perf/abi: Document some more aspects of the perf ABI
[deliverable/linux.git] / include / linux / perf_event.h
1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18
19 /*
20 * Kernel-internal data types and definitions:
21 */
22
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27
28 struct perf_guest_info_callbacks {
29 int (*is_in_guest)(void);
30 int (*is_user_mode)(void);
31 unsigned long (*get_guest_ip)(void);
32 };
33
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <linux/cgroup.h>
57 #include <asm/local.h>
58
59 struct perf_callchain_entry {
60 __u64 nr;
61 __u64 ip[PERF_MAX_STACK_DEPTH];
62 };
63
64 struct perf_raw_record {
65 u32 size;
66 void *data;
67 };
68
69 /*
70 * branch stack layout:
71 * nr: number of taken branches stored in entries[]
72 *
73 * Note that nr can vary from sample to sample
74 * branches (to, from) are stored from most recent
75 * to least recent, i.e., entries[0] contains the most
76 * recent branch.
77 */
78 struct perf_branch_stack {
79 __u64 nr;
80 struct perf_branch_entry entries[0];
81 };
82
83 struct task_struct;
84
85 /*
86 * extra PMU register associated with an event
87 */
88 struct hw_perf_event_extra {
89 u64 config; /* register value */
90 unsigned int reg; /* register address or index */
91 int alloc; /* extra register already allocated */
92 int idx; /* index in shared_regs->regs[] */
93 };
94
95 /**
96 * struct hw_perf_event - performance event hardware details:
97 */
98 struct hw_perf_event {
99 #ifdef CONFIG_PERF_EVENTS
100 union {
101 struct { /* hardware */
102 u64 config;
103 u64 last_tag;
104 unsigned long config_base;
105 unsigned long event_base;
106 int event_base_rdpmc;
107 int idx;
108 int last_cpu;
109 int flags;
110
111 struct hw_perf_event_extra extra_reg;
112 struct hw_perf_event_extra branch_reg;
113 };
114 struct { /* software */
115 struct hrtimer hrtimer;
116 };
117 struct { /* tracepoint */
118 /* for tp_event->class */
119 struct list_head tp_list;
120 };
121 struct { /* intel_cqm */
122 int cqm_state;
123 u32 cqm_rmid;
124 struct list_head cqm_events_entry;
125 struct list_head cqm_groups_entry;
126 struct list_head cqm_group_entry;
127 };
128 struct { /* itrace */
129 int itrace_started;
130 };
131 #ifdef CONFIG_HAVE_HW_BREAKPOINT
132 struct { /* breakpoint */
133 /*
134 * Crufty hack to avoid the chicken and egg
135 * problem hw_breakpoint has with context
136 * creation and event initalization.
137 */
138 struct arch_hw_breakpoint info;
139 struct list_head bp_list;
140 };
141 #endif
142 };
143 /*
144 * If the event is a per task event, this will point to the task in
145 * question. See the comment in perf_event_alloc().
146 */
147 struct task_struct *target;
148
149 /*
150 * hw_perf_event::state flags; used to track the PERF_EF_* state.
151 */
152 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
153 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
154 #define PERF_HES_ARCH 0x04
155
156 int state;
157
158 /*
159 * The last observed hardware counter value, updated with a
160 * local64_cmpxchg() such that pmu::read() can be called nested.
161 */
162 local64_t prev_count;
163
164 /*
165 * The period to start the next sample with.
166 */
167 u64 sample_period;
168
169 /*
170 * The period we started this sample with.
171 */
172 u64 last_period;
173
174 /*
175 * However much is left of the current period; note that this is
176 * a full 64bit value and allows for generation of periods longer
177 * than hardware might allow.
178 */
179 local64_t period_left;
180
181 /*
182 * State for throttling the event, see __perf_event_overflow() and
183 * perf_adjust_freq_unthr_context().
184 */
185 u64 interrupts_seq;
186 u64 interrupts;
187
188 /*
189 * State for freq target events, see __perf_event_overflow() and
190 * perf_adjust_freq_unthr_context().
191 */
192 u64 freq_time_stamp;
193 u64 freq_count_stamp;
194 #endif
195 };
196
197 struct perf_event;
198
199 /*
200 * Common implementation detail of pmu::{start,commit,cancel}_txn
201 */
202 #define PERF_EVENT_TXN 0x1
203
204 /**
205 * pmu::capabilities flags
206 */
207 #define PERF_PMU_CAP_NO_INTERRUPT 0x01
208 #define PERF_PMU_CAP_NO_NMI 0x02
209 #define PERF_PMU_CAP_AUX_NO_SG 0x04
210 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08
211 #define PERF_PMU_CAP_EXCLUSIVE 0x10
212 #define PERF_PMU_CAP_ITRACE 0x20
213
214 /**
215 * struct pmu - generic performance monitoring unit
216 */
217 struct pmu {
218 struct list_head entry;
219
220 struct module *module;
221 struct device *dev;
222 const struct attribute_group **attr_groups;
223 const char *name;
224 int type;
225
226 /*
227 * various common per-pmu feature flags
228 */
229 int capabilities;
230
231 int * __percpu pmu_disable_count;
232 struct perf_cpu_context * __percpu pmu_cpu_context;
233 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
234 int task_ctx_nr;
235 int hrtimer_interval_ms;
236
237 /*
238 * Fully disable/enable this PMU, can be used to protect from the PMI
239 * as well as for lazy/batch writing of the MSRs.
240 */
241 void (*pmu_enable) (struct pmu *pmu); /* optional */
242 void (*pmu_disable) (struct pmu *pmu); /* optional */
243
244 /*
245 * Try and initialize the event for this PMU.
246 *
247 * Returns:
248 * -ENOENT -- @event is not for this PMU
249 *
250 * -ENODEV -- @event is for this PMU but PMU not present
251 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
252 * -EINVAL -- @event is for this PMU but @event is not valid
253 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
254 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges
255 *
256 * 0 -- @event is for this PMU and valid
257 *
258 * Other error return values are allowed.
259 */
260 int (*event_init) (struct perf_event *event);
261
262 /*
263 * Notification that the event was mapped or unmapped. Called
264 * in the context of the mapping task.
265 */
266 void (*event_mapped) (struct perf_event *event); /*optional*/
267 void (*event_unmapped) (struct perf_event *event); /*optional*/
268
269 /*
270 * Flags for ->add()/->del()/ ->start()/->stop(). There are
271 * matching hw_perf_event::state flags.
272 */
273 #define PERF_EF_START 0x01 /* start the counter when adding */
274 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
275 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
276
277 /*
278 * Adds/Removes a counter to/from the PMU, can be done inside a
279 * transaction, see the ->*_txn() methods.
280 *
281 * The add/del callbacks will reserve all hardware resources required
282 * to service the event, this includes any counter constraint
283 * scheduling etc.
284 *
285 * Called with IRQs disabled and the PMU disabled on the CPU the event
286 * is on.
287 *
288 * ->add() called without PERF_EF_START should result in the same state
289 * as ->add() followed by ->stop().
290 *
291 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
292 * ->stop() that must deal with already being stopped without
293 * PERF_EF_UPDATE.
294 */
295 int (*add) (struct perf_event *event, int flags);
296 void (*del) (struct perf_event *event, int flags);
297
298 /*
299 * Starts/Stops a counter present on the PMU.
300 *
301 * The PMI handler should stop the counter when perf_event_overflow()
302 * returns !0. ->start() will be used to continue.
303 *
304 * Also used to change the sample period.
305 *
306 * Called with IRQs disabled and the PMU disabled on the CPU the event
307 * is on -- will be called from NMI context with the PMU generates
308 * NMIs.
309 *
310 * ->stop() with PERF_EF_UPDATE will read the counter and update
311 * period/count values like ->read() would.
312 *
313 * ->start() with PERF_EF_RELOAD will reprogram the the counter
314 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
315 */
316 void (*start) (struct perf_event *event, int flags);
317 void (*stop) (struct perf_event *event, int flags);
318
319 /*
320 * Updates the counter value of the event.
321 *
322 * For sampling capable PMUs this will also update the software period
323 * hw_perf_event::period_left field.
324 */
325 void (*read) (struct perf_event *event);
326
327 /*
328 * Group events scheduling is treated as a transaction, add
329 * group events as a whole and perform one schedulability test.
330 * If the test fails, roll back the whole group
331 *
332 * Start the transaction, after this ->add() doesn't need to
333 * do schedulability tests.
334 */
335 void (*start_txn) (struct pmu *pmu); /* optional */
336 /*
337 * If ->start_txn() disabled the ->add() schedulability test
338 * then ->commit_txn() is required to perform one. On success
339 * the transaction is closed. On error the transaction is kept
340 * open until ->cancel_txn() is called.
341 */
342 int (*commit_txn) (struct pmu *pmu); /* optional */
343 /*
344 * Will cancel the transaction, assumes ->del() is called
345 * for each successful ->add() during the transaction.
346 */
347 void (*cancel_txn) (struct pmu *pmu); /* optional */
348
349 /*
350 * Will return the value for perf_event_mmap_page::index for this event,
351 * if no implementation is provided it will default to: event->hw.idx + 1.
352 */
353 int (*event_idx) (struct perf_event *event); /*optional */
354
355 /*
356 * context-switches callback
357 */
358 void (*sched_task) (struct perf_event_context *ctx,
359 bool sched_in);
360 /*
361 * PMU specific data size
362 */
363 size_t task_ctx_size;
364
365
366 /*
367 * Return the count value for a counter.
368 */
369 u64 (*count) (struct perf_event *event); /*optional*/
370
371 /*
372 * Set up pmu-private data structures for an AUX area
373 */
374 void *(*setup_aux) (int cpu, void **pages,
375 int nr_pages, bool overwrite);
376 /* optional */
377
378 /*
379 * Free pmu-private AUX data structures
380 */
381 void (*free_aux) (void *aux); /* optional */
382
383 /*
384 * Filter events for PMU-specific reasons.
385 */
386 int (*filter_match) (struct perf_event *event); /* optional */
387 };
388
389 /**
390 * enum perf_event_active_state - the states of a event
391 */
392 enum perf_event_active_state {
393 PERF_EVENT_STATE_EXIT = -3,
394 PERF_EVENT_STATE_ERROR = -2,
395 PERF_EVENT_STATE_OFF = -1,
396 PERF_EVENT_STATE_INACTIVE = 0,
397 PERF_EVENT_STATE_ACTIVE = 1,
398 };
399
400 struct file;
401 struct perf_sample_data;
402
403 typedef void (*perf_overflow_handler_t)(struct perf_event *,
404 struct perf_sample_data *,
405 struct pt_regs *regs);
406
407 enum perf_group_flag {
408 PERF_GROUP_SOFTWARE = 0x1,
409 };
410
411 #define SWEVENT_HLIST_BITS 8
412 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
413
414 struct swevent_hlist {
415 struct hlist_head heads[SWEVENT_HLIST_SIZE];
416 struct rcu_head rcu_head;
417 };
418
419 #define PERF_ATTACH_CONTEXT 0x01
420 #define PERF_ATTACH_GROUP 0x02
421 #define PERF_ATTACH_TASK 0x04
422 #define PERF_ATTACH_TASK_DATA 0x08
423
424 struct perf_cgroup;
425 struct ring_buffer;
426
427 /**
428 * struct perf_event - performance event kernel representation:
429 */
430 struct perf_event {
431 #ifdef CONFIG_PERF_EVENTS
432 /*
433 * entry onto perf_event_context::event_list;
434 * modifications require ctx->lock
435 * RCU safe iterations.
436 */
437 struct list_head event_entry;
438
439 /*
440 * XXX: group_entry and sibling_list should be mutually exclusive;
441 * either you're a sibling on a group, or you're the group leader.
442 * Rework the code to always use the same list element.
443 *
444 * Locked for modification by both ctx->mutex and ctx->lock; holding
445 * either sufficies for read.
446 */
447 struct list_head group_entry;
448 struct list_head sibling_list;
449
450 /*
451 * We need storage to track the entries in perf_pmu_migrate_context; we
452 * cannot use the event_entry because of RCU and we want to keep the
453 * group in tact which avoids us using the other two entries.
454 */
455 struct list_head migrate_entry;
456
457 struct hlist_node hlist_entry;
458 struct list_head active_entry;
459 int nr_siblings;
460 int group_flags;
461 struct perf_event *group_leader;
462 struct pmu *pmu;
463
464 enum perf_event_active_state state;
465 unsigned int attach_state;
466 local64_t count;
467 atomic64_t child_count;
468
469 /*
470 * These are the total time in nanoseconds that the event
471 * has been enabled (i.e. eligible to run, and the task has
472 * been scheduled in, if this is a per-task event)
473 * and running (scheduled onto the CPU), respectively.
474 *
475 * They are computed from tstamp_enabled, tstamp_running and
476 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
477 */
478 u64 total_time_enabled;
479 u64 total_time_running;
480
481 /*
482 * These are timestamps used for computing total_time_enabled
483 * and total_time_running when the event is in INACTIVE or
484 * ACTIVE state, measured in nanoseconds from an arbitrary point
485 * in time.
486 * tstamp_enabled: the notional time when the event was enabled
487 * tstamp_running: the notional time when the event was scheduled on
488 * tstamp_stopped: in INACTIVE state, the notional time when the
489 * event was scheduled off.
490 */
491 u64 tstamp_enabled;
492 u64 tstamp_running;
493 u64 tstamp_stopped;
494
495 /*
496 * timestamp shadows the actual context timing but it can
497 * be safely used in NMI interrupt context. It reflects the
498 * context time as it was when the event was last scheduled in.
499 *
500 * ctx_time already accounts for ctx->timestamp. Therefore to
501 * compute ctx_time for a sample, simply add perf_clock().
502 */
503 u64 shadow_ctx_time;
504
505 struct perf_event_attr attr;
506 u16 header_size;
507 u16 id_header_size;
508 u16 read_size;
509 struct hw_perf_event hw;
510
511 struct perf_event_context *ctx;
512 atomic_long_t refcount;
513
514 /*
515 * These accumulate total time (in nanoseconds) that children
516 * events have been enabled and running, respectively.
517 */
518 atomic64_t child_total_time_enabled;
519 atomic64_t child_total_time_running;
520
521 /*
522 * Protect attach/detach and child_list:
523 */
524 struct mutex child_mutex;
525 struct list_head child_list;
526 struct perf_event *parent;
527
528 int oncpu;
529 int cpu;
530
531 struct list_head owner_entry;
532 struct task_struct *owner;
533
534 /* mmap bits */
535 struct mutex mmap_mutex;
536 atomic_t mmap_count;
537
538 struct ring_buffer *rb;
539 struct list_head rb_entry;
540 unsigned long rcu_batches;
541 int rcu_pending;
542
543 /* poll related */
544 wait_queue_head_t waitq;
545 struct fasync_struct *fasync;
546
547 /* delayed work for NMIs and such */
548 int pending_wakeup;
549 int pending_kill;
550 int pending_disable;
551 struct irq_work pending;
552
553 atomic_t event_limit;
554
555 void (*destroy)(struct perf_event *);
556 struct rcu_head rcu_head;
557
558 struct pid_namespace *ns;
559 u64 id;
560
561 u64 (*clock)(void);
562 perf_overflow_handler_t overflow_handler;
563 void *overflow_handler_context;
564
565 #ifdef CONFIG_EVENT_TRACING
566 struct trace_event_call *tp_event;
567 struct event_filter *filter;
568 #ifdef CONFIG_FUNCTION_TRACER
569 struct ftrace_ops ftrace_ops;
570 #endif
571 #endif
572
573 #ifdef CONFIG_CGROUP_PERF
574 struct perf_cgroup *cgrp; /* cgroup event is attach to */
575 int cgrp_defer_enabled;
576 #endif
577
578 #endif /* CONFIG_PERF_EVENTS */
579 };
580
581 /**
582 * struct perf_event_context - event context structure
583 *
584 * Used as a container for task events and CPU events as well:
585 */
586 struct perf_event_context {
587 struct pmu *pmu;
588 /*
589 * Protect the states of the events in the list,
590 * nr_active, and the list:
591 */
592 raw_spinlock_t lock;
593 /*
594 * Protect the list of events. Locking either mutex or lock
595 * is sufficient to ensure the list doesn't change; to change
596 * the list you need to lock both the mutex and the spinlock.
597 */
598 struct mutex mutex;
599
600 struct list_head active_ctx_list;
601 struct list_head pinned_groups;
602 struct list_head flexible_groups;
603 struct list_head event_list;
604 int nr_events;
605 int nr_active;
606 int is_active;
607 int nr_stat;
608 int nr_freq;
609 int rotate_disable;
610 atomic_t refcount;
611 struct task_struct *task;
612
613 /*
614 * Context clock, runs when context enabled.
615 */
616 u64 time;
617 u64 timestamp;
618
619 /*
620 * These fields let us detect when two contexts have both
621 * been cloned (inherited) from a common ancestor.
622 */
623 struct perf_event_context *parent_ctx;
624 u64 parent_gen;
625 u64 generation;
626 int pin_count;
627 int nr_cgroups; /* cgroup evts */
628 void *task_ctx_data; /* pmu specific data */
629 struct rcu_head rcu_head;
630
631 struct delayed_work orphans_remove;
632 bool orphans_remove_sched;
633 };
634
635 /*
636 * Number of contexts where an event can trigger:
637 * task, softirq, hardirq, nmi.
638 */
639 #define PERF_NR_CONTEXTS 4
640
641 /**
642 * struct perf_event_cpu_context - per cpu event context structure
643 */
644 struct perf_cpu_context {
645 struct perf_event_context ctx;
646 struct perf_event_context *task_ctx;
647 int active_oncpu;
648 int exclusive;
649
650 raw_spinlock_t hrtimer_lock;
651 struct hrtimer hrtimer;
652 ktime_t hrtimer_interval;
653 unsigned int hrtimer_active;
654
655 struct pmu *unique_pmu;
656 struct perf_cgroup *cgrp;
657 };
658
659 struct perf_output_handle {
660 struct perf_event *event;
661 struct ring_buffer *rb;
662 unsigned long wakeup;
663 unsigned long size;
664 union {
665 void *addr;
666 unsigned long head;
667 };
668 int page;
669 };
670
671 #ifdef CONFIG_CGROUP_PERF
672
673 /*
674 * perf_cgroup_info keeps track of time_enabled for a cgroup.
675 * This is a per-cpu dynamically allocated data structure.
676 */
677 struct perf_cgroup_info {
678 u64 time;
679 u64 timestamp;
680 };
681
682 struct perf_cgroup {
683 struct cgroup_subsys_state css;
684 struct perf_cgroup_info __percpu *info;
685 };
686
687 /*
688 * Must ensure cgroup is pinned (css_get) before calling
689 * this function. In other words, we cannot call this function
690 * if there is no cgroup event for the current CPU context.
691 */
692 static inline struct perf_cgroup *
693 perf_cgroup_from_task(struct task_struct *task)
694 {
695 return container_of(task_css(task, perf_event_cgrp_id),
696 struct perf_cgroup, css);
697 }
698 #endif /* CONFIG_CGROUP_PERF */
699
700 #ifdef CONFIG_PERF_EVENTS
701
702 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
703 struct perf_event *event);
704 extern void perf_aux_output_end(struct perf_output_handle *handle,
705 unsigned long size, bool truncated);
706 extern int perf_aux_output_skip(struct perf_output_handle *handle,
707 unsigned long size);
708 extern void *perf_get_aux(struct perf_output_handle *handle);
709
710 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
711 extern void perf_pmu_unregister(struct pmu *pmu);
712
713 extern int perf_num_counters(void);
714 extern const char *perf_pmu_name(void);
715 extern void __perf_event_task_sched_in(struct task_struct *prev,
716 struct task_struct *task);
717 extern void __perf_event_task_sched_out(struct task_struct *prev,
718 struct task_struct *next);
719 extern int perf_event_init_task(struct task_struct *child);
720 extern void perf_event_exit_task(struct task_struct *child);
721 extern void perf_event_free_task(struct task_struct *task);
722 extern void perf_event_delayed_put(struct task_struct *task);
723 extern struct perf_event *perf_event_get(unsigned int fd);
724 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
725 extern void perf_event_print_debug(void);
726 extern void perf_pmu_disable(struct pmu *pmu);
727 extern void perf_pmu_enable(struct pmu *pmu);
728 extern void perf_sched_cb_dec(struct pmu *pmu);
729 extern void perf_sched_cb_inc(struct pmu *pmu);
730 extern int perf_event_task_disable(void);
731 extern int perf_event_task_enable(void);
732 extern int perf_event_refresh(struct perf_event *event, int refresh);
733 extern void perf_event_update_userpage(struct perf_event *event);
734 extern int perf_event_release_kernel(struct perf_event *event);
735 extern struct perf_event *
736 perf_event_create_kernel_counter(struct perf_event_attr *attr,
737 int cpu,
738 struct task_struct *task,
739 perf_overflow_handler_t callback,
740 void *context);
741 extern void perf_pmu_migrate_context(struct pmu *pmu,
742 int src_cpu, int dst_cpu);
743 extern u64 perf_event_read_local(struct perf_event *event);
744 extern u64 perf_event_read_value(struct perf_event *event,
745 u64 *enabled, u64 *running);
746
747
748 struct perf_sample_data {
749 /*
750 * Fields set by perf_sample_data_init(), group so as to
751 * minimize the cachelines touched.
752 */
753 u64 addr;
754 struct perf_raw_record *raw;
755 struct perf_branch_stack *br_stack;
756 u64 period;
757 u64 weight;
758 u64 txn;
759 union perf_mem_data_src data_src;
760
761 /*
762 * The other fields, optionally {set,used} by
763 * perf_{prepare,output}_sample().
764 */
765 u64 type;
766 u64 ip;
767 struct {
768 u32 pid;
769 u32 tid;
770 } tid_entry;
771 u64 time;
772 u64 id;
773 u64 stream_id;
774 struct {
775 u32 cpu;
776 u32 reserved;
777 } cpu_entry;
778 struct perf_callchain_entry *callchain;
779
780 /*
781 * regs_user may point to task_pt_regs or to regs_user_copy, depending
782 * on arch details.
783 */
784 struct perf_regs regs_user;
785 struct pt_regs regs_user_copy;
786
787 struct perf_regs regs_intr;
788 u64 stack_user_size;
789 } ____cacheline_aligned;
790
791 /* default value for data source */
792 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
793 PERF_MEM_S(LVL, NA) |\
794 PERF_MEM_S(SNOOP, NA) |\
795 PERF_MEM_S(LOCK, NA) |\
796 PERF_MEM_S(TLB, NA))
797
798 static inline void perf_sample_data_init(struct perf_sample_data *data,
799 u64 addr, u64 period)
800 {
801 /* remaining struct members initialized in perf_prepare_sample() */
802 data->addr = addr;
803 data->raw = NULL;
804 data->br_stack = NULL;
805 data->period = period;
806 data->weight = 0;
807 data->data_src.val = PERF_MEM_NA;
808 data->txn = 0;
809 }
810
811 extern void perf_output_sample(struct perf_output_handle *handle,
812 struct perf_event_header *header,
813 struct perf_sample_data *data,
814 struct perf_event *event);
815 extern void perf_prepare_sample(struct perf_event_header *header,
816 struct perf_sample_data *data,
817 struct perf_event *event,
818 struct pt_regs *regs);
819
820 extern int perf_event_overflow(struct perf_event *event,
821 struct perf_sample_data *data,
822 struct pt_regs *regs);
823
824 extern void perf_event_output(struct perf_event *event,
825 struct perf_sample_data *data,
826 struct pt_regs *regs);
827
828 extern void
829 perf_event_header__init_id(struct perf_event_header *header,
830 struct perf_sample_data *data,
831 struct perf_event *event);
832 extern void
833 perf_event__output_id_sample(struct perf_event *event,
834 struct perf_output_handle *handle,
835 struct perf_sample_data *sample);
836
837 extern void
838 perf_log_lost_samples(struct perf_event *event, u64 lost);
839
840 static inline bool is_sampling_event(struct perf_event *event)
841 {
842 return event->attr.sample_period != 0;
843 }
844
845 /*
846 * Return 1 for a software event, 0 for a hardware event
847 */
848 static inline int is_software_event(struct perf_event *event)
849 {
850 return event->pmu->task_ctx_nr == perf_sw_context;
851 }
852
853 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
854
855 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
856 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
857
858 #ifndef perf_arch_fetch_caller_regs
859 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
860 #endif
861
862 /*
863 * Take a snapshot of the regs. Skip ip and frame pointer to
864 * the nth caller. We only need a few of the regs:
865 * - ip for PERF_SAMPLE_IP
866 * - cs for user_mode() tests
867 * - bp for callchains
868 * - eflags, for future purposes, just in case
869 */
870 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
871 {
872 memset(regs, 0, sizeof(*regs));
873
874 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
875 }
876
877 static __always_inline void
878 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
879 {
880 if (static_key_false(&perf_swevent_enabled[event_id]))
881 __perf_sw_event(event_id, nr, regs, addr);
882 }
883
884 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
885
886 /*
887 * 'Special' version for the scheduler, it hard assumes no recursion,
888 * which is guaranteed by us not actually scheduling inside other swevents
889 * because those disable preemption.
890 */
891 static __always_inline void
892 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
893 {
894 if (static_key_false(&perf_swevent_enabled[event_id])) {
895 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
896
897 perf_fetch_caller_regs(regs);
898 ___perf_sw_event(event_id, nr, regs, addr);
899 }
900 }
901
902 extern struct static_key_deferred perf_sched_events;
903
904 static __always_inline bool
905 perf_sw_migrate_enabled(void)
906 {
907 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
908 return true;
909 return false;
910 }
911
912 static inline void perf_event_task_migrate(struct task_struct *task)
913 {
914 if (perf_sw_migrate_enabled())
915 task->sched_migrated = 1;
916 }
917
918 static inline void perf_event_task_sched_in(struct task_struct *prev,
919 struct task_struct *task)
920 {
921 if (static_key_false(&perf_sched_events.key))
922 __perf_event_task_sched_in(prev, task);
923
924 if (perf_sw_migrate_enabled() && task->sched_migrated) {
925 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
926
927 perf_fetch_caller_regs(regs);
928 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
929 task->sched_migrated = 0;
930 }
931 }
932
933 static inline void perf_event_task_sched_out(struct task_struct *prev,
934 struct task_struct *next)
935 {
936 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
937
938 if (static_key_false(&perf_sched_events.key))
939 __perf_event_task_sched_out(prev, next);
940 }
941
942 static inline u64 __perf_event_count(struct perf_event *event)
943 {
944 return local64_read(&event->count) + atomic64_read(&event->child_count);
945 }
946
947 extern void perf_event_mmap(struct vm_area_struct *vma);
948 extern struct perf_guest_info_callbacks *perf_guest_cbs;
949 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
950 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
951
952 extern void perf_event_exec(void);
953 extern void perf_event_comm(struct task_struct *tsk, bool exec);
954 extern void perf_event_fork(struct task_struct *tsk);
955
956 /* Callchains */
957 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
958
959 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
960 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
961
962 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
963 {
964 if (entry->nr < PERF_MAX_STACK_DEPTH)
965 entry->ip[entry->nr++] = ip;
966 }
967
968 extern int sysctl_perf_event_paranoid;
969 extern int sysctl_perf_event_mlock;
970 extern int sysctl_perf_event_sample_rate;
971 extern int sysctl_perf_cpu_time_max_percent;
972
973 extern void perf_sample_event_took(u64 sample_len_ns);
974
975 extern int perf_proc_update_handler(struct ctl_table *table, int write,
976 void __user *buffer, size_t *lenp,
977 loff_t *ppos);
978 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
979 void __user *buffer, size_t *lenp,
980 loff_t *ppos);
981
982
983 static inline bool perf_paranoid_tracepoint_raw(void)
984 {
985 return sysctl_perf_event_paranoid > -1;
986 }
987
988 static inline bool perf_paranoid_cpu(void)
989 {
990 return sysctl_perf_event_paranoid > 0;
991 }
992
993 static inline bool perf_paranoid_kernel(void)
994 {
995 return sysctl_perf_event_paranoid > 1;
996 }
997
998 extern void perf_event_init(void);
999 extern void perf_tp_event(u64 addr, u64 count, void *record,
1000 int entry_size, struct pt_regs *regs,
1001 struct hlist_head *head, int rctx,
1002 struct task_struct *task);
1003 extern void perf_bp_event(struct perf_event *event, void *data);
1004
1005 #ifndef perf_misc_flags
1006 # define perf_misc_flags(regs) \
1007 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1008 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1009 #endif
1010
1011 static inline bool has_branch_stack(struct perf_event *event)
1012 {
1013 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1014 }
1015
1016 static inline bool needs_branch_stack(struct perf_event *event)
1017 {
1018 return event->attr.branch_sample_type != 0;
1019 }
1020
1021 static inline bool has_aux(struct perf_event *event)
1022 {
1023 return event->pmu->setup_aux;
1024 }
1025
1026 extern int perf_output_begin(struct perf_output_handle *handle,
1027 struct perf_event *event, unsigned int size);
1028 extern void perf_output_end(struct perf_output_handle *handle);
1029 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1030 const void *buf, unsigned int len);
1031 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1032 unsigned int len);
1033 extern int perf_swevent_get_recursion_context(void);
1034 extern void perf_swevent_put_recursion_context(int rctx);
1035 extern u64 perf_swevent_set_period(struct perf_event *event);
1036 extern void perf_event_enable(struct perf_event *event);
1037 extern void perf_event_disable(struct perf_event *event);
1038 extern int __perf_event_disable(void *info);
1039 extern void perf_event_task_tick(void);
1040 #else /* !CONFIG_PERF_EVENTS: */
1041 static inline void *
1042 perf_aux_output_begin(struct perf_output_handle *handle,
1043 struct perf_event *event) { return NULL; }
1044 static inline void
1045 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size,
1046 bool truncated) { }
1047 static inline int
1048 perf_aux_output_skip(struct perf_output_handle *handle,
1049 unsigned long size) { return -EINVAL; }
1050 static inline void *
1051 perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1052 static inline void
1053 perf_event_task_migrate(struct task_struct *task) { }
1054 static inline void
1055 perf_event_task_sched_in(struct task_struct *prev,
1056 struct task_struct *task) { }
1057 static inline void
1058 perf_event_task_sched_out(struct task_struct *prev,
1059 struct task_struct *next) { }
1060 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
1061 static inline void perf_event_exit_task(struct task_struct *child) { }
1062 static inline void perf_event_free_task(struct task_struct *task) { }
1063 static inline void perf_event_delayed_put(struct task_struct *task) { }
1064 static inline struct perf_event *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
1065 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1066 {
1067 return ERR_PTR(-EINVAL);
1068 }
1069 static inline u64 perf_event_read_local(struct perf_event *event) { return -EINVAL; }
1070 static inline void perf_event_print_debug(void) { }
1071 static inline int perf_event_task_disable(void) { return -EINVAL; }
1072 static inline int perf_event_task_enable(void) { return -EINVAL; }
1073 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1074 {
1075 return -EINVAL;
1076 }
1077
1078 static inline void
1079 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1080 static inline void
1081 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { }
1082 static inline void
1083 perf_bp_event(struct perf_event *event, void *data) { }
1084
1085 static inline int perf_register_guest_info_callbacks
1086 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1087 static inline int perf_unregister_guest_info_callbacks
1088 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1089
1090 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1091 static inline void perf_event_exec(void) { }
1092 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
1093 static inline void perf_event_fork(struct task_struct *tsk) { }
1094 static inline void perf_event_init(void) { }
1095 static inline int perf_swevent_get_recursion_context(void) { return -1; }
1096 static inline void perf_swevent_put_recursion_context(int rctx) { }
1097 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
1098 static inline void perf_event_enable(struct perf_event *event) { }
1099 static inline void perf_event_disable(struct perf_event *event) { }
1100 static inline int __perf_event_disable(void *info) { return -1; }
1101 static inline void perf_event_task_tick(void) { }
1102 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
1103 #endif
1104
1105 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL)
1106 extern bool perf_event_can_stop_tick(void);
1107 #else
1108 static inline bool perf_event_can_stop_tick(void) { return true; }
1109 #endif
1110
1111 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1112 extern void perf_restore_debug_store(void);
1113 #else
1114 static inline void perf_restore_debug_store(void) { }
1115 #endif
1116
1117 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1118
1119 /*
1120 * This has to have a higher priority than migration_notifier in sched/core.c.
1121 */
1122 #define perf_cpu_notifier(fn) \
1123 do { \
1124 static struct notifier_block fn##_nb = \
1125 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
1126 unsigned long cpu = smp_processor_id(); \
1127 unsigned long flags; \
1128 \
1129 cpu_notifier_register_begin(); \
1130 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
1131 (void *)(unsigned long)cpu); \
1132 local_irq_save(flags); \
1133 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
1134 (void *)(unsigned long)cpu); \
1135 local_irq_restore(flags); \
1136 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
1137 (void *)(unsigned long)cpu); \
1138 __register_cpu_notifier(&fn##_nb); \
1139 cpu_notifier_register_done(); \
1140 } while (0)
1141
1142 /*
1143 * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the
1144 * callback for already online CPUs.
1145 */
1146 #define __perf_cpu_notifier(fn) \
1147 do { \
1148 static struct notifier_block fn##_nb = \
1149 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
1150 \
1151 __register_cpu_notifier(&fn##_nb); \
1152 } while (0)
1153
1154 struct perf_pmu_events_attr {
1155 struct device_attribute attr;
1156 u64 id;
1157 const char *event_str;
1158 };
1159
1160 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1161 char *page);
1162
1163 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1164 static struct perf_pmu_events_attr _var = { \
1165 .attr = __ATTR(_name, 0444, _show, NULL), \
1166 .id = _id, \
1167 };
1168
1169 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1170 static struct perf_pmu_events_attr _var = { \
1171 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1172 .id = 0, \
1173 .event_str = _str, \
1174 };
1175
1176 #define PMU_FORMAT_ATTR(_name, _format) \
1177 static ssize_t \
1178 _name##_show(struct device *dev, \
1179 struct device_attribute *attr, \
1180 char *page) \
1181 { \
1182 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1183 return sprintf(page, _format "\n"); \
1184 } \
1185 \
1186 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1187
1188 #endif /* _LINUX_PERF_EVENT_H */
This page took 0.058303 seconds and 5 git commands to generate.