Merge tag 'mvebu-dt-3.19-2' of git://git.infradead.org/linux-mvebu into next/dt
[deliverable/linux.git] / include / linux / pagemap.h
1 #ifndef _LINUX_PAGEMAP_H
2 #define _LINUX_PAGEMAP_H
3
4 /*
5 * Copyright 1995 Linus Torvalds
6 */
7 #include <linux/mm.h>
8 #include <linux/fs.h>
9 #include <linux/list.h>
10 #include <linux/highmem.h>
11 #include <linux/compiler.h>
12 #include <asm/uaccess.h>
13 #include <linux/gfp.h>
14 #include <linux/bitops.h>
15 #include <linux/hardirq.h> /* for in_interrupt() */
16 #include <linux/hugetlb_inline.h>
17
18 /*
19 * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page
20 * allocation mode flags.
21 */
22 enum mapping_flags {
23 AS_EIO = __GFP_BITS_SHIFT + 0, /* IO error on async write */
24 AS_ENOSPC = __GFP_BITS_SHIFT + 1, /* ENOSPC on async write */
25 AS_MM_ALL_LOCKS = __GFP_BITS_SHIFT + 2, /* under mm_take_all_locks() */
26 AS_UNEVICTABLE = __GFP_BITS_SHIFT + 3, /* e.g., ramdisk, SHM_LOCK */
27 AS_EXITING = __GFP_BITS_SHIFT + 4, /* final truncate in progress */
28 };
29
30 static inline void mapping_set_error(struct address_space *mapping, int error)
31 {
32 if (unlikely(error)) {
33 if (error == -ENOSPC)
34 set_bit(AS_ENOSPC, &mapping->flags);
35 else
36 set_bit(AS_EIO, &mapping->flags);
37 }
38 }
39
40 static inline void mapping_set_unevictable(struct address_space *mapping)
41 {
42 set_bit(AS_UNEVICTABLE, &mapping->flags);
43 }
44
45 static inline void mapping_clear_unevictable(struct address_space *mapping)
46 {
47 clear_bit(AS_UNEVICTABLE, &mapping->flags);
48 }
49
50 static inline int mapping_unevictable(struct address_space *mapping)
51 {
52 if (mapping)
53 return test_bit(AS_UNEVICTABLE, &mapping->flags);
54 return !!mapping;
55 }
56
57 static inline void mapping_set_exiting(struct address_space *mapping)
58 {
59 set_bit(AS_EXITING, &mapping->flags);
60 }
61
62 static inline int mapping_exiting(struct address_space *mapping)
63 {
64 return test_bit(AS_EXITING, &mapping->flags);
65 }
66
67 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
68 {
69 return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
70 }
71
72 /*
73 * This is non-atomic. Only to be used before the mapping is activated.
74 * Probably needs a barrier...
75 */
76 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
77 {
78 m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
79 (__force unsigned long)mask;
80 }
81
82 /*
83 * The page cache can be done in larger chunks than
84 * one page, because it allows for more efficient
85 * throughput (it can then be mapped into user
86 * space in smaller chunks for same flexibility).
87 *
88 * Or rather, it _will_ be done in larger chunks.
89 */
90 #define PAGE_CACHE_SHIFT PAGE_SHIFT
91 #define PAGE_CACHE_SIZE PAGE_SIZE
92 #define PAGE_CACHE_MASK PAGE_MASK
93 #define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
94
95 #define page_cache_get(page) get_page(page)
96 #define page_cache_release(page) put_page(page)
97 void release_pages(struct page **pages, int nr, bool cold);
98
99 /*
100 * speculatively take a reference to a page.
101 * If the page is free (_count == 0), then _count is untouched, and 0
102 * is returned. Otherwise, _count is incremented by 1 and 1 is returned.
103 *
104 * This function must be called inside the same rcu_read_lock() section as has
105 * been used to lookup the page in the pagecache radix-tree (or page table):
106 * this allows allocators to use a synchronize_rcu() to stabilize _count.
107 *
108 * Unless an RCU grace period has passed, the count of all pages coming out
109 * of the allocator must be considered unstable. page_count may return higher
110 * than expected, and put_page must be able to do the right thing when the
111 * page has been finished with, no matter what it is subsequently allocated
112 * for (because put_page is what is used here to drop an invalid speculative
113 * reference).
114 *
115 * This is the interesting part of the lockless pagecache (and lockless
116 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
117 * has the following pattern:
118 * 1. find page in radix tree
119 * 2. conditionally increment refcount
120 * 3. check the page is still in pagecache (if no, goto 1)
121 *
122 * Remove-side that cares about stability of _count (eg. reclaim) has the
123 * following (with tree_lock held for write):
124 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
125 * B. remove page from pagecache
126 * C. free the page
127 *
128 * There are 2 critical interleavings that matter:
129 * - 2 runs before A: in this case, A sees elevated refcount and bails out
130 * - A runs before 2: in this case, 2 sees zero refcount and retries;
131 * subsequently, B will complete and 1 will find no page, causing the
132 * lookup to return NULL.
133 *
134 * It is possible that between 1 and 2, the page is removed then the exact same
135 * page is inserted into the same position in pagecache. That's OK: the
136 * old find_get_page using tree_lock could equally have run before or after
137 * such a re-insertion, depending on order that locks are granted.
138 *
139 * Lookups racing against pagecache insertion isn't a big problem: either 1
140 * will find the page or it will not. Likewise, the old find_get_page could run
141 * either before the insertion or afterwards, depending on timing.
142 */
143 static inline int page_cache_get_speculative(struct page *page)
144 {
145 VM_BUG_ON(in_interrupt());
146
147 #ifdef CONFIG_TINY_RCU
148 # ifdef CONFIG_PREEMPT_COUNT
149 VM_BUG_ON(!in_atomic());
150 # endif
151 /*
152 * Preempt must be disabled here - we rely on rcu_read_lock doing
153 * this for us.
154 *
155 * Pagecache won't be truncated from interrupt context, so if we have
156 * found a page in the radix tree here, we have pinned its refcount by
157 * disabling preempt, and hence no need for the "speculative get" that
158 * SMP requires.
159 */
160 VM_BUG_ON_PAGE(page_count(page) == 0, page);
161 atomic_inc(&page->_count);
162
163 #else
164 if (unlikely(!get_page_unless_zero(page))) {
165 /*
166 * Either the page has been freed, or will be freed.
167 * In either case, retry here and the caller should
168 * do the right thing (see comments above).
169 */
170 return 0;
171 }
172 #endif
173 VM_BUG_ON_PAGE(PageTail(page), page);
174
175 return 1;
176 }
177
178 /*
179 * Same as above, but add instead of inc (could just be merged)
180 */
181 static inline int page_cache_add_speculative(struct page *page, int count)
182 {
183 VM_BUG_ON(in_interrupt());
184
185 #if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
186 # ifdef CONFIG_PREEMPT_COUNT
187 VM_BUG_ON(!in_atomic());
188 # endif
189 VM_BUG_ON_PAGE(page_count(page) == 0, page);
190 atomic_add(count, &page->_count);
191
192 #else
193 if (unlikely(!atomic_add_unless(&page->_count, count, 0)))
194 return 0;
195 #endif
196 VM_BUG_ON_PAGE(PageCompound(page) && page != compound_head(page), page);
197
198 return 1;
199 }
200
201 static inline int page_freeze_refs(struct page *page, int count)
202 {
203 return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
204 }
205
206 static inline void page_unfreeze_refs(struct page *page, int count)
207 {
208 VM_BUG_ON_PAGE(page_count(page) != 0, page);
209 VM_BUG_ON(count == 0);
210
211 atomic_set(&page->_count, count);
212 }
213
214 #ifdef CONFIG_NUMA
215 extern struct page *__page_cache_alloc(gfp_t gfp);
216 #else
217 static inline struct page *__page_cache_alloc(gfp_t gfp)
218 {
219 return alloc_pages(gfp, 0);
220 }
221 #endif
222
223 static inline struct page *page_cache_alloc(struct address_space *x)
224 {
225 return __page_cache_alloc(mapping_gfp_mask(x));
226 }
227
228 static inline struct page *page_cache_alloc_cold(struct address_space *x)
229 {
230 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
231 }
232
233 static inline struct page *page_cache_alloc_readahead(struct address_space *x)
234 {
235 return __page_cache_alloc(mapping_gfp_mask(x) |
236 __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN);
237 }
238
239 typedef int filler_t(void *, struct page *);
240
241 pgoff_t page_cache_next_hole(struct address_space *mapping,
242 pgoff_t index, unsigned long max_scan);
243 pgoff_t page_cache_prev_hole(struct address_space *mapping,
244 pgoff_t index, unsigned long max_scan);
245
246 #define FGP_ACCESSED 0x00000001
247 #define FGP_LOCK 0x00000002
248 #define FGP_CREAT 0x00000004
249 #define FGP_WRITE 0x00000008
250 #define FGP_NOFS 0x00000010
251 #define FGP_NOWAIT 0x00000020
252
253 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
254 int fgp_flags, gfp_t cache_gfp_mask, gfp_t radix_gfp_mask);
255
256 /**
257 * find_get_page - find and get a page reference
258 * @mapping: the address_space to search
259 * @offset: the page index
260 *
261 * Looks up the page cache slot at @mapping & @offset. If there is a
262 * page cache page, it is returned with an increased refcount.
263 *
264 * Otherwise, %NULL is returned.
265 */
266 static inline struct page *find_get_page(struct address_space *mapping,
267 pgoff_t offset)
268 {
269 return pagecache_get_page(mapping, offset, 0, 0, 0);
270 }
271
272 static inline struct page *find_get_page_flags(struct address_space *mapping,
273 pgoff_t offset, int fgp_flags)
274 {
275 return pagecache_get_page(mapping, offset, fgp_flags, 0, 0);
276 }
277
278 /**
279 * find_lock_page - locate, pin and lock a pagecache page
280 * pagecache_get_page - find and get a page reference
281 * @mapping: the address_space to search
282 * @offset: the page index
283 *
284 * Looks up the page cache slot at @mapping & @offset. If there is a
285 * page cache page, it is returned locked and with an increased
286 * refcount.
287 *
288 * Otherwise, %NULL is returned.
289 *
290 * find_lock_page() may sleep.
291 */
292 static inline struct page *find_lock_page(struct address_space *mapping,
293 pgoff_t offset)
294 {
295 return pagecache_get_page(mapping, offset, FGP_LOCK, 0, 0);
296 }
297
298 /**
299 * find_or_create_page - locate or add a pagecache page
300 * @mapping: the page's address_space
301 * @index: the page's index into the mapping
302 * @gfp_mask: page allocation mode
303 *
304 * Looks up the page cache slot at @mapping & @offset. If there is a
305 * page cache page, it is returned locked and with an increased
306 * refcount.
307 *
308 * If the page is not present, a new page is allocated using @gfp_mask
309 * and added to the page cache and the VM's LRU list. The page is
310 * returned locked and with an increased refcount.
311 *
312 * On memory exhaustion, %NULL is returned.
313 *
314 * find_or_create_page() may sleep, even if @gfp_flags specifies an
315 * atomic allocation!
316 */
317 static inline struct page *find_or_create_page(struct address_space *mapping,
318 pgoff_t offset, gfp_t gfp_mask)
319 {
320 return pagecache_get_page(mapping, offset,
321 FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
322 gfp_mask, gfp_mask & GFP_RECLAIM_MASK);
323 }
324
325 /**
326 * grab_cache_page_nowait - returns locked page at given index in given cache
327 * @mapping: target address_space
328 * @index: the page index
329 *
330 * Same as grab_cache_page(), but do not wait if the page is unavailable.
331 * This is intended for speculative data generators, where the data can
332 * be regenerated if the page couldn't be grabbed. This routine should
333 * be safe to call while holding the lock for another page.
334 *
335 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
336 * and deadlock against the caller's locked page.
337 */
338 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
339 pgoff_t index)
340 {
341 return pagecache_get_page(mapping, index,
342 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
343 mapping_gfp_mask(mapping),
344 GFP_NOFS);
345 }
346
347 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset);
348 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset);
349 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
350 unsigned int nr_entries, struct page **entries,
351 pgoff_t *indices);
352 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
353 unsigned int nr_pages, struct page **pages);
354 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
355 unsigned int nr_pages, struct page **pages);
356 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
357 int tag, unsigned int nr_pages, struct page **pages);
358
359 struct page *grab_cache_page_write_begin(struct address_space *mapping,
360 pgoff_t index, unsigned flags);
361
362 /*
363 * Returns locked page at given index in given cache, creating it if needed.
364 */
365 static inline struct page *grab_cache_page(struct address_space *mapping,
366 pgoff_t index)
367 {
368 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
369 }
370
371 extern struct page * read_cache_page(struct address_space *mapping,
372 pgoff_t index, filler_t *filler, void *data);
373 extern struct page * read_cache_page_gfp(struct address_space *mapping,
374 pgoff_t index, gfp_t gfp_mask);
375 extern int read_cache_pages(struct address_space *mapping,
376 struct list_head *pages, filler_t *filler, void *data);
377
378 static inline struct page *read_mapping_page(struct address_space *mapping,
379 pgoff_t index, void *data)
380 {
381 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
382 return read_cache_page(mapping, index, filler, data);
383 }
384
385 /*
386 * Get the offset in PAGE_SIZE.
387 * (TODO: hugepage should have ->index in PAGE_SIZE)
388 */
389 static inline pgoff_t page_to_pgoff(struct page *page)
390 {
391 if (unlikely(PageHeadHuge(page)))
392 return page->index << compound_order(page);
393 else
394 return page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
395 }
396
397 /*
398 * Return byte-offset into filesystem object for page.
399 */
400 static inline loff_t page_offset(struct page *page)
401 {
402 return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
403 }
404
405 static inline loff_t page_file_offset(struct page *page)
406 {
407 return ((loff_t)page_file_index(page)) << PAGE_CACHE_SHIFT;
408 }
409
410 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
411 unsigned long address);
412
413 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
414 unsigned long address)
415 {
416 pgoff_t pgoff;
417 if (unlikely(is_vm_hugetlb_page(vma)))
418 return linear_hugepage_index(vma, address);
419 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
420 pgoff += vma->vm_pgoff;
421 return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
422 }
423
424 extern void __lock_page(struct page *page);
425 extern int __lock_page_killable(struct page *page);
426 extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
427 unsigned int flags);
428 extern void unlock_page(struct page *page);
429
430 static inline void __set_page_locked(struct page *page)
431 {
432 __set_bit(PG_locked, &page->flags);
433 }
434
435 static inline void __clear_page_locked(struct page *page)
436 {
437 __clear_bit(PG_locked, &page->flags);
438 }
439
440 static inline int trylock_page(struct page *page)
441 {
442 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
443 }
444
445 /*
446 * lock_page may only be called if we have the page's inode pinned.
447 */
448 static inline void lock_page(struct page *page)
449 {
450 might_sleep();
451 if (!trylock_page(page))
452 __lock_page(page);
453 }
454
455 /*
456 * lock_page_killable is like lock_page but can be interrupted by fatal
457 * signals. It returns 0 if it locked the page and -EINTR if it was
458 * killed while waiting.
459 */
460 static inline int lock_page_killable(struct page *page)
461 {
462 might_sleep();
463 if (!trylock_page(page))
464 return __lock_page_killable(page);
465 return 0;
466 }
467
468 /*
469 * lock_page_or_retry - Lock the page, unless this would block and the
470 * caller indicated that it can handle a retry.
471 *
472 * Return value and mmap_sem implications depend on flags; see
473 * __lock_page_or_retry().
474 */
475 static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
476 unsigned int flags)
477 {
478 might_sleep();
479 return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
480 }
481
482 /*
483 * This is exported only for wait_on_page_locked/wait_on_page_writeback,
484 * and for filesystems which need to wait on PG_private.
485 */
486 extern void wait_on_page_bit(struct page *page, int bit_nr);
487
488 extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
489 extern int wait_on_page_bit_killable_timeout(struct page *page,
490 int bit_nr, unsigned long timeout);
491
492 static inline int wait_on_page_locked_killable(struct page *page)
493 {
494 if (PageLocked(page))
495 return wait_on_page_bit_killable(page, PG_locked);
496 return 0;
497 }
498
499 extern wait_queue_head_t *page_waitqueue(struct page *page);
500 static inline void wake_up_page(struct page *page, int bit)
501 {
502 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
503 }
504
505 /*
506 * Wait for a page to be unlocked.
507 *
508 * This must be called with the caller "holding" the page,
509 * ie with increased "page->count" so that the page won't
510 * go away during the wait..
511 */
512 static inline void wait_on_page_locked(struct page *page)
513 {
514 if (PageLocked(page))
515 wait_on_page_bit(page, PG_locked);
516 }
517
518 /*
519 * Wait for a page to complete writeback
520 */
521 static inline void wait_on_page_writeback(struct page *page)
522 {
523 if (PageWriteback(page))
524 wait_on_page_bit(page, PG_writeback);
525 }
526
527 extern void end_page_writeback(struct page *page);
528 void wait_for_stable_page(struct page *page);
529
530 void page_endio(struct page *page, int rw, int err);
531
532 /*
533 * Add an arbitrary waiter to a page's wait queue
534 */
535 extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter);
536
537 /*
538 * Fault a userspace page into pagetables. Return non-zero on a fault.
539 *
540 * This assumes that two userspace pages are always sufficient. That's
541 * not true if PAGE_CACHE_SIZE > PAGE_SIZE.
542 */
543 static inline int fault_in_pages_writeable(char __user *uaddr, int size)
544 {
545 int ret;
546
547 if (unlikely(size == 0))
548 return 0;
549
550 /*
551 * Writing zeroes into userspace here is OK, because we know that if
552 * the zero gets there, we'll be overwriting it.
553 */
554 ret = __put_user(0, uaddr);
555 if (ret == 0) {
556 char __user *end = uaddr + size - 1;
557
558 /*
559 * If the page was already mapped, this will get a cache miss
560 * for sure, so try to avoid doing it.
561 */
562 if (((unsigned long)uaddr & PAGE_MASK) !=
563 ((unsigned long)end & PAGE_MASK))
564 ret = __put_user(0, end);
565 }
566 return ret;
567 }
568
569 static inline int fault_in_pages_readable(const char __user *uaddr, int size)
570 {
571 volatile char c;
572 int ret;
573
574 if (unlikely(size == 0))
575 return 0;
576
577 ret = __get_user(c, uaddr);
578 if (ret == 0) {
579 const char __user *end = uaddr + size - 1;
580
581 if (((unsigned long)uaddr & PAGE_MASK) !=
582 ((unsigned long)end & PAGE_MASK)) {
583 ret = __get_user(c, end);
584 (void)c;
585 }
586 }
587 return ret;
588 }
589
590 /*
591 * Multipage variants of the above prefault helpers, useful if more than
592 * PAGE_SIZE of data needs to be prefaulted. These are separate from the above
593 * functions (which only handle up to PAGE_SIZE) to avoid clobbering the
594 * filemap.c hotpaths.
595 */
596 static inline int fault_in_multipages_writeable(char __user *uaddr, int size)
597 {
598 int ret = 0;
599 char __user *end = uaddr + size - 1;
600
601 if (unlikely(size == 0))
602 return ret;
603
604 /*
605 * Writing zeroes into userspace here is OK, because we know that if
606 * the zero gets there, we'll be overwriting it.
607 */
608 while (uaddr <= end) {
609 ret = __put_user(0, uaddr);
610 if (ret != 0)
611 return ret;
612 uaddr += PAGE_SIZE;
613 }
614
615 /* Check whether the range spilled into the next page. */
616 if (((unsigned long)uaddr & PAGE_MASK) ==
617 ((unsigned long)end & PAGE_MASK))
618 ret = __put_user(0, end);
619
620 return ret;
621 }
622
623 static inline int fault_in_multipages_readable(const char __user *uaddr,
624 int size)
625 {
626 volatile char c;
627 int ret = 0;
628 const char __user *end = uaddr + size - 1;
629
630 if (unlikely(size == 0))
631 return ret;
632
633 while (uaddr <= end) {
634 ret = __get_user(c, uaddr);
635 if (ret != 0)
636 return ret;
637 uaddr += PAGE_SIZE;
638 }
639
640 /* Check whether the range spilled into the next page. */
641 if (((unsigned long)uaddr & PAGE_MASK) ==
642 ((unsigned long)end & PAGE_MASK)) {
643 ret = __get_user(c, end);
644 (void)c;
645 }
646
647 return ret;
648 }
649
650 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
651 pgoff_t index, gfp_t gfp_mask);
652 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
653 pgoff_t index, gfp_t gfp_mask);
654 extern void delete_from_page_cache(struct page *page);
655 extern void __delete_from_page_cache(struct page *page, void *shadow);
656 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
657
658 /*
659 * Like add_to_page_cache_locked, but used to add newly allocated pages:
660 * the page is new, so we can just run __set_page_locked() against it.
661 */
662 static inline int add_to_page_cache(struct page *page,
663 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
664 {
665 int error;
666
667 __set_page_locked(page);
668 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
669 if (unlikely(error))
670 __clear_page_locked(page);
671 return error;
672 }
673
674 #endif /* _LINUX_PAGEMAP_H */
This page took 0.098595 seconds and 5 git commands to generate.