Merge branch 'next/drivers' into HEAD
[deliverable/linux.git] / include / linux / perf_event.h
1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
20
21 /*
22 * User-space ABI bits:
23 */
24
25 /*
26 * attr.type
27 */
28 enum perf_type_id {
29 PERF_TYPE_HARDWARE = 0,
30 PERF_TYPE_SOFTWARE = 1,
31 PERF_TYPE_TRACEPOINT = 2,
32 PERF_TYPE_HW_CACHE = 3,
33 PERF_TYPE_RAW = 4,
34 PERF_TYPE_BREAKPOINT = 5,
35
36 PERF_TYPE_MAX, /* non-ABI */
37 };
38
39 /*
40 * Generalized performance event event_id types, used by the
41 * attr.event_id parameter of the sys_perf_event_open()
42 * syscall:
43 */
44 enum perf_hw_id {
45 /*
46 * Common hardware events, generalized by the kernel:
47 */
48 PERF_COUNT_HW_CPU_CYCLES = 0,
49 PERF_COUNT_HW_INSTRUCTIONS = 1,
50 PERF_COUNT_HW_CACHE_REFERENCES = 2,
51 PERF_COUNT_HW_CACHE_MISSES = 3,
52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
53 PERF_COUNT_HW_BRANCH_MISSES = 5,
54 PERF_COUNT_HW_BUS_CYCLES = 6,
55 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7,
56 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8,
57 PERF_COUNT_HW_REF_CPU_CYCLES = 9,
58
59 PERF_COUNT_HW_MAX, /* non-ABI */
60 };
61
62 /*
63 * Generalized hardware cache events:
64 *
65 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
66 * { read, write, prefetch } x
67 * { accesses, misses }
68 */
69 enum perf_hw_cache_id {
70 PERF_COUNT_HW_CACHE_L1D = 0,
71 PERF_COUNT_HW_CACHE_L1I = 1,
72 PERF_COUNT_HW_CACHE_LL = 2,
73 PERF_COUNT_HW_CACHE_DTLB = 3,
74 PERF_COUNT_HW_CACHE_ITLB = 4,
75 PERF_COUNT_HW_CACHE_BPU = 5,
76 PERF_COUNT_HW_CACHE_NODE = 6,
77
78 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
79 };
80
81 enum perf_hw_cache_op_id {
82 PERF_COUNT_HW_CACHE_OP_READ = 0,
83 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
84 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
85
86 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
87 };
88
89 enum perf_hw_cache_op_result_id {
90 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
91 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
92
93 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
94 };
95
96 /*
97 * Special "software" events provided by the kernel, even if the hardware
98 * does not support performance events. These events measure various
99 * physical and sw events of the kernel (and allow the profiling of them as
100 * well):
101 */
102 enum perf_sw_ids {
103 PERF_COUNT_SW_CPU_CLOCK = 0,
104 PERF_COUNT_SW_TASK_CLOCK = 1,
105 PERF_COUNT_SW_PAGE_FAULTS = 2,
106 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
107 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
108 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
109 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
110 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
111 PERF_COUNT_SW_EMULATION_FAULTS = 8,
112
113 PERF_COUNT_SW_MAX, /* non-ABI */
114 };
115
116 /*
117 * Bits that can be set in attr.sample_type to request information
118 * in the overflow packets.
119 */
120 enum perf_event_sample_format {
121 PERF_SAMPLE_IP = 1U << 0,
122 PERF_SAMPLE_TID = 1U << 1,
123 PERF_SAMPLE_TIME = 1U << 2,
124 PERF_SAMPLE_ADDR = 1U << 3,
125 PERF_SAMPLE_READ = 1U << 4,
126 PERF_SAMPLE_CALLCHAIN = 1U << 5,
127 PERF_SAMPLE_ID = 1U << 6,
128 PERF_SAMPLE_CPU = 1U << 7,
129 PERF_SAMPLE_PERIOD = 1U << 8,
130 PERF_SAMPLE_STREAM_ID = 1U << 9,
131 PERF_SAMPLE_RAW = 1U << 10,
132 PERF_SAMPLE_BRANCH_STACK = 1U << 11,
133 PERF_SAMPLE_REGS_USER = 1U << 12,
134 PERF_SAMPLE_STACK_USER = 1U << 13,
135
136 PERF_SAMPLE_MAX = 1U << 14, /* non-ABI */
137 };
138
139 /*
140 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
141 *
142 * If the user does not pass priv level information via branch_sample_type,
143 * the kernel uses the event's priv level. Branch and event priv levels do
144 * not have to match. Branch priv level is checked for permissions.
145 *
146 * The branch types can be combined, however BRANCH_ANY covers all types
147 * of branches and therefore it supersedes all the other types.
148 */
149 enum perf_branch_sample_type {
150 PERF_SAMPLE_BRANCH_USER = 1U << 0, /* user branches */
151 PERF_SAMPLE_BRANCH_KERNEL = 1U << 1, /* kernel branches */
152 PERF_SAMPLE_BRANCH_HV = 1U << 2, /* hypervisor branches */
153
154 PERF_SAMPLE_BRANCH_ANY = 1U << 3, /* any branch types */
155 PERF_SAMPLE_BRANCH_ANY_CALL = 1U << 4, /* any call branch */
156 PERF_SAMPLE_BRANCH_ANY_RETURN = 1U << 5, /* any return branch */
157 PERF_SAMPLE_BRANCH_IND_CALL = 1U << 6, /* indirect calls */
158
159 PERF_SAMPLE_BRANCH_MAX = 1U << 7, /* non-ABI */
160 };
161
162 #define PERF_SAMPLE_BRANCH_PLM_ALL \
163 (PERF_SAMPLE_BRANCH_USER|\
164 PERF_SAMPLE_BRANCH_KERNEL|\
165 PERF_SAMPLE_BRANCH_HV)
166
167 /*
168 * Values to determine ABI of the registers dump.
169 */
170 enum perf_sample_regs_abi {
171 PERF_SAMPLE_REGS_ABI_NONE = 0,
172 PERF_SAMPLE_REGS_ABI_32 = 1,
173 PERF_SAMPLE_REGS_ABI_64 = 2,
174 };
175
176 /*
177 * The format of the data returned by read() on a perf event fd,
178 * as specified by attr.read_format:
179 *
180 * struct read_format {
181 * { u64 value;
182 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
183 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
184 * { u64 id; } && PERF_FORMAT_ID
185 * } && !PERF_FORMAT_GROUP
186 *
187 * { u64 nr;
188 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
189 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
190 * { u64 value;
191 * { u64 id; } && PERF_FORMAT_ID
192 * } cntr[nr];
193 * } && PERF_FORMAT_GROUP
194 * };
195 */
196 enum perf_event_read_format {
197 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
198 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
199 PERF_FORMAT_ID = 1U << 2,
200 PERF_FORMAT_GROUP = 1U << 3,
201
202 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
203 };
204
205 #define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
206 #define PERF_ATTR_SIZE_VER1 72 /* add: config2 */
207 #define PERF_ATTR_SIZE_VER2 80 /* add: branch_sample_type */
208 #define PERF_ATTR_SIZE_VER3 96 /* add: sample_regs_user */
209 /* add: sample_stack_user */
210
211 /*
212 * Hardware event_id to monitor via a performance monitoring event:
213 */
214 struct perf_event_attr {
215
216 /*
217 * Major type: hardware/software/tracepoint/etc.
218 */
219 __u32 type;
220
221 /*
222 * Size of the attr structure, for fwd/bwd compat.
223 */
224 __u32 size;
225
226 /*
227 * Type specific configuration information.
228 */
229 __u64 config;
230
231 union {
232 __u64 sample_period;
233 __u64 sample_freq;
234 };
235
236 __u64 sample_type;
237 __u64 read_format;
238
239 __u64 disabled : 1, /* off by default */
240 inherit : 1, /* children inherit it */
241 pinned : 1, /* must always be on PMU */
242 exclusive : 1, /* only group on PMU */
243 exclude_user : 1, /* don't count user */
244 exclude_kernel : 1, /* ditto kernel */
245 exclude_hv : 1, /* ditto hypervisor */
246 exclude_idle : 1, /* don't count when idle */
247 mmap : 1, /* include mmap data */
248 comm : 1, /* include comm data */
249 freq : 1, /* use freq, not period */
250 inherit_stat : 1, /* per task counts */
251 enable_on_exec : 1, /* next exec enables */
252 task : 1, /* trace fork/exit */
253 watermark : 1, /* wakeup_watermark */
254 /*
255 * precise_ip:
256 *
257 * 0 - SAMPLE_IP can have arbitrary skid
258 * 1 - SAMPLE_IP must have constant skid
259 * 2 - SAMPLE_IP requested to have 0 skid
260 * 3 - SAMPLE_IP must have 0 skid
261 *
262 * See also PERF_RECORD_MISC_EXACT_IP
263 */
264 precise_ip : 2, /* skid constraint */
265 mmap_data : 1, /* non-exec mmap data */
266 sample_id_all : 1, /* sample_type all events */
267
268 exclude_host : 1, /* don't count in host */
269 exclude_guest : 1, /* don't count in guest */
270
271 exclude_callchain_kernel : 1, /* exclude kernel callchains */
272 exclude_callchain_user : 1, /* exclude user callchains */
273
274 __reserved_1 : 41;
275
276 union {
277 __u32 wakeup_events; /* wakeup every n events */
278 __u32 wakeup_watermark; /* bytes before wakeup */
279 };
280
281 __u32 bp_type;
282 union {
283 __u64 bp_addr;
284 __u64 config1; /* extension of config */
285 };
286 union {
287 __u64 bp_len;
288 __u64 config2; /* extension of config1 */
289 };
290 __u64 branch_sample_type; /* enum perf_branch_sample_type */
291
292 /*
293 * Defines set of user regs to dump on samples.
294 * See asm/perf_regs.h for details.
295 */
296 __u64 sample_regs_user;
297
298 /*
299 * Defines size of the user stack to dump on samples.
300 */
301 __u32 sample_stack_user;
302
303 /* Align to u64. */
304 __u32 __reserved_2;
305 };
306
307 #define perf_flags(attr) (*(&(attr)->read_format + 1))
308
309 /*
310 * Ioctls that can be done on a perf event fd:
311 */
312 #define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
313 #define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
314 #define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
315 #define PERF_EVENT_IOC_RESET _IO ('$', 3)
316 #define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
317 #define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
318 #define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
319
320 enum perf_event_ioc_flags {
321 PERF_IOC_FLAG_GROUP = 1U << 0,
322 };
323
324 /*
325 * Structure of the page that can be mapped via mmap
326 */
327 struct perf_event_mmap_page {
328 __u32 version; /* version number of this structure */
329 __u32 compat_version; /* lowest version this is compat with */
330
331 /*
332 * Bits needed to read the hw events in user-space.
333 *
334 * u32 seq, time_mult, time_shift, idx, width;
335 * u64 count, enabled, running;
336 * u64 cyc, time_offset;
337 * s64 pmc = 0;
338 *
339 * do {
340 * seq = pc->lock;
341 * barrier()
342 *
343 * enabled = pc->time_enabled;
344 * running = pc->time_running;
345 *
346 * if (pc->cap_usr_time && enabled != running) {
347 * cyc = rdtsc();
348 * time_offset = pc->time_offset;
349 * time_mult = pc->time_mult;
350 * time_shift = pc->time_shift;
351 * }
352 *
353 * idx = pc->index;
354 * count = pc->offset;
355 * if (pc->cap_usr_rdpmc && idx) {
356 * width = pc->pmc_width;
357 * pmc = rdpmc(idx - 1);
358 * }
359 *
360 * barrier();
361 * } while (pc->lock != seq);
362 *
363 * NOTE: for obvious reason this only works on self-monitoring
364 * processes.
365 */
366 __u32 lock; /* seqlock for synchronization */
367 __u32 index; /* hardware event identifier */
368 __s64 offset; /* add to hardware event value */
369 __u64 time_enabled; /* time event active */
370 __u64 time_running; /* time event on cpu */
371 union {
372 __u64 capabilities;
373 __u64 cap_usr_time : 1,
374 cap_usr_rdpmc : 1,
375 cap_____res : 62;
376 };
377
378 /*
379 * If cap_usr_rdpmc this field provides the bit-width of the value
380 * read using the rdpmc() or equivalent instruction. This can be used
381 * to sign extend the result like:
382 *
383 * pmc <<= 64 - width;
384 * pmc >>= 64 - width; // signed shift right
385 * count += pmc;
386 */
387 __u16 pmc_width;
388
389 /*
390 * If cap_usr_time the below fields can be used to compute the time
391 * delta since time_enabled (in ns) using rdtsc or similar.
392 *
393 * u64 quot, rem;
394 * u64 delta;
395 *
396 * quot = (cyc >> time_shift);
397 * rem = cyc & ((1 << time_shift) - 1);
398 * delta = time_offset + quot * time_mult +
399 * ((rem * time_mult) >> time_shift);
400 *
401 * Where time_offset,time_mult,time_shift and cyc are read in the
402 * seqcount loop described above. This delta can then be added to
403 * enabled and possible running (if idx), improving the scaling:
404 *
405 * enabled += delta;
406 * if (idx)
407 * running += delta;
408 *
409 * quot = count / running;
410 * rem = count % running;
411 * count = quot * enabled + (rem * enabled) / running;
412 */
413 __u16 time_shift;
414 __u32 time_mult;
415 __u64 time_offset;
416
417 /*
418 * Hole for extension of the self monitor capabilities
419 */
420
421 __u64 __reserved[120]; /* align to 1k */
422
423 /*
424 * Control data for the mmap() data buffer.
425 *
426 * User-space reading the @data_head value should issue an rmb(), on
427 * SMP capable platforms, after reading this value -- see
428 * perf_event_wakeup().
429 *
430 * When the mapping is PROT_WRITE the @data_tail value should be
431 * written by userspace to reflect the last read data. In this case
432 * the kernel will not over-write unread data.
433 */
434 __u64 data_head; /* head in the data section */
435 __u64 data_tail; /* user-space written tail */
436 };
437
438 #define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
439 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
440 #define PERF_RECORD_MISC_KERNEL (1 << 0)
441 #define PERF_RECORD_MISC_USER (2 << 0)
442 #define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
443 #define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
444 #define PERF_RECORD_MISC_GUEST_USER (5 << 0)
445
446 /*
447 * Indicates that the content of PERF_SAMPLE_IP points to
448 * the actual instruction that triggered the event. See also
449 * perf_event_attr::precise_ip.
450 */
451 #define PERF_RECORD_MISC_EXACT_IP (1 << 14)
452 /*
453 * Reserve the last bit to indicate some extended misc field
454 */
455 #define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
456
457 struct perf_event_header {
458 __u32 type;
459 __u16 misc;
460 __u16 size;
461 };
462
463 enum perf_event_type {
464
465 /*
466 * If perf_event_attr.sample_id_all is set then all event types will
467 * have the sample_type selected fields related to where/when
468 * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID)
469 * described in PERF_RECORD_SAMPLE below, it will be stashed just after
470 * the perf_event_header and the fields already present for the existing
471 * fields, i.e. at the end of the payload. That way a newer perf.data
472 * file will be supported by older perf tools, with these new optional
473 * fields being ignored.
474 *
475 * The MMAP events record the PROT_EXEC mappings so that we can
476 * correlate userspace IPs to code. They have the following structure:
477 *
478 * struct {
479 * struct perf_event_header header;
480 *
481 * u32 pid, tid;
482 * u64 addr;
483 * u64 len;
484 * u64 pgoff;
485 * char filename[];
486 * };
487 */
488 PERF_RECORD_MMAP = 1,
489
490 /*
491 * struct {
492 * struct perf_event_header header;
493 * u64 id;
494 * u64 lost;
495 * };
496 */
497 PERF_RECORD_LOST = 2,
498
499 /*
500 * struct {
501 * struct perf_event_header header;
502 *
503 * u32 pid, tid;
504 * char comm[];
505 * };
506 */
507 PERF_RECORD_COMM = 3,
508
509 /*
510 * struct {
511 * struct perf_event_header header;
512 * u32 pid, ppid;
513 * u32 tid, ptid;
514 * u64 time;
515 * };
516 */
517 PERF_RECORD_EXIT = 4,
518
519 /*
520 * struct {
521 * struct perf_event_header header;
522 * u64 time;
523 * u64 id;
524 * u64 stream_id;
525 * };
526 */
527 PERF_RECORD_THROTTLE = 5,
528 PERF_RECORD_UNTHROTTLE = 6,
529
530 /*
531 * struct {
532 * struct perf_event_header header;
533 * u32 pid, ppid;
534 * u32 tid, ptid;
535 * u64 time;
536 * };
537 */
538 PERF_RECORD_FORK = 7,
539
540 /*
541 * struct {
542 * struct perf_event_header header;
543 * u32 pid, tid;
544 *
545 * struct read_format values;
546 * };
547 */
548 PERF_RECORD_READ = 8,
549
550 /*
551 * struct {
552 * struct perf_event_header header;
553 *
554 * { u64 ip; } && PERF_SAMPLE_IP
555 * { u32 pid, tid; } && PERF_SAMPLE_TID
556 * { u64 time; } && PERF_SAMPLE_TIME
557 * { u64 addr; } && PERF_SAMPLE_ADDR
558 * { u64 id; } && PERF_SAMPLE_ID
559 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
560 * { u32 cpu, res; } && PERF_SAMPLE_CPU
561 * { u64 period; } && PERF_SAMPLE_PERIOD
562 *
563 * { struct read_format values; } && PERF_SAMPLE_READ
564 *
565 * { u64 nr,
566 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
567 *
568 * #
569 * # The RAW record below is opaque data wrt the ABI
570 * #
571 * # That is, the ABI doesn't make any promises wrt to
572 * # the stability of its content, it may vary depending
573 * # on event, hardware, kernel version and phase of
574 * # the moon.
575 * #
576 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
577 * #
578 *
579 * { u32 size;
580 * char data[size];}&& PERF_SAMPLE_RAW
581 *
582 * { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK
583 *
584 * { u64 abi; # enum perf_sample_regs_abi
585 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
586 *
587 * { u64 size;
588 * char data[size];
589 * u64 dyn_size; } && PERF_SAMPLE_STACK_USER
590 * };
591 */
592 PERF_RECORD_SAMPLE = 9,
593
594 PERF_RECORD_MAX, /* non-ABI */
595 };
596
597 #define PERF_MAX_STACK_DEPTH 127
598
599 enum perf_callchain_context {
600 PERF_CONTEXT_HV = (__u64)-32,
601 PERF_CONTEXT_KERNEL = (__u64)-128,
602 PERF_CONTEXT_USER = (__u64)-512,
603
604 PERF_CONTEXT_GUEST = (__u64)-2048,
605 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
606 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
607
608 PERF_CONTEXT_MAX = (__u64)-4095,
609 };
610
611 #define PERF_FLAG_FD_NO_GROUP (1U << 0)
612 #define PERF_FLAG_FD_OUTPUT (1U << 1)
613 #define PERF_FLAG_PID_CGROUP (1U << 2) /* pid=cgroup id, per-cpu mode only */
614
615 #ifdef __KERNEL__
616 /*
617 * Kernel-internal data types and definitions:
618 */
619
620 #ifdef CONFIG_PERF_EVENTS
621 # include <linux/cgroup.h>
622 # include <asm/perf_event.h>
623 # include <asm/local64.h>
624 #endif
625
626 struct perf_guest_info_callbacks {
627 int (*is_in_guest)(void);
628 int (*is_user_mode)(void);
629 unsigned long (*get_guest_ip)(void);
630 };
631
632 #ifdef CONFIG_HAVE_HW_BREAKPOINT
633 #include <asm/hw_breakpoint.h>
634 #endif
635
636 #include <linux/list.h>
637 #include <linux/mutex.h>
638 #include <linux/rculist.h>
639 #include <linux/rcupdate.h>
640 #include <linux/spinlock.h>
641 #include <linux/hrtimer.h>
642 #include <linux/fs.h>
643 #include <linux/pid_namespace.h>
644 #include <linux/workqueue.h>
645 #include <linux/ftrace.h>
646 #include <linux/cpu.h>
647 #include <linux/irq_work.h>
648 #include <linux/static_key.h>
649 #include <linux/atomic.h>
650 #include <linux/sysfs.h>
651 #include <linux/perf_regs.h>
652 #include <asm/local.h>
653
654 struct perf_callchain_entry {
655 __u64 nr;
656 __u64 ip[PERF_MAX_STACK_DEPTH];
657 };
658
659 struct perf_raw_record {
660 u32 size;
661 void *data;
662 };
663
664 /*
665 * single taken branch record layout:
666 *
667 * from: source instruction (may not always be a branch insn)
668 * to: branch target
669 * mispred: branch target was mispredicted
670 * predicted: branch target was predicted
671 *
672 * support for mispred, predicted is optional. In case it
673 * is not supported mispred = predicted = 0.
674 */
675 struct perf_branch_entry {
676 __u64 from;
677 __u64 to;
678 __u64 mispred:1, /* target mispredicted */
679 predicted:1,/* target predicted */
680 reserved:62;
681 };
682
683 /*
684 * branch stack layout:
685 * nr: number of taken branches stored in entries[]
686 *
687 * Note that nr can vary from sample to sample
688 * branches (to, from) are stored from most recent
689 * to least recent, i.e., entries[0] contains the most
690 * recent branch.
691 */
692 struct perf_branch_stack {
693 __u64 nr;
694 struct perf_branch_entry entries[0];
695 };
696
697 struct perf_regs_user {
698 __u64 abi;
699 struct pt_regs *regs;
700 };
701
702 struct task_struct;
703
704 /*
705 * extra PMU register associated with an event
706 */
707 struct hw_perf_event_extra {
708 u64 config; /* register value */
709 unsigned int reg; /* register address or index */
710 int alloc; /* extra register already allocated */
711 int idx; /* index in shared_regs->regs[] */
712 };
713
714 /**
715 * struct hw_perf_event - performance event hardware details:
716 */
717 struct hw_perf_event {
718 #ifdef CONFIG_PERF_EVENTS
719 union {
720 struct { /* hardware */
721 u64 config;
722 u64 last_tag;
723 unsigned long config_base;
724 unsigned long event_base;
725 int event_base_rdpmc;
726 int idx;
727 int last_cpu;
728
729 struct hw_perf_event_extra extra_reg;
730 struct hw_perf_event_extra branch_reg;
731 };
732 struct { /* software */
733 struct hrtimer hrtimer;
734 };
735 #ifdef CONFIG_HAVE_HW_BREAKPOINT
736 struct { /* breakpoint */
737 struct arch_hw_breakpoint info;
738 struct list_head bp_list;
739 /*
740 * Crufty hack to avoid the chicken and egg
741 * problem hw_breakpoint has with context
742 * creation and event initalization.
743 */
744 struct task_struct *bp_target;
745 };
746 #endif
747 };
748 int state;
749 local64_t prev_count;
750 u64 sample_period;
751 u64 last_period;
752 local64_t period_left;
753 u64 interrupts_seq;
754 u64 interrupts;
755
756 u64 freq_time_stamp;
757 u64 freq_count_stamp;
758 #endif
759 };
760
761 /*
762 * hw_perf_event::state flags
763 */
764 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
765 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
766 #define PERF_HES_ARCH 0x04
767
768 struct perf_event;
769
770 /*
771 * Common implementation detail of pmu::{start,commit,cancel}_txn
772 */
773 #define PERF_EVENT_TXN 0x1
774
775 /**
776 * struct pmu - generic performance monitoring unit
777 */
778 struct pmu {
779 struct list_head entry;
780
781 struct device *dev;
782 const struct attribute_group **attr_groups;
783 char *name;
784 int type;
785
786 int * __percpu pmu_disable_count;
787 struct perf_cpu_context * __percpu pmu_cpu_context;
788 int task_ctx_nr;
789
790 /*
791 * Fully disable/enable this PMU, can be used to protect from the PMI
792 * as well as for lazy/batch writing of the MSRs.
793 */
794 void (*pmu_enable) (struct pmu *pmu); /* optional */
795 void (*pmu_disable) (struct pmu *pmu); /* optional */
796
797 /*
798 * Try and initialize the event for this PMU.
799 * Should return -ENOENT when the @event doesn't match this PMU.
800 */
801 int (*event_init) (struct perf_event *event);
802
803 #define PERF_EF_START 0x01 /* start the counter when adding */
804 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
805 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
806
807 /*
808 * Adds/Removes a counter to/from the PMU, can be done inside
809 * a transaction, see the ->*_txn() methods.
810 */
811 int (*add) (struct perf_event *event, int flags);
812 void (*del) (struct perf_event *event, int flags);
813
814 /*
815 * Starts/Stops a counter present on the PMU. The PMI handler
816 * should stop the counter when perf_event_overflow() returns
817 * !0. ->start() will be used to continue.
818 */
819 void (*start) (struct perf_event *event, int flags);
820 void (*stop) (struct perf_event *event, int flags);
821
822 /*
823 * Updates the counter value of the event.
824 */
825 void (*read) (struct perf_event *event);
826
827 /*
828 * Group events scheduling is treated as a transaction, add
829 * group events as a whole and perform one schedulability test.
830 * If the test fails, roll back the whole group
831 *
832 * Start the transaction, after this ->add() doesn't need to
833 * do schedulability tests.
834 */
835 void (*start_txn) (struct pmu *pmu); /* optional */
836 /*
837 * If ->start_txn() disabled the ->add() schedulability test
838 * then ->commit_txn() is required to perform one. On success
839 * the transaction is closed. On error the transaction is kept
840 * open until ->cancel_txn() is called.
841 */
842 int (*commit_txn) (struct pmu *pmu); /* optional */
843 /*
844 * Will cancel the transaction, assumes ->del() is called
845 * for each successful ->add() during the transaction.
846 */
847 void (*cancel_txn) (struct pmu *pmu); /* optional */
848
849 /*
850 * Will return the value for perf_event_mmap_page::index for this event,
851 * if no implementation is provided it will default to: event->hw.idx + 1.
852 */
853 int (*event_idx) (struct perf_event *event); /*optional */
854
855 /*
856 * flush branch stack on context-switches (needed in cpu-wide mode)
857 */
858 void (*flush_branch_stack) (void);
859 };
860
861 /**
862 * enum perf_event_active_state - the states of a event
863 */
864 enum perf_event_active_state {
865 PERF_EVENT_STATE_ERROR = -2,
866 PERF_EVENT_STATE_OFF = -1,
867 PERF_EVENT_STATE_INACTIVE = 0,
868 PERF_EVENT_STATE_ACTIVE = 1,
869 };
870
871 struct file;
872 struct perf_sample_data;
873
874 typedef void (*perf_overflow_handler_t)(struct perf_event *,
875 struct perf_sample_data *,
876 struct pt_regs *regs);
877
878 enum perf_group_flag {
879 PERF_GROUP_SOFTWARE = 0x1,
880 };
881
882 #define SWEVENT_HLIST_BITS 8
883 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
884
885 struct swevent_hlist {
886 struct hlist_head heads[SWEVENT_HLIST_SIZE];
887 struct rcu_head rcu_head;
888 };
889
890 #define PERF_ATTACH_CONTEXT 0x01
891 #define PERF_ATTACH_GROUP 0x02
892 #define PERF_ATTACH_TASK 0x04
893
894 #ifdef CONFIG_CGROUP_PERF
895 /*
896 * perf_cgroup_info keeps track of time_enabled for a cgroup.
897 * This is a per-cpu dynamically allocated data structure.
898 */
899 struct perf_cgroup_info {
900 u64 time;
901 u64 timestamp;
902 };
903
904 struct perf_cgroup {
905 struct cgroup_subsys_state css;
906 struct perf_cgroup_info *info; /* timing info, one per cpu */
907 };
908 #endif
909
910 struct ring_buffer;
911
912 /**
913 * struct perf_event - performance event kernel representation:
914 */
915 struct perf_event {
916 #ifdef CONFIG_PERF_EVENTS
917 struct list_head group_entry;
918 struct list_head event_entry;
919 struct list_head sibling_list;
920 struct hlist_node hlist_entry;
921 int nr_siblings;
922 int group_flags;
923 struct perf_event *group_leader;
924 struct pmu *pmu;
925
926 enum perf_event_active_state state;
927 unsigned int attach_state;
928 local64_t count;
929 atomic64_t child_count;
930
931 /*
932 * These are the total time in nanoseconds that the event
933 * has been enabled (i.e. eligible to run, and the task has
934 * been scheduled in, if this is a per-task event)
935 * and running (scheduled onto the CPU), respectively.
936 *
937 * They are computed from tstamp_enabled, tstamp_running and
938 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
939 */
940 u64 total_time_enabled;
941 u64 total_time_running;
942
943 /*
944 * These are timestamps used for computing total_time_enabled
945 * and total_time_running when the event is in INACTIVE or
946 * ACTIVE state, measured in nanoseconds from an arbitrary point
947 * in time.
948 * tstamp_enabled: the notional time when the event was enabled
949 * tstamp_running: the notional time when the event was scheduled on
950 * tstamp_stopped: in INACTIVE state, the notional time when the
951 * event was scheduled off.
952 */
953 u64 tstamp_enabled;
954 u64 tstamp_running;
955 u64 tstamp_stopped;
956
957 /*
958 * timestamp shadows the actual context timing but it can
959 * be safely used in NMI interrupt context. It reflects the
960 * context time as it was when the event was last scheduled in.
961 *
962 * ctx_time already accounts for ctx->timestamp. Therefore to
963 * compute ctx_time for a sample, simply add perf_clock().
964 */
965 u64 shadow_ctx_time;
966
967 struct perf_event_attr attr;
968 u16 header_size;
969 u16 id_header_size;
970 u16 read_size;
971 struct hw_perf_event hw;
972
973 struct perf_event_context *ctx;
974 atomic_long_t refcount;
975
976 /*
977 * These accumulate total time (in nanoseconds) that children
978 * events have been enabled and running, respectively.
979 */
980 atomic64_t child_total_time_enabled;
981 atomic64_t child_total_time_running;
982
983 /*
984 * Protect attach/detach and child_list:
985 */
986 struct mutex child_mutex;
987 struct list_head child_list;
988 struct perf_event *parent;
989
990 int oncpu;
991 int cpu;
992
993 struct list_head owner_entry;
994 struct task_struct *owner;
995
996 /* mmap bits */
997 struct mutex mmap_mutex;
998 atomic_t mmap_count;
999 int mmap_locked;
1000 struct user_struct *mmap_user;
1001 struct ring_buffer *rb;
1002 struct list_head rb_entry;
1003
1004 /* poll related */
1005 wait_queue_head_t waitq;
1006 struct fasync_struct *fasync;
1007
1008 /* delayed work for NMIs and such */
1009 int pending_wakeup;
1010 int pending_kill;
1011 int pending_disable;
1012 struct irq_work pending;
1013
1014 atomic_t event_limit;
1015
1016 void (*destroy)(struct perf_event *);
1017 struct rcu_head rcu_head;
1018
1019 struct pid_namespace *ns;
1020 u64 id;
1021
1022 perf_overflow_handler_t overflow_handler;
1023 void *overflow_handler_context;
1024
1025 #ifdef CONFIG_EVENT_TRACING
1026 struct ftrace_event_call *tp_event;
1027 struct event_filter *filter;
1028 #ifdef CONFIG_FUNCTION_TRACER
1029 struct ftrace_ops ftrace_ops;
1030 #endif
1031 #endif
1032
1033 #ifdef CONFIG_CGROUP_PERF
1034 struct perf_cgroup *cgrp; /* cgroup event is attach to */
1035 int cgrp_defer_enabled;
1036 #endif
1037
1038 #endif /* CONFIG_PERF_EVENTS */
1039 };
1040
1041 enum perf_event_context_type {
1042 task_context,
1043 cpu_context,
1044 };
1045
1046 /**
1047 * struct perf_event_context - event context structure
1048 *
1049 * Used as a container for task events and CPU events as well:
1050 */
1051 struct perf_event_context {
1052 struct pmu *pmu;
1053 enum perf_event_context_type type;
1054 /*
1055 * Protect the states of the events in the list,
1056 * nr_active, and the list:
1057 */
1058 raw_spinlock_t lock;
1059 /*
1060 * Protect the list of events. Locking either mutex or lock
1061 * is sufficient to ensure the list doesn't change; to change
1062 * the list you need to lock both the mutex and the spinlock.
1063 */
1064 struct mutex mutex;
1065
1066 struct list_head pinned_groups;
1067 struct list_head flexible_groups;
1068 struct list_head event_list;
1069 int nr_events;
1070 int nr_active;
1071 int is_active;
1072 int nr_stat;
1073 int nr_freq;
1074 int rotate_disable;
1075 atomic_t refcount;
1076 struct task_struct *task;
1077
1078 /*
1079 * Context clock, runs when context enabled.
1080 */
1081 u64 time;
1082 u64 timestamp;
1083
1084 /*
1085 * These fields let us detect when two contexts have both
1086 * been cloned (inherited) from a common ancestor.
1087 */
1088 struct perf_event_context *parent_ctx;
1089 u64 parent_gen;
1090 u64 generation;
1091 int pin_count;
1092 int nr_cgroups; /* cgroup evts */
1093 int nr_branch_stack; /* branch_stack evt */
1094 struct rcu_head rcu_head;
1095 };
1096
1097 /*
1098 * Number of contexts where an event can trigger:
1099 * task, softirq, hardirq, nmi.
1100 */
1101 #define PERF_NR_CONTEXTS 4
1102
1103 /**
1104 * struct perf_event_cpu_context - per cpu event context structure
1105 */
1106 struct perf_cpu_context {
1107 struct perf_event_context ctx;
1108 struct perf_event_context *task_ctx;
1109 int active_oncpu;
1110 int exclusive;
1111 struct list_head rotation_list;
1112 int jiffies_interval;
1113 struct pmu *active_pmu;
1114 struct perf_cgroup *cgrp;
1115 };
1116
1117 struct perf_output_handle {
1118 struct perf_event *event;
1119 struct ring_buffer *rb;
1120 unsigned long wakeup;
1121 unsigned long size;
1122 void *addr;
1123 int page;
1124 };
1125
1126 #ifdef CONFIG_PERF_EVENTS
1127
1128 extern int perf_pmu_register(struct pmu *pmu, char *name, int type);
1129 extern void perf_pmu_unregister(struct pmu *pmu);
1130
1131 extern int perf_num_counters(void);
1132 extern const char *perf_pmu_name(void);
1133 extern void __perf_event_task_sched_in(struct task_struct *prev,
1134 struct task_struct *task);
1135 extern void __perf_event_task_sched_out(struct task_struct *prev,
1136 struct task_struct *next);
1137 extern int perf_event_init_task(struct task_struct *child);
1138 extern void perf_event_exit_task(struct task_struct *child);
1139 extern void perf_event_free_task(struct task_struct *task);
1140 extern void perf_event_delayed_put(struct task_struct *task);
1141 extern void perf_event_print_debug(void);
1142 extern void perf_pmu_disable(struct pmu *pmu);
1143 extern void perf_pmu_enable(struct pmu *pmu);
1144 extern int perf_event_task_disable(void);
1145 extern int perf_event_task_enable(void);
1146 extern int perf_event_refresh(struct perf_event *event, int refresh);
1147 extern void perf_event_update_userpage(struct perf_event *event);
1148 extern int perf_event_release_kernel(struct perf_event *event);
1149 extern struct perf_event *
1150 perf_event_create_kernel_counter(struct perf_event_attr *attr,
1151 int cpu,
1152 struct task_struct *task,
1153 perf_overflow_handler_t callback,
1154 void *context);
1155 extern void perf_pmu_migrate_context(struct pmu *pmu,
1156 int src_cpu, int dst_cpu);
1157 extern u64 perf_event_read_value(struct perf_event *event,
1158 u64 *enabled, u64 *running);
1159
1160
1161 struct perf_sample_data {
1162 u64 type;
1163
1164 u64 ip;
1165 struct {
1166 u32 pid;
1167 u32 tid;
1168 } tid_entry;
1169 u64 time;
1170 u64 addr;
1171 u64 id;
1172 u64 stream_id;
1173 struct {
1174 u32 cpu;
1175 u32 reserved;
1176 } cpu_entry;
1177 u64 period;
1178 struct perf_callchain_entry *callchain;
1179 struct perf_raw_record *raw;
1180 struct perf_branch_stack *br_stack;
1181 struct perf_regs_user regs_user;
1182 u64 stack_user_size;
1183 };
1184
1185 static inline void perf_sample_data_init(struct perf_sample_data *data,
1186 u64 addr, u64 period)
1187 {
1188 /* remaining struct members initialized in perf_prepare_sample() */
1189 data->addr = addr;
1190 data->raw = NULL;
1191 data->br_stack = NULL;
1192 data->period = period;
1193 data->regs_user.abi = PERF_SAMPLE_REGS_ABI_NONE;
1194 data->regs_user.regs = NULL;
1195 data->stack_user_size = 0;
1196 }
1197
1198 extern void perf_output_sample(struct perf_output_handle *handle,
1199 struct perf_event_header *header,
1200 struct perf_sample_data *data,
1201 struct perf_event *event);
1202 extern void perf_prepare_sample(struct perf_event_header *header,
1203 struct perf_sample_data *data,
1204 struct perf_event *event,
1205 struct pt_regs *regs);
1206
1207 extern int perf_event_overflow(struct perf_event *event,
1208 struct perf_sample_data *data,
1209 struct pt_regs *regs);
1210
1211 static inline bool is_sampling_event(struct perf_event *event)
1212 {
1213 return event->attr.sample_period != 0;
1214 }
1215
1216 /*
1217 * Return 1 for a software event, 0 for a hardware event
1218 */
1219 static inline int is_software_event(struct perf_event *event)
1220 {
1221 return event->pmu->task_ctx_nr == perf_sw_context;
1222 }
1223
1224 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1225
1226 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1227
1228 #ifndef perf_arch_fetch_caller_regs
1229 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1230 #endif
1231
1232 /*
1233 * Take a snapshot of the regs. Skip ip and frame pointer to
1234 * the nth caller. We only need a few of the regs:
1235 * - ip for PERF_SAMPLE_IP
1236 * - cs for user_mode() tests
1237 * - bp for callchains
1238 * - eflags, for future purposes, just in case
1239 */
1240 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1241 {
1242 memset(regs, 0, sizeof(*regs));
1243
1244 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1245 }
1246
1247 static __always_inline void
1248 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1249 {
1250 struct pt_regs hot_regs;
1251
1252 if (static_key_false(&perf_swevent_enabled[event_id])) {
1253 if (!regs) {
1254 perf_fetch_caller_regs(&hot_regs);
1255 regs = &hot_regs;
1256 }
1257 __perf_sw_event(event_id, nr, regs, addr);
1258 }
1259 }
1260
1261 extern struct static_key_deferred perf_sched_events;
1262
1263 static inline void perf_event_task_sched_in(struct task_struct *prev,
1264 struct task_struct *task)
1265 {
1266 if (static_key_false(&perf_sched_events.key))
1267 __perf_event_task_sched_in(prev, task);
1268 }
1269
1270 static inline void perf_event_task_sched_out(struct task_struct *prev,
1271 struct task_struct *next)
1272 {
1273 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
1274
1275 if (static_key_false(&perf_sched_events.key))
1276 __perf_event_task_sched_out(prev, next);
1277 }
1278
1279 extern void perf_event_mmap(struct vm_area_struct *vma);
1280 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1281 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1282 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1283
1284 extern void perf_event_comm(struct task_struct *tsk);
1285 extern void perf_event_fork(struct task_struct *tsk);
1286
1287 /* Callchains */
1288 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1289
1290 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
1291 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
1292
1293 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
1294 {
1295 if (entry->nr < PERF_MAX_STACK_DEPTH)
1296 entry->ip[entry->nr++] = ip;
1297 }
1298
1299 extern int sysctl_perf_event_paranoid;
1300 extern int sysctl_perf_event_mlock;
1301 extern int sysctl_perf_event_sample_rate;
1302
1303 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1304 void __user *buffer, size_t *lenp,
1305 loff_t *ppos);
1306
1307 static inline bool perf_paranoid_tracepoint_raw(void)
1308 {
1309 return sysctl_perf_event_paranoid > -1;
1310 }
1311
1312 static inline bool perf_paranoid_cpu(void)
1313 {
1314 return sysctl_perf_event_paranoid > 0;
1315 }
1316
1317 static inline bool perf_paranoid_kernel(void)
1318 {
1319 return sysctl_perf_event_paranoid > 1;
1320 }
1321
1322 extern void perf_event_init(void);
1323 extern void perf_tp_event(u64 addr, u64 count, void *record,
1324 int entry_size, struct pt_regs *regs,
1325 struct hlist_head *head, int rctx,
1326 struct task_struct *task);
1327 extern void perf_bp_event(struct perf_event *event, void *data);
1328
1329 #ifndef perf_misc_flags
1330 # define perf_misc_flags(regs) \
1331 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1332 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1333 #endif
1334
1335 static inline bool has_branch_stack(struct perf_event *event)
1336 {
1337 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1338 }
1339
1340 extern int perf_output_begin(struct perf_output_handle *handle,
1341 struct perf_event *event, unsigned int size);
1342 extern void perf_output_end(struct perf_output_handle *handle);
1343 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1344 const void *buf, unsigned int len);
1345 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1346 unsigned int len);
1347 extern int perf_swevent_get_recursion_context(void);
1348 extern void perf_swevent_put_recursion_context(int rctx);
1349 extern void perf_event_enable(struct perf_event *event);
1350 extern void perf_event_disable(struct perf_event *event);
1351 extern int __perf_event_disable(void *info);
1352 extern void perf_event_task_tick(void);
1353 #else
1354 static inline void
1355 perf_event_task_sched_in(struct task_struct *prev,
1356 struct task_struct *task) { }
1357 static inline void
1358 perf_event_task_sched_out(struct task_struct *prev,
1359 struct task_struct *next) { }
1360 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
1361 static inline void perf_event_exit_task(struct task_struct *child) { }
1362 static inline void perf_event_free_task(struct task_struct *task) { }
1363 static inline void perf_event_delayed_put(struct task_struct *task) { }
1364 static inline void perf_event_print_debug(void) { }
1365 static inline int perf_event_task_disable(void) { return -EINVAL; }
1366 static inline int perf_event_task_enable(void) { return -EINVAL; }
1367 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1368 {
1369 return -EINVAL;
1370 }
1371
1372 static inline void
1373 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1374 static inline void
1375 perf_bp_event(struct perf_event *event, void *data) { }
1376
1377 static inline int perf_register_guest_info_callbacks
1378 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1379 static inline int perf_unregister_guest_info_callbacks
1380 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1381
1382 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1383 static inline void perf_event_comm(struct task_struct *tsk) { }
1384 static inline void perf_event_fork(struct task_struct *tsk) { }
1385 static inline void perf_event_init(void) { }
1386 static inline int perf_swevent_get_recursion_context(void) { return -1; }
1387 static inline void perf_swevent_put_recursion_context(int rctx) { }
1388 static inline void perf_event_enable(struct perf_event *event) { }
1389 static inline void perf_event_disable(struct perf_event *event) { }
1390 static inline int __perf_event_disable(void *info) { return -1; }
1391 static inline void perf_event_task_tick(void) { }
1392 #endif
1393
1394 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1395
1396 /*
1397 * This has to have a higher priority than migration_notifier in sched.c.
1398 */
1399 #define perf_cpu_notifier(fn) \
1400 do { \
1401 static struct notifier_block fn##_nb __cpuinitdata = \
1402 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
1403 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
1404 (void *)(unsigned long)smp_processor_id()); \
1405 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
1406 (void *)(unsigned long)smp_processor_id()); \
1407 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
1408 (void *)(unsigned long)smp_processor_id()); \
1409 register_cpu_notifier(&fn##_nb); \
1410 } while (0)
1411
1412
1413 #define PMU_FORMAT_ATTR(_name, _format) \
1414 static ssize_t \
1415 _name##_show(struct device *dev, \
1416 struct device_attribute *attr, \
1417 char *page) \
1418 { \
1419 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1420 return sprintf(page, _format "\n"); \
1421 } \
1422 \
1423 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1424
1425 #endif /* __KERNEL__ */
1426 #endif /* _LINUX_PERF_EVENT_H */
This page took 0.120485 seconds and 5 git commands to generate.