Merge tag 'armsoc-dt64' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[deliverable/linux.git] / include / linux / pagemap.h
1 #ifndef _LINUX_PAGEMAP_H
2 #define _LINUX_PAGEMAP_H
3
4 /*
5 * Copyright 1995 Linus Torvalds
6 */
7 #include <linux/mm.h>
8 #include <linux/fs.h>
9 #include <linux/list.h>
10 #include <linux/highmem.h>
11 #include <linux/compiler.h>
12 #include <asm/uaccess.h>
13 #include <linux/gfp.h>
14 #include <linux/bitops.h>
15 #include <linux/hardirq.h> /* for in_interrupt() */
16 #include <linux/hugetlb_inline.h>
17
18 /*
19 * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page
20 * allocation mode flags.
21 */
22 enum mapping_flags {
23 AS_EIO = __GFP_BITS_SHIFT + 0, /* IO error on async write */
24 AS_ENOSPC = __GFP_BITS_SHIFT + 1, /* ENOSPC on async write */
25 AS_MM_ALL_LOCKS = __GFP_BITS_SHIFT + 2, /* under mm_take_all_locks() */
26 AS_UNEVICTABLE = __GFP_BITS_SHIFT + 3, /* e.g., ramdisk, SHM_LOCK */
27 AS_EXITING = __GFP_BITS_SHIFT + 4, /* final truncate in progress */
28 };
29
30 static inline void mapping_set_error(struct address_space *mapping, int error)
31 {
32 if (unlikely(error)) {
33 if (error == -ENOSPC)
34 set_bit(AS_ENOSPC, &mapping->flags);
35 else
36 set_bit(AS_EIO, &mapping->flags);
37 }
38 }
39
40 static inline void mapping_set_unevictable(struct address_space *mapping)
41 {
42 set_bit(AS_UNEVICTABLE, &mapping->flags);
43 }
44
45 static inline void mapping_clear_unevictable(struct address_space *mapping)
46 {
47 clear_bit(AS_UNEVICTABLE, &mapping->flags);
48 }
49
50 static inline int mapping_unevictable(struct address_space *mapping)
51 {
52 if (mapping)
53 return test_bit(AS_UNEVICTABLE, &mapping->flags);
54 return !!mapping;
55 }
56
57 static inline void mapping_set_exiting(struct address_space *mapping)
58 {
59 set_bit(AS_EXITING, &mapping->flags);
60 }
61
62 static inline int mapping_exiting(struct address_space *mapping)
63 {
64 return test_bit(AS_EXITING, &mapping->flags);
65 }
66
67 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
68 {
69 return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
70 }
71
72 /* Restricts the given gfp_mask to what the mapping allows. */
73 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
74 gfp_t gfp_mask)
75 {
76 return mapping_gfp_mask(mapping) & gfp_mask;
77 }
78
79 /*
80 * This is non-atomic. Only to be used before the mapping is activated.
81 * Probably needs a barrier...
82 */
83 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
84 {
85 m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
86 (__force unsigned long)mask;
87 }
88
89 /*
90 * The page cache can be done in larger chunks than
91 * one page, because it allows for more efficient
92 * throughput (it can then be mapped into user
93 * space in smaller chunks for same flexibility).
94 *
95 * Or rather, it _will_ be done in larger chunks.
96 */
97 #define PAGE_CACHE_SHIFT PAGE_SHIFT
98 #define PAGE_CACHE_SIZE PAGE_SIZE
99 #define PAGE_CACHE_MASK PAGE_MASK
100 #define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
101
102 #define page_cache_get(page) get_page(page)
103 #define page_cache_release(page) put_page(page)
104 void release_pages(struct page **pages, int nr, bool cold);
105
106 /*
107 * speculatively take a reference to a page.
108 * If the page is free (_count == 0), then _count is untouched, and 0
109 * is returned. Otherwise, _count is incremented by 1 and 1 is returned.
110 *
111 * This function must be called inside the same rcu_read_lock() section as has
112 * been used to lookup the page in the pagecache radix-tree (or page table):
113 * this allows allocators to use a synchronize_rcu() to stabilize _count.
114 *
115 * Unless an RCU grace period has passed, the count of all pages coming out
116 * of the allocator must be considered unstable. page_count may return higher
117 * than expected, and put_page must be able to do the right thing when the
118 * page has been finished with, no matter what it is subsequently allocated
119 * for (because put_page is what is used here to drop an invalid speculative
120 * reference).
121 *
122 * This is the interesting part of the lockless pagecache (and lockless
123 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
124 * has the following pattern:
125 * 1. find page in radix tree
126 * 2. conditionally increment refcount
127 * 3. check the page is still in pagecache (if no, goto 1)
128 *
129 * Remove-side that cares about stability of _count (eg. reclaim) has the
130 * following (with tree_lock held for write):
131 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
132 * B. remove page from pagecache
133 * C. free the page
134 *
135 * There are 2 critical interleavings that matter:
136 * - 2 runs before A: in this case, A sees elevated refcount and bails out
137 * - A runs before 2: in this case, 2 sees zero refcount and retries;
138 * subsequently, B will complete and 1 will find no page, causing the
139 * lookup to return NULL.
140 *
141 * It is possible that between 1 and 2, the page is removed then the exact same
142 * page is inserted into the same position in pagecache. That's OK: the
143 * old find_get_page using tree_lock could equally have run before or after
144 * such a re-insertion, depending on order that locks are granted.
145 *
146 * Lookups racing against pagecache insertion isn't a big problem: either 1
147 * will find the page or it will not. Likewise, the old find_get_page could run
148 * either before the insertion or afterwards, depending on timing.
149 */
150 static inline int page_cache_get_speculative(struct page *page)
151 {
152 VM_BUG_ON(in_interrupt());
153
154 #ifdef CONFIG_TINY_RCU
155 # ifdef CONFIG_PREEMPT_COUNT
156 VM_BUG_ON(!in_atomic());
157 # endif
158 /*
159 * Preempt must be disabled here - we rely on rcu_read_lock doing
160 * this for us.
161 *
162 * Pagecache won't be truncated from interrupt context, so if we have
163 * found a page in the radix tree here, we have pinned its refcount by
164 * disabling preempt, and hence no need for the "speculative get" that
165 * SMP requires.
166 */
167 VM_BUG_ON_PAGE(page_count(page) == 0, page);
168 atomic_inc(&page->_count);
169
170 #else
171 if (unlikely(!get_page_unless_zero(page))) {
172 /*
173 * Either the page has been freed, or will be freed.
174 * In either case, retry here and the caller should
175 * do the right thing (see comments above).
176 */
177 return 0;
178 }
179 #endif
180 VM_BUG_ON_PAGE(PageTail(page), page);
181
182 return 1;
183 }
184
185 /*
186 * Same as above, but add instead of inc (could just be merged)
187 */
188 static inline int page_cache_add_speculative(struct page *page, int count)
189 {
190 VM_BUG_ON(in_interrupt());
191
192 #if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
193 # ifdef CONFIG_PREEMPT_COUNT
194 VM_BUG_ON(!in_atomic());
195 # endif
196 VM_BUG_ON_PAGE(page_count(page) == 0, page);
197 atomic_add(count, &page->_count);
198
199 #else
200 if (unlikely(!atomic_add_unless(&page->_count, count, 0)))
201 return 0;
202 #endif
203 VM_BUG_ON_PAGE(PageCompound(page) && page != compound_head(page), page);
204
205 return 1;
206 }
207
208 static inline int page_freeze_refs(struct page *page, int count)
209 {
210 return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
211 }
212
213 static inline void page_unfreeze_refs(struct page *page, int count)
214 {
215 VM_BUG_ON_PAGE(page_count(page) != 0, page);
216 VM_BUG_ON(count == 0);
217
218 atomic_set(&page->_count, count);
219 }
220
221 #ifdef CONFIG_NUMA
222 extern struct page *__page_cache_alloc(gfp_t gfp);
223 #else
224 static inline struct page *__page_cache_alloc(gfp_t gfp)
225 {
226 return alloc_pages(gfp, 0);
227 }
228 #endif
229
230 static inline struct page *page_cache_alloc(struct address_space *x)
231 {
232 return __page_cache_alloc(mapping_gfp_mask(x));
233 }
234
235 static inline struct page *page_cache_alloc_cold(struct address_space *x)
236 {
237 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
238 }
239
240 static inline struct page *page_cache_alloc_readahead(struct address_space *x)
241 {
242 return __page_cache_alloc(mapping_gfp_mask(x) |
243 __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN);
244 }
245
246 typedef int filler_t(void *, struct page *);
247
248 pgoff_t page_cache_next_hole(struct address_space *mapping,
249 pgoff_t index, unsigned long max_scan);
250 pgoff_t page_cache_prev_hole(struct address_space *mapping,
251 pgoff_t index, unsigned long max_scan);
252
253 #define FGP_ACCESSED 0x00000001
254 #define FGP_LOCK 0x00000002
255 #define FGP_CREAT 0x00000004
256 #define FGP_WRITE 0x00000008
257 #define FGP_NOFS 0x00000010
258 #define FGP_NOWAIT 0x00000020
259
260 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
261 int fgp_flags, gfp_t cache_gfp_mask);
262
263 /**
264 * find_get_page - find and get a page reference
265 * @mapping: the address_space to search
266 * @offset: the page index
267 *
268 * Looks up the page cache slot at @mapping & @offset. If there is a
269 * page cache page, it is returned with an increased refcount.
270 *
271 * Otherwise, %NULL is returned.
272 */
273 static inline struct page *find_get_page(struct address_space *mapping,
274 pgoff_t offset)
275 {
276 return pagecache_get_page(mapping, offset, 0, 0);
277 }
278
279 static inline struct page *find_get_page_flags(struct address_space *mapping,
280 pgoff_t offset, int fgp_flags)
281 {
282 return pagecache_get_page(mapping, offset, fgp_flags, 0);
283 }
284
285 /**
286 * find_lock_page - locate, pin and lock a pagecache page
287 * pagecache_get_page - find and get a page reference
288 * @mapping: the address_space to search
289 * @offset: the page index
290 *
291 * Looks up the page cache slot at @mapping & @offset. If there is a
292 * page cache page, it is returned locked and with an increased
293 * refcount.
294 *
295 * Otherwise, %NULL is returned.
296 *
297 * find_lock_page() may sleep.
298 */
299 static inline struct page *find_lock_page(struct address_space *mapping,
300 pgoff_t offset)
301 {
302 return pagecache_get_page(mapping, offset, FGP_LOCK, 0);
303 }
304
305 /**
306 * find_or_create_page - locate or add a pagecache page
307 * @mapping: the page's address_space
308 * @index: the page's index into the mapping
309 * @gfp_mask: page allocation mode
310 *
311 * Looks up the page cache slot at @mapping & @offset. If there is a
312 * page cache page, it is returned locked and with an increased
313 * refcount.
314 *
315 * If the page is not present, a new page is allocated using @gfp_mask
316 * and added to the page cache and the VM's LRU list. The page is
317 * returned locked and with an increased refcount.
318 *
319 * On memory exhaustion, %NULL is returned.
320 *
321 * find_or_create_page() may sleep, even if @gfp_flags specifies an
322 * atomic allocation!
323 */
324 static inline struct page *find_or_create_page(struct address_space *mapping,
325 pgoff_t offset, gfp_t gfp_mask)
326 {
327 return pagecache_get_page(mapping, offset,
328 FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
329 gfp_mask);
330 }
331
332 /**
333 * grab_cache_page_nowait - returns locked page at given index in given cache
334 * @mapping: target address_space
335 * @index: the page index
336 *
337 * Same as grab_cache_page(), but do not wait if the page is unavailable.
338 * This is intended for speculative data generators, where the data can
339 * be regenerated if the page couldn't be grabbed. This routine should
340 * be safe to call while holding the lock for another page.
341 *
342 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
343 * and deadlock against the caller's locked page.
344 */
345 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
346 pgoff_t index)
347 {
348 return pagecache_get_page(mapping, index,
349 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
350 mapping_gfp_mask(mapping));
351 }
352
353 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset);
354 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset);
355 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
356 unsigned int nr_entries, struct page **entries,
357 pgoff_t *indices);
358 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
359 unsigned int nr_pages, struct page **pages);
360 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
361 unsigned int nr_pages, struct page **pages);
362 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
363 int tag, unsigned int nr_pages, struct page **pages);
364
365 struct page *grab_cache_page_write_begin(struct address_space *mapping,
366 pgoff_t index, unsigned flags);
367
368 /*
369 * Returns locked page at given index in given cache, creating it if needed.
370 */
371 static inline struct page *grab_cache_page(struct address_space *mapping,
372 pgoff_t index)
373 {
374 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
375 }
376
377 extern struct page * read_cache_page(struct address_space *mapping,
378 pgoff_t index, filler_t *filler, void *data);
379 extern struct page * read_cache_page_gfp(struct address_space *mapping,
380 pgoff_t index, gfp_t gfp_mask);
381 extern int read_cache_pages(struct address_space *mapping,
382 struct list_head *pages, filler_t *filler, void *data);
383
384 static inline struct page *read_mapping_page(struct address_space *mapping,
385 pgoff_t index, void *data)
386 {
387 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
388 return read_cache_page(mapping, index, filler, data);
389 }
390
391 /*
392 * Get the offset in PAGE_SIZE.
393 * (TODO: hugepage should have ->index in PAGE_SIZE)
394 */
395 static inline pgoff_t page_to_pgoff(struct page *page)
396 {
397 pgoff_t pgoff;
398
399 if (unlikely(PageHeadHuge(page)))
400 return page->index << compound_order(page);
401
402 if (likely(!PageTransTail(page)))
403 return page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
404
405 /*
406 * We don't initialize ->index for tail pages: calculate based on
407 * head page
408 */
409 pgoff = compound_head(page)->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
410 pgoff += page - compound_head(page);
411 return pgoff;
412 }
413
414 /*
415 * Return byte-offset into filesystem object for page.
416 */
417 static inline loff_t page_offset(struct page *page)
418 {
419 return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
420 }
421
422 static inline loff_t page_file_offset(struct page *page)
423 {
424 return ((loff_t)page_file_index(page)) << PAGE_CACHE_SHIFT;
425 }
426
427 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
428 unsigned long address);
429
430 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
431 unsigned long address)
432 {
433 pgoff_t pgoff;
434 if (unlikely(is_vm_hugetlb_page(vma)))
435 return linear_hugepage_index(vma, address);
436 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
437 pgoff += vma->vm_pgoff;
438 return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
439 }
440
441 extern void __lock_page(struct page *page);
442 extern int __lock_page_killable(struct page *page);
443 extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
444 unsigned int flags);
445 extern void unlock_page(struct page *page);
446
447 static inline int trylock_page(struct page *page)
448 {
449 page = compound_head(page);
450 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
451 }
452
453 /*
454 * lock_page may only be called if we have the page's inode pinned.
455 */
456 static inline void lock_page(struct page *page)
457 {
458 might_sleep();
459 if (!trylock_page(page))
460 __lock_page(page);
461 }
462
463 /*
464 * lock_page_killable is like lock_page but can be interrupted by fatal
465 * signals. It returns 0 if it locked the page and -EINTR if it was
466 * killed while waiting.
467 */
468 static inline int lock_page_killable(struct page *page)
469 {
470 might_sleep();
471 if (!trylock_page(page))
472 return __lock_page_killable(page);
473 return 0;
474 }
475
476 /*
477 * lock_page_or_retry - Lock the page, unless this would block and the
478 * caller indicated that it can handle a retry.
479 *
480 * Return value and mmap_sem implications depend on flags; see
481 * __lock_page_or_retry().
482 */
483 static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
484 unsigned int flags)
485 {
486 might_sleep();
487 return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
488 }
489
490 /*
491 * This is exported only for wait_on_page_locked/wait_on_page_writeback,
492 * and for filesystems which need to wait on PG_private.
493 */
494 extern void wait_on_page_bit(struct page *page, int bit_nr);
495
496 extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
497 extern int wait_on_page_bit_killable_timeout(struct page *page,
498 int bit_nr, unsigned long timeout);
499
500 static inline int wait_on_page_locked_killable(struct page *page)
501 {
502 if (!PageLocked(page))
503 return 0;
504 return wait_on_page_bit_killable(compound_head(page), PG_locked);
505 }
506
507 extern wait_queue_head_t *page_waitqueue(struct page *page);
508 static inline void wake_up_page(struct page *page, int bit)
509 {
510 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
511 }
512
513 /*
514 * Wait for a page to be unlocked.
515 *
516 * This must be called with the caller "holding" the page,
517 * ie with increased "page->count" so that the page won't
518 * go away during the wait..
519 */
520 static inline void wait_on_page_locked(struct page *page)
521 {
522 if (PageLocked(page))
523 wait_on_page_bit(compound_head(page), PG_locked);
524 }
525
526 /*
527 * Wait for a page to complete writeback
528 */
529 static inline void wait_on_page_writeback(struct page *page)
530 {
531 if (PageWriteback(page))
532 wait_on_page_bit(page, PG_writeback);
533 }
534
535 extern void end_page_writeback(struct page *page);
536 void wait_for_stable_page(struct page *page);
537
538 void page_endio(struct page *page, int rw, int err);
539
540 /*
541 * Add an arbitrary waiter to a page's wait queue
542 */
543 extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter);
544
545 /*
546 * Fault a userspace page into pagetables. Return non-zero on a fault.
547 *
548 * This assumes that two userspace pages are always sufficient. That's
549 * not true if PAGE_CACHE_SIZE > PAGE_SIZE.
550 */
551 static inline int fault_in_pages_writeable(char __user *uaddr, int size)
552 {
553 int ret;
554
555 if (unlikely(size == 0))
556 return 0;
557
558 /*
559 * Writing zeroes into userspace here is OK, because we know that if
560 * the zero gets there, we'll be overwriting it.
561 */
562 ret = __put_user(0, uaddr);
563 if (ret == 0) {
564 char __user *end = uaddr + size - 1;
565
566 /*
567 * If the page was already mapped, this will get a cache miss
568 * for sure, so try to avoid doing it.
569 */
570 if (((unsigned long)uaddr & PAGE_MASK) !=
571 ((unsigned long)end & PAGE_MASK))
572 ret = __put_user(0, end);
573 }
574 return ret;
575 }
576
577 static inline int fault_in_pages_readable(const char __user *uaddr, int size)
578 {
579 volatile char c;
580 int ret;
581
582 if (unlikely(size == 0))
583 return 0;
584
585 ret = __get_user(c, uaddr);
586 if (ret == 0) {
587 const char __user *end = uaddr + size - 1;
588
589 if (((unsigned long)uaddr & PAGE_MASK) !=
590 ((unsigned long)end & PAGE_MASK)) {
591 ret = __get_user(c, end);
592 (void)c;
593 }
594 }
595 return ret;
596 }
597
598 /*
599 * Multipage variants of the above prefault helpers, useful if more than
600 * PAGE_SIZE of data needs to be prefaulted. These are separate from the above
601 * functions (which only handle up to PAGE_SIZE) to avoid clobbering the
602 * filemap.c hotpaths.
603 */
604 static inline int fault_in_multipages_writeable(char __user *uaddr, int size)
605 {
606 int ret = 0;
607 char __user *end = uaddr + size - 1;
608
609 if (unlikely(size == 0))
610 return ret;
611
612 /*
613 * Writing zeroes into userspace here is OK, because we know that if
614 * the zero gets there, we'll be overwriting it.
615 */
616 while (uaddr <= end) {
617 ret = __put_user(0, uaddr);
618 if (ret != 0)
619 return ret;
620 uaddr += PAGE_SIZE;
621 }
622
623 /* Check whether the range spilled into the next page. */
624 if (((unsigned long)uaddr & PAGE_MASK) ==
625 ((unsigned long)end & PAGE_MASK))
626 ret = __put_user(0, end);
627
628 return ret;
629 }
630
631 static inline int fault_in_multipages_readable(const char __user *uaddr,
632 int size)
633 {
634 volatile char c;
635 int ret = 0;
636 const char __user *end = uaddr + size - 1;
637
638 if (unlikely(size == 0))
639 return ret;
640
641 while (uaddr <= end) {
642 ret = __get_user(c, uaddr);
643 if (ret != 0)
644 return ret;
645 uaddr += PAGE_SIZE;
646 }
647
648 /* Check whether the range spilled into the next page. */
649 if (((unsigned long)uaddr & PAGE_MASK) ==
650 ((unsigned long)end & PAGE_MASK)) {
651 ret = __get_user(c, end);
652 (void)c;
653 }
654
655 return ret;
656 }
657
658 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
659 pgoff_t index, gfp_t gfp_mask);
660 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
661 pgoff_t index, gfp_t gfp_mask);
662 extern void delete_from_page_cache(struct page *page);
663 extern void __delete_from_page_cache(struct page *page, void *shadow,
664 struct mem_cgroup *memcg);
665 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
666
667 /*
668 * Like add_to_page_cache_locked, but used to add newly allocated pages:
669 * the page is new, so we can just run __SetPageLocked() against it.
670 */
671 static inline int add_to_page_cache(struct page *page,
672 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
673 {
674 int error;
675
676 __SetPageLocked(page);
677 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
678 if (unlikely(error))
679 __ClearPageLocked(page);
680 return error;
681 }
682
683 static inline unsigned long dir_pages(struct inode *inode)
684 {
685 return (unsigned long)(inode->i_size + PAGE_CACHE_SIZE - 1) >>
686 PAGE_CACHE_SHIFT;
687 }
688
689 #endif /* _LINUX_PAGEMAP_H */
This page took 0.048062 seconds and 6 git commands to generate.