percpu: add __percpu for sparse.
[deliverable/linux.git] / include / linux / percpu.h
1 #ifndef __LINUX_PERCPU_H
2 #define __LINUX_PERCPU_H
3
4 #include <linux/preempt.h>
5 #include <linux/slab.h> /* For kmalloc() */
6 #include <linux/smp.h>
7 #include <linux/cpumask.h>
8 #include <linux/pfn.h>
9
10 #include <asm/percpu.h>
11
12 /* enough to cover all DEFINE_PER_CPUs in modules */
13 #ifdef CONFIG_MODULES
14 #define PERCPU_MODULE_RESERVE (8 << 10)
15 #else
16 #define PERCPU_MODULE_RESERVE 0
17 #endif
18
19 #ifndef PERCPU_ENOUGH_ROOM
20 #define PERCPU_ENOUGH_ROOM \
21 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \
22 PERCPU_MODULE_RESERVE)
23 #endif
24
25 /*
26 * Must be an lvalue. Since @var must be a simple identifier,
27 * we force a syntax error here if it isn't.
28 */
29 #define get_cpu_var(var) (*({ \
30 preempt_disable(); \
31 &__get_cpu_var(var); }))
32
33 /*
34 * The weird & is necessary because sparse considers (void)(var) to be
35 * a direct dereference of percpu variable (var).
36 */
37 #define put_cpu_var(var) do { \
38 (void)&(var); \
39 preempt_enable(); \
40 } while (0)
41
42 #ifdef CONFIG_SMP
43
44 /* minimum unit size, also is the maximum supported allocation size */
45 #define PCPU_MIN_UNIT_SIZE PFN_ALIGN(64 << 10)
46
47 /*
48 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
49 * back on the first chunk for dynamic percpu allocation if arch is
50 * manually allocating and mapping it for faster access (as a part of
51 * large page mapping for example).
52 *
53 * The following values give between one and two pages of free space
54 * after typical minimal boot (2-way SMP, single disk and NIC) with
55 * both defconfig and a distro config on x86_64 and 32. More
56 * intelligent way to determine this would be nice.
57 */
58 #if BITS_PER_LONG > 32
59 #define PERCPU_DYNAMIC_RESERVE (20 << 10)
60 #else
61 #define PERCPU_DYNAMIC_RESERVE (12 << 10)
62 #endif
63
64 extern void *pcpu_base_addr;
65 extern const unsigned long *pcpu_unit_offsets;
66
67 struct pcpu_group_info {
68 int nr_units; /* aligned # of units */
69 unsigned long base_offset; /* base address offset */
70 unsigned int *cpu_map; /* unit->cpu map, empty
71 * entries contain NR_CPUS */
72 };
73
74 struct pcpu_alloc_info {
75 size_t static_size;
76 size_t reserved_size;
77 size_t dyn_size;
78 size_t unit_size;
79 size_t atom_size;
80 size_t alloc_size;
81 size_t __ai_size; /* internal, don't use */
82 int nr_groups; /* 0 if grouping unnecessary */
83 struct pcpu_group_info groups[];
84 };
85
86 enum pcpu_fc {
87 PCPU_FC_AUTO,
88 PCPU_FC_EMBED,
89 PCPU_FC_PAGE,
90
91 PCPU_FC_NR,
92 };
93 extern const char *pcpu_fc_names[PCPU_FC_NR];
94
95 extern enum pcpu_fc pcpu_chosen_fc;
96
97 typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size,
98 size_t align);
99 typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size);
100 typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr);
101 typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to);
102
103 extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
104 int nr_units);
105 extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai);
106
107 extern struct pcpu_alloc_info * __init pcpu_build_alloc_info(
108 size_t reserved_size, ssize_t dyn_size,
109 size_t atom_size,
110 pcpu_fc_cpu_distance_fn_t cpu_distance_fn);
111
112 extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
113 void *base_addr);
114
115 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
116 extern int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size,
117 size_t atom_size,
118 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
119 pcpu_fc_alloc_fn_t alloc_fn,
120 pcpu_fc_free_fn_t free_fn);
121 #endif
122
123 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
124 extern int __init pcpu_page_first_chunk(size_t reserved_size,
125 pcpu_fc_alloc_fn_t alloc_fn,
126 pcpu_fc_free_fn_t free_fn,
127 pcpu_fc_populate_pte_fn_t populate_pte_fn);
128 #endif
129
130 /*
131 * Use this to get to a cpu's version of the per-cpu object
132 * dynamically allocated. Non-atomic access to the current CPU's
133 * version should probably be combined with get_cpu()/put_cpu().
134 */
135 #define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
136
137 extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align);
138 extern void __percpu *__alloc_percpu(size_t size, size_t align);
139 extern void free_percpu(void __percpu *__pdata);
140
141 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
142 extern void __init setup_per_cpu_areas(void);
143 #endif
144
145 #else /* CONFIG_SMP */
146
147 #define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); (ptr); })
148
149 static inline void __percpu *__alloc_percpu(size_t size, size_t align)
150 {
151 /*
152 * Can't easily make larger alignment work with kmalloc. WARN
153 * on it. Larger alignment should only be used for module
154 * percpu sections on SMP for which this path isn't used.
155 */
156 WARN_ON_ONCE(align > SMP_CACHE_BYTES);
157 return kzalloc(size, GFP_KERNEL);
158 }
159
160 static inline void free_percpu(void __percpu *p)
161 {
162 kfree(p);
163 }
164
165 static inline void __init setup_per_cpu_areas(void) { }
166
167 static inline void *pcpu_lpage_remapped(void *kaddr)
168 {
169 return NULL;
170 }
171
172 #endif /* CONFIG_SMP */
173
174 #define alloc_percpu(type) \
175 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type))
176
177 /*
178 * Optional methods for optimized non-lvalue per-cpu variable access.
179 *
180 * @var can be a percpu variable or a field of it and its size should
181 * equal char, int or long. percpu_read() evaluates to a lvalue and
182 * all others to void.
183 *
184 * These operations are guaranteed to be atomic w.r.t. preemption.
185 * The generic versions use plain get/put_cpu_var(). Archs are
186 * encouraged to implement single-instruction alternatives which don't
187 * require preemption protection.
188 */
189 #ifndef percpu_read
190 # define percpu_read(var) \
191 ({ \
192 typeof(var) *pr_ptr__ = &(var); \
193 typeof(var) pr_ret__; \
194 pr_ret__ = get_cpu_var(*pr_ptr__); \
195 put_cpu_var(*pr_ptr__); \
196 pr_ret__; \
197 })
198 #endif
199
200 #define __percpu_generic_to_op(var, val, op) \
201 do { \
202 typeof(var) *pgto_ptr__ = &(var); \
203 get_cpu_var(*pgto_ptr__) op val; \
204 put_cpu_var(*pgto_ptr__); \
205 } while (0)
206
207 #ifndef percpu_write
208 # define percpu_write(var, val) __percpu_generic_to_op(var, (val), =)
209 #endif
210
211 #ifndef percpu_add
212 # define percpu_add(var, val) __percpu_generic_to_op(var, (val), +=)
213 #endif
214
215 #ifndef percpu_sub
216 # define percpu_sub(var, val) __percpu_generic_to_op(var, (val), -=)
217 #endif
218
219 #ifndef percpu_and
220 # define percpu_and(var, val) __percpu_generic_to_op(var, (val), &=)
221 #endif
222
223 #ifndef percpu_or
224 # define percpu_or(var, val) __percpu_generic_to_op(var, (val), |=)
225 #endif
226
227 #ifndef percpu_xor
228 # define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=)
229 #endif
230
231 /*
232 * Branching function to split up a function into a set of functions that
233 * are called for different scalar sizes of the objects handled.
234 */
235
236 extern void __bad_size_call_parameter(void);
237
238 #define __pcpu_size_call_return(stem, variable) \
239 ({ typeof(variable) pscr_ret__; \
240 switch(sizeof(variable)) { \
241 case 1: pscr_ret__ = stem##1(variable);break; \
242 case 2: pscr_ret__ = stem##2(variable);break; \
243 case 4: pscr_ret__ = stem##4(variable);break; \
244 case 8: pscr_ret__ = stem##8(variable);break; \
245 default: \
246 __bad_size_call_parameter();break; \
247 } \
248 pscr_ret__; \
249 })
250
251 #define __pcpu_size_call(stem, variable, ...) \
252 do { \
253 switch(sizeof(variable)) { \
254 case 1: stem##1(variable, __VA_ARGS__);break; \
255 case 2: stem##2(variable, __VA_ARGS__);break; \
256 case 4: stem##4(variable, __VA_ARGS__);break; \
257 case 8: stem##8(variable, __VA_ARGS__);break; \
258 default: \
259 __bad_size_call_parameter();break; \
260 } \
261 } while (0)
262
263 /*
264 * Optimized manipulation for memory allocated through the per cpu
265 * allocator or for addresses of per cpu variables.
266 *
267 * These operation guarantee exclusivity of access for other operations
268 * on the *same* processor. The assumption is that per cpu data is only
269 * accessed by a single processor instance (the current one).
270 *
271 * The first group is used for accesses that must be done in a
272 * preemption safe way since we know that the context is not preempt
273 * safe. Interrupts may occur. If the interrupt modifies the variable
274 * too then RMW actions will not be reliable.
275 *
276 * The arch code can provide optimized functions in two ways:
277 *
278 * 1. Override the function completely. F.e. define this_cpu_add().
279 * The arch must then ensure that the various scalar format passed
280 * are handled correctly.
281 *
282 * 2. Provide functions for certain scalar sizes. F.e. provide
283 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte
284 * sized RMW actions. If arch code does not provide operations for
285 * a scalar size then the fallback in the generic code will be
286 * used.
287 */
288
289 #define _this_cpu_generic_read(pcp) \
290 ({ typeof(pcp) ret__; \
291 preempt_disable(); \
292 ret__ = *this_cpu_ptr(&(pcp)); \
293 preempt_enable(); \
294 ret__; \
295 })
296
297 #ifndef this_cpu_read
298 # ifndef this_cpu_read_1
299 # define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp)
300 # endif
301 # ifndef this_cpu_read_2
302 # define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp)
303 # endif
304 # ifndef this_cpu_read_4
305 # define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp)
306 # endif
307 # ifndef this_cpu_read_8
308 # define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp)
309 # endif
310 # define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp))
311 #endif
312
313 #define _this_cpu_generic_to_op(pcp, val, op) \
314 do { \
315 preempt_disable(); \
316 *__this_cpu_ptr(&(pcp)) op val; \
317 preempt_enable(); \
318 } while (0)
319
320 #ifndef this_cpu_write
321 # ifndef this_cpu_write_1
322 # define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
323 # endif
324 # ifndef this_cpu_write_2
325 # define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
326 # endif
327 # ifndef this_cpu_write_4
328 # define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
329 # endif
330 # ifndef this_cpu_write_8
331 # define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
332 # endif
333 # define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val))
334 #endif
335
336 #ifndef this_cpu_add
337 # ifndef this_cpu_add_1
338 # define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
339 # endif
340 # ifndef this_cpu_add_2
341 # define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
342 # endif
343 # ifndef this_cpu_add_4
344 # define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
345 # endif
346 # ifndef this_cpu_add_8
347 # define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
348 # endif
349 # define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val))
350 #endif
351
352 #ifndef this_cpu_sub
353 # define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val))
354 #endif
355
356 #ifndef this_cpu_inc
357 # define this_cpu_inc(pcp) this_cpu_add((pcp), 1)
358 #endif
359
360 #ifndef this_cpu_dec
361 # define this_cpu_dec(pcp) this_cpu_sub((pcp), 1)
362 #endif
363
364 #ifndef this_cpu_and
365 # ifndef this_cpu_and_1
366 # define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
367 # endif
368 # ifndef this_cpu_and_2
369 # define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
370 # endif
371 # ifndef this_cpu_and_4
372 # define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
373 # endif
374 # ifndef this_cpu_and_8
375 # define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
376 # endif
377 # define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val))
378 #endif
379
380 #ifndef this_cpu_or
381 # ifndef this_cpu_or_1
382 # define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
383 # endif
384 # ifndef this_cpu_or_2
385 # define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
386 # endif
387 # ifndef this_cpu_or_4
388 # define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
389 # endif
390 # ifndef this_cpu_or_8
391 # define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
392 # endif
393 # define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
394 #endif
395
396 #ifndef this_cpu_xor
397 # ifndef this_cpu_xor_1
398 # define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
399 # endif
400 # ifndef this_cpu_xor_2
401 # define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
402 # endif
403 # ifndef this_cpu_xor_4
404 # define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
405 # endif
406 # ifndef this_cpu_xor_8
407 # define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
408 # endif
409 # define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
410 #endif
411
412 /*
413 * Generic percpu operations that do not require preemption handling.
414 * Either we do not care about races or the caller has the
415 * responsibility of handling preemptions issues. Arch code can still
416 * override these instructions since the arch per cpu code may be more
417 * efficient and may actually get race freeness for free (that is the
418 * case for x86 for example).
419 *
420 * If there is no other protection through preempt disable and/or
421 * disabling interupts then one of these RMW operations can show unexpected
422 * behavior because the execution thread was rescheduled on another processor
423 * or an interrupt occurred and the same percpu variable was modified from
424 * the interrupt context.
425 */
426 #ifndef __this_cpu_read
427 # ifndef __this_cpu_read_1
428 # define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp)))
429 # endif
430 # ifndef __this_cpu_read_2
431 # define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp)))
432 # endif
433 # ifndef __this_cpu_read_4
434 # define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp)))
435 # endif
436 # ifndef __this_cpu_read_8
437 # define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp)))
438 # endif
439 # define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp))
440 #endif
441
442 #define __this_cpu_generic_to_op(pcp, val, op) \
443 do { \
444 *__this_cpu_ptr(&(pcp)) op val; \
445 } while (0)
446
447 #ifndef __this_cpu_write
448 # ifndef __this_cpu_write_1
449 # define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
450 # endif
451 # ifndef __this_cpu_write_2
452 # define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
453 # endif
454 # ifndef __this_cpu_write_4
455 # define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
456 # endif
457 # ifndef __this_cpu_write_8
458 # define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
459 # endif
460 # define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val))
461 #endif
462
463 #ifndef __this_cpu_add
464 # ifndef __this_cpu_add_1
465 # define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
466 # endif
467 # ifndef __this_cpu_add_2
468 # define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
469 # endif
470 # ifndef __this_cpu_add_4
471 # define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
472 # endif
473 # ifndef __this_cpu_add_8
474 # define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
475 # endif
476 # define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val))
477 #endif
478
479 #ifndef __this_cpu_sub
480 # define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val))
481 #endif
482
483 #ifndef __this_cpu_inc
484 # define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1)
485 #endif
486
487 #ifndef __this_cpu_dec
488 # define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1)
489 #endif
490
491 #ifndef __this_cpu_and
492 # ifndef __this_cpu_and_1
493 # define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
494 # endif
495 # ifndef __this_cpu_and_2
496 # define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
497 # endif
498 # ifndef __this_cpu_and_4
499 # define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
500 # endif
501 # ifndef __this_cpu_and_8
502 # define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
503 # endif
504 # define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val))
505 #endif
506
507 #ifndef __this_cpu_or
508 # ifndef __this_cpu_or_1
509 # define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
510 # endif
511 # ifndef __this_cpu_or_2
512 # define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
513 # endif
514 # ifndef __this_cpu_or_4
515 # define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
516 # endif
517 # ifndef __this_cpu_or_8
518 # define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
519 # endif
520 # define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val))
521 #endif
522
523 #ifndef __this_cpu_xor
524 # ifndef __this_cpu_xor_1
525 # define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
526 # endif
527 # ifndef __this_cpu_xor_2
528 # define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
529 # endif
530 # ifndef __this_cpu_xor_4
531 # define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
532 # endif
533 # ifndef __this_cpu_xor_8
534 # define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
535 # endif
536 # define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val))
537 #endif
538
539 /*
540 * IRQ safe versions of the per cpu RMW operations. Note that these operations
541 * are *not* safe against modification of the same variable from another
542 * processors (which one gets when using regular atomic operations)
543 . They are guaranteed to be atomic vs. local interrupts and
544 * preemption only.
545 */
546 #define irqsafe_cpu_generic_to_op(pcp, val, op) \
547 do { \
548 unsigned long flags; \
549 local_irq_save(flags); \
550 *__this_cpu_ptr(&(pcp)) op val; \
551 local_irq_restore(flags); \
552 } while (0)
553
554 #ifndef irqsafe_cpu_add
555 # ifndef irqsafe_cpu_add_1
556 # define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
557 # endif
558 # ifndef irqsafe_cpu_add_2
559 # define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
560 # endif
561 # ifndef irqsafe_cpu_add_4
562 # define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
563 # endif
564 # ifndef irqsafe_cpu_add_8
565 # define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
566 # endif
567 # define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val))
568 #endif
569
570 #ifndef irqsafe_cpu_sub
571 # define irqsafe_cpu_sub(pcp, val) irqsafe_cpu_add((pcp), -(val))
572 #endif
573
574 #ifndef irqsafe_cpu_inc
575 # define irqsafe_cpu_inc(pcp) irqsafe_cpu_add((pcp), 1)
576 #endif
577
578 #ifndef irqsafe_cpu_dec
579 # define irqsafe_cpu_dec(pcp) irqsafe_cpu_sub((pcp), 1)
580 #endif
581
582 #ifndef irqsafe_cpu_and
583 # ifndef irqsafe_cpu_and_1
584 # define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
585 # endif
586 # ifndef irqsafe_cpu_and_2
587 # define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
588 # endif
589 # ifndef irqsafe_cpu_and_4
590 # define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
591 # endif
592 # ifndef irqsafe_cpu_and_8
593 # define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
594 # endif
595 # define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val))
596 #endif
597
598 #ifndef irqsafe_cpu_or
599 # ifndef irqsafe_cpu_or_1
600 # define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
601 # endif
602 # ifndef irqsafe_cpu_or_2
603 # define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
604 # endif
605 # ifndef irqsafe_cpu_or_4
606 # define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
607 # endif
608 # ifndef irqsafe_cpu_or_8
609 # define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
610 # endif
611 # define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val))
612 #endif
613
614 #ifndef irqsafe_cpu_xor
615 # ifndef irqsafe_cpu_xor_1
616 # define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
617 # endif
618 # ifndef irqsafe_cpu_xor_2
619 # define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
620 # endif
621 # ifndef irqsafe_cpu_xor_4
622 # define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
623 # endif
624 # ifndef irqsafe_cpu_xor_8
625 # define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
626 # endif
627 # define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val))
628 #endif
629
630 #endif /* __LINUX_PERCPU_H */
This page took 0.073628 seconds and 6 git commands to generate.