fs/proc/page.c: add PageAnon check to surely detect thp
[deliverable/linux.git] / include / linux / percpu.h
1 #ifndef __LINUX_PERCPU_H
2 #define __LINUX_PERCPU_H
3
4 #include <linux/preempt.h>
5 #include <linux/smp.h>
6 #include <linux/cpumask.h>
7 #include <linux/pfn.h>
8 #include <linux/init.h>
9
10 #include <asm/percpu.h>
11
12 /* enough to cover all DEFINE_PER_CPUs in modules */
13 #ifdef CONFIG_MODULES
14 #define PERCPU_MODULE_RESERVE (8 << 10)
15 #else
16 #define PERCPU_MODULE_RESERVE 0
17 #endif
18
19 #ifndef PERCPU_ENOUGH_ROOM
20 #define PERCPU_ENOUGH_ROOM \
21 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \
22 PERCPU_MODULE_RESERVE)
23 #endif
24
25 /*
26 * Must be an lvalue. Since @var must be a simple identifier,
27 * we force a syntax error here if it isn't.
28 */
29 #define get_cpu_var(var) (*({ \
30 preempt_disable(); \
31 &__get_cpu_var(var); }))
32
33 /*
34 * The weird & is necessary because sparse considers (void)(var) to be
35 * a direct dereference of percpu variable (var).
36 */
37 #define put_cpu_var(var) do { \
38 (void)&(var); \
39 preempt_enable(); \
40 } while (0)
41
42 #define get_cpu_ptr(var) ({ \
43 preempt_disable(); \
44 this_cpu_ptr(var); })
45
46 #define put_cpu_ptr(var) do { \
47 (void)(var); \
48 preempt_enable(); \
49 } while (0)
50
51 /* minimum unit size, also is the maximum supported allocation size */
52 #define PCPU_MIN_UNIT_SIZE PFN_ALIGN(32 << 10)
53
54 /*
55 * Percpu allocator can serve percpu allocations before slab is
56 * initialized which allows slab to depend on the percpu allocator.
57 * The following two parameters decide how much resource to
58 * preallocate for this. Keep PERCPU_DYNAMIC_RESERVE equal to or
59 * larger than PERCPU_DYNAMIC_EARLY_SIZE.
60 */
61 #define PERCPU_DYNAMIC_EARLY_SLOTS 128
62 #define PERCPU_DYNAMIC_EARLY_SIZE (12 << 10)
63
64 /*
65 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
66 * back on the first chunk for dynamic percpu allocation if arch is
67 * manually allocating and mapping it for faster access (as a part of
68 * large page mapping for example).
69 *
70 * The following values give between one and two pages of free space
71 * after typical minimal boot (2-way SMP, single disk and NIC) with
72 * both defconfig and a distro config on x86_64 and 32. More
73 * intelligent way to determine this would be nice.
74 */
75 #if BITS_PER_LONG > 32
76 #define PERCPU_DYNAMIC_RESERVE (20 << 10)
77 #else
78 #define PERCPU_DYNAMIC_RESERVE (12 << 10)
79 #endif
80
81 extern void *pcpu_base_addr;
82 extern const unsigned long *pcpu_unit_offsets;
83
84 struct pcpu_group_info {
85 int nr_units; /* aligned # of units */
86 unsigned long base_offset; /* base address offset */
87 unsigned int *cpu_map; /* unit->cpu map, empty
88 * entries contain NR_CPUS */
89 };
90
91 struct pcpu_alloc_info {
92 size_t static_size;
93 size_t reserved_size;
94 size_t dyn_size;
95 size_t unit_size;
96 size_t atom_size;
97 size_t alloc_size;
98 size_t __ai_size; /* internal, don't use */
99 int nr_groups; /* 0 if grouping unnecessary */
100 struct pcpu_group_info groups[];
101 };
102
103 enum pcpu_fc {
104 PCPU_FC_AUTO,
105 PCPU_FC_EMBED,
106 PCPU_FC_PAGE,
107
108 PCPU_FC_NR,
109 };
110 extern const char * const pcpu_fc_names[PCPU_FC_NR];
111
112 extern enum pcpu_fc pcpu_chosen_fc;
113
114 typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size,
115 size_t align);
116 typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size);
117 typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr);
118 typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to);
119
120 extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
121 int nr_units);
122 extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai);
123
124 extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
125 void *base_addr);
126
127 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
128 extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
129 size_t atom_size,
130 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
131 pcpu_fc_alloc_fn_t alloc_fn,
132 pcpu_fc_free_fn_t free_fn);
133 #endif
134
135 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
136 extern int __init pcpu_page_first_chunk(size_t reserved_size,
137 pcpu_fc_alloc_fn_t alloc_fn,
138 pcpu_fc_free_fn_t free_fn,
139 pcpu_fc_populate_pte_fn_t populate_pte_fn);
140 #endif
141
142 /*
143 * Use this to get to a cpu's version of the per-cpu object
144 * dynamically allocated. Non-atomic access to the current CPU's
145 * version should probably be combined with get_cpu()/put_cpu().
146 */
147 #ifdef CONFIG_SMP
148 #define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
149 #else
150 #define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); })
151 #endif
152
153 extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align);
154 extern bool is_kernel_percpu_address(unsigned long addr);
155
156 #if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
157 extern void __init setup_per_cpu_areas(void);
158 #endif
159 extern void __init percpu_init_late(void);
160
161 extern void __percpu *__alloc_percpu(size_t size, size_t align);
162 extern void free_percpu(void __percpu *__pdata);
163 extern phys_addr_t per_cpu_ptr_to_phys(void *addr);
164
165 #define alloc_percpu(type) \
166 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type))
167
168 /*
169 * Branching function to split up a function into a set of functions that
170 * are called for different scalar sizes of the objects handled.
171 */
172
173 extern void __bad_size_call_parameter(void);
174
175 #define __pcpu_size_call_return(stem, variable) \
176 ({ typeof(variable) pscr_ret__; \
177 __verify_pcpu_ptr(&(variable)); \
178 switch(sizeof(variable)) { \
179 case 1: pscr_ret__ = stem##1(variable);break; \
180 case 2: pscr_ret__ = stem##2(variable);break; \
181 case 4: pscr_ret__ = stem##4(variable);break; \
182 case 8: pscr_ret__ = stem##8(variable);break; \
183 default: \
184 __bad_size_call_parameter();break; \
185 } \
186 pscr_ret__; \
187 })
188
189 #define __pcpu_size_call_return2(stem, variable, ...) \
190 ({ \
191 typeof(variable) pscr2_ret__; \
192 __verify_pcpu_ptr(&(variable)); \
193 switch(sizeof(variable)) { \
194 case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break; \
195 case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break; \
196 case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break; \
197 case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break; \
198 default: \
199 __bad_size_call_parameter(); break; \
200 } \
201 pscr2_ret__; \
202 })
203
204 /*
205 * Special handling for cmpxchg_double. cmpxchg_double is passed two
206 * percpu variables. The first has to be aligned to a double word
207 * boundary and the second has to follow directly thereafter.
208 * We enforce this on all architectures even if they don't support
209 * a double cmpxchg instruction, since it's a cheap requirement, and it
210 * avoids breaking the requirement for architectures with the instruction.
211 */
212 #define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...) \
213 ({ \
214 bool pdcrb_ret__; \
215 __verify_pcpu_ptr(&pcp1); \
216 BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2)); \
217 VM_BUG_ON((unsigned long)(&pcp1) % (2 * sizeof(pcp1))); \
218 VM_BUG_ON((unsigned long)(&pcp2) != \
219 (unsigned long)(&pcp1) + sizeof(pcp1)); \
220 switch(sizeof(pcp1)) { \
221 case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break; \
222 case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break; \
223 case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break; \
224 case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break; \
225 default: \
226 __bad_size_call_parameter(); break; \
227 } \
228 pdcrb_ret__; \
229 })
230
231 #define __pcpu_size_call(stem, variable, ...) \
232 do { \
233 __verify_pcpu_ptr(&(variable)); \
234 switch(sizeof(variable)) { \
235 case 1: stem##1(variable, __VA_ARGS__);break; \
236 case 2: stem##2(variable, __VA_ARGS__);break; \
237 case 4: stem##4(variable, __VA_ARGS__);break; \
238 case 8: stem##8(variable, __VA_ARGS__);break; \
239 default: \
240 __bad_size_call_parameter();break; \
241 } \
242 } while (0)
243
244 /*
245 * Optimized manipulation for memory allocated through the per cpu
246 * allocator or for addresses of per cpu variables.
247 *
248 * These operation guarantee exclusivity of access for other operations
249 * on the *same* processor. The assumption is that per cpu data is only
250 * accessed by a single processor instance (the current one).
251 *
252 * The first group is used for accesses that must be done in a
253 * preemption safe way since we know that the context is not preempt
254 * safe. Interrupts may occur. If the interrupt modifies the variable
255 * too then RMW actions will not be reliable.
256 *
257 * The arch code can provide optimized functions in two ways:
258 *
259 * 1. Override the function completely. F.e. define this_cpu_add().
260 * The arch must then ensure that the various scalar format passed
261 * are handled correctly.
262 *
263 * 2. Provide functions for certain scalar sizes. F.e. provide
264 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte
265 * sized RMW actions. If arch code does not provide operations for
266 * a scalar size then the fallback in the generic code will be
267 * used.
268 */
269
270 #define _this_cpu_generic_read(pcp) \
271 ({ typeof(pcp) ret__; \
272 preempt_disable(); \
273 ret__ = *this_cpu_ptr(&(pcp)); \
274 preempt_enable(); \
275 ret__; \
276 })
277
278 #ifndef this_cpu_read
279 # ifndef this_cpu_read_1
280 # define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp)
281 # endif
282 # ifndef this_cpu_read_2
283 # define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp)
284 # endif
285 # ifndef this_cpu_read_4
286 # define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp)
287 # endif
288 # ifndef this_cpu_read_8
289 # define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp)
290 # endif
291 # define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp))
292 #endif
293
294 #define _this_cpu_generic_to_op(pcp, val, op) \
295 do { \
296 unsigned long flags; \
297 raw_local_irq_save(flags); \
298 *__this_cpu_ptr(&(pcp)) op val; \
299 raw_local_irq_restore(flags); \
300 } while (0)
301
302 #ifndef this_cpu_write
303 # ifndef this_cpu_write_1
304 # define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
305 # endif
306 # ifndef this_cpu_write_2
307 # define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
308 # endif
309 # ifndef this_cpu_write_4
310 # define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
311 # endif
312 # ifndef this_cpu_write_8
313 # define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
314 # endif
315 # define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val))
316 #endif
317
318 #ifndef this_cpu_add
319 # ifndef this_cpu_add_1
320 # define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
321 # endif
322 # ifndef this_cpu_add_2
323 # define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
324 # endif
325 # ifndef this_cpu_add_4
326 # define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
327 # endif
328 # ifndef this_cpu_add_8
329 # define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
330 # endif
331 # define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val))
332 #endif
333
334 #ifndef this_cpu_sub
335 # define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(typeof(pcp))(val))
336 #endif
337
338 #ifndef this_cpu_inc
339 # define this_cpu_inc(pcp) this_cpu_add((pcp), 1)
340 #endif
341
342 #ifndef this_cpu_dec
343 # define this_cpu_dec(pcp) this_cpu_sub((pcp), 1)
344 #endif
345
346 #ifndef this_cpu_and
347 # ifndef this_cpu_and_1
348 # define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
349 # endif
350 # ifndef this_cpu_and_2
351 # define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
352 # endif
353 # ifndef this_cpu_and_4
354 # define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
355 # endif
356 # ifndef this_cpu_and_8
357 # define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
358 # endif
359 # define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val))
360 #endif
361
362 #ifndef this_cpu_or
363 # ifndef this_cpu_or_1
364 # define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
365 # endif
366 # ifndef this_cpu_or_2
367 # define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
368 # endif
369 # ifndef this_cpu_or_4
370 # define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
371 # endif
372 # ifndef this_cpu_or_8
373 # define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
374 # endif
375 # define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
376 #endif
377
378 #define _this_cpu_generic_add_return(pcp, val) \
379 ({ \
380 typeof(pcp) ret__; \
381 unsigned long flags; \
382 raw_local_irq_save(flags); \
383 __this_cpu_add(pcp, val); \
384 ret__ = __this_cpu_read(pcp); \
385 raw_local_irq_restore(flags); \
386 ret__; \
387 })
388
389 #ifndef this_cpu_add_return
390 # ifndef this_cpu_add_return_1
391 # define this_cpu_add_return_1(pcp, val) _this_cpu_generic_add_return(pcp, val)
392 # endif
393 # ifndef this_cpu_add_return_2
394 # define this_cpu_add_return_2(pcp, val) _this_cpu_generic_add_return(pcp, val)
395 # endif
396 # ifndef this_cpu_add_return_4
397 # define this_cpu_add_return_4(pcp, val) _this_cpu_generic_add_return(pcp, val)
398 # endif
399 # ifndef this_cpu_add_return_8
400 # define this_cpu_add_return_8(pcp, val) _this_cpu_generic_add_return(pcp, val)
401 # endif
402 # define this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
403 #endif
404
405 #define this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(typeof(pcp))(val))
406 #define this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1)
407 #define this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1)
408
409 #define _this_cpu_generic_xchg(pcp, nval) \
410 ({ typeof(pcp) ret__; \
411 unsigned long flags; \
412 raw_local_irq_save(flags); \
413 ret__ = __this_cpu_read(pcp); \
414 __this_cpu_write(pcp, nval); \
415 raw_local_irq_restore(flags); \
416 ret__; \
417 })
418
419 #ifndef this_cpu_xchg
420 # ifndef this_cpu_xchg_1
421 # define this_cpu_xchg_1(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
422 # endif
423 # ifndef this_cpu_xchg_2
424 # define this_cpu_xchg_2(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
425 # endif
426 # ifndef this_cpu_xchg_4
427 # define this_cpu_xchg_4(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
428 # endif
429 # ifndef this_cpu_xchg_8
430 # define this_cpu_xchg_8(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
431 # endif
432 # define this_cpu_xchg(pcp, nval) \
433 __pcpu_size_call_return2(this_cpu_xchg_, (pcp), nval)
434 #endif
435
436 #define _this_cpu_generic_cmpxchg(pcp, oval, nval) \
437 ({ \
438 typeof(pcp) ret__; \
439 unsigned long flags; \
440 raw_local_irq_save(flags); \
441 ret__ = __this_cpu_read(pcp); \
442 if (ret__ == (oval)) \
443 __this_cpu_write(pcp, nval); \
444 raw_local_irq_restore(flags); \
445 ret__; \
446 })
447
448 #ifndef this_cpu_cmpxchg
449 # ifndef this_cpu_cmpxchg_1
450 # define this_cpu_cmpxchg_1(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
451 # endif
452 # ifndef this_cpu_cmpxchg_2
453 # define this_cpu_cmpxchg_2(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
454 # endif
455 # ifndef this_cpu_cmpxchg_4
456 # define this_cpu_cmpxchg_4(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
457 # endif
458 # ifndef this_cpu_cmpxchg_8
459 # define this_cpu_cmpxchg_8(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
460 # endif
461 # define this_cpu_cmpxchg(pcp, oval, nval) \
462 __pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval)
463 #endif
464
465 /*
466 * cmpxchg_double replaces two adjacent scalars at once. The first
467 * two parameters are per cpu variables which have to be of the same
468 * size. A truth value is returned to indicate success or failure
469 * (since a double register result is difficult to handle). There is
470 * very limited hardware support for these operations, so only certain
471 * sizes may work.
472 */
473 #define _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
474 ({ \
475 int ret__; \
476 unsigned long flags; \
477 raw_local_irq_save(flags); \
478 ret__ = __this_cpu_generic_cmpxchg_double(pcp1, pcp2, \
479 oval1, oval2, nval1, nval2); \
480 raw_local_irq_restore(flags); \
481 ret__; \
482 })
483
484 #ifndef this_cpu_cmpxchg_double
485 # ifndef this_cpu_cmpxchg_double_1
486 # define this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \
487 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
488 # endif
489 # ifndef this_cpu_cmpxchg_double_2
490 # define this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \
491 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
492 # endif
493 # ifndef this_cpu_cmpxchg_double_4
494 # define this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \
495 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
496 # endif
497 # ifndef this_cpu_cmpxchg_double_8
498 # define this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \
499 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
500 # endif
501 # define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
502 __pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
503 #endif
504
505 /*
506 * Generic percpu operations for context that are safe from preemption/interrupts.
507 * Either we do not care about races or the caller has the
508 * responsibility of handling preemption/interrupt issues. Arch code can still
509 * override these instructions since the arch per cpu code may be more
510 * efficient and may actually get race freeness for free (that is the
511 * case for x86 for example).
512 *
513 * If there is no other protection through preempt disable and/or
514 * disabling interupts then one of these RMW operations can show unexpected
515 * behavior because the execution thread was rescheduled on another processor
516 * or an interrupt occurred and the same percpu variable was modified from
517 * the interrupt context.
518 */
519 #ifndef __this_cpu_read
520 # ifndef __this_cpu_read_1
521 # define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp)))
522 # endif
523 # ifndef __this_cpu_read_2
524 # define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp)))
525 # endif
526 # ifndef __this_cpu_read_4
527 # define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp)))
528 # endif
529 # ifndef __this_cpu_read_8
530 # define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp)))
531 # endif
532 # define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp))
533 #endif
534
535 #define __this_cpu_generic_to_op(pcp, val, op) \
536 do { \
537 *__this_cpu_ptr(&(pcp)) op val; \
538 } while (0)
539
540 #ifndef __this_cpu_write
541 # ifndef __this_cpu_write_1
542 # define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
543 # endif
544 # ifndef __this_cpu_write_2
545 # define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
546 # endif
547 # ifndef __this_cpu_write_4
548 # define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
549 # endif
550 # ifndef __this_cpu_write_8
551 # define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
552 # endif
553 # define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val))
554 #endif
555
556 #ifndef __this_cpu_add
557 # ifndef __this_cpu_add_1
558 # define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
559 # endif
560 # ifndef __this_cpu_add_2
561 # define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
562 # endif
563 # ifndef __this_cpu_add_4
564 # define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
565 # endif
566 # ifndef __this_cpu_add_8
567 # define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
568 # endif
569 # define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val))
570 #endif
571
572 #ifndef __this_cpu_sub
573 # define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(typeof(pcp))(val))
574 #endif
575
576 #ifndef __this_cpu_inc
577 # define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1)
578 #endif
579
580 #ifndef __this_cpu_dec
581 # define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1)
582 #endif
583
584 #ifndef __this_cpu_and
585 # ifndef __this_cpu_and_1
586 # define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
587 # endif
588 # ifndef __this_cpu_and_2
589 # define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
590 # endif
591 # ifndef __this_cpu_and_4
592 # define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
593 # endif
594 # ifndef __this_cpu_and_8
595 # define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
596 # endif
597 # define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val))
598 #endif
599
600 #ifndef __this_cpu_or
601 # ifndef __this_cpu_or_1
602 # define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
603 # endif
604 # ifndef __this_cpu_or_2
605 # define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
606 # endif
607 # ifndef __this_cpu_or_4
608 # define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
609 # endif
610 # ifndef __this_cpu_or_8
611 # define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
612 # endif
613 # define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val))
614 #endif
615
616 #define __this_cpu_generic_add_return(pcp, val) \
617 ({ \
618 __this_cpu_add(pcp, val); \
619 __this_cpu_read(pcp); \
620 })
621
622 #ifndef __this_cpu_add_return
623 # ifndef __this_cpu_add_return_1
624 # define __this_cpu_add_return_1(pcp, val) __this_cpu_generic_add_return(pcp, val)
625 # endif
626 # ifndef __this_cpu_add_return_2
627 # define __this_cpu_add_return_2(pcp, val) __this_cpu_generic_add_return(pcp, val)
628 # endif
629 # ifndef __this_cpu_add_return_4
630 # define __this_cpu_add_return_4(pcp, val) __this_cpu_generic_add_return(pcp, val)
631 # endif
632 # ifndef __this_cpu_add_return_8
633 # define __this_cpu_add_return_8(pcp, val) __this_cpu_generic_add_return(pcp, val)
634 # endif
635 # define __this_cpu_add_return(pcp, val) \
636 __pcpu_size_call_return2(__this_cpu_add_return_, pcp, val)
637 #endif
638
639 #define __this_cpu_sub_return(pcp, val) __this_cpu_add_return(pcp, -(typeof(pcp))(val))
640 #define __this_cpu_inc_return(pcp) __this_cpu_add_return(pcp, 1)
641 #define __this_cpu_dec_return(pcp) __this_cpu_add_return(pcp, -1)
642
643 #define __this_cpu_generic_xchg(pcp, nval) \
644 ({ typeof(pcp) ret__; \
645 ret__ = __this_cpu_read(pcp); \
646 __this_cpu_write(pcp, nval); \
647 ret__; \
648 })
649
650 #ifndef __this_cpu_xchg
651 # ifndef __this_cpu_xchg_1
652 # define __this_cpu_xchg_1(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
653 # endif
654 # ifndef __this_cpu_xchg_2
655 # define __this_cpu_xchg_2(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
656 # endif
657 # ifndef __this_cpu_xchg_4
658 # define __this_cpu_xchg_4(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
659 # endif
660 # ifndef __this_cpu_xchg_8
661 # define __this_cpu_xchg_8(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
662 # endif
663 # define __this_cpu_xchg(pcp, nval) \
664 __pcpu_size_call_return2(__this_cpu_xchg_, (pcp), nval)
665 #endif
666
667 #define __this_cpu_generic_cmpxchg(pcp, oval, nval) \
668 ({ \
669 typeof(pcp) ret__; \
670 ret__ = __this_cpu_read(pcp); \
671 if (ret__ == (oval)) \
672 __this_cpu_write(pcp, nval); \
673 ret__; \
674 })
675
676 #ifndef __this_cpu_cmpxchg
677 # ifndef __this_cpu_cmpxchg_1
678 # define __this_cpu_cmpxchg_1(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
679 # endif
680 # ifndef __this_cpu_cmpxchg_2
681 # define __this_cpu_cmpxchg_2(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
682 # endif
683 # ifndef __this_cpu_cmpxchg_4
684 # define __this_cpu_cmpxchg_4(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
685 # endif
686 # ifndef __this_cpu_cmpxchg_8
687 # define __this_cpu_cmpxchg_8(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
688 # endif
689 # define __this_cpu_cmpxchg(pcp, oval, nval) \
690 __pcpu_size_call_return2(__this_cpu_cmpxchg_, pcp, oval, nval)
691 #endif
692
693 #define __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
694 ({ \
695 int __ret = 0; \
696 if (__this_cpu_read(pcp1) == (oval1) && \
697 __this_cpu_read(pcp2) == (oval2)) { \
698 __this_cpu_write(pcp1, (nval1)); \
699 __this_cpu_write(pcp2, (nval2)); \
700 __ret = 1; \
701 } \
702 (__ret); \
703 })
704
705 #ifndef __this_cpu_cmpxchg_double
706 # ifndef __this_cpu_cmpxchg_double_1
707 # define __this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \
708 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
709 # endif
710 # ifndef __this_cpu_cmpxchg_double_2
711 # define __this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \
712 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
713 # endif
714 # ifndef __this_cpu_cmpxchg_double_4
715 # define __this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \
716 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
717 # endif
718 # ifndef __this_cpu_cmpxchg_double_8
719 # define __this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \
720 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
721 # endif
722 # define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
723 __pcpu_double_call_return_bool(__this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
724 #endif
725
726 #endif /* __LINUX_PERCPU_H */
This page took 0.046014 seconds and 6 git commands to generate.