ab4fd9ede264539dc6ce50d0116e61f5c19e74b0
[deliverable/linux.git] / include / linux / perf_event.h
1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
20
21 /*
22 * User-space ABI bits:
23 */
24
25 /*
26 * attr.type
27 */
28 enum perf_type_id {
29 PERF_TYPE_HARDWARE = 0,
30 PERF_TYPE_SOFTWARE = 1,
31 PERF_TYPE_TRACEPOINT = 2,
32 PERF_TYPE_HW_CACHE = 3,
33 PERF_TYPE_RAW = 4,
34 PERF_TYPE_BREAKPOINT = 5,
35
36 PERF_TYPE_MAX, /* non-ABI */
37 };
38
39 /*
40 * Generalized performance event event_id types, used by the
41 * attr.event_id parameter of the sys_perf_event_open()
42 * syscall:
43 */
44 enum perf_hw_id {
45 /*
46 * Common hardware events, generalized by the kernel:
47 */
48 PERF_COUNT_HW_CPU_CYCLES = 0,
49 PERF_COUNT_HW_INSTRUCTIONS = 1,
50 PERF_COUNT_HW_CACHE_REFERENCES = 2,
51 PERF_COUNT_HW_CACHE_MISSES = 3,
52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
53 PERF_COUNT_HW_BRANCH_MISSES = 5,
54 PERF_COUNT_HW_BUS_CYCLES = 6,
55
56 PERF_COUNT_HW_MAX, /* non-ABI */
57 };
58
59 /*
60 * Generalized hardware cache events:
61 *
62 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x
63 * { read, write, prefetch } x
64 * { accesses, misses }
65 */
66 enum perf_hw_cache_id {
67 PERF_COUNT_HW_CACHE_L1D = 0,
68 PERF_COUNT_HW_CACHE_L1I = 1,
69 PERF_COUNT_HW_CACHE_LL = 2,
70 PERF_COUNT_HW_CACHE_DTLB = 3,
71 PERF_COUNT_HW_CACHE_ITLB = 4,
72 PERF_COUNT_HW_CACHE_BPU = 5,
73
74 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
75 };
76
77 enum perf_hw_cache_op_id {
78 PERF_COUNT_HW_CACHE_OP_READ = 0,
79 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
80 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
81
82 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
83 };
84
85 enum perf_hw_cache_op_result_id {
86 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
87 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
88
89 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
90 };
91
92 /*
93 * Special "software" events provided by the kernel, even if the hardware
94 * does not support performance events. These events measure various
95 * physical and sw events of the kernel (and allow the profiling of them as
96 * well):
97 */
98 enum perf_sw_ids {
99 PERF_COUNT_SW_CPU_CLOCK = 0,
100 PERF_COUNT_SW_TASK_CLOCK = 1,
101 PERF_COUNT_SW_PAGE_FAULTS = 2,
102 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
103 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
104 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
105 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
106 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
107 PERF_COUNT_SW_EMULATION_FAULTS = 8,
108
109 PERF_COUNT_SW_MAX, /* non-ABI */
110 };
111
112 /*
113 * Bits that can be set in attr.sample_type to request information
114 * in the overflow packets.
115 */
116 enum perf_event_sample_format {
117 PERF_SAMPLE_IP = 1U << 0,
118 PERF_SAMPLE_TID = 1U << 1,
119 PERF_SAMPLE_TIME = 1U << 2,
120 PERF_SAMPLE_ADDR = 1U << 3,
121 PERF_SAMPLE_READ = 1U << 4,
122 PERF_SAMPLE_CALLCHAIN = 1U << 5,
123 PERF_SAMPLE_ID = 1U << 6,
124 PERF_SAMPLE_CPU = 1U << 7,
125 PERF_SAMPLE_PERIOD = 1U << 8,
126 PERF_SAMPLE_STREAM_ID = 1U << 9,
127 PERF_SAMPLE_RAW = 1U << 10,
128
129 PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */
130 };
131
132 /*
133 * The format of the data returned by read() on a perf event fd,
134 * as specified by attr.read_format:
135 *
136 * struct read_format {
137 * { u64 value;
138 * { u64 time_enabled; } && PERF_FORMAT_ENABLED
139 * { u64 time_running; } && PERF_FORMAT_RUNNING
140 * { u64 id; } && PERF_FORMAT_ID
141 * } && !PERF_FORMAT_GROUP
142 *
143 * { u64 nr;
144 * { u64 time_enabled; } && PERF_FORMAT_ENABLED
145 * { u64 time_running; } && PERF_FORMAT_RUNNING
146 * { u64 value;
147 * { u64 id; } && PERF_FORMAT_ID
148 * } cntr[nr];
149 * } && PERF_FORMAT_GROUP
150 * };
151 */
152 enum perf_event_read_format {
153 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
154 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
155 PERF_FORMAT_ID = 1U << 2,
156 PERF_FORMAT_GROUP = 1U << 3,
157
158 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
159 };
160
161 #define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
162
163 /*
164 * Hardware event_id to monitor via a performance monitoring event:
165 */
166 struct perf_event_attr {
167
168 /*
169 * Major type: hardware/software/tracepoint/etc.
170 */
171 __u32 type;
172
173 /*
174 * Size of the attr structure, for fwd/bwd compat.
175 */
176 __u32 size;
177
178 /*
179 * Type specific configuration information.
180 */
181 __u64 config;
182
183 union {
184 __u64 sample_period;
185 __u64 sample_freq;
186 };
187
188 __u64 sample_type;
189 __u64 read_format;
190
191 __u64 disabled : 1, /* off by default */
192 inherit : 1, /* children inherit it */
193 pinned : 1, /* must always be on PMU */
194 exclusive : 1, /* only group on PMU */
195 exclude_user : 1, /* don't count user */
196 exclude_kernel : 1, /* ditto kernel */
197 exclude_hv : 1, /* ditto hypervisor */
198 exclude_idle : 1, /* don't count when idle */
199 mmap : 1, /* include mmap data */
200 comm : 1, /* include comm data */
201 freq : 1, /* use freq, not period */
202 inherit_stat : 1, /* per task counts */
203 enable_on_exec : 1, /* next exec enables */
204 task : 1, /* trace fork/exit */
205 watermark : 1, /* wakeup_watermark */
206 precise : 1, /* OoO invariant counter */
207
208 __reserved_1 : 48;
209
210 union {
211 __u32 wakeup_events; /* wakeup every n events */
212 __u32 wakeup_watermark; /* bytes before wakeup */
213 };
214
215 __u32 bp_type;
216 __u64 bp_addr;
217 __u64 bp_len;
218 };
219
220 /*
221 * Ioctls that can be done on a perf event fd:
222 */
223 #define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
224 #define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
225 #define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
226 #define PERF_EVENT_IOC_RESET _IO ('$', 3)
227 #define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
228 #define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
229 #define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
230
231 enum perf_event_ioc_flags {
232 PERF_IOC_FLAG_GROUP = 1U << 0,
233 };
234
235 /*
236 * Structure of the page that can be mapped via mmap
237 */
238 struct perf_event_mmap_page {
239 __u32 version; /* version number of this structure */
240 __u32 compat_version; /* lowest version this is compat with */
241
242 /*
243 * Bits needed to read the hw events in user-space.
244 *
245 * u32 seq;
246 * s64 count;
247 *
248 * do {
249 * seq = pc->lock;
250 *
251 * barrier()
252 * if (pc->index) {
253 * count = pmc_read(pc->index - 1);
254 * count += pc->offset;
255 * } else
256 * goto regular_read;
257 *
258 * barrier();
259 * } while (pc->lock != seq);
260 *
261 * NOTE: for obvious reason this only works on self-monitoring
262 * processes.
263 */
264 __u32 lock; /* seqlock for synchronization */
265 __u32 index; /* hardware event identifier */
266 __s64 offset; /* add to hardware event value */
267 __u64 time_enabled; /* time event active */
268 __u64 time_running; /* time event on cpu */
269
270 /*
271 * Hole for extension of the self monitor capabilities
272 */
273
274 __u64 __reserved[123]; /* align to 1k */
275
276 /*
277 * Control data for the mmap() data buffer.
278 *
279 * User-space reading the @data_head value should issue an rmb(), on
280 * SMP capable platforms, after reading this value -- see
281 * perf_event_wakeup().
282 *
283 * When the mapping is PROT_WRITE the @data_tail value should be
284 * written by userspace to reflect the last read data. In this case
285 * the kernel will not over-write unread data.
286 */
287 __u64 data_head; /* head in the data section */
288 __u64 data_tail; /* user-space written tail */
289 };
290
291 #define PERF_RECORD_MISC_CPUMODE_MASK (3 << 0)
292 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
293 #define PERF_RECORD_MISC_KERNEL (1 << 0)
294 #define PERF_RECORD_MISC_USER (2 << 0)
295 #define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
296
297 struct perf_event_header {
298 __u32 type;
299 __u16 misc;
300 __u16 size;
301 };
302
303 enum perf_event_type {
304
305 /*
306 * The MMAP events record the PROT_EXEC mappings so that we can
307 * correlate userspace IPs to code. They have the following structure:
308 *
309 * struct {
310 * struct perf_event_header header;
311 *
312 * u32 pid, tid;
313 * u64 addr;
314 * u64 len;
315 * u64 pgoff;
316 * char filename[];
317 * };
318 */
319 PERF_RECORD_MMAP = 1,
320
321 /*
322 * struct {
323 * struct perf_event_header header;
324 * u64 id;
325 * u64 lost;
326 * };
327 */
328 PERF_RECORD_LOST = 2,
329
330 /*
331 * struct {
332 * struct perf_event_header header;
333 *
334 * u32 pid, tid;
335 * char comm[];
336 * };
337 */
338 PERF_RECORD_COMM = 3,
339
340 /*
341 * struct {
342 * struct perf_event_header header;
343 * u32 pid, ppid;
344 * u32 tid, ptid;
345 * u64 time;
346 * };
347 */
348 PERF_RECORD_EXIT = 4,
349
350 /*
351 * struct {
352 * struct perf_event_header header;
353 * u64 time;
354 * u64 id;
355 * u64 stream_id;
356 * };
357 */
358 PERF_RECORD_THROTTLE = 5,
359 PERF_RECORD_UNTHROTTLE = 6,
360
361 /*
362 * struct {
363 * struct perf_event_header header;
364 * u32 pid, ppid;
365 * u32 tid, ptid;
366 * u64 time;
367 * };
368 */
369 PERF_RECORD_FORK = 7,
370
371 /*
372 * struct {
373 * struct perf_event_header header;
374 * u32 pid, tid;
375 *
376 * struct read_format values;
377 * };
378 */
379 PERF_RECORD_READ = 8,
380
381 /*
382 * struct {
383 * struct perf_event_header header;
384 *
385 * { u64 ip; } && PERF_SAMPLE_IP
386 * { u32 pid, tid; } && PERF_SAMPLE_TID
387 * { u64 time; } && PERF_SAMPLE_TIME
388 * { u64 addr; } && PERF_SAMPLE_ADDR
389 * { u64 id; } && PERF_SAMPLE_ID
390 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
391 * { u32 cpu, res; } && PERF_SAMPLE_CPU
392 * { u64 period; } && PERF_SAMPLE_PERIOD
393 *
394 * { struct read_format values; } && PERF_SAMPLE_READ
395 *
396 * { u64 nr,
397 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
398 *
399 * #
400 * # The RAW record below is opaque data wrt the ABI
401 * #
402 * # That is, the ABI doesn't make any promises wrt to
403 * # the stability of its content, it may vary depending
404 * # on event, hardware, kernel version and phase of
405 * # the moon.
406 * #
407 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
408 * #
409 *
410 * { u32 size;
411 * char data[size];}&& PERF_SAMPLE_RAW
412 * };
413 */
414 PERF_RECORD_SAMPLE = 9,
415
416 PERF_RECORD_MAX, /* non-ABI */
417 };
418
419 enum perf_callchain_context {
420 PERF_CONTEXT_HV = (__u64)-32,
421 PERF_CONTEXT_KERNEL = (__u64)-128,
422 PERF_CONTEXT_USER = (__u64)-512,
423
424 PERF_CONTEXT_GUEST = (__u64)-2048,
425 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
426 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
427
428 PERF_CONTEXT_MAX = (__u64)-4095,
429 };
430
431 #define PERF_FLAG_FD_NO_GROUP (1U << 0)
432 #define PERF_FLAG_FD_OUTPUT (1U << 1)
433
434 #ifdef __KERNEL__
435 /*
436 * Kernel-internal data types and definitions:
437 */
438
439 #ifdef CONFIG_PERF_EVENTS
440 # include <asm/perf_event.h>
441 #endif
442
443 #ifdef CONFIG_HAVE_HW_BREAKPOINT
444 #include <asm/hw_breakpoint.h>
445 #endif
446
447 #include <linux/list.h>
448 #include <linux/mutex.h>
449 #include <linux/rculist.h>
450 #include <linux/rcupdate.h>
451 #include <linux/spinlock.h>
452 #include <linux/hrtimer.h>
453 #include <linux/fs.h>
454 #include <linux/pid_namespace.h>
455 #include <linux/workqueue.h>
456 #include <asm/atomic.h>
457
458 #define PERF_MAX_STACK_DEPTH 255
459
460 struct perf_callchain_entry {
461 __u64 nr;
462 __u64 ip[PERF_MAX_STACK_DEPTH];
463 };
464
465 struct perf_raw_record {
466 u32 size;
467 void *data;
468 };
469
470 struct perf_branch_entry {
471 __u64 from;
472 __u64 to;
473 __u64 flags;
474 };
475
476 struct perf_branch_stack {
477 __u64 nr;
478 struct perf_branch_entry entries[0];
479 };
480
481 struct task_struct;
482
483 /**
484 * struct hw_perf_event - performance event hardware details:
485 */
486 struct hw_perf_event {
487 #ifdef CONFIG_PERF_EVENTS
488 union {
489 struct { /* hardware */
490 u64 config;
491 u64 last_tag;
492 unsigned long config_base;
493 unsigned long event_base;
494 int idx;
495 int last_cpu;
496 };
497 struct { /* software */
498 s64 remaining;
499 struct hrtimer hrtimer;
500 };
501 #ifdef CONFIG_HAVE_HW_BREAKPOINT
502 /* breakpoint */
503 struct arch_hw_breakpoint info;
504 #endif
505 };
506 atomic64_t prev_count;
507 u64 sample_period;
508 u64 last_period;
509 atomic64_t period_left;
510 u64 interrupts;
511
512 u64 freq_time_stamp;
513 u64 freq_count_stamp;
514 #endif
515 };
516
517 struct perf_event;
518
519 /**
520 * struct pmu - generic performance monitoring unit
521 */
522 struct pmu {
523 int (*enable) (struct perf_event *event);
524 void (*disable) (struct perf_event *event);
525 int (*start) (struct perf_event *event);
526 void (*stop) (struct perf_event *event);
527 void (*read) (struct perf_event *event);
528 void (*unthrottle) (struct perf_event *event);
529 };
530
531 /**
532 * enum perf_event_active_state - the states of a event
533 */
534 enum perf_event_active_state {
535 PERF_EVENT_STATE_ERROR = -2,
536 PERF_EVENT_STATE_OFF = -1,
537 PERF_EVENT_STATE_INACTIVE = 0,
538 PERF_EVENT_STATE_ACTIVE = 1,
539 };
540
541 struct file;
542
543 struct perf_mmap_data {
544 struct rcu_head rcu_head;
545 #ifdef CONFIG_PERF_USE_VMALLOC
546 struct work_struct work;
547 #endif
548 int data_order;
549 int nr_pages; /* nr of data pages */
550 int writable; /* are we writable */
551 int nr_locked; /* nr pages mlocked */
552
553 atomic_t poll; /* POLL_ for wakeups */
554 atomic_t events; /* event_id limit */
555
556 atomic_long_t head; /* write position */
557 atomic_long_t done_head; /* completed head */
558
559 atomic_t lock; /* concurrent writes */
560 atomic_t wakeup; /* needs a wakeup */
561 atomic_t lost; /* nr records lost */
562
563 long watermark; /* wakeup watermark */
564
565 struct perf_event_mmap_page *user_page;
566 void *data_pages[0];
567 };
568
569 struct perf_pending_entry {
570 struct perf_pending_entry *next;
571 void (*func)(struct perf_pending_entry *);
572 };
573
574 struct perf_sample_data;
575
576 typedef void (*perf_overflow_handler_t)(struct perf_event *, int,
577 struct perf_sample_data *,
578 struct pt_regs *regs);
579
580 enum perf_group_flag {
581 PERF_GROUP_SOFTWARE = 0x1,
582 };
583
584 /**
585 * struct perf_event - performance event kernel representation:
586 */
587 struct perf_event {
588 #ifdef CONFIG_PERF_EVENTS
589 struct list_head group_entry;
590 struct list_head event_entry;
591 struct list_head sibling_list;
592 int nr_siblings;
593 int group_flags;
594 struct perf_event *group_leader;
595 struct perf_event *output;
596 const struct pmu *pmu;
597
598 enum perf_event_active_state state;
599 atomic64_t count;
600
601 /*
602 * These are the total time in nanoseconds that the event
603 * has been enabled (i.e. eligible to run, and the task has
604 * been scheduled in, if this is a per-task event)
605 * and running (scheduled onto the CPU), respectively.
606 *
607 * They are computed from tstamp_enabled, tstamp_running and
608 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
609 */
610 u64 total_time_enabled;
611 u64 total_time_running;
612
613 /*
614 * These are timestamps used for computing total_time_enabled
615 * and total_time_running when the event is in INACTIVE or
616 * ACTIVE state, measured in nanoseconds from an arbitrary point
617 * in time.
618 * tstamp_enabled: the notional time when the event was enabled
619 * tstamp_running: the notional time when the event was scheduled on
620 * tstamp_stopped: in INACTIVE state, the notional time when the
621 * event was scheduled off.
622 */
623 u64 tstamp_enabled;
624 u64 tstamp_running;
625 u64 tstamp_stopped;
626
627 struct perf_event_attr attr;
628 struct hw_perf_event hw;
629
630 struct perf_event_context *ctx;
631 struct file *filp;
632
633 /*
634 * These accumulate total time (in nanoseconds) that children
635 * events have been enabled and running, respectively.
636 */
637 atomic64_t child_total_time_enabled;
638 atomic64_t child_total_time_running;
639
640 /*
641 * Protect attach/detach and child_list:
642 */
643 struct mutex child_mutex;
644 struct list_head child_list;
645 struct perf_event *parent;
646
647 int oncpu;
648 int cpu;
649
650 struct list_head owner_entry;
651 struct task_struct *owner;
652
653 /* mmap bits */
654 struct mutex mmap_mutex;
655 atomic_t mmap_count;
656 struct perf_mmap_data *data;
657
658 /* poll related */
659 wait_queue_head_t waitq;
660 struct fasync_struct *fasync;
661
662 /* delayed work for NMIs and such */
663 int pending_wakeup;
664 int pending_kill;
665 int pending_disable;
666 struct perf_pending_entry pending;
667
668 atomic_t event_limit;
669
670 void (*destroy)(struct perf_event *);
671 struct rcu_head rcu_head;
672
673 struct pid_namespace *ns;
674 u64 id;
675
676 perf_overflow_handler_t overflow_handler;
677
678 #ifdef CONFIG_EVENT_TRACING
679 struct event_filter *filter;
680 #endif
681
682 #endif /* CONFIG_PERF_EVENTS */
683 };
684
685 /**
686 * struct perf_event_context - event context structure
687 *
688 * Used as a container for task events and CPU events as well:
689 */
690 struct perf_event_context {
691 /*
692 * Protect the states of the events in the list,
693 * nr_active, and the list:
694 */
695 raw_spinlock_t lock;
696 /*
697 * Protect the list of events. Locking either mutex or lock
698 * is sufficient to ensure the list doesn't change; to change
699 * the list you need to lock both the mutex and the spinlock.
700 */
701 struct mutex mutex;
702
703 struct list_head pinned_groups;
704 struct list_head flexible_groups;
705 struct list_head event_list;
706 int nr_events;
707 int nr_active;
708 int is_active;
709 int nr_stat;
710 atomic_t refcount;
711 struct task_struct *task;
712
713 /*
714 * Context clock, runs when context enabled.
715 */
716 u64 time;
717 u64 timestamp;
718
719 /*
720 * These fields let us detect when two contexts have both
721 * been cloned (inherited) from a common ancestor.
722 */
723 struct perf_event_context *parent_ctx;
724 u64 parent_gen;
725 u64 generation;
726 int pin_count;
727 struct rcu_head rcu_head;
728 };
729
730 /**
731 * struct perf_event_cpu_context - per cpu event context structure
732 */
733 struct perf_cpu_context {
734 struct perf_event_context ctx;
735 struct perf_event_context *task_ctx;
736 int active_oncpu;
737 int max_pertask;
738 int exclusive;
739
740 /*
741 * Recursion avoidance:
742 *
743 * task, softirq, irq, nmi context
744 */
745 int recursion[4];
746 };
747
748 struct perf_output_handle {
749 struct perf_event *event;
750 struct perf_mmap_data *data;
751 unsigned long head;
752 unsigned long offset;
753 int nmi;
754 int sample;
755 int locked;
756 };
757
758 #ifdef CONFIG_PERF_EVENTS
759
760 /*
761 * Set by architecture code:
762 */
763 extern int perf_max_events;
764
765 extern const struct pmu *hw_perf_event_init(struct perf_event *event);
766
767 extern void perf_event_task_sched_in(struct task_struct *task);
768 extern void perf_event_task_sched_out(struct task_struct *task, struct task_struct *next);
769 extern void perf_event_task_tick(struct task_struct *task);
770 extern int perf_event_init_task(struct task_struct *child);
771 extern void perf_event_exit_task(struct task_struct *child);
772 extern void perf_event_free_task(struct task_struct *task);
773 extern void set_perf_event_pending(void);
774 extern void perf_event_do_pending(void);
775 extern void perf_event_print_debug(void);
776 extern void __perf_disable(void);
777 extern bool __perf_enable(void);
778 extern void perf_disable(void);
779 extern void perf_enable(void);
780 extern int perf_event_task_disable(void);
781 extern int perf_event_task_enable(void);
782 extern int hw_perf_group_sched_in(struct perf_event *group_leader,
783 struct perf_cpu_context *cpuctx,
784 struct perf_event_context *ctx);
785 extern void perf_event_update_userpage(struct perf_event *event);
786 extern int perf_event_release_kernel(struct perf_event *event);
787 extern struct perf_event *
788 perf_event_create_kernel_counter(struct perf_event_attr *attr,
789 int cpu,
790 pid_t pid,
791 perf_overflow_handler_t callback);
792 extern u64 perf_event_read_value(struct perf_event *event,
793 u64 *enabled, u64 *running);
794
795 struct perf_sample_data {
796 u64 type;
797
798 u64 ip;
799 struct {
800 u32 pid;
801 u32 tid;
802 } tid_entry;
803 u64 time;
804 u64 addr;
805 u64 id;
806 u64 stream_id;
807 struct {
808 u32 cpu;
809 u32 reserved;
810 } cpu_entry;
811 u64 period;
812 struct perf_callchain_entry *callchain;
813 struct perf_raw_record *raw;
814 };
815
816 static inline
817 void perf_sample_data_init(struct perf_sample_data *data, u64 addr)
818 {
819 data->addr = addr;
820 data->raw = NULL;
821 }
822
823 extern void perf_output_sample(struct perf_output_handle *handle,
824 struct perf_event_header *header,
825 struct perf_sample_data *data,
826 struct perf_event *event);
827 extern void perf_prepare_sample(struct perf_event_header *header,
828 struct perf_sample_data *data,
829 struct perf_event *event,
830 struct pt_regs *regs);
831
832 extern int perf_event_overflow(struct perf_event *event, int nmi,
833 struct perf_sample_data *data,
834 struct pt_regs *regs);
835
836 /*
837 * Return 1 for a software event, 0 for a hardware event
838 */
839 static inline int is_software_event(struct perf_event *event)
840 {
841 switch (event->attr.type) {
842 case PERF_TYPE_SOFTWARE:
843 case PERF_TYPE_TRACEPOINT:
844 /* for now the breakpoint stuff also works as software event */
845 case PERF_TYPE_BREAKPOINT:
846 return 1;
847 }
848 return 0;
849 }
850
851 extern atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
852
853 extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64);
854
855 static inline void
856 perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
857 {
858 if (atomic_read(&perf_swevent_enabled[event_id]))
859 __perf_sw_event(event_id, nr, nmi, regs, addr);
860 }
861
862 extern void __perf_event_mmap(struct vm_area_struct *vma);
863
864 static inline void perf_event_mmap(struct vm_area_struct *vma)
865 {
866 if (vma->vm_flags & VM_EXEC)
867 __perf_event_mmap(vma);
868 }
869
870 extern void perf_event_comm(struct task_struct *tsk);
871 extern void perf_event_fork(struct task_struct *tsk);
872
873 extern struct perf_callchain_entry *perf_callchain(struct pt_regs *regs);
874
875 extern int sysctl_perf_event_paranoid;
876 extern int sysctl_perf_event_mlock;
877 extern int sysctl_perf_event_sample_rate;
878
879 static inline bool perf_paranoid_tracepoint_raw(void)
880 {
881 return sysctl_perf_event_paranoid > -1;
882 }
883
884 static inline bool perf_paranoid_cpu(void)
885 {
886 return sysctl_perf_event_paranoid > 0;
887 }
888
889 static inline bool perf_paranoid_kernel(void)
890 {
891 return sysctl_perf_event_paranoid > 1;
892 }
893
894 extern void perf_event_init(void);
895 extern void perf_tp_event(int event_id, u64 addr, u64 count, void *record, int entry_size);
896 extern void perf_bp_event(struct perf_event *event, void *data);
897
898 #ifndef perf_misc_flags
899 #define perf_misc_flags(regs) (user_mode(regs) ? PERF_RECORD_MISC_USER : \
900 PERF_RECORD_MISC_KERNEL)
901 #define perf_instruction_pointer(regs) instruction_pointer(regs)
902 #endif
903
904 extern int perf_output_begin(struct perf_output_handle *handle,
905 struct perf_event *event, unsigned int size,
906 int nmi, int sample);
907 extern void perf_output_end(struct perf_output_handle *handle);
908 extern void perf_output_copy(struct perf_output_handle *handle,
909 const void *buf, unsigned int len);
910 extern int perf_swevent_get_recursion_context(void);
911 extern void perf_swevent_put_recursion_context(int rctx);
912 extern void perf_event_enable(struct perf_event *event);
913 extern void perf_event_disable(struct perf_event *event);
914 #else
915 static inline void
916 perf_event_task_sched_in(struct task_struct *task) { }
917 static inline void
918 perf_event_task_sched_out(struct task_struct *task,
919 struct task_struct *next) { }
920 static inline void
921 perf_event_task_tick(struct task_struct *task) { }
922 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
923 static inline void perf_event_exit_task(struct task_struct *child) { }
924 static inline void perf_event_free_task(struct task_struct *task) { }
925 static inline void perf_event_do_pending(void) { }
926 static inline void perf_event_print_debug(void) { }
927 static inline void perf_disable(void) { }
928 static inline void perf_enable(void) { }
929 static inline int perf_event_task_disable(void) { return -EINVAL; }
930 static inline int perf_event_task_enable(void) { return -EINVAL; }
931
932 static inline void
933 perf_sw_event(u32 event_id, u64 nr, int nmi,
934 struct pt_regs *regs, u64 addr) { }
935 static inline void
936 perf_bp_event(struct perf_event *event, void *data) { }
937
938 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
939 static inline void perf_event_comm(struct task_struct *tsk) { }
940 static inline void perf_event_fork(struct task_struct *tsk) { }
941 static inline void perf_event_init(void) { }
942 static inline int perf_swevent_get_recursion_context(void) { return -1; }
943 static inline void perf_swevent_put_recursion_context(int rctx) { }
944 static inline void perf_event_enable(struct perf_event *event) { }
945 static inline void perf_event_disable(struct perf_event *event) { }
946 #endif
947
948 #define perf_output_put(handle, x) \
949 perf_output_copy((handle), &(x), sizeof(x))
950
951 /*
952 * This has to have a higher priority than migration_notifier in sched.c.
953 */
954 #define perf_cpu_notifier(fn) \
955 do { \
956 static struct notifier_block fn##_nb __cpuinitdata = \
957 { .notifier_call = fn, .priority = 20 }; \
958 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
959 (void *)(unsigned long)smp_processor_id()); \
960 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
961 (void *)(unsigned long)smp_processor_id()); \
962 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
963 (void *)(unsigned long)smp_processor_id()); \
964 register_cpu_notifier(&fn##_nb); \
965 } while (0)
966
967 #endif /* __KERNEL__ */
968 #endif /* _LINUX_PERF_EVENT_H */
This page took 0.051734 seconds and 4 git commands to generate.