_setup_check(struct net_device *dev);
1590 extern unsigned long netdev_boot_base(const char *prefix, int unit);
1591 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1592 const char *hwaddr);
1593 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1594 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1595 extern void dev_add_pack(struct packet_type *pt);
1596 extern void dev_remove_pack(struct packet_type *pt);
1597 extern void __dev_remove_pack(struct packet_type *pt);
1598
1599 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1600 unsigned short mask);
1601 extern struct net_device *dev_get_by_name(struct net *net, const char *name);
1602 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1603 extern struct net_device *__dev_get_by_name(struct net *net, const char *name);
1604 extern int dev_alloc_name(struct net_device *dev, const char *name);
1605 extern int dev_open(struct net_device *dev);
1606 extern int dev_close(struct net_device *dev);
1607 extern void dev_disable_lro(struct net_device *dev);
1608 extern int dev_queue_xmit(struct sk_buff *skb);
1609 extern int register_netdevice(struct net_device *dev);
1610 extern void unregister_netdevice_queue(struct net_device *dev,
1611 struct list_head *head);
1612 extern void unregister_netdevice_many(struct list_head *head);
1613 static inline void unregister_netdevice(struct net_device *dev)
1614 {
1615 unregister_netdevice_queue(dev, NULL);
1616 }
1617
1618 extern int netdev_refcnt_read(const struct net_device *dev);
1619 extern void free_netdev(struct net_device *dev);
1620 extern void synchronize_net(void);
1621 extern int register_netdevice_notifier(struct notifier_block *nb);
1622 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1623 extern int init_dummy_netdev(struct net_device *dev);
1624 extern void netdev_resync_ops(struct net_device *dev);
1625
1626 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1627 extern struct net_device *dev_get_by_index(struct net *net, int ifindex);
1628 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1629 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1630 extern int dev_restart(struct net_device *dev);
1631 #ifdef CONFIG_NETPOLL_TRAP
1632 extern int netpoll_trap(void);
1633 #endif
1634 extern int skb_gro_receive(struct sk_buff **head,
1635 struct sk_buff *skb);
1636 extern void skb_gro_reset_offset(struct sk_buff *skb);
1637
1638 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1639 {
1640 return NAPI_GRO_CB(skb)->data_offset;
1641 }
1642
1643 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1644 {
1645 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1646 }
1647
1648 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1649 {
1650 NAPI_GRO_CB(skb)->data_offset += len;
1651 }
1652
1653 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1654 unsigned int offset)
1655 {
1656 return NAPI_GRO_CB(skb)->frag0 + offset;
1657 }
1658
1659 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1660 {
1661 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1662 }
1663
1664 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1665 unsigned int offset)
1666 {
1667 NAPI_GRO_CB(skb)->frag0 = NULL;
1668 NAPI_GRO_CB(skb)->frag0_len = 0;
1669 return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL;
1670 }
1671
1672 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1673 {
1674 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1675 }
1676
1677 static inline void *skb_gro_network_header(struct sk_buff *skb)
1678 {
1679 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1680 skb_network_offset(skb);
1681 }
1682
1683 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1684 unsigned short type,
1685 const void *daddr, const void *saddr,
1686 unsigned len)
1687 {
1688 if (!dev->header_ops || !dev->header_ops->create)
1689 return 0;
1690
1691 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1692 }
1693
1694 static inline int dev_parse_header(const struct sk_buff *skb,
1695 unsigned char *haddr)
1696 {
1697 const struct net_device *dev = skb->dev;
1698
1699 if (!dev->header_ops || !dev->header_ops->parse)
1700 return 0;
1701 return dev->header_ops->parse(skb, haddr);
1702 }
1703
1704 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1705 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1706 static inline int unregister_gifconf(unsigned int family)
1707 {
1708 return register_gifconf(family, NULL);
1709 }
1710
1711 /*
1712 * Incoming packets are placed on per-cpu queues
1713 */
1714 struct softnet_data {
1715 struct Qdisc *output_queue;
1716 struct Qdisc **output_queue_tailp;
1717 struct list_head poll_list;
1718 struct sk_buff *completion_queue;
1719 struct sk_buff_head process_queue;
1720
1721 /* stats */
1722 unsigned int processed;
1723 unsigned int time_squeeze;
1724 unsigned int cpu_collision;
1725 unsigned int received_rps;
1726
1727 #ifdef CONFIG_RPS
1728 struct softnet_data *rps_ipi_list;
1729
1730 /* Elements below can be accessed between CPUs for RPS */
1731 struct call_single_data csd ____cacheline_aligned_in_smp;
1732 struct softnet_data *rps_ipi_next;
1733 unsigned int cpu;
1734 unsigned int input_queue_head;
1735 unsigned int input_queue_tail;
1736 #endif
1737 unsigned dropped;
1738 struct sk_buff_head input_pkt_queue;
1739 struct napi_struct backlog;
1740 };
1741
1742 static inline void input_queue_head_incr(struct softnet_data *sd)
1743 {
1744 #ifdef CONFIG_RPS
1745 sd->input_queue_head++;
1746 #endif
1747 }
1748
1749 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1750 unsigned int *qtail)
1751 {
1752 #ifdef CONFIG_RPS
1753 *qtail = ++sd->input_queue_tail;
1754 #endif
1755 }
1756
1757 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1758
1759 extern void __netif_schedule(struct Qdisc *q);
1760
1761 static inline void netif_schedule_queue(struct netdev_queue *txq)
1762 {
1763 if (!test_bit(__QUEUE_STATE_XOFF, &txq->state))
1764 __netif_schedule(txq->qdisc);
1765 }
1766
1767 static inline void netif_tx_schedule_all(struct net_device *dev)
1768 {
1769 unsigned int i;
1770
1771 for (i = 0; i < dev->num_tx_queues; i++)
1772 netif_schedule_queue(netdev_get_tx_queue(dev, i));
1773 }
1774
1775 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1776 {
1777 clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1778 }
1779
1780 /**
1781 * netif_start_queue - allow transmit
1782 * @dev: network device
1783 *
1784 * Allow upper layers to call the device hard_start_xmit routine.
1785 */
1786 static inline void netif_start_queue(struct net_device *dev)
1787 {
1788 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1789 }
1790
1791 static inline void netif_tx_start_all_queues(struct net_device *dev)
1792 {
1793 unsigned int i;
1794
1795 for (i = 0; i < dev->num_tx_queues; i++) {
1796 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1797 netif_tx_start_queue(txq);
1798 }
1799 }
1800
1801 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1802 {
1803 #ifdef CONFIG_NETPOLL_TRAP
1804 if (netpoll_trap()) {
1805 netif_tx_start_queue(dev_queue);
1806 return;
1807 }
1808 #endif
1809 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state))
1810 __netif_schedule(dev_queue->qdisc);
1811 }
1812
1813 /**
1814 * netif_wake_queue - restart transmit
1815 * @dev: network device
1816 *
1817 * Allow upper layers to call the device hard_start_xmit routine.
1818 * Used for flow control when transmit resources are available.
1819 */
1820 static inline void netif_wake_queue(struct net_device *dev)
1821 {
1822 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1823 }
1824
1825 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1826 {
1827 unsigned int i;
1828
1829 for (i = 0; i < dev->num_tx_queues; i++) {
1830 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1831 netif_tx_wake_queue(txq);
1832 }
1833 }
1834
1835 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1836 {
1837 if (WARN_ON(!dev_queue)) {
1838 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1839 return;
1840 }
1841 set_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1842 }
1843
1844 /**
1845 * netif_stop_queue - stop transmitted packets
1846 * @dev: network device
1847 *
1848 * Stop upper layers calling the device hard_start_xmit routine.
1849 * Used for flow control when transmit resources are unavailable.
1850 */
1851 static inline void netif_stop_queue(struct net_device *dev)
1852 {
1853 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1854 }
1855
1856 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1857 {
1858 unsigned int i;
1859
1860 for (i = 0; i < dev->num_tx_queues; i++) {
1861 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1862 netif_tx_stop_queue(txq);
1863 }
1864 }
1865
1866 static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1867 {
1868 return test_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1869 }
1870
1871 /**
1872 * netif_queue_stopped - test if transmit queue is flowblocked
1873 * @dev: network device
1874 *
1875 * Test if transmit queue on device is currently unable to send.
1876 */
1877 static inline int netif_queue_stopped(const struct net_device *dev)
1878 {
1879 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1880 }
1881
1882 static inline int netif_tx_queue_frozen_or_stopped(const struct netdev_queue *dev_queue)
1883 {
1884 return dev_queue->state & QUEUE_STATE_XOFF_OR_FROZEN;
1885 }
1886
1887 /**
1888 * netif_running - test if up
1889 * @dev: network device
1890 *
1891 * Test if the device has been brought up.
1892 */
1893 static inline int netif_running(const struct net_device *dev)
1894 {
1895 return test_bit(__LINK_STATE_START, &dev->state);
1896 }
1897
1898 /*
1899 * Routines to manage the subqueues on a device. We only need start
1900 * stop, and a check if it's stopped. All other device management is
1901 * done at the overall netdevice level.
1902 * Also test the device if we're multiqueue.
1903 */
1904
1905 /**
1906 * netif_start_subqueue - allow sending packets on subqueue
1907 * @dev: network device
1908 * @queue_index: sub queue index
1909 *
1910 * Start individual transmit queue of a device with multiple transmit queues.
1911 */
1912 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
1913 {
1914 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1915
1916 netif_tx_start_queue(txq);
1917 }
1918
1919 /**
1920 * netif_stop_subqueue - stop sending packets on subqueue
1921 * @dev: network device
1922 * @queue_index: sub queue index
1923 *
1924 * Stop individual transmit queue of a device with multiple transmit queues.
1925 */
1926 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
1927 {
1928 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1929 #ifdef CONFIG_NETPOLL_TRAP
1930 if (netpoll_trap())
1931 return;
1932 #endif
1933 netif_tx_stop_queue(txq);
1934 }
1935
1936 /**
1937 * netif_subqueue_stopped - test status of subqueue
1938 * @dev: network device
1939 * @queue_index: sub queue index
1940 *
1941 * Check individual transmit queue of a device with multiple transmit queues.
1942 */
1943 static inline int __netif_subqueue_stopped(const struct net_device *dev,
1944 u16 queue_index)
1945 {
1946 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1947
1948 return netif_tx_queue_stopped(txq);
1949 }
1950
1951 static inline int netif_subqueue_stopped(const struct net_device *dev,
1952 struct sk_buff *skb)
1953 {
1954 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
1955 }
1956
1957 /**
1958 * netif_wake_subqueue - allow sending packets on subqueue
1959 * @dev: network device
1960 * @queue_index: sub queue index
1961 *
1962 * Resume individual transmit queue of a device with multiple transmit queues.
1963 */
1964 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
1965 {
1966 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1967 #ifdef CONFIG_NETPOLL_TRAP
1968 if (netpoll_trap())
1969 return;
1970 #endif
1971 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &txq->state))
1972 __netif_schedule(txq->qdisc);
1973 }
1974
1975 /*
1976 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
1977 * as a distribution range limit for the returned value.
1978 */
1979 static inline u16 skb_tx_hash(const struct net_device *dev,
1980 const struct sk_buff *skb)
1981 {
1982 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
1983 }
1984
1985 /**
1986 * netif_is_multiqueue - test if device has multiple transmit queues
1987 * @dev: network device
1988 *
1989 * Check if device has multiple transmit queues
1990 */
1991 static inline int netif_is_multiqueue(const struct net_device *dev)
1992 {
1993 return dev->num_tx_queues > 1;
1994 }
1995
1996 extern int netif_set_real_num_tx_queues(struct net_device *dev,
1997 unsigned int txq);
1998
1999 #ifdef CONFIG_RPS
2000 extern int netif_set_real_num_rx_queues(struct net_device *dev,
2001 unsigned int rxq);
2002 #else
2003 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2004 unsigned int rxq)
2005 {
2006 return 0;
2007 }
2008 #endif
2009
2010 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2011 const struct net_device *from_dev)
2012 {
2013 netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues);
2014 #ifdef CONFIG_RPS
2015 return netif_set_real_num_rx_queues(to_dev,
2016 from_dev->real_num_rx_queues);
2017 #else
2018 return 0;
2019 #endif
2020 }
2021
2022 /* Use this variant when it is known for sure that it
2023 * is executing from hardware interrupt context or with hardware interrupts
2024 * disabled.
2025 */
2026 extern void dev_kfree_skb_irq(struct sk_buff *skb);
2027
2028 /* Use this variant in places where it could be invoked
2029 * from either hardware interrupt or other context, with hardware interrupts
2030 * either disabled or enabled.
2031 */
2032 extern void dev_kfree_skb_any(struct sk_buff *skb);
2033
2034 extern int netif_rx(struct sk_buff *skb);
2035 extern int netif_rx_ni(struct sk_buff *skb);
2036 extern int netif_receive_skb(struct sk_buff *skb);
2037 extern gro_result_t dev_gro_receive(struct napi_struct *napi,
2038 struct sk_buff *skb);
2039 extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
2040 extern gro_result_t napi_gro_receive(struct napi_struct *napi,
2041 struct sk_buff *skb);
2042 extern void napi_gro_flush(struct napi_struct *napi);
2043 extern struct sk_buff * napi_get_frags(struct napi_struct *napi);
2044 extern gro_result_t napi_frags_finish(struct napi_struct *napi,
2045 struct sk_buff *skb,
2046 gro_result_t ret);
2047 extern struct sk_buff * napi_frags_skb(struct napi_struct *napi);
2048 extern gro_result_t napi_gro_frags(struct napi_struct *napi);
2049
2050 static inline void napi_free_frags(struct napi_struct *napi)
2051 {
2052 kfree_skb(napi->skb);
2053 napi->skb = NULL;
2054 }
2055
2056 extern int netdev_rx_handler_register(struct net_device *dev,
2057 rx_handler_func_t *rx_handler,
2058 void *rx_handler_data);
2059 extern void netdev_rx_handler_unregister(struct net_device *dev);
2060
2061 extern int dev_valid_name(const char *name);
2062 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2063 extern int dev_ethtool(struct net *net, struct ifreq *);
2064 extern unsigned dev_get_flags(const struct net_device *);
2065 extern int __dev_change_flags(struct net_device *, unsigned int flags);
2066 extern int dev_change_flags(struct net_device *, unsigned);
2067 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags);
2068 extern int dev_change_name(struct net_device *, const char *);
2069 extern int dev_set_alias(struct net_device *, const char *, size_t);
2070 extern int dev_change_net_namespace(struct net_device *,
2071 struct net *, const char *);
2072 extern int dev_set_mtu(struct net_device *, int);
2073 extern void dev_set_group(struct net_device *, int);
2074 extern int dev_set_mac_address(struct net_device *,
2075 struct sockaddr *);
2076 extern int dev_hard_start_xmit(struct sk_buff *skb,
2077 struct net_device *dev,
2078 struct netdev_queue *txq);
2079 extern int dev_forward_skb(struct net_device *dev,
2080 struct sk_buff *skb);
2081
2082 extern int netdev_budget;
2083
2084 /* Called by rtnetlink.c:rtnl_unlock() */
2085 extern void netdev_run_todo(void);
2086
2087 /**
2088 * dev_put - release reference to device
2089 * @dev: network device
2090 *
2091 * Release reference to device to allow it to be freed.
2092 */
2093 static inline void dev_put(struct net_device *dev)
2094 {
2095 irqsafe_cpu_dec(*dev->pcpu_refcnt);
2096 }
2097
2098 /**
2099 * dev_hold - get reference to device
2100 * @dev: network device
2101 *
2102 * Hold reference to device to keep it from being freed.
2103 */
2104 static inline void dev_hold(struct net_device *dev)
2105 {
2106 irqsafe_cpu_inc(*dev->pcpu_refcnt);
2107 }
2108
2109 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2110 * and _off may be called from IRQ context, but it is caller
2111 * who is responsible for serialization of these calls.
2112 *
2113 * The name carrier is inappropriate, these functions should really be
2114 * called netif_lowerlayer_*() because they represent the state of any
2115 * kind of lower layer not just hardware media.
2116 */
2117
2118 extern void linkwatch_fire_event(struct net_device *dev);
2119 extern void linkwatch_forget_dev(struct net_device *dev);
2120
2121 /**
2122 * netif_carrier_ok - test if carrier present
2123 * @dev: network device
2124 *
2125 * Check if carrier is present on device
2126 */
2127 static inline int netif_carrier_ok(const struct net_device *dev)
2128 {
2129 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2130 }
2131
2132 extern unsigned long dev_trans_start(struct net_device *dev);
2133
2134 extern void __netdev_watchdog_up(struct net_device *dev);
2135
2136 extern void netif_carrier_on(struct net_device *dev);
2137
2138 extern void netif_carrier_off(struct net_device *dev);
2139
2140 extern void netif_notify_peers(struct net_device *dev);
2141
2142 /**
2143 * netif_dormant_on - mark device as dormant.
2144 * @dev: network device
2145 *
2146 * Mark device as dormant (as per RFC2863).
2147 *
2148 * The dormant state indicates that the relevant interface is not
2149 * actually in a condition to pass packets (i.e., it is not 'up') but is
2150 * in a "pending" state, waiting for some external event. For "on-
2151 * demand" interfaces, this new state identifies the situation where the
2152 * interface is waiting for events to place it in the up state.
2153 *
2154 */
2155 static inline void netif_dormant_on(struct net_device *dev)
2156 {
2157 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2158 linkwatch_fire_event(dev);
2159 }
2160
2161 /**
2162 * netif_dormant_off - set device as not dormant.
2163 * @dev: network device
2164 *
2165 * Device is not in dormant state.
2166 */
2167 static inline void netif_dormant_off(struct net_device *dev)
2168 {
2169 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2170 linkwatch_fire_event(dev);
2171 }
2172
2173 /**
2174 * netif_dormant - test if carrier present
2175 * @dev: network device
2176 *
2177 * Check if carrier is present on device
2178 */
2179 static inline int netif_dormant(const struct net_device *dev)
2180 {
2181 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2182 }
2183
2184
2185 /**
2186 * netif_oper_up - test if device is operational
2187 * @dev: network device
2188 *
2189 * Check if carrier is operational
2190 */
2191 static inline int netif_oper_up(const struct net_device *dev)
2192 {
2193 return (dev->operstate == IF_OPER_UP ||
2194 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2195 }
2196
2197 /**
2198 * netif_device_present - is device available or removed
2199 * @dev: network device
2200 *
2201 * Check if device has not been removed from system.
2202 */
2203 static inline int netif_device_present(struct net_device *dev)
2204 {
2205 return test_bit(__LINK_STATE_PRESENT, &dev->state);
2206 }
2207
2208 extern void netif_device_detach(struct net_device *dev);
2209
2210 extern void netif_device_attach(struct net_device *dev);
2211
2212 /*
2213 * Network interface message level settings
2214 */
2215
2216 enum {
2217 NETIF_MSG_DRV = 0x0001,
2218 NETIF_MSG_PROBE = 0x0002,
2219 NETIF_MSG_LINK = 0x0004,
2220 NETIF_MSG_TIMER = 0x0008,
2221 NETIF_MSG_IFDOWN = 0x0010,
2222 NETIF_MSG_IFUP = 0x0020,
2223 NETIF_MSG_RX_ERR = 0x0040,
2224 NETIF_MSG_TX_ERR = 0x0080,
2225 NETIF_MSG_TX_QUEUED = 0x0100,
2226 NETIF_MSG_INTR = 0x0200,
2227 NETIF_MSG_TX_DONE = 0x0400,
2228 NETIF_MSG_RX_STATUS = 0x0800,
2229 NETIF_MSG_PKTDATA = 0x1000,
2230 NETIF_MSG_HW = 0x2000,
2231 NETIF_MSG_WOL = 0x4000,
2232 };
2233
2234 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2235 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2236 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2237 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2238 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2239 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2240 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2241 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2242 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2243 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2244 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2245 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2246 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2247 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2248 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2249
2250 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2251 {
2252 /* use default */
2253 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2254 return default_msg_enable_bits;
2255 if (debug_value == 0) /* no output */
2256 return 0;
2257 /* set low N bits */
2258 return (1 << debug_value) - 1;
2259 }
2260
2261 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2262 {
2263 spin_lock(&txq->_xmit_lock);
2264 txq->xmit_lock_owner = cpu;
2265 }
2266
2267 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2268 {
2269 spin_lock_bh(&txq->_xmit_lock);
2270 txq->xmit_lock_owner = smp_processor_id();
2271 }
2272
2273 static inline int __netif_tx_trylock(struct netdev_queue *txq)
2274 {
2275 int ok = spin_trylock(&txq->_xmit_lock);
2276 if (likely(ok))
2277 txq->xmit_lock_owner = smp_processor_id();
2278 return ok;
2279 }
2280
2281 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2282 {
2283 txq->xmit_lock_owner = -1;
2284 spin_unlock(&txq->_xmit_lock);
2285 }
2286
2287 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2288 {
2289 txq->xmit_lock_owner = -1;
2290 spin_unlock_bh(&txq->_xmit_lock);
2291 }
2292
2293 static inline void txq_trans_update(struct netdev_queue *txq)
2294 {
2295 if (txq->xmit_lock_owner != -1)
2296 txq->trans_start = jiffies;
2297 }
2298
2299 /**
2300 * netif_tx_lock - grab network device transmit lock
2301 * @dev: network device
2302 *
2303 * Get network device transmit lock
2304 */
2305 static inline void netif_tx_lock(struct net_device *dev)
2306 {
2307 unsigned int i;
2308 int cpu;
2309
2310 spin_lock(&dev->tx_global_lock);
2311 cpu = smp_processor_id();
2312 for (i = 0; i < dev->num_tx_queues; i++) {
2313 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2314
2315 /* We are the only thread of execution doing a
2316 * freeze, but we have to grab the _xmit_lock in
2317 * order to synchronize with threads which are in
2318 * the ->hard_start_xmit() handler and already
2319 * checked the frozen bit.
2320 */
2321 __netif_tx_lock(txq, cpu);
2322 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2323 __netif_tx_unlock(txq);
2324 }
2325 }
2326
2327 static inline void netif_tx_lock_bh(struct net_device *dev)
2328 {
2329 local_bh_disable();
2330 netif_tx_lock(dev);
2331 }
2332
2333 static inline void netif_tx_unlock(struct net_device *dev)
2334 {
2335 unsigned int i;
2336
2337 for (i = 0; i < dev->num_tx_queues; i++) {
2338 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2339
2340 /* No need to grab the _xmit_lock here. If the
2341 * queue is not stopped for another reason, we
2342 * force a schedule.
2343 */
2344 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2345 netif_schedule_queue(txq);
2346 }
2347 spin_unlock(&dev->tx_global_lock);
2348 }
2349
2350 static inline void netif_tx_unlock_bh(struct net_device *dev)
2351 {
2352 netif_tx_unlock(dev);
2353 local_bh_enable();
2354 }
2355
2356 #define HARD_TX_LOCK(dev, txq, cpu) { \
2357 if ((dev->features & NETIF_F_LLTX) == 0) { \
2358 __netif_tx_lock(txq, cpu); \
2359 } \
2360 }
2361
2362 #define HARD_TX_UNLOCK(dev, txq) { \
2363 if ((dev->features & NETIF_F_LLTX) == 0) { \
2364 __netif_tx_unlock(txq); \
2365 } \
2366 }
2367
2368 static inline void netif_tx_disable(struct net_device *dev)
2369 {
2370 unsigned int i;
2371 int cpu;
2372
2373 local_bh_disable();
2374 cpu = smp_processor_id();
2375 for (i = 0; i < dev->num_tx_queues; i++) {
2376 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2377
2378 __netif_tx_lock(txq, cpu);
2379 netif_tx_stop_queue(txq);
2380 __netif_tx_unlock(txq);
2381 }
2382 local_bh_enable();
2383 }
2384
2385 static inline void netif_addr_lock(struct net_device *dev)
2386 {
2387 spin_lock(&dev->addr_list_lock);
2388 }
2389
2390 static inline void netif_addr_lock_bh(struct net_device *dev)
2391 {
2392 spin_lock_bh(&dev->addr_list_lock);
2393 }
2394
2395 static inline void netif_addr_unlock(struct net_device *dev)
2396 {
2397 spin_unlock(&dev->addr_list_lock);
2398 }
2399
2400 static inline void netif_addr_unlock_bh(struct net_device *dev)
2401 {
2402 spin_unlock_bh(&dev->addr_list_lock);
2403 }
2404
2405 /*
2406 * dev_addrs walker. Should be used only for read access. Call with
2407 * rcu_read_lock held.
2408 */
2409 #define for_each_dev_addr(dev, ha) \
2410 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2411
2412 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2413
2414 extern void ether_setup(struct net_device *dev);
2415
2416 /* Support for loadable net-drivers */
2417 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2418 void (*setup)(struct net_device *),
2419 unsigned int txqs, unsigned int rxqs);
2420 #define alloc_netdev(sizeof_priv, name, setup) \
2421 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2422
2423 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2424 alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2425
2426 extern int register_netdev(struct net_device *dev);
2427 extern void unregister_netdev(struct net_device *dev);
2428
2429 /* General hardware address lists handling functions */
2430 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2431 struct netdev_hw_addr_list *from_list,
2432 int addr_len, unsigned char addr_type);
2433 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2434 struct netdev_hw_addr_list *from_list,
2435 int addr_len, unsigned char addr_type);
2436 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2437 struct netdev_hw_addr_list *from_list,
2438 int addr_len);
2439 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2440 struct netdev_hw_addr_list *from_list,
2441 int addr_len);
2442 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2443 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2444
2445 /* Functions used for device addresses handling */
2446 extern int dev_addr_add(struct net_device *dev, unsigned char *addr,
2447 unsigned char addr_type);
2448 extern int dev_addr_del(struct net_device *dev, unsigned char *addr,
2449 unsigned char addr_type);
2450 extern int dev_addr_add_multiple(struct net_device *to_dev,
2451 struct net_device *from_dev,
2452 unsigned char addr_type);
2453 extern int dev_addr_del_multiple(struct net_device *to_dev,
2454 struct net_device *from_dev,
2455 unsigned char addr_type);
2456 extern void dev_addr_flush(struct net_device *dev);
2457 extern int dev_addr_init(struct net_device *dev);
2458
2459 /* Functions used for unicast addresses handling */
2460 extern int dev_uc_add(struct net_device *dev, unsigned char *addr);
2461 extern int dev_uc_del(struct net_device *dev, unsigned char *addr);
2462 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2463 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2464 extern void dev_uc_flush(struct net_device *dev);
2465 extern void dev_uc_init(struct net_device *dev);
2466
2467 /* Functions used for multicast addresses handling */
2468 extern int dev_mc_add(struct net_device *dev, unsigned char *addr);
2469 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr);
2470 extern int dev_mc_del(struct net_device *dev, unsigned char *addr);
2471 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr);
2472 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2473 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2474 extern void dev_mc_flush(struct net_device *dev);
2475 extern void dev_mc_init(struct net_device *dev);
2476
2477 /* Functions used for secondary unicast and multicast support */
2478 extern void dev_set_rx_mode(struct net_device *dev);
2479 extern void __dev_set_rx_mode(struct net_device *dev);
2480 extern int dev_set_promiscuity(struct net_device *dev, int inc);
2481 extern int dev_set_allmulti(struct net_device *dev, int inc);
2482 extern void netdev_state_change(struct net_device *dev);
2483 extern int netdev_bonding_change(struct net_device *dev,
2484 unsigned long event);
2485 extern void netdev_features_change(struct net_device *dev);
2486 /* Load a device via the kmod */
2487 extern void dev_load(struct net *net, const char *name);
2488 extern void dev_mcast_init(void);
2489 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2490 struct rtnl_link_stats64 *storage);
2491
2492 extern int netdev_max_backlog;
2493 extern int netdev_tstamp_prequeue;
2494 extern int weight_p;
2495 extern int bpf_jit_enable;
2496 extern int netdev_set_master(struct net_device *dev, struct net_device *master);
2497 extern int netdev_set_bond_master(struct net_device *dev,
2498 struct net_device *master);
2499 extern int skb_checksum_help(struct sk_buff *skb);
2500 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features);
2501 #ifdef CONFIG_BUG
2502 extern void netdev_rx_csum_fault(struct net_device *dev);
2503 #else
2504 static inline void netdev_rx_csum_fault(struct net_device *dev)
2505 {
2506 }
2507 #endif
2508 /* rx skb timestamps */
2509 extern void net_enable_timestamp(void);
2510 extern void net_disable_timestamp(void);
2511
2512 #ifdef CONFIG_PROC_FS
2513 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2514 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2515 extern void dev_seq_stop(struct seq_file *seq, void *v);
2516 #endif
2517
2518 extern int netdev_class_create_file(struct class_attribute *class_attr);
2519 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2520
2521 extern struct kobj_ns_type_operations net_ns_type_operations;
2522
2523 extern const char *netdev_drivername(const struct net_device *dev);
2524
2525 extern void linkwatch_run_queue(void);
2526
2527 static inline u32 netdev_get_wanted_features(struct net_device *dev)
2528 {
2529 return (dev->features & ~dev->hw_features) | dev->wanted_features;
2530 }
2531 u32 netdev_increment_features(u32 all, u32 one, u32 mask);
2532 u32 netdev_fix_features(struct net_device *dev, u32 features);
2533 int __netdev_update_features(struct net_device *dev);
2534 void netdev_update_features(struct net_device *dev);
2535 void netdev_change_features(struct net_device *dev);
2536
2537 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2538 struct net_device *dev);
2539
2540 u32 netif_skb_features(struct sk_buff *skb);
2541
2542 static inline int net_gso_ok(u32 features, int gso_type)
2543 {
2544 int feature = gso_type << NETIF_F_GSO_SHIFT;
2545 return (features & feature) == feature;
2546 }
2547
2548 static inline int skb_gso_ok(struct sk_buff *skb, u32 features)
2549 {
2550 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2551 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2552 }
2553
2554 static inline int netif_needs_gso(struct sk_buff *skb, int features)
2555 {
2556 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2557 unlikely(skb->ip_summed != CHECKSUM_PARTIAL));
2558 }
2559
2560 static inline void netif_set_gso_max_size(struct net_device *dev,
2561 unsigned int size)
2562 {
2563 dev->gso_max_size = size;
2564 }
2565
2566 static inline int netif_is_bond_slave(struct net_device *dev)
2567 {
2568 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2569 }
2570
2571 extern struct pernet_operations __net_initdata loopback_net_ops;
2572
2573 int dev_ethtool_get_settings(struct net_device *dev,
2574 struct ethtool_cmd *cmd);
2575
2576 static inline u32 dev_ethtool_get_rx_csum(struct net_device *dev)
2577 {
2578 if (dev->features & NETIF_F_RXCSUM)
2579 return 1;
2580 if (!dev->ethtool_ops || !dev->ethtool_ops->get_rx_csum)
2581 return 0;
2582 return dev->ethtool_ops->get_rx_csum(dev);
2583 }
2584
2585 static inline u32 dev_ethtool_get_flags(struct net_device *dev)
2586 {
2587 if (!dev->ethtool_ops || !dev->ethtool_ops->get_flags)
2588 return 0;
2589 return dev->ethtool_ops->get_flags(dev);
2590 }
2591
2592 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2593
2594 /* netdev_printk helpers, similar to dev_printk */
2595
2596 static inline const char *netdev_name(const struct net_device *dev)
2597 {
2598 if (dev->reg_state != NETREG_REGISTERED)
2599 return "(unregistered net_device)";
2600 return dev->name;
2601 }
2602
2603 extern int netdev_printk(const char *level, const struct net_device *dev,
2604 const char *format, ...)
2605 __attribute__ ((format (printf, 3, 4)));
2606 extern int netdev_emerg(const struct net_device *dev, const char *format, ...)
2607 __attribute__ ((format (printf, 2, 3)));
2608 extern int netdev_alert(const struct net_device *dev, const char *format, ...)
2609 __attribute__ ((format (printf, 2, 3)));
2610 extern int netdev_crit(const struct net_device *dev, const char *format, ...)
2611 __attribute__ ((format (printf, 2, 3)));
2612 extern int netdev_err(const struct net_device *dev, const char *format, ...)
2613 __attribute__ ((format (printf, 2, 3)));
2614 extern int netdev_warn(const struct net_device *dev, const char *format, ...)
2615 __attribute__ ((format (printf, 2, 3)));
2616 extern int netdev_notice(const struct net_device *dev, const char *format, ...)
2617 __attribute__ ((format (printf, 2, 3)));
2618 extern int netdev_info(const struct net_device *dev, const char *format, ...)
2619 __attribute__ ((format (printf, 2, 3)));
2620
2621 #define MODULE_ALIAS_NETDEV(device) \
2622 MODULE_ALIAS("netdev-" device)
2623
2624 #if defined(DEBUG)
2625 #define netdev_dbg(__dev, format, args...) \
2626 netdev_printk(KERN_DEBUG, __dev, format, ##args)
2627 #elif defined(CONFIG_DYNAMIC_DEBUG)
2628 #define netdev_dbg(__dev, format, args...) \
2629 do { \
2630 dynamic_dev_dbg((__dev)->dev.parent, "%s: " format, \
2631 netdev_name(__dev), ##args); \
2632 } while (0)
2633 #else
2634 #define netdev_dbg(__dev, format, args...) \
2635 ({ \
2636 if (0) \
2637 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2638 0; \
2639 })
2640 #endif
2641
2642 #if defined(VERBOSE_DEBUG)
2643 #define netdev_vdbg netdev_dbg
2644 #else
2645
2646 #define netdev_vdbg(dev, format, args...) \
2647 ({ \
2648 if (0) \
2649 netdev_printk(KERN_DEBUG, dev, format, ##args); \
2650 0; \
2651 })
2652 #endif
2653
2654 /*
2655 * netdev_WARN() acts like dev_printk(), but with the key difference
2656 * of using a WARN/WARN_ON to get the message out, including the
2657 * file/line information and a backtrace.
2658 */
2659 #define netdev_WARN(dev, format, args...) \
2660 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2661
2662 /* netif printk helpers, similar to netdev_printk */
2663
2664 #define netif_printk(priv, type, level, dev, fmt, args...) \
2665 do { \
2666 if (netif_msg_##type(priv)) \
2667 netdev_printk(level, (dev), fmt, ##args); \
2668 } while (0)
2669
2670 #define netif_level(level, priv, type, dev, fmt, args...) \
2671 do { \
2672 if (netif_msg_##type(priv)) \
2673 netdev_##level(dev, fmt, ##args); \
2674 } while (0)
2675
2676 #define netif_emerg(priv, type, dev, fmt, args...) \
2677 netif_level(emerg, priv, type, dev, fmt, ##args)
2678 #define netif_alert(priv, type, dev, fmt, args...) \
2679 netif_level(alert, priv, type, dev, fmt, ##args)
2680 #define netif_crit(priv, type, dev, fmt, args...) \
2681 netif_level(crit, priv, type, dev, fmt, ##args)
2682 #define netif_err(priv, type, dev, fmt, args...) \
2683 netif_level(err, priv, type, dev, fmt, ##args)
2684 #define netif_warn(priv, type, dev, fmt, args...) \
2685 netif_level(warn, priv, type, dev, fmt, ##args)
2686 #define netif_notice(priv, type, dev, fmt, args...) \
2687 netif_level(notice, priv, type, dev, fmt, ##args)
2688 #define netif_info(priv, type, dev, fmt, args...) \
2689 netif_level(info, priv, type, dev, fmt, ##args)
2690
2691 #if defined(DEBUG)
2692 #define netif_dbg(priv, type, dev, format, args...) \
2693 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2694 #elif defined(CONFIG_DYNAMIC_DEBUG)
2695 #define netif_dbg(priv, type, netdev, format, args...) \
2696 do { \
2697 if (netif_msg_##type(priv)) \
2698 dynamic_dev_dbg((netdev)->dev.parent, \
2699 "%s: " format, \
2700 netdev_name(netdev), ##args); \
2701 } while (0)
2702 #else
2703 #define netif_dbg(priv, type, dev, format, args...) \
2704 ({ \
2705 if (0) \
2706 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2707 0; \
2708 })
2709 #endif
2710
2711 #if defined(VERBOSE_DEBUG)
2712 #define netif_vdbg netif_dbg
2713 #else
2714 #define netif_vdbg(priv, type, dev, format, args...) \
2715 ({ \
2716 if (0) \
2717 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2718 0; \
2719 })
2720 #endif
2721
2722 #endif /* __KERNEL__ */
2723
2724 #endif /* _LINUX_NETDEVICE_H */
This page took 0.196739 seconds and 6 git commands to generate.