perf: allow for PMU-specific event filtering
[deliverable/linux.git] / include / linux / perf_event.h
1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18
19 /*
20 * Kernel-internal data types and definitions:
21 */
22
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27
28 struct perf_guest_info_callbacks {
29 int (*is_in_guest)(void);
30 int (*is_user_mode)(void);
31 unsigned long (*get_guest_ip)(void);
32 };
33
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <linux/cgroup.h>
57 #include <asm/local.h>
58
59 struct perf_callchain_entry {
60 __u64 nr;
61 __u64 ip[PERF_MAX_STACK_DEPTH];
62 };
63
64 struct perf_raw_record {
65 u32 size;
66 void *data;
67 };
68
69 /*
70 * branch stack layout:
71 * nr: number of taken branches stored in entries[]
72 *
73 * Note that nr can vary from sample to sample
74 * branches (to, from) are stored from most recent
75 * to least recent, i.e., entries[0] contains the most
76 * recent branch.
77 */
78 struct perf_branch_stack {
79 __u64 nr;
80 struct perf_branch_entry entries[0];
81 };
82
83 struct task_struct;
84
85 /*
86 * extra PMU register associated with an event
87 */
88 struct hw_perf_event_extra {
89 u64 config; /* register value */
90 unsigned int reg; /* register address or index */
91 int alloc; /* extra register already allocated */
92 int idx; /* index in shared_regs->regs[] */
93 };
94
95 struct event_constraint;
96
97 /**
98 * struct hw_perf_event - performance event hardware details:
99 */
100 struct hw_perf_event {
101 #ifdef CONFIG_PERF_EVENTS
102 union {
103 struct { /* hardware */
104 u64 config;
105 u64 last_tag;
106 unsigned long config_base;
107 unsigned long event_base;
108 int event_base_rdpmc;
109 int idx;
110 int last_cpu;
111 int flags;
112
113 struct hw_perf_event_extra extra_reg;
114 struct hw_perf_event_extra branch_reg;
115
116 struct event_constraint *constraint;
117 };
118 struct { /* software */
119 struct hrtimer hrtimer;
120 };
121 struct { /* tracepoint */
122 /* for tp_event->class */
123 struct list_head tp_list;
124 };
125 struct { /* intel_cqm */
126 int cqm_state;
127 int cqm_rmid;
128 struct list_head cqm_events_entry;
129 struct list_head cqm_groups_entry;
130 struct list_head cqm_group_entry;
131 };
132 struct { /* itrace */
133 int itrace_started;
134 };
135 #ifdef CONFIG_HAVE_HW_BREAKPOINT
136 struct { /* breakpoint */
137 /*
138 * Crufty hack to avoid the chicken and egg
139 * problem hw_breakpoint has with context
140 * creation and event initalization.
141 */
142 struct arch_hw_breakpoint info;
143 struct list_head bp_list;
144 };
145 #endif
146 };
147 struct task_struct *target;
148 int state;
149 local64_t prev_count;
150 u64 sample_period;
151 u64 last_period;
152 local64_t period_left;
153 u64 interrupts_seq;
154 u64 interrupts;
155
156 u64 freq_time_stamp;
157 u64 freq_count_stamp;
158 #endif
159 };
160
161 /*
162 * hw_perf_event::state flags
163 */
164 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
165 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
166 #define PERF_HES_ARCH 0x04
167
168 struct perf_event;
169
170 /*
171 * Common implementation detail of pmu::{start,commit,cancel}_txn
172 */
173 #define PERF_EVENT_TXN 0x1
174
175 /**
176 * pmu::capabilities flags
177 */
178 #define PERF_PMU_CAP_NO_INTERRUPT 0x01
179 #define PERF_PMU_CAP_NO_NMI 0x02
180 #define PERF_PMU_CAP_AUX_NO_SG 0x04
181 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08
182 #define PERF_PMU_CAP_EXCLUSIVE 0x10
183 #define PERF_PMU_CAP_ITRACE 0x20
184
185 /**
186 * struct pmu - generic performance monitoring unit
187 */
188 struct pmu {
189 struct list_head entry;
190
191 struct module *module;
192 struct device *dev;
193 const struct attribute_group **attr_groups;
194 const char *name;
195 int type;
196
197 /*
198 * various common per-pmu feature flags
199 */
200 int capabilities;
201
202 int * __percpu pmu_disable_count;
203 struct perf_cpu_context * __percpu pmu_cpu_context;
204 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
205 int task_ctx_nr;
206 int hrtimer_interval_ms;
207
208 /*
209 * Fully disable/enable this PMU, can be used to protect from the PMI
210 * as well as for lazy/batch writing of the MSRs.
211 */
212 void (*pmu_enable) (struct pmu *pmu); /* optional */
213 void (*pmu_disable) (struct pmu *pmu); /* optional */
214
215 /*
216 * Try and initialize the event for this PMU.
217 * Should return -ENOENT when the @event doesn't match this PMU.
218 */
219 int (*event_init) (struct perf_event *event);
220
221 /*
222 * Notification that the event was mapped or unmapped. Called
223 * in the context of the mapping task.
224 */
225 void (*event_mapped) (struct perf_event *event); /*optional*/
226 void (*event_unmapped) (struct perf_event *event); /*optional*/
227
228 #define PERF_EF_START 0x01 /* start the counter when adding */
229 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
230 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
231
232 /*
233 * Adds/Removes a counter to/from the PMU, can be done inside
234 * a transaction, see the ->*_txn() methods.
235 */
236 int (*add) (struct perf_event *event, int flags);
237 void (*del) (struct perf_event *event, int flags);
238
239 /*
240 * Starts/Stops a counter present on the PMU. The PMI handler
241 * should stop the counter when perf_event_overflow() returns
242 * !0. ->start() will be used to continue.
243 */
244 void (*start) (struct perf_event *event, int flags);
245 void (*stop) (struct perf_event *event, int flags);
246
247 /*
248 * Updates the counter value of the event.
249 */
250 void (*read) (struct perf_event *event);
251
252 /*
253 * Group events scheduling is treated as a transaction, add
254 * group events as a whole and perform one schedulability test.
255 * If the test fails, roll back the whole group
256 *
257 * Start the transaction, after this ->add() doesn't need to
258 * do schedulability tests.
259 */
260 void (*start_txn) (struct pmu *pmu); /* optional */
261 /*
262 * If ->start_txn() disabled the ->add() schedulability test
263 * then ->commit_txn() is required to perform one. On success
264 * the transaction is closed. On error the transaction is kept
265 * open until ->cancel_txn() is called.
266 */
267 int (*commit_txn) (struct pmu *pmu); /* optional */
268 /*
269 * Will cancel the transaction, assumes ->del() is called
270 * for each successful ->add() during the transaction.
271 */
272 void (*cancel_txn) (struct pmu *pmu); /* optional */
273
274 /*
275 * Will return the value for perf_event_mmap_page::index for this event,
276 * if no implementation is provided it will default to: event->hw.idx + 1.
277 */
278 int (*event_idx) (struct perf_event *event); /*optional */
279
280 /*
281 * context-switches callback
282 */
283 void (*sched_task) (struct perf_event_context *ctx,
284 bool sched_in);
285 /*
286 * PMU specific data size
287 */
288 size_t task_ctx_size;
289
290
291 /*
292 * Return the count value for a counter.
293 */
294 u64 (*count) (struct perf_event *event); /*optional*/
295
296 /*
297 * Set up pmu-private data structures for an AUX area
298 */
299 void *(*setup_aux) (int cpu, void **pages,
300 int nr_pages, bool overwrite);
301 /* optional */
302
303 /*
304 * Free pmu-private AUX data structures
305 */
306 void (*free_aux) (void *aux); /* optional */
307
308 /*
309 * Filter events for PMU-specific reasons.
310 */
311 int (*filter_match) (struct perf_event *event); /* optional */
312 };
313
314 /**
315 * enum perf_event_active_state - the states of a event
316 */
317 enum perf_event_active_state {
318 PERF_EVENT_STATE_EXIT = -3,
319 PERF_EVENT_STATE_ERROR = -2,
320 PERF_EVENT_STATE_OFF = -1,
321 PERF_EVENT_STATE_INACTIVE = 0,
322 PERF_EVENT_STATE_ACTIVE = 1,
323 };
324
325 struct file;
326 struct perf_sample_data;
327
328 typedef void (*perf_overflow_handler_t)(struct perf_event *,
329 struct perf_sample_data *,
330 struct pt_regs *regs);
331
332 enum perf_group_flag {
333 PERF_GROUP_SOFTWARE = 0x1,
334 };
335
336 #define SWEVENT_HLIST_BITS 8
337 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
338
339 struct swevent_hlist {
340 struct hlist_head heads[SWEVENT_HLIST_SIZE];
341 struct rcu_head rcu_head;
342 };
343
344 #define PERF_ATTACH_CONTEXT 0x01
345 #define PERF_ATTACH_GROUP 0x02
346 #define PERF_ATTACH_TASK 0x04
347 #define PERF_ATTACH_TASK_DATA 0x08
348
349 struct perf_cgroup;
350 struct ring_buffer;
351
352 /**
353 * struct perf_event - performance event kernel representation:
354 */
355 struct perf_event {
356 #ifdef CONFIG_PERF_EVENTS
357 /*
358 * entry onto perf_event_context::event_list;
359 * modifications require ctx->lock
360 * RCU safe iterations.
361 */
362 struct list_head event_entry;
363
364 /*
365 * XXX: group_entry and sibling_list should be mutually exclusive;
366 * either you're a sibling on a group, or you're the group leader.
367 * Rework the code to always use the same list element.
368 *
369 * Locked for modification by both ctx->mutex and ctx->lock; holding
370 * either sufficies for read.
371 */
372 struct list_head group_entry;
373 struct list_head sibling_list;
374
375 /*
376 * We need storage to track the entries in perf_pmu_migrate_context; we
377 * cannot use the event_entry because of RCU and we want to keep the
378 * group in tact which avoids us using the other two entries.
379 */
380 struct list_head migrate_entry;
381
382 struct hlist_node hlist_entry;
383 struct list_head active_entry;
384 int nr_siblings;
385 int group_flags;
386 struct perf_event *group_leader;
387 struct pmu *pmu;
388
389 enum perf_event_active_state state;
390 unsigned int attach_state;
391 local64_t count;
392 atomic64_t child_count;
393
394 /*
395 * These are the total time in nanoseconds that the event
396 * has been enabled (i.e. eligible to run, and the task has
397 * been scheduled in, if this is a per-task event)
398 * and running (scheduled onto the CPU), respectively.
399 *
400 * They are computed from tstamp_enabled, tstamp_running and
401 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
402 */
403 u64 total_time_enabled;
404 u64 total_time_running;
405
406 /*
407 * These are timestamps used for computing total_time_enabled
408 * and total_time_running when the event is in INACTIVE or
409 * ACTIVE state, measured in nanoseconds from an arbitrary point
410 * in time.
411 * tstamp_enabled: the notional time when the event was enabled
412 * tstamp_running: the notional time when the event was scheduled on
413 * tstamp_stopped: in INACTIVE state, the notional time when the
414 * event was scheduled off.
415 */
416 u64 tstamp_enabled;
417 u64 tstamp_running;
418 u64 tstamp_stopped;
419
420 /*
421 * timestamp shadows the actual context timing but it can
422 * be safely used in NMI interrupt context. It reflects the
423 * context time as it was when the event was last scheduled in.
424 *
425 * ctx_time already accounts for ctx->timestamp. Therefore to
426 * compute ctx_time for a sample, simply add perf_clock().
427 */
428 u64 shadow_ctx_time;
429
430 struct perf_event_attr attr;
431 u16 header_size;
432 u16 id_header_size;
433 u16 read_size;
434 struct hw_perf_event hw;
435
436 struct perf_event_context *ctx;
437 atomic_long_t refcount;
438
439 /*
440 * These accumulate total time (in nanoseconds) that children
441 * events have been enabled and running, respectively.
442 */
443 atomic64_t child_total_time_enabled;
444 atomic64_t child_total_time_running;
445
446 /*
447 * Protect attach/detach and child_list:
448 */
449 struct mutex child_mutex;
450 struct list_head child_list;
451 struct perf_event *parent;
452
453 int oncpu;
454 int cpu;
455
456 struct list_head owner_entry;
457 struct task_struct *owner;
458
459 /* mmap bits */
460 struct mutex mmap_mutex;
461 atomic_t mmap_count;
462
463 struct ring_buffer *rb;
464 struct list_head rb_entry;
465 unsigned long rcu_batches;
466 int rcu_pending;
467
468 /* poll related */
469 wait_queue_head_t waitq;
470 struct fasync_struct *fasync;
471
472 /* delayed work for NMIs and such */
473 int pending_wakeup;
474 int pending_kill;
475 int pending_disable;
476 struct irq_work pending;
477
478 atomic_t event_limit;
479
480 void (*destroy)(struct perf_event *);
481 struct rcu_head rcu_head;
482
483 struct pid_namespace *ns;
484 u64 id;
485
486 u64 (*clock)(void);
487 perf_overflow_handler_t overflow_handler;
488 void *overflow_handler_context;
489
490 #ifdef CONFIG_EVENT_TRACING
491 struct ftrace_event_call *tp_event;
492 struct event_filter *filter;
493 #ifdef CONFIG_FUNCTION_TRACER
494 struct ftrace_ops ftrace_ops;
495 #endif
496 #endif
497
498 #ifdef CONFIG_CGROUP_PERF
499 struct perf_cgroup *cgrp; /* cgroup event is attach to */
500 int cgrp_defer_enabled;
501 #endif
502
503 #endif /* CONFIG_PERF_EVENTS */
504 };
505
506 /**
507 * struct perf_event_context - event context structure
508 *
509 * Used as a container for task events and CPU events as well:
510 */
511 struct perf_event_context {
512 struct pmu *pmu;
513 /*
514 * Protect the states of the events in the list,
515 * nr_active, and the list:
516 */
517 raw_spinlock_t lock;
518 /*
519 * Protect the list of events. Locking either mutex or lock
520 * is sufficient to ensure the list doesn't change; to change
521 * the list you need to lock both the mutex and the spinlock.
522 */
523 struct mutex mutex;
524
525 struct list_head active_ctx_list;
526 struct list_head pinned_groups;
527 struct list_head flexible_groups;
528 struct list_head event_list;
529 int nr_events;
530 int nr_active;
531 int is_active;
532 int nr_stat;
533 int nr_freq;
534 int rotate_disable;
535 atomic_t refcount;
536 struct task_struct *task;
537
538 /*
539 * Context clock, runs when context enabled.
540 */
541 u64 time;
542 u64 timestamp;
543
544 /*
545 * These fields let us detect when two contexts have both
546 * been cloned (inherited) from a common ancestor.
547 */
548 struct perf_event_context *parent_ctx;
549 u64 parent_gen;
550 u64 generation;
551 int pin_count;
552 int nr_cgroups; /* cgroup evts */
553 void *task_ctx_data; /* pmu specific data */
554 struct rcu_head rcu_head;
555
556 struct delayed_work orphans_remove;
557 bool orphans_remove_sched;
558 };
559
560 /*
561 * Number of contexts where an event can trigger:
562 * task, softirq, hardirq, nmi.
563 */
564 #define PERF_NR_CONTEXTS 4
565
566 /**
567 * struct perf_event_cpu_context - per cpu event context structure
568 */
569 struct perf_cpu_context {
570 struct perf_event_context ctx;
571 struct perf_event_context *task_ctx;
572 int active_oncpu;
573 int exclusive;
574 struct hrtimer hrtimer;
575 ktime_t hrtimer_interval;
576 struct pmu *unique_pmu;
577 struct perf_cgroup *cgrp;
578 };
579
580 struct perf_output_handle {
581 struct perf_event *event;
582 struct ring_buffer *rb;
583 unsigned long wakeup;
584 unsigned long size;
585 union {
586 void *addr;
587 unsigned long head;
588 };
589 int page;
590 };
591
592 #ifdef CONFIG_CGROUP_PERF
593
594 /*
595 * perf_cgroup_info keeps track of time_enabled for a cgroup.
596 * This is a per-cpu dynamically allocated data structure.
597 */
598 struct perf_cgroup_info {
599 u64 time;
600 u64 timestamp;
601 };
602
603 struct perf_cgroup {
604 struct cgroup_subsys_state css;
605 struct perf_cgroup_info __percpu *info;
606 };
607
608 /*
609 * Must ensure cgroup is pinned (css_get) before calling
610 * this function. In other words, we cannot call this function
611 * if there is no cgroup event for the current CPU context.
612 */
613 static inline struct perf_cgroup *
614 perf_cgroup_from_task(struct task_struct *task)
615 {
616 return container_of(task_css(task, perf_event_cgrp_id),
617 struct perf_cgroup, css);
618 }
619 #endif /* CONFIG_CGROUP_PERF */
620
621 #ifdef CONFIG_PERF_EVENTS
622
623 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
624 struct perf_event *event);
625 extern void perf_aux_output_end(struct perf_output_handle *handle,
626 unsigned long size, bool truncated);
627 extern int perf_aux_output_skip(struct perf_output_handle *handle,
628 unsigned long size);
629 extern void *perf_get_aux(struct perf_output_handle *handle);
630
631 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
632 extern void perf_pmu_unregister(struct pmu *pmu);
633
634 extern int perf_num_counters(void);
635 extern const char *perf_pmu_name(void);
636 extern void __perf_event_task_sched_in(struct task_struct *prev,
637 struct task_struct *task);
638 extern void __perf_event_task_sched_out(struct task_struct *prev,
639 struct task_struct *next);
640 extern int perf_event_init_task(struct task_struct *child);
641 extern void perf_event_exit_task(struct task_struct *child);
642 extern void perf_event_free_task(struct task_struct *task);
643 extern void perf_event_delayed_put(struct task_struct *task);
644 extern void perf_event_print_debug(void);
645 extern void perf_pmu_disable(struct pmu *pmu);
646 extern void perf_pmu_enable(struct pmu *pmu);
647 extern void perf_sched_cb_dec(struct pmu *pmu);
648 extern void perf_sched_cb_inc(struct pmu *pmu);
649 extern int perf_event_task_disable(void);
650 extern int perf_event_task_enable(void);
651 extern int perf_event_refresh(struct perf_event *event, int refresh);
652 extern void perf_event_update_userpage(struct perf_event *event);
653 extern int perf_event_release_kernel(struct perf_event *event);
654 extern struct perf_event *
655 perf_event_create_kernel_counter(struct perf_event_attr *attr,
656 int cpu,
657 struct task_struct *task,
658 perf_overflow_handler_t callback,
659 void *context);
660 extern void perf_pmu_migrate_context(struct pmu *pmu,
661 int src_cpu, int dst_cpu);
662 extern u64 perf_event_read_value(struct perf_event *event,
663 u64 *enabled, u64 *running);
664
665
666 struct perf_sample_data {
667 /*
668 * Fields set by perf_sample_data_init(), group so as to
669 * minimize the cachelines touched.
670 */
671 u64 addr;
672 struct perf_raw_record *raw;
673 struct perf_branch_stack *br_stack;
674 u64 period;
675 u64 weight;
676 u64 txn;
677 union perf_mem_data_src data_src;
678
679 /*
680 * The other fields, optionally {set,used} by
681 * perf_{prepare,output}_sample().
682 */
683 u64 type;
684 u64 ip;
685 struct {
686 u32 pid;
687 u32 tid;
688 } tid_entry;
689 u64 time;
690 u64 id;
691 u64 stream_id;
692 struct {
693 u32 cpu;
694 u32 reserved;
695 } cpu_entry;
696 struct perf_callchain_entry *callchain;
697
698 /*
699 * regs_user may point to task_pt_regs or to regs_user_copy, depending
700 * on arch details.
701 */
702 struct perf_regs regs_user;
703 struct pt_regs regs_user_copy;
704
705 struct perf_regs regs_intr;
706 u64 stack_user_size;
707 } ____cacheline_aligned;
708
709 /* default value for data source */
710 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
711 PERF_MEM_S(LVL, NA) |\
712 PERF_MEM_S(SNOOP, NA) |\
713 PERF_MEM_S(LOCK, NA) |\
714 PERF_MEM_S(TLB, NA))
715
716 static inline void perf_sample_data_init(struct perf_sample_data *data,
717 u64 addr, u64 period)
718 {
719 /* remaining struct members initialized in perf_prepare_sample() */
720 data->addr = addr;
721 data->raw = NULL;
722 data->br_stack = NULL;
723 data->period = period;
724 data->weight = 0;
725 data->data_src.val = PERF_MEM_NA;
726 data->txn = 0;
727 }
728
729 extern void perf_output_sample(struct perf_output_handle *handle,
730 struct perf_event_header *header,
731 struct perf_sample_data *data,
732 struct perf_event *event);
733 extern void perf_prepare_sample(struct perf_event_header *header,
734 struct perf_sample_data *data,
735 struct perf_event *event,
736 struct pt_regs *regs);
737
738 extern int perf_event_overflow(struct perf_event *event,
739 struct perf_sample_data *data,
740 struct pt_regs *regs);
741
742 static inline bool is_sampling_event(struct perf_event *event)
743 {
744 return event->attr.sample_period != 0;
745 }
746
747 /*
748 * Return 1 for a software event, 0 for a hardware event
749 */
750 static inline int is_software_event(struct perf_event *event)
751 {
752 return event->pmu->task_ctx_nr == perf_sw_context;
753 }
754
755 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
756
757 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
758 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
759
760 #ifndef perf_arch_fetch_caller_regs
761 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
762 #endif
763
764 /*
765 * Take a snapshot of the regs. Skip ip and frame pointer to
766 * the nth caller. We only need a few of the regs:
767 * - ip for PERF_SAMPLE_IP
768 * - cs for user_mode() tests
769 * - bp for callchains
770 * - eflags, for future purposes, just in case
771 */
772 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
773 {
774 memset(regs, 0, sizeof(*regs));
775
776 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
777 }
778
779 static __always_inline void
780 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
781 {
782 if (static_key_false(&perf_swevent_enabled[event_id]))
783 __perf_sw_event(event_id, nr, regs, addr);
784 }
785
786 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
787
788 /*
789 * 'Special' version for the scheduler, it hard assumes no recursion,
790 * which is guaranteed by us not actually scheduling inside other swevents
791 * because those disable preemption.
792 */
793 static __always_inline void
794 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
795 {
796 if (static_key_false(&perf_swevent_enabled[event_id])) {
797 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
798
799 perf_fetch_caller_regs(regs);
800 ___perf_sw_event(event_id, nr, regs, addr);
801 }
802 }
803
804 extern struct static_key_deferred perf_sched_events;
805
806 static inline void perf_event_task_sched_in(struct task_struct *prev,
807 struct task_struct *task)
808 {
809 if (static_key_false(&perf_sched_events.key))
810 __perf_event_task_sched_in(prev, task);
811 }
812
813 static inline void perf_event_task_sched_out(struct task_struct *prev,
814 struct task_struct *next)
815 {
816 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
817
818 if (static_key_false(&perf_sched_events.key))
819 __perf_event_task_sched_out(prev, next);
820 }
821
822 static inline u64 __perf_event_count(struct perf_event *event)
823 {
824 return local64_read(&event->count) + atomic64_read(&event->child_count);
825 }
826
827 extern void perf_event_mmap(struct vm_area_struct *vma);
828 extern struct perf_guest_info_callbacks *perf_guest_cbs;
829 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
830 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
831
832 extern void perf_event_exec(void);
833 extern void perf_event_comm(struct task_struct *tsk, bool exec);
834 extern void perf_event_fork(struct task_struct *tsk);
835
836 /* Callchains */
837 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
838
839 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
840 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
841
842 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
843 {
844 if (entry->nr < PERF_MAX_STACK_DEPTH)
845 entry->ip[entry->nr++] = ip;
846 }
847
848 extern int sysctl_perf_event_paranoid;
849 extern int sysctl_perf_event_mlock;
850 extern int sysctl_perf_event_sample_rate;
851 extern int sysctl_perf_cpu_time_max_percent;
852
853 extern void perf_sample_event_took(u64 sample_len_ns);
854
855 extern int perf_proc_update_handler(struct ctl_table *table, int write,
856 void __user *buffer, size_t *lenp,
857 loff_t *ppos);
858 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
859 void __user *buffer, size_t *lenp,
860 loff_t *ppos);
861
862
863 static inline bool perf_paranoid_tracepoint_raw(void)
864 {
865 return sysctl_perf_event_paranoid > -1;
866 }
867
868 static inline bool perf_paranoid_cpu(void)
869 {
870 return sysctl_perf_event_paranoid > 0;
871 }
872
873 static inline bool perf_paranoid_kernel(void)
874 {
875 return sysctl_perf_event_paranoid > 1;
876 }
877
878 extern void perf_event_init(void);
879 extern void perf_tp_event(u64 addr, u64 count, void *record,
880 int entry_size, struct pt_regs *regs,
881 struct hlist_head *head, int rctx,
882 struct task_struct *task);
883 extern void perf_bp_event(struct perf_event *event, void *data);
884
885 #ifndef perf_misc_flags
886 # define perf_misc_flags(regs) \
887 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
888 # define perf_instruction_pointer(regs) instruction_pointer(regs)
889 #endif
890
891 static inline bool has_branch_stack(struct perf_event *event)
892 {
893 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
894 }
895
896 static inline bool needs_branch_stack(struct perf_event *event)
897 {
898 return event->attr.branch_sample_type != 0;
899 }
900
901 static inline bool has_aux(struct perf_event *event)
902 {
903 return event->pmu->setup_aux;
904 }
905
906 extern int perf_output_begin(struct perf_output_handle *handle,
907 struct perf_event *event, unsigned int size);
908 extern void perf_output_end(struct perf_output_handle *handle);
909 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
910 const void *buf, unsigned int len);
911 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
912 unsigned int len);
913 extern int perf_swevent_get_recursion_context(void);
914 extern void perf_swevent_put_recursion_context(int rctx);
915 extern u64 perf_swevent_set_period(struct perf_event *event);
916 extern void perf_event_enable(struct perf_event *event);
917 extern void perf_event_disable(struct perf_event *event);
918 extern int __perf_event_disable(void *info);
919 extern void perf_event_task_tick(void);
920 #else /* !CONFIG_PERF_EVENTS: */
921 static inline void *
922 perf_aux_output_begin(struct perf_output_handle *handle,
923 struct perf_event *event) { return NULL; }
924 static inline void
925 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size,
926 bool truncated) { }
927 static inline int
928 perf_aux_output_skip(struct perf_output_handle *handle,
929 unsigned long size) { return -EINVAL; }
930 static inline void *
931 perf_get_aux(struct perf_output_handle *handle) { return NULL; }
932 static inline void
933 perf_event_task_sched_in(struct task_struct *prev,
934 struct task_struct *task) { }
935 static inline void
936 perf_event_task_sched_out(struct task_struct *prev,
937 struct task_struct *next) { }
938 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
939 static inline void perf_event_exit_task(struct task_struct *child) { }
940 static inline void perf_event_free_task(struct task_struct *task) { }
941 static inline void perf_event_delayed_put(struct task_struct *task) { }
942 static inline void perf_event_print_debug(void) { }
943 static inline int perf_event_task_disable(void) { return -EINVAL; }
944 static inline int perf_event_task_enable(void) { return -EINVAL; }
945 static inline int perf_event_refresh(struct perf_event *event, int refresh)
946 {
947 return -EINVAL;
948 }
949
950 static inline void
951 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
952 static inline void
953 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { }
954 static inline void
955 perf_bp_event(struct perf_event *event, void *data) { }
956
957 static inline int perf_register_guest_info_callbacks
958 (struct perf_guest_info_callbacks *callbacks) { return 0; }
959 static inline int perf_unregister_guest_info_callbacks
960 (struct perf_guest_info_callbacks *callbacks) { return 0; }
961
962 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
963 static inline void perf_event_exec(void) { }
964 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
965 static inline void perf_event_fork(struct task_struct *tsk) { }
966 static inline void perf_event_init(void) { }
967 static inline int perf_swevent_get_recursion_context(void) { return -1; }
968 static inline void perf_swevent_put_recursion_context(int rctx) { }
969 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
970 static inline void perf_event_enable(struct perf_event *event) { }
971 static inline void perf_event_disable(struct perf_event *event) { }
972 static inline int __perf_event_disable(void *info) { return -1; }
973 static inline void perf_event_task_tick(void) { }
974 #endif
975
976 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL)
977 extern bool perf_event_can_stop_tick(void);
978 #else
979 static inline bool perf_event_can_stop_tick(void) { return true; }
980 #endif
981
982 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
983 extern void perf_restore_debug_store(void);
984 #else
985 static inline void perf_restore_debug_store(void) { }
986 #endif
987
988 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
989
990 /*
991 * This has to have a higher priority than migration_notifier in sched/core.c.
992 */
993 #define perf_cpu_notifier(fn) \
994 do { \
995 static struct notifier_block fn##_nb = \
996 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
997 unsigned long cpu = smp_processor_id(); \
998 unsigned long flags; \
999 \
1000 cpu_notifier_register_begin(); \
1001 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
1002 (void *)(unsigned long)cpu); \
1003 local_irq_save(flags); \
1004 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
1005 (void *)(unsigned long)cpu); \
1006 local_irq_restore(flags); \
1007 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
1008 (void *)(unsigned long)cpu); \
1009 __register_cpu_notifier(&fn##_nb); \
1010 cpu_notifier_register_done(); \
1011 } while (0)
1012
1013 /*
1014 * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the
1015 * callback for already online CPUs.
1016 */
1017 #define __perf_cpu_notifier(fn) \
1018 do { \
1019 static struct notifier_block fn##_nb = \
1020 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
1021 \
1022 __register_cpu_notifier(&fn##_nb); \
1023 } while (0)
1024
1025 struct perf_pmu_events_attr {
1026 struct device_attribute attr;
1027 u64 id;
1028 const char *event_str;
1029 };
1030
1031 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1032 char *page);
1033
1034 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1035 static struct perf_pmu_events_attr _var = { \
1036 .attr = __ATTR(_name, 0444, _show, NULL), \
1037 .id = _id, \
1038 };
1039
1040 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1041 static struct perf_pmu_events_attr _var = { \
1042 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1043 .id = 0, \
1044 .event_str = _str, \
1045 };
1046
1047 #define PMU_FORMAT_ATTR(_name, _format) \
1048 static ssize_t \
1049 _name##_show(struct device *dev, \
1050 struct device_attribute *attr, \
1051 char *page) \
1052 { \
1053 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1054 return sprintf(page, _format "\n"); \
1055 } \
1056 \
1057 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1058
1059 #endif /* _LINUX_PERF_EVENT_H */
This page took 0.056234 seconds and 5 git commands to generate.