perf/x86/intel: Add Intel Cache QoS Monitoring support
[deliverable/linux.git] / include / linux / perf_event.h
1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18
19 /*
20 * Kernel-internal data types and definitions:
21 */
22
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27
28 struct perf_guest_info_callbacks {
29 int (*is_in_guest)(void);
30 int (*is_user_mode)(void);
31 unsigned long (*get_guest_ip)(void);
32 };
33
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <linux/cgroup.h>
57 #include <asm/local.h>
58
59 struct perf_callchain_entry {
60 __u64 nr;
61 __u64 ip[PERF_MAX_STACK_DEPTH];
62 };
63
64 struct perf_raw_record {
65 u32 size;
66 void *data;
67 };
68
69 /*
70 * branch stack layout:
71 * nr: number of taken branches stored in entries[]
72 *
73 * Note that nr can vary from sample to sample
74 * branches (to, from) are stored from most recent
75 * to least recent, i.e., entries[0] contains the most
76 * recent branch.
77 */
78 struct perf_branch_stack {
79 __u64 nr;
80 struct perf_branch_entry entries[0];
81 };
82
83 struct task_struct;
84
85 /*
86 * extra PMU register associated with an event
87 */
88 struct hw_perf_event_extra {
89 u64 config; /* register value */
90 unsigned int reg; /* register address or index */
91 int alloc; /* extra register already allocated */
92 int idx; /* index in shared_regs->regs[] */
93 };
94
95 struct event_constraint;
96
97 /**
98 * struct hw_perf_event - performance event hardware details:
99 */
100 struct hw_perf_event {
101 #ifdef CONFIG_PERF_EVENTS
102 union {
103 struct { /* hardware */
104 u64 config;
105 u64 last_tag;
106 unsigned long config_base;
107 unsigned long event_base;
108 int event_base_rdpmc;
109 int idx;
110 int last_cpu;
111 int flags;
112
113 struct hw_perf_event_extra extra_reg;
114 struct hw_perf_event_extra branch_reg;
115
116 struct event_constraint *constraint;
117 };
118 struct { /* software */
119 struct hrtimer hrtimer;
120 };
121 struct { /* tracepoint */
122 struct task_struct *tp_target;
123 /* for tp_event->class */
124 struct list_head tp_list;
125 };
126 struct { /* intel_cqm */
127 int cqm_state;
128 int cqm_rmid;
129 struct list_head cqm_events_entry;
130 struct list_head cqm_groups_entry;
131 struct list_head cqm_group_entry;
132 };
133 #ifdef CONFIG_HAVE_HW_BREAKPOINT
134 struct { /* breakpoint */
135 /*
136 * Crufty hack to avoid the chicken and egg
137 * problem hw_breakpoint has with context
138 * creation and event initalization.
139 */
140 struct task_struct *bp_target;
141 struct arch_hw_breakpoint info;
142 struct list_head bp_list;
143 };
144 #endif
145 };
146 int state;
147 local64_t prev_count;
148 u64 sample_period;
149 u64 last_period;
150 local64_t period_left;
151 u64 interrupts_seq;
152 u64 interrupts;
153
154 u64 freq_time_stamp;
155 u64 freq_count_stamp;
156 #endif
157 };
158
159 /*
160 * hw_perf_event::state flags
161 */
162 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
163 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
164 #define PERF_HES_ARCH 0x04
165
166 struct perf_event;
167
168 /*
169 * Common implementation detail of pmu::{start,commit,cancel}_txn
170 */
171 #define PERF_EVENT_TXN 0x1
172
173 /**
174 * pmu::capabilities flags
175 */
176 #define PERF_PMU_CAP_NO_INTERRUPT 0x01
177
178 /**
179 * struct pmu - generic performance monitoring unit
180 */
181 struct pmu {
182 struct list_head entry;
183
184 struct module *module;
185 struct device *dev;
186 const struct attribute_group **attr_groups;
187 const char *name;
188 int type;
189
190 /*
191 * various common per-pmu feature flags
192 */
193 int capabilities;
194
195 int * __percpu pmu_disable_count;
196 struct perf_cpu_context * __percpu pmu_cpu_context;
197 int task_ctx_nr;
198 int hrtimer_interval_ms;
199
200 /*
201 * Fully disable/enable this PMU, can be used to protect from the PMI
202 * as well as for lazy/batch writing of the MSRs.
203 */
204 void (*pmu_enable) (struct pmu *pmu); /* optional */
205 void (*pmu_disable) (struct pmu *pmu); /* optional */
206
207 /*
208 * Try and initialize the event for this PMU.
209 * Should return -ENOENT when the @event doesn't match this PMU.
210 */
211 int (*event_init) (struct perf_event *event);
212
213 /*
214 * Notification that the event was mapped or unmapped. Called
215 * in the context of the mapping task.
216 */
217 void (*event_mapped) (struct perf_event *event); /*optional*/
218 void (*event_unmapped) (struct perf_event *event); /*optional*/
219
220 #define PERF_EF_START 0x01 /* start the counter when adding */
221 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
222 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
223
224 /*
225 * Adds/Removes a counter to/from the PMU, can be done inside
226 * a transaction, see the ->*_txn() methods.
227 */
228 int (*add) (struct perf_event *event, int flags);
229 void (*del) (struct perf_event *event, int flags);
230
231 /*
232 * Starts/Stops a counter present on the PMU. The PMI handler
233 * should stop the counter when perf_event_overflow() returns
234 * !0. ->start() will be used to continue.
235 */
236 void (*start) (struct perf_event *event, int flags);
237 void (*stop) (struct perf_event *event, int flags);
238
239 /*
240 * Updates the counter value of the event.
241 */
242 void (*read) (struct perf_event *event);
243
244 /*
245 * Group events scheduling is treated as a transaction, add
246 * group events as a whole and perform one schedulability test.
247 * If the test fails, roll back the whole group
248 *
249 * Start the transaction, after this ->add() doesn't need to
250 * do schedulability tests.
251 */
252 void (*start_txn) (struct pmu *pmu); /* optional */
253 /*
254 * If ->start_txn() disabled the ->add() schedulability test
255 * then ->commit_txn() is required to perform one. On success
256 * the transaction is closed. On error the transaction is kept
257 * open until ->cancel_txn() is called.
258 */
259 int (*commit_txn) (struct pmu *pmu); /* optional */
260 /*
261 * Will cancel the transaction, assumes ->del() is called
262 * for each successful ->add() during the transaction.
263 */
264 void (*cancel_txn) (struct pmu *pmu); /* optional */
265
266 /*
267 * Will return the value for perf_event_mmap_page::index for this event,
268 * if no implementation is provided it will default to: event->hw.idx + 1.
269 */
270 int (*event_idx) (struct perf_event *event); /*optional */
271
272 /*
273 * context-switches callback
274 */
275 void (*sched_task) (struct perf_event_context *ctx,
276 bool sched_in);
277 /*
278 * PMU specific data size
279 */
280 size_t task_ctx_size;
281
282
283 /*
284 * Return the count value for a counter.
285 */
286 u64 (*count) (struct perf_event *event); /*optional*/
287 };
288
289 /**
290 * enum perf_event_active_state - the states of a event
291 */
292 enum perf_event_active_state {
293 PERF_EVENT_STATE_EXIT = -3,
294 PERF_EVENT_STATE_ERROR = -2,
295 PERF_EVENT_STATE_OFF = -1,
296 PERF_EVENT_STATE_INACTIVE = 0,
297 PERF_EVENT_STATE_ACTIVE = 1,
298 };
299
300 struct file;
301 struct perf_sample_data;
302
303 typedef void (*perf_overflow_handler_t)(struct perf_event *,
304 struct perf_sample_data *,
305 struct pt_regs *regs);
306
307 enum perf_group_flag {
308 PERF_GROUP_SOFTWARE = 0x1,
309 };
310
311 #define SWEVENT_HLIST_BITS 8
312 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
313
314 struct swevent_hlist {
315 struct hlist_head heads[SWEVENT_HLIST_SIZE];
316 struct rcu_head rcu_head;
317 };
318
319 #define PERF_ATTACH_CONTEXT 0x01
320 #define PERF_ATTACH_GROUP 0x02
321 #define PERF_ATTACH_TASK 0x04
322 #define PERF_ATTACH_TASK_DATA 0x08
323
324 struct perf_cgroup;
325 struct ring_buffer;
326
327 /**
328 * struct perf_event - performance event kernel representation:
329 */
330 struct perf_event {
331 #ifdef CONFIG_PERF_EVENTS
332 /*
333 * entry onto perf_event_context::event_list;
334 * modifications require ctx->lock
335 * RCU safe iterations.
336 */
337 struct list_head event_entry;
338
339 /*
340 * XXX: group_entry and sibling_list should be mutually exclusive;
341 * either you're a sibling on a group, or you're the group leader.
342 * Rework the code to always use the same list element.
343 *
344 * Locked for modification by both ctx->mutex and ctx->lock; holding
345 * either sufficies for read.
346 */
347 struct list_head group_entry;
348 struct list_head sibling_list;
349
350 /*
351 * We need storage to track the entries in perf_pmu_migrate_context; we
352 * cannot use the event_entry because of RCU and we want to keep the
353 * group in tact which avoids us using the other two entries.
354 */
355 struct list_head migrate_entry;
356
357 struct hlist_node hlist_entry;
358 struct list_head active_entry;
359 int nr_siblings;
360 int group_flags;
361 struct perf_event *group_leader;
362 struct pmu *pmu;
363
364 enum perf_event_active_state state;
365 unsigned int attach_state;
366 local64_t count;
367 atomic64_t child_count;
368
369 /*
370 * These are the total time in nanoseconds that the event
371 * has been enabled (i.e. eligible to run, and the task has
372 * been scheduled in, if this is a per-task event)
373 * and running (scheduled onto the CPU), respectively.
374 *
375 * They are computed from tstamp_enabled, tstamp_running and
376 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
377 */
378 u64 total_time_enabled;
379 u64 total_time_running;
380
381 /*
382 * These are timestamps used for computing total_time_enabled
383 * and total_time_running when the event is in INACTIVE or
384 * ACTIVE state, measured in nanoseconds from an arbitrary point
385 * in time.
386 * tstamp_enabled: the notional time when the event was enabled
387 * tstamp_running: the notional time when the event was scheduled on
388 * tstamp_stopped: in INACTIVE state, the notional time when the
389 * event was scheduled off.
390 */
391 u64 tstamp_enabled;
392 u64 tstamp_running;
393 u64 tstamp_stopped;
394
395 /*
396 * timestamp shadows the actual context timing but it can
397 * be safely used in NMI interrupt context. It reflects the
398 * context time as it was when the event was last scheduled in.
399 *
400 * ctx_time already accounts for ctx->timestamp. Therefore to
401 * compute ctx_time for a sample, simply add perf_clock().
402 */
403 u64 shadow_ctx_time;
404
405 struct perf_event_attr attr;
406 u16 header_size;
407 u16 id_header_size;
408 u16 read_size;
409 struct hw_perf_event hw;
410
411 struct perf_event_context *ctx;
412 atomic_long_t refcount;
413
414 /*
415 * These accumulate total time (in nanoseconds) that children
416 * events have been enabled and running, respectively.
417 */
418 atomic64_t child_total_time_enabled;
419 atomic64_t child_total_time_running;
420
421 /*
422 * Protect attach/detach and child_list:
423 */
424 struct mutex child_mutex;
425 struct list_head child_list;
426 struct perf_event *parent;
427
428 int oncpu;
429 int cpu;
430
431 struct list_head owner_entry;
432 struct task_struct *owner;
433
434 /* mmap bits */
435 struct mutex mmap_mutex;
436 atomic_t mmap_count;
437
438 struct ring_buffer *rb;
439 struct list_head rb_entry;
440 unsigned long rcu_batches;
441 int rcu_pending;
442
443 /* poll related */
444 wait_queue_head_t waitq;
445 struct fasync_struct *fasync;
446
447 /* delayed work for NMIs and such */
448 int pending_wakeup;
449 int pending_kill;
450 int pending_disable;
451 struct irq_work pending;
452
453 atomic_t event_limit;
454
455 void (*destroy)(struct perf_event *);
456 struct rcu_head rcu_head;
457
458 struct pid_namespace *ns;
459 u64 id;
460
461 perf_overflow_handler_t overflow_handler;
462 void *overflow_handler_context;
463
464 #ifdef CONFIG_EVENT_TRACING
465 struct ftrace_event_call *tp_event;
466 struct event_filter *filter;
467 #ifdef CONFIG_FUNCTION_TRACER
468 struct ftrace_ops ftrace_ops;
469 #endif
470 #endif
471
472 #ifdef CONFIG_CGROUP_PERF
473 struct perf_cgroup *cgrp; /* cgroup event is attach to */
474 int cgrp_defer_enabled;
475 #endif
476
477 #endif /* CONFIG_PERF_EVENTS */
478 };
479
480 /**
481 * struct perf_event_context - event context structure
482 *
483 * Used as a container for task events and CPU events as well:
484 */
485 struct perf_event_context {
486 struct pmu *pmu;
487 /*
488 * Protect the states of the events in the list,
489 * nr_active, and the list:
490 */
491 raw_spinlock_t lock;
492 /*
493 * Protect the list of events. Locking either mutex or lock
494 * is sufficient to ensure the list doesn't change; to change
495 * the list you need to lock both the mutex and the spinlock.
496 */
497 struct mutex mutex;
498
499 struct list_head active_ctx_list;
500 struct list_head pinned_groups;
501 struct list_head flexible_groups;
502 struct list_head event_list;
503 int nr_events;
504 int nr_active;
505 int is_active;
506 int nr_stat;
507 int nr_freq;
508 int rotate_disable;
509 atomic_t refcount;
510 struct task_struct *task;
511
512 /*
513 * Context clock, runs when context enabled.
514 */
515 u64 time;
516 u64 timestamp;
517
518 /*
519 * These fields let us detect when two contexts have both
520 * been cloned (inherited) from a common ancestor.
521 */
522 struct perf_event_context *parent_ctx;
523 u64 parent_gen;
524 u64 generation;
525 int pin_count;
526 int nr_cgroups; /* cgroup evts */
527 void *task_ctx_data; /* pmu specific data */
528 struct rcu_head rcu_head;
529
530 struct delayed_work orphans_remove;
531 bool orphans_remove_sched;
532 };
533
534 /*
535 * Number of contexts where an event can trigger:
536 * task, softirq, hardirq, nmi.
537 */
538 #define PERF_NR_CONTEXTS 4
539
540 /**
541 * struct perf_event_cpu_context - per cpu event context structure
542 */
543 struct perf_cpu_context {
544 struct perf_event_context ctx;
545 struct perf_event_context *task_ctx;
546 int active_oncpu;
547 int exclusive;
548 struct hrtimer hrtimer;
549 ktime_t hrtimer_interval;
550 struct pmu *unique_pmu;
551 struct perf_cgroup *cgrp;
552 };
553
554 struct perf_output_handle {
555 struct perf_event *event;
556 struct ring_buffer *rb;
557 unsigned long wakeup;
558 unsigned long size;
559 void *addr;
560 int page;
561 };
562
563 #ifdef CONFIG_CGROUP_PERF
564
565 /*
566 * perf_cgroup_info keeps track of time_enabled for a cgroup.
567 * This is a per-cpu dynamically allocated data structure.
568 */
569 struct perf_cgroup_info {
570 u64 time;
571 u64 timestamp;
572 };
573
574 struct perf_cgroup {
575 struct cgroup_subsys_state css;
576 struct perf_cgroup_info __percpu *info;
577 };
578
579 /*
580 * Must ensure cgroup is pinned (css_get) before calling
581 * this function. In other words, we cannot call this function
582 * if there is no cgroup event for the current CPU context.
583 */
584 static inline struct perf_cgroup *
585 perf_cgroup_from_task(struct task_struct *task)
586 {
587 return container_of(task_css(task, perf_event_cgrp_id),
588 struct perf_cgroup, css);
589 }
590 #endif /* CONFIG_CGROUP_PERF */
591
592 #ifdef CONFIG_PERF_EVENTS
593
594 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
595 extern void perf_pmu_unregister(struct pmu *pmu);
596
597 extern int perf_num_counters(void);
598 extern const char *perf_pmu_name(void);
599 extern void __perf_event_task_sched_in(struct task_struct *prev,
600 struct task_struct *task);
601 extern void __perf_event_task_sched_out(struct task_struct *prev,
602 struct task_struct *next);
603 extern int perf_event_init_task(struct task_struct *child);
604 extern void perf_event_exit_task(struct task_struct *child);
605 extern void perf_event_free_task(struct task_struct *task);
606 extern void perf_event_delayed_put(struct task_struct *task);
607 extern void perf_event_print_debug(void);
608 extern void perf_pmu_disable(struct pmu *pmu);
609 extern void perf_pmu_enable(struct pmu *pmu);
610 extern void perf_sched_cb_dec(struct pmu *pmu);
611 extern void perf_sched_cb_inc(struct pmu *pmu);
612 extern int perf_event_task_disable(void);
613 extern int perf_event_task_enable(void);
614 extern int perf_event_refresh(struct perf_event *event, int refresh);
615 extern void perf_event_update_userpage(struct perf_event *event);
616 extern int perf_event_release_kernel(struct perf_event *event);
617 extern struct perf_event *
618 perf_event_create_kernel_counter(struct perf_event_attr *attr,
619 int cpu,
620 struct task_struct *task,
621 perf_overflow_handler_t callback,
622 void *context);
623 extern void perf_pmu_migrate_context(struct pmu *pmu,
624 int src_cpu, int dst_cpu);
625 extern u64 perf_event_read_value(struct perf_event *event,
626 u64 *enabled, u64 *running);
627
628
629 struct perf_sample_data {
630 /*
631 * Fields set by perf_sample_data_init(), group so as to
632 * minimize the cachelines touched.
633 */
634 u64 addr;
635 struct perf_raw_record *raw;
636 struct perf_branch_stack *br_stack;
637 u64 period;
638 u64 weight;
639 u64 txn;
640 union perf_mem_data_src data_src;
641
642 /*
643 * The other fields, optionally {set,used} by
644 * perf_{prepare,output}_sample().
645 */
646 u64 type;
647 u64 ip;
648 struct {
649 u32 pid;
650 u32 tid;
651 } tid_entry;
652 u64 time;
653 u64 id;
654 u64 stream_id;
655 struct {
656 u32 cpu;
657 u32 reserved;
658 } cpu_entry;
659 struct perf_callchain_entry *callchain;
660
661 /*
662 * regs_user may point to task_pt_regs or to regs_user_copy, depending
663 * on arch details.
664 */
665 struct perf_regs regs_user;
666 struct pt_regs regs_user_copy;
667
668 struct perf_regs regs_intr;
669 u64 stack_user_size;
670 } ____cacheline_aligned;
671
672 /* default value for data source */
673 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
674 PERF_MEM_S(LVL, NA) |\
675 PERF_MEM_S(SNOOP, NA) |\
676 PERF_MEM_S(LOCK, NA) |\
677 PERF_MEM_S(TLB, NA))
678
679 static inline void perf_sample_data_init(struct perf_sample_data *data,
680 u64 addr, u64 period)
681 {
682 /* remaining struct members initialized in perf_prepare_sample() */
683 data->addr = addr;
684 data->raw = NULL;
685 data->br_stack = NULL;
686 data->period = period;
687 data->weight = 0;
688 data->data_src.val = PERF_MEM_NA;
689 data->txn = 0;
690 }
691
692 extern void perf_output_sample(struct perf_output_handle *handle,
693 struct perf_event_header *header,
694 struct perf_sample_data *data,
695 struct perf_event *event);
696 extern void perf_prepare_sample(struct perf_event_header *header,
697 struct perf_sample_data *data,
698 struct perf_event *event,
699 struct pt_regs *regs);
700
701 extern int perf_event_overflow(struct perf_event *event,
702 struct perf_sample_data *data,
703 struct pt_regs *regs);
704
705 static inline bool is_sampling_event(struct perf_event *event)
706 {
707 return event->attr.sample_period != 0;
708 }
709
710 /*
711 * Return 1 for a software event, 0 for a hardware event
712 */
713 static inline int is_software_event(struct perf_event *event)
714 {
715 return event->pmu->task_ctx_nr == perf_sw_context;
716 }
717
718 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
719
720 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
721 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
722
723 #ifndef perf_arch_fetch_caller_regs
724 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
725 #endif
726
727 /*
728 * Take a snapshot of the regs. Skip ip and frame pointer to
729 * the nth caller. We only need a few of the regs:
730 * - ip for PERF_SAMPLE_IP
731 * - cs for user_mode() tests
732 * - bp for callchains
733 * - eflags, for future purposes, just in case
734 */
735 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
736 {
737 memset(regs, 0, sizeof(*regs));
738
739 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
740 }
741
742 static __always_inline void
743 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
744 {
745 if (static_key_false(&perf_swevent_enabled[event_id]))
746 __perf_sw_event(event_id, nr, regs, addr);
747 }
748
749 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
750
751 /*
752 * 'Special' version for the scheduler, it hard assumes no recursion,
753 * which is guaranteed by us not actually scheduling inside other swevents
754 * because those disable preemption.
755 */
756 static __always_inline void
757 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
758 {
759 if (static_key_false(&perf_swevent_enabled[event_id])) {
760 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
761
762 perf_fetch_caller_regs(regs);
763 ___perf_sw_event(event_id, nr, regs, addr);
764 }
765 }
766
767 extern struct static_key_deferred perf_sched_events;
768
769 static inline void perf_event_task_sched_in(struct task_struct *prev,
770 struct task_struct *task)
771 {
772 if (static_key_false(&perf_sched_events.key))
773 __perf_event_task_sched_in(prev, task);
774 }
775
776 static inline void perf_event_task_sched_out(struct task_struct *prev,
777 struct task_struct *next)
778 {
779 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
780
781 if (static_key_false(&perf_sched_events.key))
782 __perf_event_task_sched_out(prev, next);
783 }
784
785 static inline u64 __perf_event_count(struct perf_event *event)
786 {
787 return local64_read(&event->count) + atomic64_read(&event->child_count);
788 }
789
790 extern void perf_event_mmap(struct vm_area_struct *vma);
791 extern struct perf_guest_info_callbacks *perf_guest_cbs;
792 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
793 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
794
795 extern void perf_event_exec(void);
796 extern void perf_event_comm(struct task_struct *tsk, bool exec);
797 extern void perf_event_fork(struct task_struct *tsk);
798
799 /* Callchains */
800 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
801
802 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
803 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
804
805 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
806 {
807 if (entry->nr < PERF_MAX_STACK_DEPTH)
808 entry->ip[entry->nr++] = ip;
809 }
810
811 extern int sysctl_perf_event_paranoid;
812 extern int sysctl_perf_event_mlock;
813 extern int sysctl_perf_event_sample_rate;
814 extern int sysctl_perf_cpu_time_max_percent;
815
816 extern void perf_sample_event_took(u64 sample_len_ns);
817
818 extern int perf_proc_update_handler(struct ctl_table *table, int write,
819 void __user *buffer, size_t *lenp,
820 loff_t *ppos);
821 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
822 void __user *buffer, size_t *lenp,
823 loff_t *ppos);
824
825
826 static inline bool perf_paranoid_tracepoint_raw(void)
827 {
828 return sysctl_perf_event_paranoid > -1;
829 }
830
831 static inline bool perf_paranoid_cpu(void)
832 {
833 return sysctl_perf_event_paranoid > 0;
834 }
835
836 static inline bool perf_paranoid_kernel(void)
837 {
838 return sysctl_perf_event_paranoid > 1;
839 }
840
841 extern void perf_event_init(void);
842 extern void perf_tp_event(u64 addr, u64 count, void *record,
843 int entry_size, struct pt_regs *regs,
844 struct hlist_head *head, int rctx,
845 struct task_struct *task);
846 extern void perf_bp_event(struct perf_event *event, void *data);
847
848 #ifndef perf_misc_flags
849 # define perf_misc_flags(regs) \
850 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
851 # define perf_instruction_pointer(regs) instruction_pointer(regs)
852 #endif
853
854 static inline bool has_branch_stack(struct perf_event *event)
855 {
856 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
857 }
858
859 static inline bool needs_branch_stack(struct perf_event *event)
860 {
861 return event->attr.branch_sample_type != 0;
862 }
863
864 extern int perf_output_begin(struct perf_output_handle *handle,
865 struct perf_event *event, unsigned int size);
866 extern void perf_output_end(struct perf_output_handle *handle);
867 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
868 const void *buf, unsigned int len);
869 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
870 unsigned int len);
871 extern int perf_swevent_get_recursion_context(void);
872 extern void perf_swevent_put_recursion_context(int rctx);
873 extern u64 perf_swevent_set_period(struct perf_event *event);
874 extern void perf_event_enable(struct perf_event *event);
875 extern void perf_event_disable(struct perf_event *event);
876 extern int __perf_event_disable(void *info);
877 extern void perf_event_task_tick(void);
878 #else /* !CONFIG_PERF_EVENTS: */
879 static inline void
880 perf_event_task_sched_in(struct task_struct *prev,
881 struct task_struct *task) { }
882 static inline void
883 perf_event_task_sched_out(struct task_struct *prev,
884 struct task_struct *next) { }
885 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
886 static inline void perf_event_exit_task(struct task_struct *child) { }
887 static inline void perf_event_free_task(struct task_struct *task) { }
888 static inline void perf_event_delayed_put(struct task_struct *task) { }
889 static inline void perf_event_print_debug(void) { }
890 static inline int perf_event_task_disable(void) { return -EINVAL; }
891 static inline int perf_event_task_enable(void) { return -EINVAL; }
892 static inline int perf_event_refresh(struct perf_event *event, int refresh)
893 {
894 return -EINVAL;
895 }
896
897 static inline void
898 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
899 static inline void
900 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { }
901 static inline void
902 perf_bp_event(struct perf_event *event, void *data) { }
903
904 static inline int perf_register_guest_info_callbacks
905 (struct perf_guest_info_callbacks *callbacks) { return 0; }
906 static inline int perf_unregister_guest_info_callbacks
907 (struct perf_guest_info_callbacks *callbacks) { return 0; }
908
909 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
910 static inline void perf_event_exec(void) { }
911 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
912 static inline void perf_event_fork(struct task_struct *tsk) { }
913 static inline void perf_event_init(void) { }
914 static inline int perf_swevent_get_recursion_context(void) { return -1; }
915 static inline void perf_swevent_put_recursion_context(int rctx) { }
916 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
917 static inline void perf_event_enable(struct perf_event *event) { }
918 static inline void perf_event_disable(struct perf_event *event) { }
919 static inline int __perf_event_disable(void *info) { return -1; }
920 static inline void perf_event_task_tick(void) { }
921 #endif
922
923 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL)
924 extern bool perf_event_can_stop_tick(void);
925 #else
926 static inline bool perf_event_can_stop_tick(void) { return true; }
927 #endif
928
929 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
930 extern void perf_restore_debug_store(void);
931 #else
932 static inline void perf_restore_debug_store(void) { }
933 #endif
934
935 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
936
937 /*
938 * This has to have a higher priority than migration_notifier in sched/core.c.
939 */
940 #define perf_cpu_notifier(fn) \
941 do { \
942 static struct notifier_block fn##_nb = \
943 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
944 unsigned long cpu = smp_processor_id(); \
945 unsigned long flags; \
946 \
947 cpu_notifier_register_begin(); \
948 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
949 (void *)(unsigned long)cpu); \
950 local_irq_save(flags); \
951 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
952 (void *)(unsigned long)cpu); \
953 local_irq_restore(flags); \
954 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
955 (void *)(unsigned long)cpu); \
956 __register_cpu_notifier(&fn##_nb); \
957 cpu_notifier_register_done(); \
958 } while (0)
959
960 /*
961 * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the
962 * callback for already online CPUs.
963 */
964 #define __perf_cpu_notifier(fn) \
965 do { \
966 static struct notifier_block fn##_nb = \
967 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
968 \
969 __register_cpu_notifier(&fn##_nb); \
970 } while (0)
971
972 struct perf_pmu_events_attr {
973 struct device_attribute attr;
974 u64 id;
975 const char *event_str;
976 };
977
978 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
979 static struct perf_pmu_events_attr _var = { \
980 .attr = __ATTR(_name, 0444, _show, NULL), \
981 .id = _id, \
982 };
983
984 #define PMU_FORMAT_ATTR(_name, _format) \
985 static ssize_t \
986 _name##_show(struct device *dev, \
987 struct device_attribute *attr, \
988 char *page) \
989 { \
990 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
991 return sprintf(page, _format "\n"); \
992 } \
993 \
994 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
995
996 #endif /* _LINUX_PERF_EVENT_H */
This page took 0.131182 seconds and 5 git commands to generate.