Merge tag 'iwlwifi-for-kalle-2015-06-12' of https://git.kernel.org/pub/scm/linux...
[deliverable/linux.git] / include / linux / perf_event.h
1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18
19 /*
20 * Kernel-internal data types and definitions:
21 */
22
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27
28 struct perf_guest_info_callbacks {
29 int (*is_in_guest)(void);
30 int (*is_user_mode)(void);
31 unsigned long (*get_guest_ip)(void);
32 };
33
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <linux/cgroup.h>
57 #include <asm/local.h>
58
59 struct perf_callchain_entry {
60 __u64 nr;
61 __u64 ip[PERF_MAX_STACK_DEPTH];
62 };
63
64 struct perf_raw_record {
65 u32 size;
66 void *data;
67 };
68
69 /*
70 * branch stack layout:
71 * nr: number of taken branches stored in entries[]
72 *
73 * Note that nr can vary from sample to sample
74 * branches (to, from) are stored from most recent
75 * to least recent, i.e., entries[0] contains the most
76 * recent branch.
77 */
78 struct perf_branch_stack {
79 __u64 nr;
80 struct perf_branch_entry entries[0];
81 };
82
83 struct task_struct;
84
85 /*
86 * extra PMU register associated with an event
87 */
88 struct hw_perf_event_extra {
89 u64 config; /* register value */
90 unsigned int reg; /* register address or index */
91 int alloc; /* extra register already allocated */
92 int idx; /* index in shared_regs->regs[] */
93 };
94
95 /**
96 * struct hw_perf_event - performance event hardware details:
97 */
98 struct hw_perf_event {
99 #ifdef CONFIG_PERF_EVENTS
100 union {
101 struct { /* hardware */
102 u64 config;
103 u64 last_tag;
104 unsigned long config_base;
105 unsigned long event_base;
106 int event_base_rdpmc;
107 int idx;
108 int last_cpu;
109 int flags;
110
111 struct hw_perf_event_extra extra_reg;
112 struct hw_perf_event_extra branch_reg;
113 };
114 struct { /* software */
115 struct hrtimer hrtimer;
116 };
117 struct { /* tracepoint */
118 /* for tp_event->class */
119 struct list_head tp_list;
120 };
121 struct { /* intel_cqm */
122 int cqm_state;
123 u32 cqm_rmid;
124 struct list_head cqm_events_entry;
125 struct list_head cqm_groups_entry;
126 struct list_head cqm_group_entry;
127 };
128 struct { /* itrace */
129 int itrace_started;
130 };
131 #ifdef CONFIG_HAVE_HW_BREAKPOINT
132 struct { /* breakpoint */
133 /*
134 * Crufty hack to avoid the chicken and egg
135 * problem hw_breakpoint has with context
136 * creation and event initalization.
137 */
138 struct arch_hw_breakpoint info;
139 struct list_head bp_list;
140 };
141 #endif
142 };
143 struct task_struct *target;
144 int state;
145 local64_t prev_count;
146 u64 sample_period;
147 u64 last_period;
148 local64_t period_left;
149 u64 interrupts_seq;
150 u64 interrupts;
151
152 u64 freq_time_stamp;
153 u64 freq_count_stamp;
154 #endif
155 };
156
157 /*
158 * hw_perf_event::state flags
159 */
160 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
161 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
162 #define PERF_HES_ARCH 0x04
163
164 struct perf_event;
165
166 /*
167 * Common implementation detail of pmu::{start,commit,cancel}_txn
168 */
169 #define PERF_EVENT_TXN 0x1
170
171 /**
172 * pmu::capabilities flags
173 */
174 #define PERF_PMU_CAP_NO_INTERRUPT 0x01
175 #define PERF_PMU_CAP_NO_NMI 0x02
176 #define PERF_PMU_CAP_AUX_NO_SG 0x04
177 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08
178 #define PERF_PMU_CAP_EXCLUSIVE 0x10
179 #define PERF_PMU_CAP_ITRACE 0x20
180
181 /**
182 * struct pmu - generic performance monitoring unit
183 */
184 struct pmu {
185 struct list_head entry;
186
187 struct module *module;
188 struct device *dev;
189 const struct attribute_group **attr_groups;
190 const char *name;
191 int type;
192
193 /*
194 * various common per-pmu feature flags
195 */
196 int capabilities;
197
198 int * __percpu pmu_disable_count;
199 struct perf_cpu_context * __percpu pmu_cpu_context;
200 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
201 int task_ctx_nr;
202 int hrtimer_interval_ms;
203
204 /*
205 * Fully disable/enable this PMU, can be used to protect from the PMI
206 * as well as for lazy/batch writing of the MSRs.
207 */
208 void (*pmu_enable) (struct pmu *pmu); /* optional */
209 void (*pmu_disable) (struct pmu *pmu); /* optional */
210
211 /*
212 * Try and initialize the event for this PMU.
213 * Should return -ENOENT when the @event doesn't match this PMU.
214 */
215 int (*event_init) (struct perf_event *event);
216
217 /*
218 * Notification that the event was mapped or unmapped. Called
219 * in the context of the mapping task.
220 */
221 void (*event_mapped) (struct perf_event *event); /*optional*/
222 void (*event_unmapped) (struct perf_event *event); /*optional*/
223
224 #define PERF_EF_START 0x01 /* start the counter when adding */
225 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
226 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
227
228 /*
229 * Adds/Removes a counter to/from the PMU, can be done inside
230 * a transaction, see the ->*_txn() methods.
231 */
232 int (*add) (struct perf_event *event, int flags);
233 void (*del) (struct perf_event *event, int flags);
234
235 /*
236 * Starts/Stops a counter present on the PMU. The PMI handler
237 * should stop the counter when perf_event_overflow() returns
238 * !0. ->start() will be used to continue.
239 */
240 void (*start) (struct perf_event *event, int flags);
241 void (*stop) (struct perf_event *event, int flags);
242
243 /*
244 * Updates the counter value of the event.
245 */
246 void (*read) (struct perf_event *event);
247
248 /*
249 * Group events scheduling is treated as a transaction, add
250 * group events as a whole and perform one schedulability test.
251 * If the test fails, roll back the whole group
252 *
253 * Start the transaction, after this ->add() doesn't need to
254 * do schedulability tests.
255 */
256 void (*start_txn) (struct pmu *pmu); /* optional */
257 /*
258 * If ->start_txn() disabled the ->add() schedulability test
259 * then ->commit_txn() is required to perform one. On success
260 * the transaction is closed. On error the transaction is kept
261 * open until ->cancel_txn() is called.
262 */
263 int (*commit_txn) (struct pmu *pmu); /* optional */
264 /*
265 * Will cancel the transaction, assumes ->del() is called
266 * for each successful ->add() during the transaction.
267 */
268 void (*cancel_txn) (struct pmu *pmu); /* optional */
269
270 /*
271 * Will return the value for perf_event_mmap_page::index for this event,
272 * if no implementation is provided it will default to: event->hw.idx + 1.
273 */
274 int (*event_idx) (struct perf_event *event); /*optional */
275
276 /*
277 * context-switches callback
278 */
279 void (*sched_task) (struct perf_event_context *ctx,
280 bool sched_in);
281 /*
282 * PMU specific data size
283 */
284 size_t task_ctx_size;
285
286
287 /*
288 * Return the count value for a counter.
289 */
290 u64 (*count) (struct perf_event *event); /*optional*/
291
292 /*
293 * Set up pmu-private data structures for an AUX area
294 */
295 void *(*setup_aux) (int cpu, void **pages,
296 int nr_pages, bool overwrite);
297 /* optional */
298
299 /*
300 * Free pmu-private AUX data structures
301 */
302 void (*free_aux) (void *aux); /* optional */
303
304 /*
305 * Filter events for PMU-specific reasons.
306 */
307 int (*filter_match) (struct perf_event *event); /* optional */
308 };
309
310 /**
311 * enum perf_event_active_state - the states of a event
312 */
313 enum perf_event_active_state {
314 PERF_EVENT_STATE_EXIT = -3,
315 PERF_EVENT_STATE_ERROR = -2,
316 PERF_EVENT_STATE_OFF = -1,
317 PERF_EVENT_STATE_INACTIVE = 0,
318 PERF_EVENT_STATE_ACTIVE = 1,
319 };
320
321 struct file;
322 struct perf_sample_data;
323
324 typedef void (*perf_overflow_handler_t)(struct perf_event *,
325 struct perf_sample_data *,
326 struct pt_regs *regs);
327
328 enum perf_group_flag {
329 PERF_GROUP_SOFTWARE = 0x1,
330 };
331
332 #define SWEVENT_HLIST_BITS 8
333 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
334
335 struct swevent_hlist {
336 struct hlist_head heads[SWEVENT_HLIST_SIZE];
337 struct rcu_head rcu_head;
338 };
339
340 #define PERF_ATTACH_CONTEXT 0x01
341 #define PERF_ATTACH_GROUP 0x02
342 #define PERF_ATTACH_TASK 0x04
343 #define PERF_ATTACH_TASK_DATA 0x08
344
345 struct perf_cgroup;
346 struct ring_buffer;
347
348 /**
349 * struct perf_event - performance event kernel representation:
350 */
351 struct perf_event {
352 #ifdef CONFIG_PERF_EVENTS
353 /*
354 * entry onto perf_event_context::event_list;
355 * modifications require ctx->lock
356 * RCU safe iterations.
357 */
358 struct list_head event_entry;
359
360 /*
361 * XXX: group_entry and sibling_list should be mutually exclusive;
362 * either you're a sibling on a group, or you're the group leader.
363 * Rework the code to always use the same list element.
364 *
365 * Locked for modification by both ctx->mutex and ctx->lock; holding
366 * either sufficies for read.
367 */
368 struct list_head group_entry;
369 struct list_head sibling_list;
370
371 /*
372 * We need storage to track the entries in perf_pmu_migrate_context; we
373 * cannot use the event_entry because of RCU and we want to keep the
374 * group in tact which avoids us using the other two entries.
375 */
376 struct list_head migrate_entry;
377
378 struct hlist_node hlist_entry;
379 struct list_head active_entry;
380 int nr_siblings;
381 int group_flags;
382 struct perf_event *group_leader;
383 struct pmu *pmu;
384
385 enum perf_event_active_state state;
386 unsigned int attach_state;
387 local64_t count;
388 atomic64_t child_count;
389
390 /*
391 * These are the total time in nanoseconds that the event
392 * has been enabled (i.e. eligible to run, and the task has
393 * been scheduled in, if this is a per-task event)
394 * and running (scheduled onto the CPU), respectively.
395 *
396 * They are computed from tstamp_enabled, tstamp_running and
397 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
398 */
399 u64 total_time_enabled;
400 u64 total_time_running;
401
402 /*
403 * These are timestamps used for computing total_time_enabled
404 * and total_time_running when the event is in INACTIVE or
405 * ACTIVE state, measured in nanoseconds from an arbitrary point
406 * in time.
407 * tstamp_enabled: the notional time when the event was enabled
408 * tstamp_running: the notional time when the event was scheduled on
409 * tstamp_stopped: in INACTIVE state, the notional time when the
410 * event was scheduled off.
411 */
412 u64 tstamp_enabled;
413 u64 tstamp_running;
414 u64 tstamp_stopped;
415
416 /*
417 * timestamp shadows the actual context timing but it can
418 * be safely used in NMI interrupt context. It reflects the
419 * context time as it was when the event was last scheduled in.
420 *
421 * ctx_time already accounts for ctx->timestamp. Therefore to
422 * compute ctx_time for a sample, simply add perf_clock().
423 */
424 u64 shadow_ctx_time;
425
426 struct perf_event_attr attr;
427 u16 header_size;
428 u16 id_header_size;
429 u16 read_size;
430 struct hw_perf_event hw;
431
432 struct perf_event_context *ctx;
433 atomic_long_t refcount;
434
435 /*
436 * These accumulate total time (in nanoseconds) that children
437 * events have been enabled and running, respectively.
438 */
439 atomic64_t child_total_time_enabled;
440 atomic64_t child_total_time_running;
441
442 /*
443 * Protect attach/detach and child_list:
444 */
445 struct mutex child_mutex;
446 struct list_head child_list;
447 struct perf_event *parent;
448
449 int oncpu;
450 int cpu;
451
452 struct list_head owner_entry;
453 struct task_struct *owner;
454
455 /* mmap bits */
456 struct mutex mmap_mutex;
457 atomic_t mmap_count;
458
459 struct ring_buffer *rb;
460 struct list_head rb_entry;
461 unsigned long rcu_batches;
462 int rcu_pending;
463
464 /* poll related */
465 wait_queue_head_t waitq;
466 struct fasync_struct *fasync;
467
468 /* delayed work for NMIs and such */
469 int pending_wakeup;
470 int pending_kill;
471 int pending_disable;
472 struct irq_work pending;
473
474 atomic_t event_limit;
475
476 void (*destroy)(struct perf_event *);
477 struct rcu_head rcu_head;
478
479 struct pid_namespace *ns;
480 u64 id;
481
482 u64 (*clock)(void);
483 perf_overflow_handler_t overflow_handler;
484 void *overflow_handler_context;
485
486 #ifdef CONFIG_EVENT_TRACING
487 struct trace_event_call *tp_event;
488 struct event_filter *filter;
489 #ifdef CONFIG_FUNCTION_TRACER
490 struct ftrace_ops ftrace_ops;
491 #endif
492 #endif
493
494 #ifdef CONFIG_CGROUP_PERF
495 struct perf_cgroup *cgrp; /* cgroup event is attach to */
496 int cgrp_defer_enabled;
497 #endif
498
499 #endif /* CONFIG_PERF_EVENTS */
500 };
501
502 /**
503 * struct perf_event_context - event context structure
504 *
505 * Used as a container for task events and CPU events as well:
506 */
507 struct perf_event_context {
508 struct pmu *pmu;
509 /*
510 * Protect the states of the events in the list,
511 * nr_active, and the list:
512 */
513 raw_spinlock_t lock;
514 /*
515 * Protect the list of events. Locking either mutex or lock
516 * is sufficient to ensure the list doesn't change; to change
517 * the list you need to lock both the mutex and the spinlock.
518 */
519 struct mutex mutex;
520
521 struct list_head active_ctx_list;
522 struct list_head pinned_groups;
523 struct list_head flexible_groups;
524 struct list_head event_list;
525 int nr_events;
526 int nr_active;
527 int is_active;
528 int nr_stat;
529 int nr_freq;
530 int rotate_disable;
531 atomic_t refcount;
532 struct task_struct *task;
533
534 /*
535 * Context clock, runs when context enabled.
536 */
537 u64 time;
538 u64 timestamp;
539
540 /*
541 * These fields let us detect when two contexts have both
542 * been cloned (inherited) from a common ancestor.
543 */
544 struct perf_event_context *parent_ctx;
545 u64 parent_gen;
546 u64 generation;
547 int pin_count;
548 int nr_cgroups; /* cgroup evts */
549 void *task_ctx_data; /* pmu specific data */
550 struct rcu_head rcu_head;
551
552 struct delayed_work orphans_remove;
553 bool orphans_remove_sched;
554 };
555
556 /*
557 * Number of contexts where an event can trigger:
558 * task, softirq, hardirq, nmi.
559 */
560 #define PERF_NR_CONTEXTS 4
561
562 /**
563 * struct perf_event_cpu_context - per cpu event context structure
564 */
565 struct perf_cpu_context {
566 struct perf_event_context ctx;
567 struct perf_event_context *task_ctx;
568 int active_oncpu;
569 int exclusive;
570
571 raw_spinlock_t hrtimer_lock;
572 struct hrtimer hrtimer;
573 ktime_t hrtimer_interval;
574 unsigned int hrtimer_active;
575
576 struct pmu *unique_pmu;
577 struct perf_cgroup *cgrp;
578 };
579
580 struct perf_output_handle {
581 struct perf_event *event;
582 struct ring_buffer *rb;
583 unsigned long wakeup;
584 unsigned long size;
585 union {
586 void *addr;
587 unsigned long head;
588 };
589 int page;
590 };
591
592 #ifdef CONFIG_CGROUP_PERF
593
594 /*
595 * perf_cgroup_info keeps track of time_enabled for a cgroup.
596 * This is a per-cpu dynamically allocated data structure.
597 */
598 struct perf_cgroup_info {
599 u64 time;
600 u64 timestamp;
601 };
602
603 struct perf_cgroup {
604 struct cgroup_subsys_state css;
605 struct perf_cgroup_info __percpu *info;
606 };
607
608 /*
609 * Must ensure cgroup is pinned (css_get) before calling
610 * this function. In other words, we cannot call this function
611 * if there is no cgroup event for the current CPU context.
612 */
613 static inline struct perf_cgroup *
614 perf_cgroup_from_task(struct task_struct *task)
615 {
616 return container_of(task_css(task, perf_event_cgrp_id),
617 struct perf_cgroup, css);
618 }
619 #endif /* CONFIG_CGROUP_PERF */
620
621 #ifdef CONFIG_PERF_EVENTS
622
623 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
624 struct perf_event *event);
625 extern void perf_aux_output_end(struct perf_output_handle *handle,
626 unsigned long size, bool truncated);
627 extern int perf_aux_output_skip(struct perf_output_handle *handle,
628 unsigned long size);
629 extern void *perf_get_aux(struct perf_output_handle *handle);
630
631 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
632 extern void perf_pmu_unregister(struct pmu *pmu);
633
634 extern int perf_num_counters(void);
635 extern const char *perf_pmu_name(void);
636 extern void __perf_event_task_sched_in(struct task_struct *prev,
637 struct task_struct *task);
638 extern void __perf_event_task_sched_out(struct task_struct *prev,
639 struct task_struct *next);
640 extern int perf_event_init_task(struct task_struct *child);
641 extern void perf_event_exit_task(struct task_struct *child);
642 extern void perf_event_free_task(struct task_struct *task);
643 extern void perf_event_delayed_put(struct task_struct *task);
644 extern void perf_event_print_debug(void);
645 extern void perf_pmu_disable(struct pmu *pmu);
646 extern void perf_pmu_enable(struct pmu *pmu);
647 extern void perf_sched_cb_dec(struct pmu *pmu);
648 extern void perf_sched_cb_inc(struct pmu *pmu);
649 extern int perf_event_task_disable(void);
650 extern int perf_event_task_enable(void);
651 extern int perf_event_refresh(struct perf_event *event, int refresh);
652 extern void perf_event_update_userpage(struct perf_event *event);
653 extern int perf_event_release_kernel(struct perf_event *event);
654 extern struct perf_event *
655 perf_event_create_kernel_counter(struct perf_event_attr *attr,
656 int cpu,
657 struct task_struct *task,
658 perf_overflow_handler_t callback,
659 void *context);
660 extern void perf_pmu_migrate_context(struct pmu *pmu,
661 int src_cpu, int dst_cpu);
662 extern u64 perf_event_read_value(struct perf_event *event,
663 u64 *enabled, u64 *running);
664
665
666 struct perf_sample_data {
667 /*
668 * Fields set by perf_sample_data_init(), group so as to
669 * minimize the cachelines touched.
670 */
671 u64 addr;
672 struct perf_raw_record *raw;
673 struct perf_branch_stack *br_stack;
674 u64 period;
675 u64 weight;
676 u64 txn;
677 union perf_mem_data_src data_src;
678
679 /*
680 * The other fields, optionally {set,used} by
681 * perf_{prepare,output}_sample().
682 */
683 u64 type;
684 u64 ip;
685 struct {
686 u32 pid;
687 u32 tid;
688 } tid_entry;
689 u64 time;
690 u64 id;
691 u64 stream_id;
692 struct {
693 u32 cpu;
694 u32 reserved;
695 } cpu_entry;
696 struct perf_callchain_entry *callchain;
697
698 /*
699 * regs_user may point to task_pt_regs or to regs_user_copy, depending
700 * on arch details.
701 */
702 struct perf_regs regs_user;
703 struct pt_regs regs_user_copy;
704
705 struct perf_regs regs_intr;
706 u64 stack_user_size;
707 } ____cacheline_aligned;
708
709 /* default value for data source */
710 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
711 PERF_MEM_S(LVL, NA) |\
712 PERF_MEM_S(SNOOP, NA) |\
713 PERF_MEM_S(LOCK, NA) |\
714 PERF_MEM_S(TLB, NA))
715
716 static inline void perf_sample_data_init(struct perf_sample_data *data,
717 u64 addr, u64 period)
718 {
719 /* remaining struct members initialized in perf_prepare_sample() */
720 data->addr = addr;
721 data->raw = NULL;
722 data->br_stack = NULL;
723 data->period = period;
724 data->weight = 0;
725 data->data_src.val = PERF_MEM_NA;
726 data->txn = 0;
727 }
728
729 extern void perf_output_sample(struct perf_output_handle *handle,
730 struct perf_event_header *header,
731 struct perf_sample_data *data,
732 struct perf_event *event);
733 extern void perf_prepare_sample(struct perf_event_header *header,
734 struct perf_sample_data *data,
735 struct perf_event *event,
736 struct pt_regs *regs);
737
738 extern int perf_event_overflow(struct perf_event *event,
739 struct perf_sample_data *data,
740 struct pt_regs *regs);
741
742 extern void perf_event_output(struct perf_event *event,
743 struct perf_sample_data *data,
744 struct pt_regs *regs);
745
746 extern void
747 perf_event_header__init_id(struct perf_event_header *header,
748 struct perf_sample_data *data,
749 struct perf_event *event);
750 extern void
751 perf_event__output_id_sample(struct perf_event *event,
752 struct perf_output_handle *handle,
753 struct perf_sample_data *sample);
754
755 extern void
756 perf_log_lost_samples(struct perf_event *event, u64 lost);
757
758 static inline bool is_sampling_event(struct perf_event *event)
759 {
760 return event->attr.sample_period != 0;
761 }
762
763 /*
764 * Return 1 for a software event, 0 for a hardware event
765 */
766 static inline int is_software_event(struct perf_event *event)
767 {
768 return event->pmu->task_ctx_nr == perf_sw_context;
769 }
770
771 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
772
773 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
774 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
775
776 #ifndef perf_arch_fetch_caller_regs
777 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
778 #endif
779
780 /*
781 * Take a snapshot of the regs. Skip ip and frame pointer to
782 * the nth caller. We only need a few of the regs:
783 * - ip for PERF_SAMPLE_IP
784 * - cs for user_mode() tests
785 * - bp for callchains
786 * - eflags, for future purposes, just in case
787 */
788 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
789 {
790 memset(regs, 0, sizeof(*regs));
791
792 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
793 }
794
795 static __always_inline void
796 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
797 {
798 if (static_key_false(&perf_swevent_enabled[event_id]))
799 __perf_sw_event(event_id, nr, regs, addr);
800 }
801
802 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
803
804 /*
805 * 'Special' version for the scheduler, it hard assumes no recursion,
806 * which is guaranteed by us not actually scheduling inside other swevents
807 * because those disable preemption.
808 */
809 static __always_inline void
810 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
811 {
812 if (static_key_false(&perf_swevent_enabled[event_id])) {
813 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
814
815 perf_fetch_caller_regs(regs);
816 ___perf_sw_event(event_id, nr, regs, addr);
817 }
818 }
819
820 extern struct static_key_deferred perf_sched_events;
821
822 static __always_inline bool
823 perf_sw_migrate_enabled(void)
824 {
825 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
826 return true;
827 return false;
828 }
829
830 static inline void perf_event_task_migrate(struct task_struct *task)
831 {
832 if (perf_sw_migrate_enabled())
833 task->sched_migrated = 1;
834 }
835
836 static inline void perf_event_task_sched_in(struct task_struct *prev,
837 struct task_struct *task)
838 {
839 if (static_key_false(&perf_sched_events.key))
840 __perf_event_task_sched_in(prev, task);
841
842 if (perf_sw_migrate_enabled() && task->sched_migrated) {
843 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
844
845 perf_fetch_caller_regs(regs);
846 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
847 task->sched_migrated = 0;
848 }
849 }
850
851 static inline void perf_event_task_sched_out(struct task_struct *prev,
852 struct task_struct *next)
853 {
854 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
855
856 if (static_key_false(&perf_sched_events.key))
857 __perf_event_task_sched_out(prev, next);
858 }
859
860 static inline u64 __perf_event_count(struct perf_event *event)
861 {
862 return local64_read(&event->count) + atomic64_read(&event->child_count);
863 }
864
865 extern void perf_event_mmap(struct vm_area_struct *vma);
866 extern struct perf_guest_info_callbacks *perf_guest_cbs;
867 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
868 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
869
870 extern void perf_event_exec(void);
871 extern void perf_event_comm(struct task_struct *tsk, bool exec);
872 extern void perf_event_fork(struct task_struct *tsk);
873
874 /* Callchains */
875 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
876
877 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
878 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
879
880 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
881 {
882 if (entry->nr < PERF_MAX_STACK_DEPTH)
883 entry->ip[entry->nr++] = ip;
884 }
885
886 extern int sysctl_perf_event_paranoid;
887 extern int sysctl_perf_event_mlock;
888 extern int sysctl_perf_event_sample_rate;
889 extern int sysctl_perf_cpu_time_max_percent;
890
891 extern void perf_sample_event_took(u64 sample_len_ns);
892
893 extern int perf_proc_update_handler(struct ctl_table *table, int write,
894 void __user *buffer, size_t *lenp,
895 loff_t *ppos);
896 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
897 void __user *buffer, size_t *lenp,
898 loff_t *ppos);
899
900
901 static inline bool perf_paranoid_tracepoint_raw(void)
902 {
903 return sysctl_perf_event_paranoid > -1;
904 }
905
906 static inline bool perf_paranoid_cpu(void)
907 {
908 return sysctl_perf_event_paranoid > 0;
909 }
910
911 static inline bool perf_paranoid_kernel(void)
912 {
913 return sysctl_perf_event_paranoid > 1;
914 }
915
916 extern void perf_event_init(void);
917 extern void perf_tp_event(u64 addr, u64 count, void *record,
918 int entry_size, struct pt_regs *regs,
919 struct hlist_head *head, int rctx,
920 struct task_struct *task);
921 extern void perf_bp_event(struct perf_event *event, void *data);
922
923 #ifndef perf_misc_flags
924 # define perf_misc_flags(regs) \
925 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
926 # define perf_instruction_pointer(regs) instruction_pointer(regs)
927 #endif
928
929 static inline bool has_branch_stack(struct perf_event *event)
930 {
931 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
932 }
933
934 static inline bool needs_branch_stack(struct perf_event *event)
935 {
936 return event->attr.branch_sample_type != 0;
937 }
938
939 static inline bool has_aux(struct perf_event *event)
940 {
941 return event->pmu->setup_aux;
942 }
943
944 extern int perf_output_begin(struct perf_output_handle *handle,
945 struct perf_event *event, unsigned int size);
946 extern void perf_output_end(struct perf_output_handle *handle);
947 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
948 const void *buf, unsigned int len);
949 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
950 unsigned int len);
951 extern int perf_swevent_get_recursion_context(void);
952 extern void perf_swevent_put_recursion_context(int rctx);
953 extern u64 perf_swevent_set_period(struct perf_event *event);
954 extern void perf_event_enable(struct perf_event *event);
955 extern void perf_event_disable(struct perf_event *event);
956 extern int __perf_event_disable(void *info);
957 extern void perf_event_task_tick(void);
958 #else /* !CONFIG_PERF_EVENTS: */
959 static inline void *
960 perf_aux_output_begin(struct perf_output_handle *handle,
961 struct perf_event *event) { return NULL; }
962 static inline void
963 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size,
964 bool truncated) { }
965 static inline int
966 perf_aux_output_skip(struct perf_output_handle *handle,
967 unsigned long size) { return -EINVAL; }
968 static inline void *
969 perf_get_aux(struct perf_output_handle *handle) { return NULL; }
970 static inline void
971 perf_event_task_migrate(struct task_struct *task) { }
972 static inline void
973 perf_event_task_sched_in(struct task_struct *prev,
974 struct task_struct *task) { }
975 static inline void
976 perf_event_task_sched_out(struct task_struct *prev,
977 struct task_struct *next) { }
978 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
979 static inline void perf_event_exit_task(struct task_struct *child) { }
980 static inline void perf_event_free_task(struct task_struct *task) { }
981 static inline void perf_event_delayed_put(struct task_struct *task) { }
982 static inline void perf_event_print_debug(void) { }
983 static inline int perf_event_task_disable(void) { return -EINVAL; }
984 static inline int perf_event_task_enable(void) { return -EINVAL; }
985 static inline int perf_event_refresh(struct perf_event *event, int refresh)
986 {
987 return -EINVAL;
988 }
989
990 static inline void
991 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
992 static inline void
993 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { }
994 static inline void
995 perf_bp_event(struct perf_event *event, void *data) { }
996
997 static inline int perf_register_guest_info_callbacks
998 (struct perf_guest_info_callbacks *callbacks) { return 0; }
999 static inline int perf_unregister_guest_info_callbacks
1000 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1001
1002 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1003 static inline void perf_event_exec(void) { }
1004 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
1005 static inline void perf_event_fork(struct task_struct *tsk) { }
1006 static inline void perf_event_init(void) { }
1007 static inline int perf_swevent_get_recursion_context(void) { return -1; }
1008 static inline void perf_swevent_put_recursion_context(int rctx) { }
1009 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
1010 static inline void perf_event_enable(struct perf_event *event) { }
1011 static inline void perf_event_disable(struct perf_event *event) { }
1012 static inline int __perf_event_disable(void *info) { return -1; }
1013 static inline void perf_event_task_tick(void) { }
1014 #endif
1015
1016 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL)
1017 extern bool perf_event_can_stop_tick(void);
1018 #else
1019 static inline bool perf_event_can_stop_tick(void) { return true; }
1020 #endif
1021
1022 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1023 extern void perf_restore_debug_store(void);
1024 #else
1025 static inline void perf_restore_debug_store(void) { }
1026 #endif
1027
1028 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1029
1030 /*
1031 * This has to have a higher priority than migration_notifier in sched/core.c.
1032 */
1033 #define perf_cpu_notifier(fn) \
1034 do { \
1035 static struct notifier_block fn##_nb = \
1036 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
1037 unsigned long cpu = smp_processor_id(); \
1038 unsigned long flags; \
1039 \
1040 cpu_notifier_register_begin(); \
1041 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
1042 (void *)(unsigned long)cpu); \
1043 local_irq_save(flags); \
1044 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
1045 (void *)(unsigned long)cpu); \
1046 local_irq_restore(flags); \
1047 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
1048 (void *)(unsigned long)cpu); \
1049 __register_cpu_notifier(&fn##_nb); \
1050 cpu_notifier_register_done(); \
1051 } while (0)
1052
1053 /*
1054 * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the
1055 * callback for already online CPUs.
1056 */
1057 #define __perf_cpu_notifier(fn) \
1058 do { \
1059 static struct notifier_block fn##_nb = \
1060 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
1061 \
1062 __register_cpu_notifier(&fn##_nb); \
1063 } while (0)
1064
1065 struct perf_pmu_events_attr {
1066 struct device_attribute attr;
1067 u64 id;
1068 const char *event_str;
1069 };
1070
1071 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1072 char *page);
1073
1074 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1075 static struct perf_pmu_events_attr _var = { \
1076 .attr = __ATTR(_name, 0444, _show, NULL), \
1077 .id = _id, \
1078 };
1079
1080 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1081 static struct perf_pmu_events_attr _var = { \
1082 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1083 .id = 0, \
1084 .event_str = _str, \
1085 };
1086
1087 #define PMU_FORMAT_ATTR(_name, _format) \
1088 static ssize_t \
1089 _name##_show(struct device *dev, \
1090 struct device_attribute *attr, \
1091 char *page) \
1092 { \
1093 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1094 return sprintf(page, _format "\n"); \
1095 } \
1096 \
1097 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1098
1099 #endif /* _LINUX_PERF_EVENT_H */
This page took 0.082918 seconds and 5 git commands to generate.