perf: Add ->count() function to read per-package counters
[deliverable/linux.git] / include / linux / perf_event.h
1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18
19 /*
20 * Kernel-internal data types and definitions:
21 */
22
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27
28 struct perf_guest_info_callbacks {
29 int (*is_in_guest)(void);
30 int (*is_user_mode)(void);
31 unsigned long (*get_guest_ip)(void);
32 };
33
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <linux/cgroup.h>
57 #include <asm/local.h>
58
59 struct perf_callchain_entry {
60 __u64 nr;
61 __u64 ip[PERF_MAX_STACK_DEPTH];
62 };
63
64 struct perf_raw_record {
65 u32 size;
66 void *data;
67 };
68
69 /*
70 * branch stack layout:
71 * nr: number of taken branches stored in entries[]
72 *
73 * Note that nr can vary from sample to sample
74 * branches (to, from) are stored from most recent
75 * to least recent, i.e., entries[0] contains the most
76 * recent branch.
77 */
78 struct perf_branch_stack {
79 __u64 nr;
80 struct perf_branch_entry entries[0];
81 };
82
83 struct task_struct;
84
85 /*
86 * extra PMU register associated with an event
87 */
88 struct hw_perf_event_extra {
89 u64 config; /* register value */
90 unsigned int reg; /* register address or index */
91 int alloc; /* extra register already allocated */
92 int idx; /* index in shared_regs->regs[] */
93 };
94
95 struct event_constraint;
96
97 /**
98 * struct hw_perf_event - performance event hardware details:
99 */
100 struct hw_perf_event {
101 #ifdef CONFIG_PERF_EVENTS
102 union {
103 struct { /* hardware */
104 u64 config;
105 u64 last_tag;
106 unsigned long config_base;
107 unsigned long event_base;
108 int event_base_rdpmc;
109 int idx;
110 int last_cpu;
111 int flags;
112
113 struct hw_perf_event_extra extra_reg;
114 struct hw_perf_event_extra branch_reg;
115
116 struct event_constraint *constraint;
117 };
118 struct { /* software */
119 struct hrtimer hrtimer;
120 };
121 struct { /* tracepoint */
122 struct task_struct *tp_target;
123 /* for tp_event->class */
124 struct list_head tp_list;
125 };
126 #ifdef CONFIG_HAVE_HW_BREAKPOINT
127 struct { /* breakpoint */
128 /*
129 * Crufty hack to avoid the chicken and egg
130 * problem hw_breakpoint has with context
131 * creation and event initalization.
132 */
133 struct task_struct *bp_target;
134 struct arch_hw_breakpoint info;
135 struct list_head bp_list;
136 };
137 #endif
138 };
139 int state;
140 local64_t prev_count;
141 u64 sample_period;
142 u64 last_period;
143 local64_t period_left;
144 u64 interrupts_seq;
145 u64 interrupts;
146
147 u64 freq_time_stamp;
148 u64 freq_count_stamp;
149 #endif
150 };
151
152 /*
153 * hw_perf_event::state flags
154 */
155 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
156 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
157 #define PERF_HES_ARCH 0x04
158
159 struct perf_event;
160
161 /*
162 * Common implementation detail of pmu::{start,commit,cancel}_txn
163 */
164 #define PERF_EVENT_TXN 0x1
165
166 /**
167 * pmu::capabilities flags
168 */
169 #define PERF_PMU_CAP_NO_INTERRUPT 0x01
170
171 /**
172 * struct pmu - generic performance monitoring unit
173 */
174 struct pmu {
175 struct list_head entry;
176
177 struct module *module;
178 struct device *dev;
179 const struct attribute_group **attr_groups;
180 const char *name;
181 int type;
182
183 /*
184 * various common per-pmu feature flags
185 */
186 int capabilities;
187
188 int * __percpu pmu_disable_count;
189 struct perf_cpu_context * __percpu pmu_cpu_context;
190 int task_ctx_nr;
191 int hrtimer_interval_ms;
192
193 /*
194 * Fully disable/enable this PMU, can be used to protect from the PMI
195 * as well as for lazy/batch writing of the MSRs.
196 */
197 void (*pmu_enable) (struct pmu *pmu); /* optional */
198 void (*pmu_disable) (struct pmu *pmu); /* optional */
199
200 /*
201 * Try and initialize the event for this PMU.
202 * Should return -ENOENT when the @event doesn't match this PMU.
203 */
204 int (*event_init) (struct perf_event *event);
205
206 /*
207 * Notification that the event was mapped or unmapped. Called
208 * in the context of the mapping task.
209 */
210 void (*event_mapped) (struct perf_event *event); /*optional*/
211 void (*event_unmapped) (struct perf_event *event); /*optional*/
212
213 #define PERF_EF_START 0x01 /* start the counter when adding */
214 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
215 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
216
217 /*
218 * Adds/Removes a counter to/from the PMU, can be done inside
219 * a transaction, see the ->*_txn() methods.
220 */
221 int (*add) (struct perf_event *event, int flags);
222 void (*del) (struct perf_event *event, int flags);
223
224 /*
225 * Starts/Stops a counter present on the PMU. The PMI handler
226 * should stop the counter when perf_event_overflow() returns
227 * !0. ->start() will be used to continue.
228 */
229 void (*start) (struct perf_event *event, int flags);
230 void (*stop) (struct perf_event *event, int flags);
231
232 /*
233 * Updates the counter value of the event.
234 */
235 void (*read) (struct perf_event *event);
236
237 /*
238 * Group events scheduling is treated as a transaction, add
239 * group events as a whole and perform one schedulability test.
240 * If the test fails, roll back the whole group
241 *
242 * Start the transaction, after this ->add() doesn't need to
243 * do schedulability tests.
244 */
245 void (*start_txn) (struct pmu *pmu); /* optional */
246 /*
247 * If ->start_txn() disabled the ->add() schedulability test
248 * then ->commit_txn() is required to perform one. On success
249 * the transaction is closed. On error the transaction is kept
250 * open until ->cancel_txn() is called.
251 */
252 int (*commit_txn) (struct pmu *pmu); /* optional */
253 /*
254 * Will cancel the transaction, assumes ->del() is called
255 * for each successful ->add() during the transaction.
256 */
257 void (*cancel_txn) (struct pmu *pmu); /* optional */
258
259 /*
260 * Will return the value for perf_event_mmap_page::index for this event,
261 * if no implementation is provided it will default to: event->hw.idx + 1.
262 */
263 int (*event_idx) (struct perf_event *event); /*optional */
264
265 /*
266 * context-switches callback
267 */
268 void (*sched_task) (struct perf_event_context *ctx,
269 bool sched_in);
270 /*
271 * PMU specific data size
272 */
273 size_t task_ctx_size;
274
275
276 /*
277 * Return the count value for a counter.
278 */
279 u64 (*count) (struct perf_event *event); /*optional*/
280 };
281
282 /**
283 * enum perf_event_active_state - the states of a event
284 */
285 enum perf_event_active_state {
286 PERF_EVENT_STATE_EXIT = -3,
287 PERF_EVENT_STATE_ERROR = -2,
288 PERF_EVENT_STATE_OFF = -1,
289 PERF_EVENT_STATE_INACTIVE = 0,
290 PERF_EVENT_STATE_ACTIVE = 1,
291 };
292
293 struct file;
294 struct perf_sample_data;
295
296 typedef void (*perf_overflow_handler_t)(struct perf_event *,
297 struct perf_sample_data *,
298 struct pt_regs *regs);
299
300 enum perf_group_flag {
301 PERF_GROUP_SOFTWARE = 0x1,
302 };
303
304 #define SWEVENT_HLIST_BITS 8
305 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
306
307 struct swevent_hlist {
308 struct hlist_head heads[SWEVENT_HLIST_SIZE];
309 struct rcu_head rcu_head;
310 };
311
312 #define PERF_ATTACH_CONTEXT 0x01
313 #define PERF_ATTACH_GROUP 0x02
314 #define PERF_ATTACH_TASK 0x04
315 #define PERF_ATTACH_TASK_DATA 0x08
316
317 struct perf_cgroup;
318 struct ring_buffer;
319
320 /**
321 * struct perf_event - performance event kernel representation:
322 */
323 struct perf_event {
324 #ifdef CONFIG_PERF_EVENTS
325 /*
326 * entry onto perf_event_context::event_list;
327 * modifications require ctx->lock
328 * RCU safe iterations.
329 */
330 struct list_head event_entry;
331
332 /*
333 * XXX: group_entry and sibling_list should be mutually exclusive;
334 * either you're a sibling on a group, or you're the group leader.
335 * Rework the code to always use the same list element.
336 *
337 * Locked for modification by both ctx->mutex and ctx->lock; holding
338 * either sufficies for read.
339 */
340 struct list_head group_entry;
341 struct list_head sibling_list;
342
343 /*
344 * We need storage to track the entries in perf_pmu_migrate_context; we
345 * cannot use the event_entry because of RCU and we want to keep the
346 * group in tact which avoids us using the other two entries.
347 */
348 struct list_head migrate_entry;
349
350 struct hlist_node hlist_entry;
351 struct list_head active_entry;
352 int nr_siblings;
353 int group_flags;
354 struct perf_event *group_leader;
355 struct pmu *pmu;
356
357 enum perf_event_active_state state;
358 unsigned int attach_state;
359 local64_t count;
360 atomic64_t child_count;
361
362 /*
363 * These are the total time in nanoseconds that the event
364 * has been enabled (i.e. eligible to run, and the task has
365 * been scheduled in, if this is a per-task event)
366 * and running (scheduled onto the CPU), respectively.
367 *
368 * They are computed from tstamp_enabled, tstamp_running and
369 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
370 */
371 u64 total_time_enabled;
372 u64 total_time_running;
373
374 /*
375 * These are timestamps used for computing total_time_enabled
376 * and total_time_running when the event is in INACTIVE or
377 * ACTIVE state, measured in nanoseconds from an arbitrary point
378 * in time.
379 * tstamp_enabled: the notional time when the event was enabled
380 * tstamp_running: the notional time when the event was scheduled on
381 * tstamp_stopped: in INACTIVE state, the notional time when the
382 * event was scheduled off.
383 */
384 u64 tstamp_enabled;
385 u64 tstamp_running;
386 u64 tstamp_stopped;
387
388 /*
389 * timestamp shadows the actual context timing but it can
390 * be safely used in NMI interrupt context. It reflects the
391 * context time as it was when the event was last scheduled in.
392 *
393 * ctx_time already accounts for ctx->timestamp. Therefore to
394 * compute ctx_time for a sample, simply add perf_clock().
395 */
396 u64 shadow_ctx_time;
397
398 struct perf_event_attr attr;
399 u16 header_size;
400 u16 id_header_size;
401 u16 read_size;
402 struct hw_perf_event hw;
403
404 struct perf_event_context *ctx;
405 atomic_long_t refcount;
406
407 /*
408 * These accumulate total time (in nanoseconds) that children
409 * events have been enabled and running, respectively.
410 */
411 atomic64_t child_total_time_enabled;
412 atomic64_t child_total_time_running;
413
414 /*
415 * Protect attach/detach and child_list:
416 */
417 struct mutex child_mutex;
418 struct list_head child_list;
419 struct perf_event *parent;
420
421 int oncpu;
422 int cpu;
423
424 struct list_head owner_entry;
425 struct task_struct *owner;
426
427 /* mmap bits */
428 struct mutex mmap_mutex;
429 atomic_t mmap_count;
430
431 struct ring_buffer *rb;
432 struct list_head rb_entry;
433 unsigned long rcu_batches;
434 int rcu_pending;
435
436 /* poll related */
437 wait_queue_head_t waitq;
438 struct fasync_struct *fasync;
439
440 /* delayed work for NMIs and such */
441 int pending_wakeup;
442 int pending_kill;
443 int pending_disable;
444 struct irq_work pending;
445
446 atomic_t event_limit;
447
448 void (*destroy)(struct perf_event *);
449 struct rcu_head rcu_head;
450
451 struct pid_namespace *ns;
452 u64 id;
453
454 perf_overflow_handler_t overflow_handler;
455 void *overflow_handler_context;
456
457 #ifdef CONFIG_EVENT_TRACING
458 struct ftrace_event_call *tp_event;
459 struct event_filter *filter;
460 #ifdef CONFIG_FUNCTION_TRACER
461 struct ftrace_ops ftrace_ops;
462 #endif
463 #endif
464
465 #ifdef CONFIG_CGROUP_PERF
466 struct perf_cgroup *cgrp; /* cgroup event is attach to */
467 int cgrp_defer_enabled;
468 #endif
469
470 #endif /* CONFIG_PERF_EVENTS */
471 };
472
473 /**
474 * struct perf_event_context - event context structure
475 *
476 * Used as a container for task events and CPU events as well:
477 */
478 struct perf_event_context {
479 struct pmu *pmu;
480 /*
481 * Protect the states of the events in the list,
482 * nr_active, and the list:
483 */
484 raw_spinlock_t lock;
485 /*
486 * Protect the list of events. Locking either mutex or lock
487 * is sufficient to ensure the list doesn't change; to change
488 * the list you need to lock both the mutex and the spinlock.
489 */
490 struct mutex mutex;
491
492 struct list_head active_ctx_list;
493 struct list_head pinned_groups;
494 struct list_head flexible_groups;
495 struct list_head event_list;
496 int nr_events;
497 int nr_active;
498 int is_active;
499 int nr_stat;
500 int nr_freq;
501 int rotate_disable;
502 atomic_t refcount;
503 struct task_struct *task;
504
505 /*
506 * Context clock, runs when context enabled.
507 */
508 u64 time;
509 u64 timestamp;
510
511 /*
512 * These fields let us detect when two contexts have both
513 * been cloned (inherited) from a common ancestor.
514 */
515 struct perf_event_context *parent_ctx;
516 u64 parent_gen;
517 u64 generation;
518 int pin_count;
519 int nr_cgroups; /* cgroup evts */
520 void *task_ctx_data; /* pmu specific data */
521 struct rcu_head rcu_head;
522
523 struct delayed_work orphans_remove;
524 bool orphans_remove_sched;
525 };
526
527 /*
528 * Number of contexts where an event can trigger:
529 * task, softirq, hardirq, nmi.
530 */
531 #define PERF_NR_CONTEXTS 4
532
533 /**
534 * struct perf_event_cpu_context - per cpu event context structure
535 */
536 struct perf_cpu_context {
537 struct perf_event_context ctx;
538 struct perf_event_context *task_ctx;
539 int active_oncpu;
540 int exclusive;
541 struct hrtimer hrtimer;
542 ktime_t hrtimer_interval;
543 struct pmu *unique_pmu;
544 struct perf_cgroup *cgrp;
545 };
546
547 struct perf_output_handle {
548 struct perf_event *event;
549 struct ring_buffer *rb;
550 unsigned long wakeup;
551 unsigned long size;
552 void *addr;
553 int page;
554 };
555
556 #ifdef CONFIG_CGROUP_PERF
557
558 /*
559 * perf_cgroup_info keeps track of time_enabled for a cgroup.
560 * This is a per-cpu dynamically allocated data structure.
561 */
562 struct perf_cgroup_info {
563 u64 time;
564 u64 timestamp;
565 };
566
567 struct perf_cgroup {
568 struct cgroup_subsys_state css;
569 struct perf_cgroup_info __percpu *info;
570 };
571
572 /*
573 * Must ensure cgroup is pinned (css_get) before calling
574 * this function. In other words, we cannot call this function
575 * if there is no cgroup event for the current CPU context.
576 */
577 static inline struct perf_cgroup *
578 perf_cgroup_from_task(struct task_struct *task)
579 {
580 return container_of(task_css(task, perf_event_cgrp_id),
581 struct perf_cgroup, css);
582 }
583 #endif /* CONFIG_CGROUP_PERF */
584
585 #ifdef CONFIG_PERF_EVENTS
586
587 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
588 extern void perf_pmu_unregister(struct pmu *pmu);
589
590 extern int perf_num_counters(void);
591 extern const char *perf_pmu_name(void);
592 extern void __perf_event_task_sched_in(struct task_struct *prev,
593 struct task_struct *task);
594 extern void __perf_event_task_sched_out(struct task_struct *prev,
595 struct task_struct *next);
596 extern int perf_event_init_task(struct task_struct *child);
597 extern void perf_event_exit_task(struct task_struct *child);
598 extern void perf_event_free_task(struct task_struct *task);
599 extern void perf_event_delayed_put(struct task_struct *task);
600 extern void perf_event_print_debug(void);
601 extern void perf_pmu_disable(struct pmu *pmu);
602 extern void perf_pmu_enable(struct pmu *pmu);
603 extern void perf_sched_cb_dec(struct pmu *pmu);
604 extern void perf_sched_cb_inc(struct pmu *pmu);
605 extern int perf_event_task_disable(void);
606 extern int perf_event_task_enable(void);
607 extern int perf_event_refresh(struct perf_event *event, int refresh);
608 extern void perf_event_update_userpage(struct perf_event *event);
609 extern int perf_event_release_kernel(struct perf_event *event);
610 extern struct perf_event *
611 perf_event_create_kernel_counter(struct perf_event_attr *attr,
612 int cpu,
613 struct task_struct *task,
614 perf_overflow_handler_t callback,
615 void *context);
616 extern void perf_pmu_migrate_context(struct pmu *pmu,
617 int src_cpu, int dst_cpu);
618 extern u64 perf_event_read_value(struct perf_event *event,
619 u64 *enabled, u64 *running);
620
621
622 struct perf_sample_data {
623 /*
624 * Fields set by perf_sample_data_init(), group so as to
625 * minimize the cachelines touched.
626 */
627 u64 addr;
628 struct perf_raw_record *raw;
629 struct perf_branch_stack *br_stack;
630 u64 period;
631 u64 weight;
632 u64 txn;
633 union perf_mem_data_src data_src;
634
635 /*
636 * The other fields, optionally {set,used} by
637 * perf_{prepare,output}_sample().
638 */
639 u64 type;
640 u64 ip;
641 struct {
642 u32 pid;
643 u32 tid;
644 } tid_entry;
645 u64 time;
646 u64 id;
647 u64 stream_id;
648 struct {
649 u32 cpu;
650 u32 reserved;
651 } cpu_entry;
652 struct perf_callchain_entry *callchain;
653
654 /*
655 * regs_user may point to task_pt_regs or to regs_user_copy, depending
656 * on arch details.
657 */
658 struct perf_regs regs_user;
659 struct pt_regs regs_user_copy;
660
661 struct perf_regs regs_intr;
662 u64 stack_user_size;
663 } ____cacheline_aligned;
664
665 /* default value for data source */
666 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
667 PERF_MEM_S(LVL, NA) |\
668 PERF_MEM_S(SNOOP, NA) |\
669 PERF_MEM_S(LOCK, NA) |\
670 PERF_MEM_S(TLB, NA))
671
672 static inline void perf_sample_data_init(struct perf_sample_data *data,
673 u64 addr, u64 period)
674 {
675 /* remaining struct members initialized in perf_prepare_sample() */
676 data->addr = addr;
677 data->raw = NULL;
678 data->br_stack = NULL;
679 data->period = period;
680 data->weight = 0;
681 data->data_src.val = PERF_MEM_NA;
682 data->txn = 0;
683 }
684
685 extern void perf_output_sample(struct perf_output_handle *handle,
686 struct perf_event_header *header,
687 struct perf_sample_data *data,
688 struct perf_event *event);
689 extern void perf_prepare_sample(struct perf_event_header *header,
690 struct perf_sample_data *data,
691 struct perf_event *event,
692 struct pt_regs *regs);
693
694 extern int perf_event_overflow(struct perf_event *event,
695 struct perf_sample_data *data,
696 struct pt_regs *regs);
697
698 static inline bool is_sampling_event(struct perf_event *event)
699 {
700 return event->attr.sample_period != 0;
701 }
702
703 /*
704 * Return 1 for a software event, 0 for a hardware event
705 */
706 static inline int is_software_event(struct perf_event *event)
707 {
708 return event->pmu->task_ctx_nr == perf_sw_context;
709 }
710
711 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
712
713 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
714 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
715
716 #ifndef perf_arch_fetch_caller_regs
717 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
718 #endif
719
720 /*
721 * Take a snapshot of the regs. Skip ip and frame pointer to
722 * the nth caller. We only need a few of the regs:
723 * - ip for PERF_SAMPLE_IP
724 * - cs for user_mode() tests
725 * - bp for callchains
726 * - eflags, for future purposes, just in case
727 */
728 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
729 {
730 memset(regs, 0, sizeof(*regs));
731
732 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
733 }
734
735 static __always_inline void
736 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
737 {
738 if (static_key_false(&perf_swevent_enabled[event_id]))
739 __perf_sw_event(event_id, nr, regs, addr);
740 }
741
742 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
743
744 /*
745 * 'Special' version for the scheduler, it hard assumes no recursion,
746 * which is guaranteed by us not actually scheduling inside other swevents
747 * because those disable preemption.
748 */
749 static __always_inline void
750 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
751 {
752 if (static_key_false(&perf_swevent_enabled[event_id])) {
753 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
754
755 perf_fetch_caller_regs(regs);
756 ___perf_sw_event(event_id, nr, regs, addr);
757 }
758 }
759
760 extern struct static_key_deferred perf_sched_events;
761
762 static inline void perf_event_task_sched_in(struct task_struct *prev,
763 struct task_struct *task)
764 {
765 if (static_key_false(&perf_sched_events.key))
766 __perf_event_task_sched_in(prev, task);
767 }
768
769 static inline void perf_event_task_sched_out(struct task_struct *prev,
770 struct task_struct *next)
771 {
772 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
773
774 if (static_key_false(&perf_sched_events.key))
775 __perf_event_task_sched_out(prev, next);
776 }
777
778 static inline u64 __perf_event_count(struct perf_event *event)
779 {
780 return local64_read(&event->count) + atomic64_read(&event->child_count);
781 }
782
783 extern void perf_event_mmap(struct vm_area_struct *vma);
784 extern struct perf_guest_info_callbacks *perf_guest_cbs;
785 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
786 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
787
788 extern void perf_event_exec(void);
789 extern void perf_event_comm(struct task_struct *tsk, bool exec);
790 extern void perf_event_fork(struct task_struct *tsk);
791
792 /* Callchains */
793 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
794
795 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
796 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
797
798 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
799 {
800 if (entry->nr < PERF_MAX_STACK_DEPTH)
801 entry->ip[entry->nr++] = ip;
802 }
803
804 extern int sysctl_perf_event_paranoid;
805 extern int sysctl_perf_event_mlock;
806 extern int sysctl_perf_event_sample_rate;
807 extern int sysctl_perf_cpu_time_max_percent;
808
809 extern void perf_sample_event_took(u64 sample_len_ns);
810
811 extern int perf_proc_update_handler(struct ctl_table *table, int write,
812 void __user *buffer, size_t *lenp,
813 loff_t *ppos);
814 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
815 void __user *buffer, size_t *lenp,
816 loff_t *ppos);
817
818
819 static inline bool perf_paranoid_tracepoint_raw(void)
820 {
821 return sysctl_perf_event_paranoid > -1;
822 }
823
824 static inline bool perf_paranoid_cpu(void)
825 {
826 return sysctl_perf_event_paranoid > 0;
827 }
828
829 static inline bool perf_paranoid_kernel(void)
830 {
831 return sysctl_perf_event_paranoid > 1;
832 }
833
834 extern void perf_event_init(void);
835 extern void perf_tp_event(u64 addr, u64 count, void *record,
836 int entry_size, struct pt_regs *regs,
837 struct hlist_head *head, int rctx,
838 struct task_struct *task);
839 extern void perf_bp_event(struct perf_event *event, void *data);
840
841 #ifndef perf_misc_flags
842 # define perf_misc_flags(regs) \
843 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
844 # define perf_instruction_pointer(regs) instruction_pointer(regs)
845 #endif
846
847 static inline bool has_branch_stack(struct perf_event *event)
848 {
849 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
850 }
851
852 static inline bool needs_branch_stack(struct perf_event *event)
853 {
854 return event->attr.branch_sample_type != 0;
855 }
856
857 extern int perf_output_begin(struct perf_output_handle *handle,
858 struct perf_event *event, unsigned int size);
859 extern void perf_output_end(struct perf_output_handle *handle);
860 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
861 const void *buf, unsigned int len);
862 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
863 unsigned int len);
864 extern int perf_swevent_get_recursion_context(void);
865 extern void perf_swevent_put_recursion_context(int rctx);
866 extern u64 perf_swevent_set_period(struct perf_event *event);
867 extern void perf_event_enable(struct perf_event *event);
868 extern void perf_event_disable(struct perf_event *event);
869 extern int __perf_event_disable(void *info);
870 extern void perf_event_task_tick(void);
871 #else /* !CONFIG_PERF_EVENTS: */
872 static inline void
873 perf_event_task_sched_in(struct task_struct *prev,
874 struct task_struct *task) { }
875 static inline void
876 perf_event_task_sched_out(struct task_struct *prev,
877 struct task_struct *next) { }
878 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
879 static inline void perf_event_exit_task(struct task_struct *child) { }
880 static inline void perf_event_free_task(struct task_struct *task) { }
881 static inline void perf_event_delayed_put(struct task_struct *task) { }
882 static inline void perf_event_print_debug(void) { }
883 static inline int perf_event_task_disable(void) { return -EINVAL; }
884 static inline int perf_event_task_enable(void) { return -EINVAL; }
885 static inline int perf_event_refresh(struct perf_event *event, int refresh)
886 {
887 return -EINVAL;
888 }
889
890 static inline void
891 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
892 static inline void
893 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { }
894 static inline void
895 perf_bp_event(struct perf_event *event, void *data) { }
896
897 static inline int perf_register_guest_info_callbacks
898 (struct perf_guest_info_callbacks *callbacks) { return 0; }
899 static inline int perf_unregister_guest_info_callbacks
900 (struct perf_guest_info_callbacks *callbacks) { return 0; }
901
902 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
903 static inline void perf_event_exec(void) { }
904 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
905 static inline void perf_event_fork(struct task_struct *tsk) { }
906 static inline void perf_event_init(void) { }
907 static inline int perf_swevent_get_recursion_context(void) { return -1; }
908 static inline void perf_swevent_put_recursion_context(int rctx) { }
909 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
910 static inline void perf_event_enable(struct perf_event *event) { }
911 static inline void perf_event_disable(struct perf_event *event) { }
912 static inline int __perf_event_disable(void *info) { return -1; }
913 static inline void perf_event_task_tick(void) { }
914 #endif
915
916 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL)
917 extern bool perf_event_can_stop_tick(void);
918 #else
919 static inline bool perf_event_can_stop_tick(void) { return true; }
920 #endif
921
922 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
923 extern void perf_restore_debug_store(void);
924 #else
925 static inline void perf_restore_debug_store(void) { }
926 #endif
927
928 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
929
930 /*
931 * This has to have a higher priority than migration_notifier in sched/core.c.
932 */
933 #define perf_cpu_notifier(fn) \
934 do { \
935 static struct notifier_block fn##_nb = \
936 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
937 unsigned long cpu = smp_processor_id(); \
938 unsigned long flags; \
939 \
940 cpu_notifier_register_begin(); \
941 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
942 (void *)(unsigned long)cpu); \
943 local_irq_save(flags); \
944 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
945 (void *)(unsigned long)cpu); \
946 local_irq_restore(flags); \
947 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
948 (void *)(unsigned long)cpu); \
949 __register_cpu_notifier(&fn##_nb); \
950 cpu_notifier_register_done(); \
951 } while (0)
952
953 /*
954 * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the
955 * callback for already online CPUs.
956 */
957 #define __perf_cpu_notifier(fn) \
958 do { \
959 static struct notifier_block fn##_nb = \
960 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
961 \
962 __register_cpu_notifier(&fn##_nb); \
963 } while (0)
964
965 struct perf_pmu_events_attr {
966 struct device_attribute attr;
967 u64 id;
968 const char *event_str;
969 };
970
971 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
972 static struct perf_pmu_events_attr _var = { \
973 .attr = __ATTR(_name, 0444, _show, NULL), \
974 .id = _id, \
975 };
976
977 #define PMU_FORMAT_ATTR(_name, _format) \
978 static ssize_t \
979 _name##_show(struct device *dev, \
980 struct device_attribute *attr, \
981 char *page) \
982 { \
983 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
984 return sprintf(page, _format "\n"); \
985 } \
986 \
987 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
988
989 #endif /* _LINUX_PERF_EVENT_H */
This page took 0.078443 seconds and 5 git commands to generate.