page-flags: define PG_locked behavior on compound pages
[deliverable/linux.git] / include / linux / page-flags.h
1 /*
2 * Macros for manipulating and testing page->flags
3 */
4
5 #ifndef PAGE_FLAGS_H
6 #define PAGE_FLAGS_H
7
8 #include <linux/types.h>
9 #include <linux/bug.h>
10 #include <linux/mmdebug.h>
11 #ifndef __GENERATING_BOUNDS_H
12 #include <linux/mm_types.h>
13 #include <generated/bounds.h>
14 #endif /* !__GENERATING_BOUNDS_H */
15
16 /*
17 * Various page->flags bits:
18 *
19 * PG_reserved is set for special pages, which can never be swapped out. Some
20 * of them might not even exist (eg empty_bad_page)...
21 *
22 * The PG_private bitflag is set on pagecache pages if they contain filesystem
23 * specific data (which is normally at page->private). It can be used by
24 * private allocations for its own usage.
25 *
26 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
27 * and cleared when writeback _starts_ or when read _completes_. PG_writeback
28 * is set before writeback starts and cleared when it finishes.
29 *
30 * PG_locked also pins a page in pagecache, and blocks truncation of the file
31 * while it is held.
32 *
33 * page_waitqueue(page) is a wait queue of all tasks waiting for the page
34 * to become unlocked.
35 *
36 * PG_uptodate tells whether the page's contents is valid. When a read
37 * completes, the page becomes uptodate, unless a disk I/O error happened.
38 *
39 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
40 * file-backed pagecache (see mm/vmscan.c).
41 *
42 * PG_error is set to indicate that an I/O error occurred on this page.
43 *
44 * PG_arch_1 is an architecture specific page state bit. The generic code
45 * guarantees that this bit is cleared for a page when it first is entered into
46 * the page cache.
47 *
48 * PG_highmem pages are not permanently mapped into the kernel virtual address
49 * space, they need to be kmapped separately for doing IO on the pages. The
50 * struct page (these bits with information) are always mapped into kernel
51 * address space...
52 *
53 * PG_hwpoison indicates that a page got corrupted in hardware and contains
54 * data with incorrect ECC bits that triggered a machine check. Accessing is
55 * not safe since it may cause another machine check. Don't touch!
56 */
57
58 /*
59 * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break
60 * locked- and dirty-page accounting.
61 *
62 * The page flags field is split into two parts, the main flags area
63 * which extends from the low bits upwards, and the fields area which
64 * extends from the high bits downwards.
65 *
66 * | FIELD | ... | FLAGS |
67 * N-1 ^ 0
68 * (NR_PAGEFLAGS)
69 *
70 * The fields area is reserved for fields mapping zone, node (for NUMA) and
71 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
72 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
73 */
74 enum pageflags {
75 PG_locked, /* Page is locked. Don't touch. */
76 PG_error,
77 PG_referenced,
78 PG_uptodate,
79 PG_dirty,
80 PG_lru,
81 PG_active,
82 PG_slab,
83 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/
84 PG_arch_1,
85 PG_reserved,
86 PG_private, /* If pagecache, has fs-private data */
87 PG_private_2, /* If pagecache, has fs aux data */
88 PG_writeback, /* Page is under writeback */
89 PG_head, /* A head page */
90 PG_swapcache, /* Swap page: swp_entry_t in private */
91 PG_mappedtodisk, /* Has blocks allocated on-disk */
92 PG_reclaim, /* To be reclaimed asap */
93 PG_swapbacked, /* Page is backed by RAM/swap */
94 PG_unevictable, /* Page is "unevictable" */
95 #ifdef CONFIG_MMU
96 PG_mlocked, /* Page is vma mlocked */
97 #endif
98 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
99 PG_uncached, /* Page has been mapped as uncached */
100 #endif
101 #ifdef CONFIG_MEMORY_FAILURE
102 PG_hwpoison, /* hardware poisoned page. Don't touch */
103 #endif
104 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
105 PG_compound_lock,
106 #endif
107 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
108 PG_young,
109 PG_idle,
110 #endif
111 __NR_PAGEFLAGS,
112
113 /* Filesystems */
114 PG_checked = PG_owner_priv_1,
115
116 /* Two page bits are conscripted by FS-Cache to maintain local caching
117 * state. These bits are set on pages belonging to the netfs's inodes
118 * when those inodes are being locally cached.
119 */
120 PG_fscache = PG_private_2, /* page backed by cache */
121
122 /* XEN */
123 /* Pinned in Xen as a read-only pagetable page. */
124 PG_pinned = PG_owner_priv_1,
125 /* Pinned as part of domain save (see xen_mm_pin_all()). */
126 PG_savepinned = PG_dirty,
127 /* Has a grant mapping of another (foreign) domain's page. */
128 PG_foreign = PG_owner_priv_1,
129
130 /* SLOB */
131 PG_slob_free = PG_private,
132 };
133
134 #ifndef __GENERATING_BOUNDS_H
135
136 struct page; /* forward declaration */
137
138 static inline struct page *compound_head(struct page *page)
139 {
140 unsigned long head = READ_ONCE(page->compound_head);
141
142 if (unlikely(head & 1))
143 return (struct page *) (head - 1);
144 return page;
145 }
146
147 static inline int PageTail(struct page *page)
148 {
149 return READ_ONCE(page->compound_head) & 1;
150 }
151
152 static inline int PageCompound(struct page *page)
153 {
154 return test_bit(PG_head, &page->flags) || PageTail(page);
155 }
156
157 /*
158 * Page flags policies wrt compound pages
159 *
160 * PF_ANY:
161 * the page flag is relevant for small, head and tail pages.
162 *
163 * PF_HEAD:
164 * for compound page all operations related to the page flag applied to
165 * head page.
166 *
167 * PF_NO_TAIL:
168 * modifications of the page flag must be done on small or head pages,
169 * checks can be done on tail pages too.
170 *
171 * PF_NO_COMPOUND:
172 * the page flag is not relevant for compound pages.
173 */
174 #define PF_ANY(page, enforce) page
175 #define PF_HEAD(page, enforce) compound_head(page)
176 #define PF_NO_TAIL(page, enforce) ({ \
177 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \
178 compound_head(page);})
179 #define PF_NO_COMPOUND(page, enforce) ({ \
180 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \
181 page;})
182
183 /*
184 * Macros to create function definitions for page flags
185 */
186 #define TESTPAGEFLAG(uname, lname, policy) \
187 static inline int Page##uname(struct page *page) \
188 { return test_bit(PG_##lname, &policy(page, 0)->flags); }
189
190 #define SETPAGEFLAG(uname, lname, policy) \
191 static inline void SetPage##uname(struct page *page) \
192 { set_bit(PG_##lname, &policy(page, 1)->flags); }
193
194 #define CLEARPAGEFLAG(uname, lname, policy) \
195 static inline void ClearPage##uname(struct page *page) \
196 { clear_bit(PG_##lname, &policy(page, 1)->flags); }
197
198 #define __SETPAGEFLAG(uname, lname, policy) \
199 static inline void __SetPage##uname(struct page *page) \
200 { __set_bit(PG_##lname, &policy(page, 1)->flags); }
201
202 #define __CLEARPAGEFLAG(uname, lname, policy) \
203 static inline void __ClearPage##uname(struct page *page) \
204 { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
205
206 #define TESTSETFLAG(uname, lname, policy) \
207 static inline int TestSetPage##uname(struct page *page) \
208 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
209
210 #define TESTCLEARFLAG(uname, lname, policy) \
211 static inline int TestClearPage##uname(struct page *page) \
212 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
213
214 #define __TESTCLEARFLAG(uname, lname, policy) \
215 static inline int __TestClearPage##uname(struct page *page) \
216 { return __test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
217
218 #define PAGEFLAG(uname, lname, policy) \
219 TESTPAGEFLAG(uname, lname, policy) \
220 SETPAGEFLAG(uname, lname, policy) \
221 CLEARPAGEFLAG(uname, lname, policy)
222
223 #define __PAGEFLAG(uname, lname, policy) \
224 TESTPAGEFLAG(uname, lname, policy) \
225 __SETPAGEFLAG(uname, lname, policy) \
226 __CLEARPAGEFLAG(uname, lname, policy)
227
228 #define TESTSCFLAG(uname, lname, policy) \
229 TESTSETFLAG(uname, lname, policy) \
230 TESTCLEARFLAG(uname, lname, policy)
231
232 #define TESTPAGEFLAG_FALSE(uname) \
233 static inline int Page##uname(const struct page *page) { return 0; }
234
235 #define SETPAGEFLAG_NOOP(uname) \
236 static inline void SetPage##uname(struct page *page) { }
237
238 #define CLEARPAGEFLAG_NOOP(uname) \
239 static inline void ClearPage##uname(struct page *page) { }
240
241 #define __CLEARPAGEFLAG_NOOP(uname) \
242 static inline void __ClearPage##uname(struct page *page) { }
243
244 #define TESTSETFLAG_FALSE(uname) \
245 static inline int TestSetPage##uname(struct page *page) { return 0; }
246
247 #define TESTCLEARFLAG_FALSE(uname) \
248 static inline int TestClearPage##uname(struct page *page) { return 0; }
249
250 #define __TESTCLEARFLAG_FALSE(uname) \
251 static inline int __TestClearPage##uname(struct page *page) { return 0; }
252
253 #define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \
254 SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
255
256 #define TESTSCFLAG_FALSE(uname) \
257 TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
258
259 __PAGEFLAG(Locked, locked, PF_NO_TAIL)
260 PAGEFLAG(Error, error, PF_ANY) TESTCLEARFLAG(Error, error, PF_ANY)
261 PAGEFLAG(Referenced, referenced, PF_ANY) TESTCLEARFLAG(Referenced, referenced, PF_ANY)
262 __SETPAGEFLAG(Referenced, referenced, PF_ANY)
263 PAGEFLAG(Dirty, dirty, PF_ANY) TESTSCFLAG(Dirty, dirty, PF_ANY)
264 __CLEARPAGEFLAG(Dirty, dirty, PF_ANY)
265 PAGEFLAG(LRU, lru, PF_ANY) __CLEARPAGEFLAG(LRU, lru, PF_ANY)
266 PAGEFLAG(Active, active, PF_ANY) __CLEARPAGEFLAG(Active, active, PF_ANY)
267 TESTCLEARFLAG(Active, active, PF_ANY)
268 __PAGEFLAG(Slab, slab, PF_ANY)
269 PAGEFLAG(Checked, checked, PF_ANY) /* Used by some filesystems */
270 PAGEFLAG(Pinned, pinned, PF_ANY) TESTSCFLAG(Pinned, pinned, PF_ANY) /* Xen */
271 PAGEFLAG(SavePinned, savepinned, PF_ANY); /* Xen */
272 PAGEFLAG(Foreign, foreign, PF_ANY); /* Xen */
273 PAGEFLAG(Reserved, reserved, PF_ANY) __CLEARPAGEFLAG(Reserved, reserved, PF_ANY)
274 PAGEFLAG(SwapBacked, swapbacked, PF_ANY)
275 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_ANY)
276 __SETPAGEFLAG(SwapBacked, swapbacked, PF_ANY)
277
278 __PAGEFLAG(SlobFree, slob_free, PF_ANY)
279
280 /*
281 * Private page markings that may be used by the filesystem that owns the page
282 * for its own purposes.
283 * - PG_private and PG_private_2 cause releasepage() and co to be invoked
284 */
285 PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY)
286 __CLEARPAGEFLAG(Private, private, PF_ANY)
287 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
288 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
289 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
290
291 /*
292 * Only test-and-set exist for PG_writeback. The unconditional operators are
293 * risky: they bypass page accounting.
294 */
295 TESTPAGEFLAG(Writeback, writeback, PF_ANY) TESTSCFLAG(Writeback, writeback, PF_ANY)
296 PAGEFLAG(MappedToDisk, mappedtodisk, PF_ANY)
297
298 /* PG_readahead is only used for reads; PG_reclaim is only for writes */
299 PAGEFLAG(Reclaim, reclaim, PF_ANY) TESTCLEARFLAG(Reclaim, reclaim, PF_ANY)
300 PAGEFLAG(Readahead, reclaim, PF_ANY) TESTCLEARFLAG(Readahead, reclaim, PF_ANY)
301
302 #ifdef CONFIG_HIGHMEM
303 /*
304 * Must use a macro here due to header dependency issues. page_zone() is not
305 * available at this point.
306 */
307 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
308 #else
309 PAGEFLAG_FALSE(HighMem)
310 #endif
311
312 #ifdef CONFIG_SWAP
313 PAGEFLAG(SwapCache, swapcache, PF_ANY)
314 #else
315 PAGEFLAG_FALSE(SwapCache)
316 #endif
317
318 PAGEFLAG(Unevictable, unevictable, PF_ANY)
319 __CLEARPAGEFLAG(Unevictable, unevictable, PF_ANY)
320 TESTCLEARFLAG(Unevictable, unevictable, PF_ANY)
321
322 #ifdef CONFIG_MMU
323 PAGEFLAG(Mlocked, mlocked, PF_ANY) __CLEARPAGEFLAG(Mlocked, mlocked, PF_ANY)
324 TESTSCFLAG(Mlocked, mlocked, PF_ANY) __TESTCLEARFLAG(Mlocked, mlocked, PF_ANY)
325 #else
326 PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
327 TESTSCFLAG_FALSE(Mlocked) __TESTCLEARFLAG_FALSE(Mlocked)
328 #endif
329
330 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
331 PAGEFLAG(Uncached, uncached, PF_ANY)
332 #else
333 PAGEFLAG_FALSE(Uncached)
334 #endif
335
336 #ifdef CONFIG_MEMORY_FAILURE
337 PAGEFLAG(HWPoison, hwpoison, PF_ANY)
338 TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
339 #define __PG_HWPOISON (1UL << PG_hwpoison)
340 #else
341 PAGEFLAG_FALSE(HWPoison)
342 #define __PG_HWPOISON 0
343 #endif
344
345 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
346 TESTPAGEFLAG(Young, young, PF_ANY)
347 SETPAGEFLAG(Young, young, PF_ANY)
348 TESTCLEARFLAG(Young, young, PF_ANY)
349 PAGEFLAG(Idle, idle, PF_ANY)
350 #endif
351
352 /*
353 * On an anonymous page mapped into a user virtual memory area,
354 * page->mapping points to its anon_vma, not to a struct address_space;
355 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
356 *
357 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
358 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
359 * and then page->mapping points, not to an anon_vma, but to a private
360 * structure which KSM associates with that merged page. See ksm.h.
361 *
362 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
363 *
364 * Please note that, confusingly, "page_mapping" refers to the inode
365 * address_space which maps the page from disk; whereas "page_mapped"
366 * refers to user virtual address space into which the page is mapped.
367 */
368 #define PAGE_MAPPING_ANON 1
369 #define PAGE_MAPPING_KSM 2
370 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
371
372 static inline int PageAnon(struct page *page)
373 {
374 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
375 }
376
377 #ifdef CONFIG_KSM
378 /*
379 * A KSM page is one of those write-protected "shared pages" or "merged pages"
380 * which KSM maps into multiple mms, wherever identical anonymous page content
381 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any
382 * anon_vma, but to that page's node of the stable tree.
383 */
384 static inline int PageKsm(struct page *page)
385 {
386 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
387 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
388 }
389 #else
390 TESTPAGEFLAG_FALSE(Ksm)
391 #endif
392
393 u64 stable_page_flags(struct page *page);
394
395 static inline int PageUptodate(struct page *page)
396 {
397 int ret = test_bit(PG_uptodate, &(page)->flags);
398
399 /*
400 * Must ensure that the data we read out of the page is loaded
401 * _after_ we've loaded page->flags to check for PageUptodate.
402 * We can skip the barrier if the page is not uptodate, because
403 * we wouldn't be reading anything from it.
404 *
405 * See SetPageUptodate() for the other side of the story.
406 */
407 if (ret)
408 smp_rmb();
409
410 return ret;
411 }
412
413 static inline void __SetPageUptodate(struct page *page)
414 {
415 smp_wmb();
416 __set_bit(PG_uptodate, &(page)->flags);
417 }
418
419 static inline void SetPageUptodate(struct page *page)
420 {
421 /*
422 * Memory barrier must be issued before setting the PG_uptodate bit,
423 * so that all previous stores issued in order to bring the page
424 * uptodate are actually visible before PageUptodate becomes true.
425 */
426 smp_wmb();
427 set_bit(PG_uptodate, &(page)->flags);
428 }
429
430 CLEARPAGEFLAG(Uptodate, uptodate, PF_ANY)
431
432 int test_clear_page_writeback(struct page *page);
433 int __test_set_page_writeback(struct page *page, bool keep_write);
434
435 #define test_set_page_writeback(page) \
436 __test_set_page_writeback(page, false)
437 #define test_set_page_writeback_keepwrite(page) \
438 __test_set_page_writeback(page, true)
439
440 static inline void set_page_writeback(struct page *page)
441 {
442 test_set_page_writeback(page);
443 }
444
445 static inline void set_page_writeback_keepwrite(struct page *page)
446 {
447 test_set_page_writeback_keepwrite(page);
448 }
449
450 __PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
451
452 static inline void set_compound_head(struct page *page, struct page *head)
453 {
454 WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
455 }
456
457 static inline void clear_compound_head(struct page *page)
458 {
459 WRITE_ONCE(page->compound_head, 0);
460 }
461
462 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
463 static inline void ClearPageCompound(struct page *page)
464 {
465 BUG_ON(!PageHead(page));
466 ClearPageHead(page);
467 }
468 #endif
469
470 #define PG_head_mask ((1L << PG_head))
471
472 #ifdef CONFIG_HUGETLB_PAGE
473 int PageHuge(struct page *page);
474 int PageHeadHuge(struct page *page);
475 bool page_huge_active(struct page *page);
476 #else
477 TESTPAGEFLAG_FALSE(Huge)
478 TESTPAGEFLAG_FALSE(HeadHuge)
479
480 static inline bool page_huge_active(struct page *page)
481 {
482 return 0;
483 }
484 #endif
485
486
487 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
488 /*
489 * PageHuge() only returns true for hugetlbfs pages, but not for
490 * normal or transparent huge pages.
491 *
492 * PageTransHuge() returns true for both transparent huge and
493 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
494 * called only in the core VM paths where hugetlbfs pages can't exist.
495 */
496 static inline int PageTransHuge(struct page *page)
497 {
498 VM_BUG_ON_PAGE(PageTail(page), page);
499 return PageHead(page);
500 }
501
502 /*
503 * PageTransCompound returns true for both transparent huge pages
504 * and hugetlbfs pages, so it should only be called when it's known
505 * that hugetlbfs pages aren't involved.
506 */
507 static inline int PageTransCompound(struct page *page)
508 {
509 return PageCompound(page);
510 }
511
512 /*
513 * PageTransTail returns true for both transparent huge pages
514 * and hugetlbfs pages, so it should only be called when it's known
515 * that hugetlbfs pages aren't involved.
516 */
517 static inline int PageTransTail(struct page *page)
518 {
519 return PageTail(page);
520 }
521
522 #else
523 TESTPAGEFLAG_FALSE(TransHuge)
524 TESTPAGEFLAG_FALSE(TransCompound)
525 TESTPAGEFLAG_FALSE(TransTail)
526 #endif
527
528 /*
529 * PageBuddy() indicate that the page is free and in the buddy system
530 * (see mm/page_alloc.c).
531 *
532 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
533 * -2 so that an underflow of the page_mapcount() won't be mistaken
534 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
535 * efficiently by most CPU architectures.
536 */
537 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
538
539 static inline int PageBuddy(struct page *page)
540 {
541 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
542 }
543
544 static inline void __SetPageBuddy(struct page *page)
545 {
546 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
547 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
548 }
549
550 static inline void __ClearPageBuddy(struct page *page)
551 {
552 VM_BUG_ON_PAGE(!PageBuddy(page), page);
553 atomic_set(&page->_mapcount, -1);
554 }
555
556 #define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
557
558 static inline int PageBalloon(struct page *page)
559 {
560 return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE;
561 }
562
563 static inline void __SetPageBalloon(struct page *page)
564 {
565 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
566 atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE);
567 }
568
569 static inline void __ClearPageBalloon(struct page *page)
570 {
571 VM_BUG_ON_PAGE(!PageBalloon(page), page);
572 atomic_set(&page->_mapcount, -1);
573 }
574
575 /*
576 * If network-based swap is enabled, sl*b must keep track of whether pages
577 * were allocated from pfmemalloc reserves.
578 */
579 static inline int PageSlabPfmemalloc(struct page *page)
580 {
581 VM_BUG_ON_PAGE(!PageSlab(page), page);
582 return PageActive(page);
583 }
584
585 static inline void SetPageSlabPfmemalloc(struct page *page)
586 {
587 VM_BUG_ON_PAGE(!PageSlab(page), page);
588 SetPageActive(page);
589 }
590
591 static inline void __ClearPageSlabPfmemalloc(struct page *page)
592 {
593 VM_BUG_ON_PAGE(!PageSlab(page), page);
594 __ClearPageActive(page);
595 }
596
597 static inline void ClearPageSlabPfmemalloc(struct page *page)
598 {
599 VM_BUG_ON_PAGE(!PageSlab(page), page);
600 ClearPageActive(page);
601 }
602
603 #ifdef CONFIG_MMU
604 #define __PG_MLOCKED (1 << PG_mlocked)
605 #else
606 #define __PG_MLOCKED 0
607 #endif
608
609 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
610 #define __PG_COMPOUND_LOCK (1 << PG_compound_lock)
611 #else
612 #define __PG_COMPOUND_LOCK 0
613 #endif
614
615 /*
616 * Flags checked when a page is freed. Pages being freed should not have
617 * these flags set. It they are, there is a problem.
618 */
619 #define PAGE_FLAGS_CHECK_AT_FREE \
620 (1 << PG_lru | 1 << PG_locked | \
621 1 << PG_private | 1 << PG_private_2 | \
622 1 << PG_writeback | 1 << PG_reserved | \
623 1 << PG_slab | 1 << PG_swapcache | 1 << PG_active | \
624 1 << PG_unevictable | __PG_MLOCKED | \
625 __PG_COMPOUND_LOCK)
626
627 /*
628 * Flags checked when a page is prepped for return by the page allocator.
629 * Pages being prepped should not have these flags set. It they are set,
630 * there has been a kernel bug or struct page corruption.
631 *
632 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
633 * alloc-free cycle to prevent from reusing the page.
634 */
635 #define PAGE_FLAGS_CHECK_AT_PREP \
636 (((1 << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON)
637
638 #define PAGE_FLAGS_PRIVATE \
639 (1 << PG_private | 1 << PG_private_2)
640 /**
641 * page_has_private - Determine if page has private stuff
642 * @page: The page to be checked
643 *
644 * Determine if a page has private stuff, indicating that release routines
645 * should be invoked upon it.
646 */
647 static inline int page_has_private(struct page *page)
648 {
649 return !!(page->flags & PAGE_FLAGS_PRIVATE);
650 }
651
652 #undef PF_ANY
653 #undef PF_HEAD
654 #undef PF_NO_TAIL
655 #undef PF_NO_COMPOUND
656 #endif /* !__GENERATING_BOUNDS_H */
657
658 #endif /* PAGE_FLAGS_H */
This page took 0.045079 seconds and 6 git commands to generate.