percpu: remove per_cpu__ prefix.
[deliverable/linux.git] / include / linux / percpu.h
1 #ifndef __LINUX_PERCPU_H
2 #define __LINUX_PERCPU_H
3
4 #include <linux/preempt.h>
5 #include <linux/slab.h> /* For kmalloc() */
6 #include <linux/smp.h>
7 #include <linux/cpumask.h>
8 #include <linux/pfn.h>
9
10 #include <asm/percpu.h>
11
12 /* enough to cover all DEFINE_PER_CPUs in modules */
13 #ifdef CONFIG_MODULES
14 #define PERCPU_MODULE_RESERVE (8 << 10)
15 #else
16 #define PERCPU_MODULE_RESERVE 0
17 #endif
18
19 #ifndef PERCPU_ENOUGH_ROOM
20 #define PERCPU_ENOUGH_ROOM \
21 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \
22 PERCPU_MODULE_RESERVE)
23 #endif
24
25 /*
26 * Must be an lvalue. Since @var must be a simple identifier,
27 * we force a syntax error here if it isn't.
28 */
29 #define get_cpu_var(var) (*({ \
30 extern int simple_identifier_##var(void); \
31 preempt_disable(); \
32 &__get_cpu_var(var); }))
33 #define put_cpu_var(var) preempt_enable()
34
35 #ifdef CONFIG_SMP
36
37 /* minimum unit size, also is the maximum supported allocation size */
38 #define PCPU_MIN_UNIT_SIZE PFN_ALIGN(64 << 10)
39
40 /*
41 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
42 * back on the first chunk for dynamic percpu allocation if arch is
43 * manually allocating and mapping it for faster access (as a part of
44 * large page mapping for example).
45 *
46 * The following values give between one and two pages of free space
47 * after typical minimal boot (2-way SMP, single disk and NIC) with
48 * both defconfig and a distro config on x86_64 and 32. More
49 * intelligent way to determine this would be nice.
50 */
51 #if BITS_PER_LONG > 32
52 #define PERCPU_DYNAMIC_RESERVE (20 << 10)
53 #else
54 #define PERCPU_DYNAMIC_RESERVE (12 << 10)
55 #endif
56
57 extern void *pcpu_base_addr;
58 extern const unsigned long *pcpu_unit_offsets;
59
60 struct pcpu_group_info {
61 int nr_units; /* aligned # of units */
62 unsigned long base_offset; /* base address offset */
63 unsigned int *cpu_map; /* unit->cpu map, empty
64 * entries contain NR_CPUS */
65 };
66
67 struct pcpu_alloc_info {
68 size_t static_size;
69 size_t reserved_size;
70 size_t dyn_size;
71 size_t unit_size;
72 size_t atom_size;
73 size_t alloc_size;
74 size_t __ai_size; /* internal, don't use */
75 int nr_groups; /* 0 if grouping unnecessary */
76 struct pcpu_group_info groups[];
77 };
78
79 enum pcpu_fc {
80 PCPU_FC_AUTO,
81 PCPU_FC_EMBED,
82 PCPU_FC_PAGE,
83
84 PCPU_FC_NR,
85 };
86 extern const char *pcpu_fc_names[PCPU_FC_NR];
87
88 extern enum pcpu_fc pcpu_chosen_fc;
89
90 typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size,
91 size_t align);
92 typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size);
93 typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr);
94 typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to);
95
96 extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
97 int nr_units);
98 extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai);
99
100 extern struct pcpu_alloc_info * __init pcpu_build_alloc_info(
101 size_t reserved_size, ssize_t dyn_size,
102 size_t atom_size,
103 pcpu_fc_cpu_distance_fn_t cpu_distance_fn);
104
105 extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
106 void *base_addr);
107
108 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
109 extern int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size,
110 size_t atom_size,
111 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
112 pcpu_fc_alloc_fn_t alloc_fn,
113 pcpu_fc_free_fn_t free_fn);
114 #endif
115
116 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
117 extern int __init pcpu_page_first_chunk(size_t reserved_size,
118 pcpu_fc_alloc_fn_t alloc_fn,
119 pcpu_fc_free_fn_t free_fn,
120 pcpu_fc_populate_pte_fn_t populate_pte_fn);
121 #endif
122
123 /*
124 * Use this to get to a cpu's version of the per-cpu object
125 * dynamically allocated. Non-atomic access to the current CPU's
126 * version should probably be combined with get_cpu()/put_cpu().
127 */
128 #define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
129
130 extern void *__alloc_reserved_percpu(size_t size, size_t align);
131 extern void *__alloc_percpu(size_t size, size_t align);
132 extern void free_percpu(void *__pdata);
133
134 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
135 extern void __init setup_per_cpu_areas(void);
136 #endif
137
138 #else /* CONFIG_SMP */
139
140 #define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); (ptr); })
141
142 static inline void *__alloc_percpu(size_t size, size_t align)
143 {
144 /*
145 * Can't easily make larger alignment work with kmalloc. WARN
146 * on it. Larger alignment should only be used for module
147 * percpu sections on SMP for which this path isn't used.
148 */
149 WARN_ON_ONCE(align > SMP_CACHE_BYTES);
150 return kzalloc(size, GFP_KERNEL);
151 }
152
153 static inline void free_percpu(void *p)
154 {
155 kfree(p);
156 }
157
158 static inline void __init setup_per_cpu_areas(void) { }
159
160 static inline void *pcpu_lpage_remapped(void *kaddr)
161 {
162 return NULL;
163 }
164
165 #endif /* CONFIG_SMP */
166
167 #define alloc_percpu(type) \
168 (typeof(type) *)__alloc_percpu(sizeof(type), __alignof__(type))
169
170 /*
171 * Optional methods for optimized non-lvalue per-cpu variable access.
172 *
173 * @var can be a percpu variable or a field of it and its size should
174 * equal char, int or long. percpu_read() evaluates to a lvalue and
175 * all others to void.
176 *
177 * These operations are guaranteed to be atomic w.r.t. preemption.
178 * The generic versions use plain get/put_cpu_var(). Archs are
179 * encouraged to implement single-instruction alternatives which don't
180 * require preemption protection.
181 */
182 #ifndef percpu_read
183 # define percpu_read(var) \
184 ({ \
185 typeof(var) __tmp_var__; \
186 __tmp_var__ = get_cpu_var(var); \
187 put_cpu_var(var); \
188 __tmp_var__; \
189 })
190 #endif
191
192 #define __percpu_generic_to_op(var, val, op) \
193 do { \
194 get_cpu_var(var) op val; \
195 put_cpu_var(var); \
196 } while (0)
197
198 #ifndef percpu_write
199 # define percpu_write(var, val) __percpu_generic_to_op(var, (val), =)
200 #endif
201
202 #ifndef percpu_add
203 # define percpu_add(var, val) __percpu_generic_to_op(var, (val), +=)
204 #endif
205
206 #ifndef percpu_sub
207 # define percpu_sub(var, val) __percpu_generic_to_op(var, (val), -=)
208 #endif
209
210 #ifndef percpu_and
211 # define percpu_and(var, val) __percpu_generic_to_op(var, (val), &=)
212 #endif
213
214 #ifndef percpu_or
215 # define percpu_or(var, val) __percpu_generic_to_op(var, (val), |=)
216 #endif
217
218 #ifndef percpu_xor
219 # define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=)
220 #endif
221
222 /*
223 * Branching function to split up a function into a set of functions that
224 * are called for different scalar sizes of the objects handled.
225 */
226
227 extern void __bad_size_call_parameter(void);
228
229 #define __pcpu_size_call_return(stem, variable) \
230 ({ typeof(variable) pscr_ret__; \
231 switch(sizeof(variable)) { \
232 case 1: pscr_ret__ = stem##1(variable);break; \
233 case 2: pscr_ret__ = stem##2(variable);break; \
234 case 4: pscr_ret__ = stem##4(variable);break; \
235 case 8: pscr_ret__ = stem##8(variable);break; \
236 default: \
237 __bad_size_call_parameter();break; \
238 } \
239 pscr_ret__; \
240 })
241
242 #define __pcpu_size_call(stem, variable, ...) \
243 do { \
244 switch(sizeof(variable)) { \
245 case 1: stem##1(variable, __VA_ARGS__);break; \
246 case 2: stem##2(variable, __VA_ARGS__);break; \
247 case 4: stem##4(variable, __VA_ARGS__);break; \
248 case 8: stem##8(variable, __VA_ARGS__);break; \
249 default: \
250 __bad_size_call_parameter();break; \
251 } \
252 } while (0)
253
254 /*
255 * Optimized manipulation for memory allocated through the per cpu
256 * allocator or for addresses of per cpu variables.
257 *
258 * These operation guarantee exclusivity of access for other operations
259 * on the *same* processor. The assumption is that per cpu data is only
260 * accessed by a single processor instance (the current one).
261 *
262 * The first group is used for accesses that must be done in a
263 * preemption safe way since we know that the context is not preempt
264 * safe. Interrupts may occur. If the interrupt modifies the variable
265 * too then RMW actions will not be reliable.
266 *
267 * The arch code can provide optimized functions in two ways:
268 *
269 * 1. Override the function completely. F.e. define this_cpu_add().
270 * The arch must then ensure that the various scalar format passed
271 * are handled correctly.
272 *
273 * 2. Provide functions for certain scalar sizes. F.e. provide
274 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte
275 * sized RMW actions. If arch code does not provide operations for
276 * a scalar size then the fallback in the generic code will be
277 * used.
278 */
279
280 #define _this_cpu_generic_read(pcp) \
281 ({ typeof(pcp) ret__; \
282 preempt_disable(); \
283 ret__ = *this_cpu_ptr(&(pcp)); \
284 preempt_enable(); \
285 ret__; \
286 })
287
288 #ifndef this_cpu_read
289 # ifndef this_cpu_read_1
290 # define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp)
291 # endif
292 # ifndef this_cpu_read_2
293 # define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp)
294 # endif
295 # ifndef this_cpu_read_4
296 # define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp)
297 # endif
298 # ifndef this_cpu_read_8
299 # define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp)
300 # endif
301 # define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp))
302 #endif
303
304 #define _this_cpu_generic_to_op(pcp, val, op) \
305 do { \
306 preempt_disable(); \
307 *__this_cpu_ptr(&pcp) op val; \
308 preempt_enable(); \
309 } while (0)
310
311 #ifndef this_cpu_write
312 # ifndef this_cpu_write_1
313 # define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
314 # endif
315 # ifndef this_cpu_write_2
316 # define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
317 # endif
318 # ifndef this_cpu_write_4
319 # define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
320 # endif
321 # ifndef this_cpu_write_8
322 # define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
323 # endif
324 # define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val))
325 #endif
326
327 #ifndef this_cpu_add
328 # ifndef this_cpu_add_1
329 # define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
330 # endif
331 # ifndef this_cpu_add_2
332 # define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
333 # endif
334 # ifndef this_cpu_add_4
335 # define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
336 # endif
337 # ifndef this_cpu_add_8
338 # define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
339 # endif
340 # define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val))
341 #endif
342
343 #ifndef this_cpu_sub
344 # define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val))
345 #endif
346
347 #ifndef this_cpu_inc
348 # define this_cpu_inc(pcp) this_cpu_add((pcp), 1)
349 #endif
350
351 #ifndef this_cpu_dec
352 # define this_cpu_dec(pcp) this_cpu_sub((pcp), 1)
353 #endif
354
355 #ifndef this_cpu_and
356 # ifndef this_cpu_and_1
357 # define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
358 # endif
359 # ifndef this_cpu_and_2
360 # define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
361 # endif
362 # ifndef this_cpu_and_4
363 # define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
364 # endif
365 # ifndef this_cpu_and_8
366 # define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
367 # endif
368 # define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val))
369 #endif
370
371 #ifndef this_cpu_or
372 # ifndef this_cpu_or_1
373 # define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
374 # endif
375 # ifndef this_cpu_or_2
376 # define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
377 # endif
378 # ifndef this_cpu_or_4
379 # define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
380 # endif
381 # ifndef this_cpu_or_8
382 # define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
383 # endif
384 # define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
385 #endif
386
387 #ifndef this_cpu_xor
388 # ifndef this_cpu_xor_1
389 # define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
390 # endif
391 # ifndef this_cpu_xor_2
392 # define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
393 # endif
394 # ifndef this_cpu_xor_4
395 # define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
396 # endif
397 # ifndef this_cpu_xor_8
398 # define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
399 # endif
400 # define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
401 #endif
402
403 /*
404 * Generic percpu operations that do not require preemption handling.
405 * Either we do not care about races or the caller has the
406 * responsibility of handling preemptions issues. Arch code can still
407 * override these instructions since the arch per cpu code may be more
408 * efficient and may actually get race freeness for free (that is the
409 * case for x86 for example).
410 *
411 * If there is no other protection through preempt disable and/or
412 * disabling interupts then one of these RMW operations can show unexpected
413 * behavior because the execution thread was rescheduled on another processor
414 * or an interrupt occurred and the same percpu variable was modified from
415 * the interrupt context.
416 */
417 #ifndef __this_cpu_read
418 # ifndef __this_cpu_read_1
419 # define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp)))
420 # endif
421 # ifndef __this_cpu_read_2
422 # define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp)))
423 # endif
424 # ifndef __this_cpu_read_4
425 # define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp)))
426 # endif
427 # ifndef __this_cpu_read_8
428 # define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp)))
429 # endif
430 # define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp))
431 #endif
432
433 #define __this_cpu_generic_to_op(pcp, val, op) \
434 do { \
435 *__this_cpu_ptr(&(pcp)) op val; \
436 } while (0)
437
438 #ifndef __this_cpu_write
439 # ifndef __this_cpu_write_1
440 # define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
441 # endif
442 # ifndef __this_cpu_write_2
443 # define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
444 # endif
445 # ifndef __this_cpu_write_4
446 # define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
447 # endif
448 # ifndef __this_cpu_write_8
449 # define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
450 # endif
451 # define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val))
452 #endif
453
454 #ifndef __this_cpu_add
455 # ifndef __this_cpu_add_1
456 # define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
457 # endif
458 # ifndef __this_cpu_add_2
459 # define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
460 # endif
461 # ifndef __this_cpu_add_4
462 # define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
463 # endif
464 # ifndef __this_cpu_add_8
465 # define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
466 # endif
467 # define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val))
468 #endif
469
470 #ifndef __this_cpu_sub
471 # define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val))
472 #endif
473
474 #ifndef __this_cpu_inc
475 # define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1)
476 #endif
477
478 #ifndef __this_cpu_dec
479 # define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1)
480 #endif
481
482 #ifndef __this_cpu_and
483 # ifndef __this_cpu_and_1
484 # define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
485 # endif
486 # ifndef __this_cpu_and_2
487 # define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
488 # endif
489 # ifndef __this_cpu_and_4
490 # define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
491 # endif
492 # ifndef __this_cpu_and_8
493 # define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
494 # endif
495 # define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val))
496 #endif
497
498 #ifndef __this_cpu_or
499 # ifndef __this_cpu_or_1
500 # define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
501 # endif
502 # ifndef __this_cpu_or_2
503 # define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
504 # endif
505 # ifndef __this_cpu_or_4
506 # define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
507 # endif
508 # ifndef __this_cpu_or_8
509 # define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
510 # endif
511 # define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val))
512 #endif
513
514 #ifndef __this_cpu_xor
515 # ifndef __this_cpu_xor_1
516 # define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
517 # endif
518 # ifndef __this_cpu_xor_2
519 # define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
520 # endif
521 # ifndef __this_cpu_xor_4
522 # define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
523 # endif
524 # ifndef __this_cpu_xor_8
525 # define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
526 # endif
527 # define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val))
528 #endif
529
530 /*
531 * IRQ safe versions of the per cpu RMW operations. Note that these operations
532 * are *not* safe against modification of the same variable from another
533 * processors (which one gets when using regular atomic operations)
534 . They are guaranteed to be atomic vs. local interrupts and
535 * preemption only.
536 */
537 #define irqsafe_cpu_generic_to_op(pcp, val, op) \
538 do { \
539 unsigned long flags; \
540 local_irq_save(flags); \
541 *__this_cpu_ptr(&(pcp)) op val; \
542 local_irq_restore(flags); \
543 } while (0)
544
545 #ifndef irqsafe_cpu_add
546 # ifndef irqsafe_cpu_add_1
547 # define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
548 # endif
549 # ifndef irqsafe_cpu_add_2
550 # define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
551 # endif
552 # ifndef irqsafe_cpu_add_4
553 # define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
554 # endif
555 # ifndef irqsafe_cpu_add_8
556 # define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
557 # endif
558 # define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val))
559 #endif
560
561 #ifndef irqsafe_cpu_sub
562 # define irqsafe_cpu_sub(pcp, val) irqsafe_cpu_add((pcp), -(val))
563 #endif
564
565 #ifndef irqsafe_cpu_inc
566 # define irqsafe_cpu_inc(pcp) irqsafe_cpu_add((pcp), 1)
567 #endif
568
569 #ifndef irqsafe_cpu_dec
570 # define irqsafe_cpu_dec(pcp) irqsafe_cpu_sub((pcp), 1)
571 #endif
572
573 #ifndef irqsafe_cpu_and
574 # ifndef irqsafe_cpu_and_1
575 # define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
576 # endif
577 # ifndef irqsafe_cpu_and_2
578 # define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
579 # endif
580 # ifndef irqsafe_cpu_and_4
581 # define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
582 # endif
583 # ifndef irqsafe_cpu_and_8
584 # define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
585 # endif
586 # define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val))
587 #endif
588
589 #ifndef irqsafe_cpu_or
590 # ifndef irqsafe_cpu_or_1
591 # define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
592 # endif
593 # ifndef irqsafe_cpu_or_2
594 # define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
595 # endif
596 # ifndef irqsafe_cpu_or_4
597 # define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
598 # endif
599 # ifndef irqsafe_cpu_or_8
600 # define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
601 # endif
602 # define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val))
603 #endif
604
605 #ifndef irqsafe_cpu_xor
606 # ifndef irqsafe_cpu_xor_1
607 # define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
608 # endif
609 # ifndef irqsafe_cpu_xor_2
610 # define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
611 # endif
612 # ifndef irqsafe_cpu_xor_4
613 # define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
614 # endif
615 # ifndef irqsafe_cpu_xor_8
616 # define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
617 # endif
618 # define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val))
619 #endif
620
621 #endif /* __LINUX_PERCPU_H */
This page took 0.061239 seconds and 6 git commands to generate.